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Abstract

This paper applies a new model of structural breaks developed by Kapetanios and
Tzavalis (2004) to investigate if there exist structural changes in the mean reversion
parameter of US macroeconomic series. Ignoring such type of breaks may lead to
spurious evidence of unit roots in the autoregressive parameters of economic series.
Our model specifies that both the timing and size of breaks are stochastic. We apply
the model to a variety of macroeconomic and finance series from the US.
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1 Introduction

The study of structural breaks has attracted considerable interest in the econometric litera-

ture in the past 25 years. Breaks are by definition sudden events which change the structure

of the econometric model under consideration. The occurrence of structural breaks appears

as one of the (if not the) most significant cause of forecasting failure as identified by the work

of Hendry among others (see, e.g., Clements and Hendry (1999)). If methods that provide

information about the occurrence of structural breaks were available they would be of great

help to empirical econometric and economic research. Most of the work on structural breaks

is concentrated on detecting the presence of structural breaks and estimating the location

of the breaks, as well as the values of the model parameters prior to and following breaks.

However, these studies take the occurrence of breaks as given and not viewed as part of

model specification. There is little attention in the literature on a discussion of generating

sources of structural breaks.

Modelling structural breaks involves setting up a nonlinear model of some form, or other.

Available nonlinear econometric models, however, do not appear to capture essential char-

acteristics of structural breaks such as rarity. In addition, they do not allow for stochastic

changes in the magnitude of the structural breaks. For example, time varying coefficient

models do not allow for discontinuous type of changes in the structural parameters, while

nonlinear models such as threshold and Markov switching models [see Lin and Terasvirta

(1994), and Hamilton (1989), respectively] assume that the structural parameter changes of

fixed magnitude. Clearly, the discontinuity of the breaks requires some sort of trigger that

initiates a break. The use of thresholds clearly provides a paradigm for modelling such trig-

gers. A related question then concerns the variables that underlie the threshold behaviour.

These variables can be thought of as the regulators of the frequency of the breaks. By their

very nature, the occurrence of breaks presupposes the occurrence of some extreme event

such as the event of a variable taking an extreme value. The property of a stochastic nature

of the magnitude of structural breaks requires the presence of a mechanism for specifying

the parametrisation of the model after each break. The set of parameters should be neither

finite nor predetermined prior to the break. As a result such a mechanism should be partly

characterised by randomness. The above two prerequisites for modelling structural breaks

form the basis of the Kapetanios and Tzavalis (2004) model of structural breaks. This model
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suggests that structural breaks are driven endogenously by larger than a threshold parame-

ter structural errors, as part of model specification. Thus, this model enables us to identify

potential generating sources of structural breaks.

In this paper, we apply an extension of that model of structural breaks with the aim

of examining whether there exist structural breaks in the mean reversion parameter of au-

toregressive models of macroeconomic series. Answering this question may have interesting

implications, as evidence suggests that the persistence of major macroeconomic series changes

over time. Ignoring such type of breaks may also lead to spurious evidence of unit roots.

Furthermore, from an economic point of view it may be interesting to examine if changes in

business conditions or monetary regimes can cause shifts in the mean reversion parameters,

in the first place. Our model enables us to investigate the above question without a priori

fixing the number of the breaks in the autoregressive coefficient or the magnitude of the

structural break changes. Both of them are stochastic and can be determined endogenously

by the data.

The paper is organised as follows: Section 2 presents our modelling procedure of structural

breaks and discuss its estimation. Section 3 presents a small Monte Carlo study to appraise

the performance of our model. Section 4 provides an empirical application of our model to

a number of US macroeconomic series. Finally, Section 5 concludes.

2 Modelling Structural Breaks in autoregressive coef-

ficients

We focus our study on the demeaned autoregressive model of lag order one i.e. AR(1),

as this model has attracted a considerable amount of interest in the literature to examine

the persistency or nonlinearity of the mean reversion coefficient. We consider the following

parameterization of the AR(1) model which allows for structural break type of changes in

the mean reversion coefficient

yt = βtyt−1 + ε1,t (1)
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where

βt = βt−1 + I(|ε1,t−1| > r)ε2,t−1 (2)

ε1,t = ρ1ε1,t−1 + η1,t and (3)

ε2,t = ρ2ε2,t−1 + η2,t, (4)

where η1,t and η2,t are two IID innovations which can be allowed to be contemporaneously

correlated. Model (1) constitutes a standard time-varying coefficient, state space model

where the mean reversion coefficient is a state variable. I(At) is an indicator function taking

the value 1, if the event At, defined as |ε1,t−1| > r where r is a threshold parameter, occurs,

and 0 otherwise. This function can capture abrupt discontinuous changes in the mean re-

version coefficient βt, in line with the common perception of structural breaks referred to in

the literature. Both the timing and the magnitude of a break in βt are stochastic in nature.

