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Abstract

Recently, there has been increasing interest in forecasting methods that utilise large
datasets. We explore the possibility of forecasting with model averaging using the
out-of-sample forecasting performance of various models in a frequentist setting,
using the predictive likelihood. We apply our method to forecasting UK inflation
and find that the new method performs well; in some respects it outperforms other
averaging methods.
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1 Introduction

Recently, there has been increasing interest in forecasting methods that utilise large

datasets. There are two main methodologies that can be applied: factor modelling where
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factor summaries of the dataset are used for forecasting; and forecast combination or aver-

aging, where information in the form of forecasts from many forecasting models, typically

simple and incomplete, are combined in some manner.

We focus on forecast combining. This idea grew out of the observation that for what-

ever reasons, combining forecasts produced a forecast superior to any element in the

combined set. Of course, if it were possible to identify the correctly specified model and

the data generating process (DGP) is unchanging, then the forecast from the correct

model should be used. But the weight of evidence dating back to Bates and Granger

(1969) and Newbold and Granger (1974) reveals that combinations of forecasts often out-

perform individual forecasts. Models may be incomplete, in different ways; they employ

different information sets. Forecasts might be biased, and biases can offset each other.

Even if forecasts are unbiased, there will be covariances between forecasts which should

be taken into account. Thus combining misspecified models may, and often will, improve

the forecast.

In this context forecast combining is viewed as a stop-gap measure that works in

practice but would be surpassed by an appropriate model that addressed the underlying

misspecification. A further practical problem is that with standard combining methods,

based on regressions, the forecast weights can only be reliably constructed for a relatively

small number of models. Nevertheless, given that the true DGP may involve a vast

number of variables, it is clear that forecast combination is a route into the combining of

information: and this is how it is interpreted in the literature relating to large data sets.

There is an alternative way of looking at this problem, most clearly seen from a

Bayesian perspective. Here, it is assumed that there is a distribution of models, thus

delineating the concept of model uncertainty more rigorously. There is also a frequentist

information theoretic approach in an analogous vein. Model weights within this framework

have been suggested by Akaike in a series of papers (see, e.g., Akaike (1978, 1979)) and

expounded further by Burnham and Anderson (1998). Kapetanios, Labhard, and Price

(2005) have shown that this approach might be useful for forecasting.

This paper extends the above approach in a significant way. Standard information

criteria are usually constructed by combining a measure of fit with a penalty term for

model complexity. The measure of fit is usually an in-sample measure. However, given

the use of such criteria for constructing forecasting weights, it is reasonable to substitute

the measure of fit by some measure of predictive ability such as the predictive likelihood1.

We pursue this idea in the paper.

1A similar approach but adopting a Bayesian perspective is presented in Eklund and Karlsson (2005).
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2 Theory

Bayesian model averaging is widely used in the literature and so we refer to work by,

among others, Koop and Potter (2003), Draper (1995) and Wright (2003) for details.

However, model averaging is not confined to the Bayesian approach. In the context of

forecasting the idea of model averaging (i.e., forecast combination) has a long tradition

starting with Bates and Granger (1969). The main suggestion of this line of work is to use

forecasts obtained during some forecast evaluation period to determine optimal weights,

via, usually, a regression approach, from which a forecast can be constructed. A problem

with this class of methods arises if the number of models, N , is large.

An alternative can be based on the analogue of Bayesian model probabilities for fre-

quentist statistics. Such a weight scheme has been implied in a series of papers by Akaike

and others (see, e.g., Akaike (1978, 1979) and Bozdogan (1987)) and expounded further

by Burnham and Anderson (1998). Akaike’s suggestion derives from the Akaike infor-

mation criterion (AIC). AIC is an asymptotically unbiased measure of minus twice the

log likelihood of a given model. It contains a term in the number of parameters in the

model, which may be viewed as a penalty for over-parameterization. From an information

theoretic point of view, AIC is an unbiased estimator of the Kullback and Leibler (1951)

(KL) distance of a given model where the KL distance is given by

I(f, g) =

∫
f(x) log

(
f(x)

g(x|θ̂)

)
dx.

f(x) is the unknown true model generating the data, g(x|.) is the entertained model and

θ̂ is the estimate of the parameter vector for g(x|.). The KL distance is an influential

concept in the model selection literature and forms the basis of the development of AIC.

Within a given set of models, the difference of the AIC for two different models can be

given a precise meaning. It is an estimate of the difference between the KL distance

for the two models. Further, exp (−1/2Ψi) is the relative likelihood of model i where

Ψi = AICi − minj AICj and AICi denotes the AIC of the i-th model in M. Thus

exp (−1/2Ψi) can be thought of as the odds for the i model to be the best KL distance

model in M. In other words, this quantity can be viewed as the weight of evidence for

model i to be the KL best model given that there is some model in M that is KL best as

a representation of the available data. It is natural to normalise exp (−1/2Ψi) so that

wi =
exp (−1/2Ψi)∑N
i=1 exp (−1/2Ψi)

(1)

where
∑

i wi = 1. We refer to these as AIC weights.
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More generally any information criterion can be used as a basis for constructing

weights. Criteria, in general, have the following structure

ICi = Li − CT,i

where Li is the estimated loglikelihood and CT,i is a penalty term for model complexity.