The timing is controlled by the error term ε1,t, while the magnitude by the error term by ε2,t.

The stochastic nature of the magnitude of the break distinguishes our parameterization of

structural breaks from other models of structural breaks, such as the Markov Chain, regime

switching model of Hamilton (1989) and other time varying threshold models, see, e.g., Lin

and Terasvirta (1994). The latter assume that the size of the structural changes in parame-

ters is fixed.

As it stands, model (1) constitutes a nonlinear autoregressive model where the structural

changes in βt are nonlinear functions of the error term ε1,t. The autoregressive structure

of ε1,t implies that the changes in βt are associated with bigger than r shifts in the level

of the series yt.
1 This specification of ε1,t also enables forecasting the timing of a possible

future break changes based on the information set It−1,defined as It−1 = (yt−1, . . . , y0). How-

ever, if the autoregressive coefficient of the process of ε1,t becomes ρ1 = 0, then ε1,t = η1,t

which means that the breaks in βt are driven by the large innovations in the level of the

series yt [see Kapetanios and Tzavalis (2004)], which may have an interesting economic in-

terpretation. In this case, our model can forecast only the magnitude of a future structural

break in βt through the autoregressive processes assumed for the error term ε2,t. Finally,

if both ρ1 = 0 and ρ2 = 0, then model (1) can not forecast either the timing or the size

of a change in βt. In this case, the model can be only used to track the changes in βt, ex post.

1Obviously, this structure of ε1,t (as well as that of ε2,t) can be extented to a pth order AR model, or an
ARMA(p,q) model. The AR(1) model of ε1,t was chosen for presentational convenience.
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Model (1) can nest a familiar model often used, in practice, to describe the level shifts

in many macroeconomic series. This is the autoregressive model with a unit root in the

autoregressive component. It can be obtained from (1), if the variance of the innovation η2,t,

denoted σ2
η2,t

, is σ2
η2,t

= 0 and β0 = 1. In this case, the autoregressive coefficient of model (1)

becomes βt = β0 = 1, for all t. Then, our model becomes a nonstationary one including a

stationary component given by the process underlying ε1,t. This makes an application of the

model to macroeconomic data appealing because, as aptly noted in the literature, ignoring

nonlinearities in the functional form of βt may lead to spurious inference of a unit root in the

series yt. On this front, our model is in the spirit of Engle and Smith (1999) model which

considers shifts in βt to be taken as a non-linear functions of the error term ε1,t, given by

βt = βt−1 + qt−1(ε1,t−1, γ)ε1,t−1, where qt(ε1,t,γ) =
ε21,t

γ+ε21,t
is a continuous function of the error

term ε1,t.
2 The main difference of our modelling approach from that of Engle and Smith’s

is that we are concerned with level shifts in βt (and, hence, yt) which are abrupt and rare

in line with the common perceptions of breaks, whereas Engle and Smith consider smooth

changes in βt which occur at every period.

Estimation of this model is tricky. But it can be made simpler by a subtle change in

the specification. More specifically, we know that a state space model whose coefficients

are stochastic functions of lags of the observed series yt is still a conditionally Gaussian

state space model on which the Kalman filter can be applied. As our model stands now

it is not conditionally Gaussian since the coefficients depend on past states which are not

functions of the lags of the observed process. Estimates of the states can of course be

obtained by nonlinear filtering which is however both cumbersome and difficult to set up.

Nevertheless, the optimal minimum mean squared estimates of the state (assuming known

hyperparameters) at time t − 1 conditional on data available at time t − 1, i.e. the filtered

estimates of the state obtained via the Kalman filter are, by definition, functions of the lags

of the observed process and therefore if we specify the autoregressive coefficient as the state

variable

βt = βt−1 + I(|ε̂1,t−1|t−1| > r)ε2,t−1, (5)

we have a conditionally Gaussian model. On this we can apply the Kalman filter. In the

above specification of the state variable βt, the change is that, instead of ε1,t−1, we specify

2This model is primarily focused on the investigation of whether shocks on the level of economic series
have a permanent effect.
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that ε̂1,t−1|t−1 enters the time-varying coefficient of the transition equation of the model, now

given by (5). In other words, the forecastable part of the state controls the timing of the

break. Replacing (2) by (5), someone can view this specification of our model as an con-

venient respecification needed to simplify enormously the estimation of the states based on

the information set It−1. From this point of view, model (1) with (5) can be thought of as

an approximation to Model (1). This specification can be given the economic justification

that structural breaks occur intertwined with the expectations formation process of economic

agents about the possibility of a future structural break based on an estimate of ε̂1,t−1|t−1

relative to the threshold parameter r.

We now give details on the estimation of this model. At first assume that the threshold

parameter r is known. Then, we can assume Gaussianity for η1,t and η2,t and use the standard

Kalman filter. More specifically, as Harvey (1989) explains, a conditionally Gaussian model

can be constructed. To see this we consider the general state space model

yt = X′
tβt + ut, ut ∼ i.i.d.(0, σ2

t ) t = 1, . . . , T (6)

βt = Atβt−1 + εt ε, t ∼ i.i.d.(0,Σε,t) (7)

where, in connection to model (1), Xt = (yt−1, 1, 0), βt = (βt, ε1,t, ε2,t), εt = (0, η1,t, η2,t), σ2
t =

0, and At =




1 I(|ε̂1,t−1|t−1| > r) 0
0 ρ1 0
0 0 ρ2


 . The optimality of the Kalman filter crucially

depends on assuming that the measurement and transition equation errors are normally

distributed. We abstract from issues arising from the estimation of the parameters of the

models and concentrate on the estimation of the state variable conditional on the parameters

being known. We denote the estimator of βt conditional on the information set up to and

including time t by bt. We denote the covariance matrix of bt by Pt. The estimator of βt

conditional on the information set up to and including time t − 1 is denoted by bt|t−1. Its

covariance matrix is denoted by Pt|t−1. The Kalman filter comprises sequential application

of two sets of equations which recursively deliver the estimates of the state variable and

their covariance matrix. The filter is initialised by specifying the estimate of the state and

its covariance matrix at the start of the sample. The two sets of equations are given by

bt|t−1 = Atbt−1 (8)

Pt|t−1 = AtPt−1A
′
t + Σε,t (9)
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which are known as the prediction equations, and

bt = bt|t−1 + Pt|t−1xt

(
yt − x′tbt|t−1

ft

)
(10)

Pt = Pt|t−1 −Pt|t−1xt

(
1

ft

)
x′tPt|t−1 (11)

which are known as the updating equations. ft is given by X′
tPt|t−1Xt+σ2

t . The log-likelihood

of the model may be easily written in terms of the prediction errors. It is given by

−T

2
log 2π − 1

2

T∑
t=1

log ft − 1

2
z2

t (12)

where the prediction errors zt are given by yt −X′
tbt|t−1. The loglikelihood can be used to

estimate any unknown parameters. Another set of recursions may be used to obtained esti-

mates of the states and the covariances of these estimates conditional not only on currently

available data but on all the data. These are the smoothed estimates of the states.

Usually, Σε,t and At are assumed to change deterministically with time and are therefore

known. However this is not necessary. As long as they depend only on the information set

It−1, a conditionally Gaussian model can be constructed. The above Kalman filter equa-

tions remain unchanged. Further, smoothing and any other standard Kalman filter related

evaluations can be carried out. The loglikelihood can be maximised to estimate any hy-

perparameters. This assumes that r is known. But this is easy to solve. A grid can be

constructed for possible values of r. Then, the model can be estimated for every point of

the grid and the point giving the maximum likelihood over the grid can be adopted as the

estimate for the threshold parameter.

The consistency of the threshold parameter r estimate is discussed and proved in Kapetan-

ios and Tzavalis (2004). An integral part of this discussion has to be the stationarity of the

data yt generated by the model. As the model stands it is not stationary. To see that simply

note that the variance of the process βt is O(T ). In fact, the process β is a random walk

process. Even if βt were a stationary process, further strict conditions would need to be

satisfied to get covariance stationarity of yt in the case where xt = yt−1. In the case where xt

is a strictly exogenous stationary process then stationarity of βt would suffice for stationarity

of yt. Stationarity of yt is a desirable property irrespective of the proof of consistency of the

threshold parameter estimate. There are a number of possible modifications that can be
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imposed on βt to make it stationary. An easy first condition is that