Usually, the estimated loglikelihood is calculated in-sample from observed data. However,

given the aim of constructing weights for forecasting, it is reasonable to consider likelihood

measures that are directly related to forecasting such as predictive likelihood (see, e.g,

Bjornstad (1990), Davison (1986) and Butler (1986) for the motivation of this likelihood

concept in a forecasting framework). Given the observed data y, the set of random

variables to be forecast z and a vector of parameters θ, predictive likelihood can be

generally defined as

ly(z, θ) = fθ(y, z)

where fθ(y, z) is the joint pdf of y and z. This general concept has been operationalised

in a number of ways such as, e.g., the profile predictive likelihood given by Lp(z|y) =

supθfθ(y, z). Theoretically, our suggestion abstracts from the principles underlying the

derivations of criteria such as AIC2 and basically considers alternative likelihood concepts

for Li. This can be justified by noting that many asymptotic properties of the criteria such

as model selection consistency (see, e.g., Sin and White (1996)) are retained when predic-

tive likelihood measures are used. This will be clear from the practical implementation

we suggest below.

In practical terms, we suggest that forecast errors from regression models are used in

the construction of Li rather than in-sample residuals. To fix ideas consider the regression

model

yt = α′xt + εt

The concentrated log-likelihood of this model is given by−T/2ln(σ̂2) where σ̂2 = 1/T
∑T

t=1 ε̂2
t ,

εt = yt − α̂(1,T )xt and α̂(1,T ) denotes the estimate of α using data from t = 1 to t = T .

The predictive likelihood measure we suggest replaces ε̂t with ε̃t for t = t0, . . . , T , where

ε̃t = yt − α̂t−t0,t−1xt. In other words we use out-of-sample forecast errors rather than

residuals. Interestingly, this implies that the predictive likelihood measure will change

depending on the forecast horizon. Clearly, due to the recursive nature of the scheme

there are fewer out-of-sample errors than residuals since one has to have an original sam-

ple for the first estimate of α, α̂1,t0 , where t0 has to be chosen a priori. Note that if we

2It is worth noting that the derivation of AIC involves a predictive likelihood concept (see, e.g. Burn-
ham and Anderson (1998, pp. 242)). In practice, however, AIC is calculated in sample.
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set t0 = bT , where 0 < b < 1, the model selection consistency properties of the various

information criteria are retained.

3 Empirical Application

We focus on inflation forecasting using the new model averaging scheme. The regressions

we consider are k lags autoregressive processes augmented with a single predictor variable

(ARX(k)) (see also Stock and Watson (2004)). The number of lags is either set to 1 or

4. Different models are specified for each forecasting horizon. Model i for forecasting

horizon h is given by

πt+h = α +
k∑

j=1

βjπt−j+1 + γxit + εt (2)

where πt is either UK year-on-year CPI or RPIX inflation, xit is the i-th predictor variable

at time t and εt is the error term, with variance σ2. We consider 58 predictor variables,

where the data span 1980Q2-2004Q1.3

Where we average models, we consider predictive likelihood (PLMA), Bayesian (BMA),

information theoretic (AITMA) and equal-weight (AV) model averaging. The informa-

tion theoretic weights are given by (1). We include the AR forecast, making a total

of 59 forecasts to combine. The information criterion considered is AIC. The Bayesian

weights are set following Wright (2003). In particular, we set the model prior proba-

bilities P (Mi) to the uninformative priors 1/N . The prior for the regression coefficients

is chosen to be given by N (0, φσ2(X ′X)−1), conditional on σ2, where X is the T × p

regressor matrix for a given model and p is the numbers of regressors. The improper

prior for σ2 is proportional to 1/σ2. Following Wright (2003) we consider the conven-

tional choice of φ = 2. Then, the model weights are proportional to (1 + φ)−p/2S−(T+1)

where S2 = Y ′Y − Y ′X(X ′X)−1X ′Y φ
1+φ

and Y is the T × 1 regressand vector. We also

consider two factor model forecasts. As discussed in the introduction, these are widely

used alternatives to forecast combination in large data sets. In this case we specify models

of the form given by (2) where the exogenous variables are replaced by either the first

or the first five principal components of the dataset as estimated in the full sample. For

the recursive calculation of the out-of-sample forecast errors we set t0 = 10 which we

think is a reasonable compromise between data availability and the length of the forecast

evaluation period.