βt = βt−1 + I(|β∗t−1| < β)I(|ε1,t−1| > r)ε2,t−1 (13)

where β∗t−1 = βt−1 + I(|ε1,t−1| > r)ε2,t−1. For obvious reasons we set β = 1. Of course,

our previous comments on conditionally Gaussian models apply since a model with such a

specification for βt would not be conditionally Gaussian and would therefore require filtering

using a nonlinear Kalman filter which, as we discussed earlier, is difficult to implement. The

alternative we have suggested would then become

βt = βt−1 + I(|β̂∗t−1|t−1| < β)I(|ε̂1,t−1|t−1 > r)ε2,t−1 (14)

β̂∗t−1|t−1 = β̂t−1|t−1 + I(|ε̂1,t−1|t−1| > r)ε̂2,t−1|t−1 (15)

This specification makes the process βt stationary and bounded between -1 and 1. Hence,

it makes the process yt stationary. Further restrictions could be placed on the process so

that if the bound β is exceeded the process returns to some prespecified level. We do not

advocate a particular mechanism for making the process βt stationary. We simply wish

to indicate that there exist specifications which give both a stationary βt process and a

conditionally Gaussian state space model amenable to analysis via the Kalman filter. The

exact specification of the process may be left to the empirical researcher depending on his

priors on the particular issue at hand.

3 A Monte Carlo Study

In this subsection, we carry out a small scale Monte Carlo study to investigate the perfor-

mance of our model to track structural breaks adequately, especially in samples where either

the number of observations or the number of breaks is relatively small. It is reasonable to

expect that the state variable which drives the breaks is hard to carry inference on given

that there are only a few observations which will contain information about the occurrence

of the breaks.

We abstract from parameter estimation and concentrate on the estimation of the state

variables assuming that the parameters of the model are known. We do this for three reasons.

Firstly, we know that threshold estimation is difficult even for standard threshold models (see

e.g. Kapetanios (2000)). In particular, threshold estimation is slow to improve when extra
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observations are added to the sample, despite the superconsistency result of Chan (1993).

Secondly, if the Kalman filter is shown to perform well we can reasonably expect that the

performance of the threshold estimator will be similar to the case of standard threshold

models. Finally, by the nature of the model, the choice of the threshold has to be restricted

to extreme values of the threshold variable, as our model practically dictates the choice of

the threshold value.

We simulate the model given by (1), with (14), (15), (3) and (4). For simplicity of simu-

lation, we use ε1,t−1 rather than ε̂1,t−1|t−1 in the indicator function in (14) and (15). However,

for estimation ε̂1,t−1|t−1 is used.

We set the parameters of the model at the following values: ρ1 = ρ2 = 0.5, σ2
η1

= 1

and σ2
η1

= 0.01. For the threshold parameter, we consider two cases: r = 2.5 and r = 2.93.

In the first case, our model implies that the event {|ε1,t−1| > r} occurs quite frequently,

approximately every 33 periods, while in the second occurs more rarely, approximately ev-

ery 92 periods. For the first case, we consider large and small samples of T = 1000 and

T = 200 observations, respectively, while for the second we consider only large samples.

The reason that we do not consider small samples for the second case is that the number

of breaks is just too small to be picked up in small samples, as T = 200. This implies

that we conduct in total three set of experiments. These can indicate the size of sample and

the number of breaks per sample for which the performance can be considered as satisfactory.

We estimate the state βt conditional on information available at time t − 1, known as

one-step ahead forecast of βt), on information at time t, known as filter estimate and, finally,

on all the available information up to time T , known as smoothed estimate. The last two in-

formation sets upon which the estimates of βt are derived are defined as It = (yt, yt−1, . . . , y0)

and IT = (yT , . . . , yt, . . . , y0), respectively. To evaluate the performance of our model, we

calculate the average correlation coefficients between the above estimates of βt and the true

state over 500 replications and the three experiments. These estimates are given in Table

1. The estimates reveal that our model can track the breaks in βt, adequately enough. Fol-

lowing the discussion in Kapetanios and Tzavalis (2004), at this point we would like to note

that, intuitively, the performance of the model will improve if we allow for a higher number

of breaks per T .
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To obtain a better feel of the ability of our model to tract the breaks in βt sufficiently,

in Figures 1-3 we present the smoothed estimates of βt against its true values, together with

their confidence intervals calculated at the 90% significance level. In every figure we present

three panels Each panel presents the estimated values of βt which correspond to the 25%,

50% and 75% quantiles of the empirical distribution of the correlations between the true

state and the smoothed estimate of the state. Inspection of this figure indicates that our

model can track the true breaks reasonably well. The smoothed estimates closely follow the

true values of βt, across all time-points of the sample, with a high degree of precision.