3The UK Office of National Statistics (ONS) codes for these variables and a brief description including
the source are given in the appendix of Kapetanios, Labhard, and Price (2005).
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Table 1: Relative RMSE of Out-of-Sample CPI Forecasts using ARX(1) Models (Period:
1997Q2-2004Q1)

Horizon BMA(φ = 2) AITMA AV 1 Factor 5 Factors PLMA
1 1.016∗ 1.122 1.015 1.047∗ 1.140∗ 0.909
2 0.990 1.264 0.992 1.151 1.114∗o 0.804∗o

3 0.951∗ 1.125 0.984 1.159o 1.100∗o 0.726
4 0.881∗ 0.992 0.974 1.164∗o 1.047∗o 0.776o

8 0.804∗ 0.725 0.952 1.210∗o 0.959∗o 0.779
12 0.824∗ 0.662∗ 0.946∗ 1.125∗o 0.843∗o 0.798

*: 10% rejection of Diebold-Mariano test that the forecast differs from the benchmark
o: 10% rejection of Diebold-Mariano test that the forecast differs from BMA forecast

Table 2: Relative RMSE of Out-of-Sample CPI Forecasts using ARX(4) Models (Period:
1997Q2-2004Q1)

Horizon BMA(φ = 2) AITMA AV 1 Factor 5 Factors PLMA
1 0.986 0.926 0.988 0.975o 0.960 0.892
2 0.945∗ 0.771∗o 0.961∗o 0.996∗o 0.797o 0.812∗o

3 0.898∗ 0.669∗o 0.955∗o 1.003∗o 0.818o 0.839∗

4 0.839∗ 0.734 0.945 1.031∗o 0.845∗o 0.853∗

8 0.790∗ 0.716 0.927 1.097o 0.873∗o 0.839∗

12 0.824∗ 0.665∗ 0.934∗ 1.062∗o 0.797 0.820∗

*: 10% rejection of Diebold-Mariano test that the forecast differs from the benchmark
o: 10% rejection of Diebold-Mariano test that the forecast differs from BMA forecast

We evaluate the forecasts over 1997Q2-2004Q1, which marks the period of the Bank

of England independence. We consider h = 1, 2, 3, 4, 8, 12. We report the relative RMSE,

compared to the benchmark AR model for k = 1, 4 in Tables 1-4. Entries with asterisks

(respectively o) in the Tables indicate cases where the relative mean square error with

respect to the benchmark AR model (respectively BMA) forecast is significantly different

from 1 according to the Diebold-Mariano test at the 10% significance level.4

The results make interesting reading. Most averaging techniques can beat the AR

model most of the time. However, only PLMA can beat it for all cases considered. Fur-

ther, PLMA seems to have the most consistent performance across horizons and inflation

4The Diebold-Mariano test is not valid for comparisons of nested models. However, all comparisons we
carry out are not nested apart from those involving both the benchmark AR model and the factor models.
To see this note that with positive probability, asymptotically, all model averaging methods will give a
non-zero weight to a model other than the AR model even under the null hypothesis of equal predictive
ability and therefore validity of the AR model since the information criterion used is the inconsistent
AIC. In the case of BMA a cursory examination of the BMA weights indicates that this is the case for
BMA too. We include the Diebold-Mariano tests for the factor-AR comparisons for completeness.
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Table 3: Relative RMSE of Out-of-Sample RPIX Forecasts using ARX(1) Models (Period:
1997Q2-2004Q1)

Horizon BMA(φ = 2) AITMA AV 1 Factor 5 Factors PLMA
1 1.021 1.146 1.020 1.277 1.364∗o 0.902∗o

2 0.992 1.334 0.994 1.490 1.436∗o 0.727∗o

3 0.967 1.450 0.991 1.530 1.404∗o 0.693∗o

4 0.927 1.368 0.989 1.427 1.330∗o 0.738∗o

8 0.818∗ 0.840 0.953 1.405∗o 1.075∗o 0.743o

12 0.838 0.698 0.936 1.197∗o 0.855o 0.748

*: 10% rejection of Diebold-Mariano test that the forecast differs from the benchmark
o: 10% rejection of Diebold-Mariano test that the forecast differs from BMA forecast

Table 4: Relative RMSE of Out-of-Sample RPIX Forecasts using ARX(4) Models (Period:
1997Q2-2004Q1)

Horizon BMA(φ = 2) AITMA AV 1 Factor 5 Factors PLMA
1 0.989 0.955 0.990 1.035 1.157∗o 0.976o

2 0.950∗ 0.950 0.962 1.131∗o 1.115∗o 0.834o

3 0.910∗ 0.894 0.952 1.221∗o 1.150∗o 0.754o

4 0.883∗ 1.121 0.948 1.213∗o 1.103∗o 0.820o

8 0.807∗ 0.819 0.921 1.280∗o 0.969∗o 0.754o

12 0.831∗ 0.746 0.922 1.162∗o 0.799 0.763∗

*: 10% rejection of Diebold-Mariano test that the forecast differs from the benchmark
o: 10% rejection of Diebold-Mariano test that the forecast differs from BMA forecast

measures. While AITMA does extremely well for long horizons but not for short horizons,

PLMA does very well overall. Further, it is almost always better than BMA and some

times significantly so.

4 Conclusion

Recently, there has been rapid growth of interest in forecasting methods that utilise large

datasets, driven partly by the recognition that policymaking institutions process large

quantities of information, which might be helpful in the construction of forecasts.

This paper focuses on model averaging. It suggests a new model averaging scheme that

utilises the out-of-sample forecasting performance of the competing models to determine

the weights used in model averaging. An empirical application suggests that the new

averaging method is of significant potential interest.
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