4 Empirical Application

In this section, we present an empirical application of our model with the aim of examining

if there are structural shifts in the mean reversion coefficient of major macroeconomic series.

In particular, we analyse a selected number of macroeconomic series from the diffusion index

dataset of Stock and Watson (2002) spanning a long interval of monthly observations from

1959M1 to 1998M12 [see Data Appendix for details on the series used]. The series that have

been chosen represent all groups of variables representing real activity, money, price, survey

and financial variables. All series used in our empirical analysis have been transformed as

described in Stock and Watson (2002) to achieve stationarity according to standard unit

root tests. Further, they are demeaned and normalised to unit variance.

For the above data set, we estimated our model (1), with (14), (15), (3) and (4), where

the initial value of βt, denoted β0, was estimated via maximum likelihood along with the

other parameters of the model ρ1, ρ2, σ2
ε1

and σ2
ε2

. The variance of β0|0, at time-point t = 0,

needed as initial value for the Kalman filter is set to 0, while the variances of ε1,0|0 and ε2,0|0

are set to σ2
ε1

and σ2
ε2

respectively. The lag order p of the autoregressive processes for ε1,t

and ε2,t was set to one. As we will see from the estimation results there is little evidence of

any serial correlation in ε1,t. To verify this result we conduct misspecification tests for serial

correlation in the estimates of ε1,t.

In the estimation procedure of our model, an important question relates to the choice of

r. As discussed earlier, this can be estimated through a grid search procedure. However,

this estimation problem is a difficult one. Threshold estimation is at best difficult (see e.g.,
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Kapetanios (2000)). As by the nature of our model, the threshold parameter should be

large, this problem may be proved much more difficult. Experimentation with our dataset

has suggested that a grid search is likely to cause convergence problems to the maximum

likelihood optimisation routine for a number of series of our data set.

Thus, to provide a unified treatment across all series of our data set, we fixed the threshold

parameter in the following way.3 First, we estimated a standard AR(1) model for each series

and, given the estimate of the autoregression coefficient denoted φ, we normalise each series

such that it has variance 1
1−φ2 . This implies that the residuals of the normalised series have

variance equal to 1. Based on these normalised series, in the next step we set the threshold

parameter in such a way that if the residual was normally distributed a break would occur

1% of the time or every 100 observations. For monthly data this implies a break every about

8 years. The threshold parameter which corresponds to this is 2.55 since a standard normal

variate will exceed this value, in absolute value, with probability which is approximately

1%. As the residuals are not normally distributed, we present the proportion of time that

we would have breaks for each series, in Table 2. However, it is important to note that the

event of |ε1,t| exceeding r does not necessarily imply an observed break. The Kalman filter

provides the optimal estimate of the break size which may very well be zero, implying es-

sentially that although the trigger event has occurred no break can be justified from the data.

In Table 3, we report estimates for the parameters of our model, together with their

standard errors reported in parentheses. The stars in parentheses indicate a number of in-

stances where the variance of ρ2 and σ2
ε2

cannot be obtained, as the Hessian of the likelihood

is close to singularity. This implies that these two parameters which specify the properties

of the break magnitudes are difficult to identify. This is reasonable given that the data only

provide information on the break sizes when breaks occur. The results of the table necessi-

tate a number of comments. Firstly, we see that in a majority of series the estimate of ρ1 is

not significantly different from zero. It appears that the AR(1) specification is sufficient to

account for all serial correlation in the data. The variance of ε1,t is close to one as expected

given the specification of the model. The variance of ε2,t may appear to be small (which

is expected) but the standard errors suggest that the null hypothesis of it being equal to

zero cannot be rejected. However, this conclusion is wrong. Under the null hypothesis that

3This approach was motivated by work on outliers, see Kapetanios and Tzavalis (2004) and Balke and
Fomby (1993).
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parameter will lie on the boundary of its space as it cannot be negative. One cannot use

standard testing procedures to carry out this test.

For the cases where the hypothesis ρ1 = 0 cannot be rejected we note that ε1,t = η1,t

which implies that breaks in βt are driven by white noise innovations to the level of yt. Note

that this happens for series related to changes in business conditions or monetary regime

changes, such as CPI (consumer price index), IP (industrial production), PCE (personal

consumption) and MS2 (M2 money stock).

To see if the results of Table 3 are sensitive to a potential misspecification of our model,

such as serial correlation or other types of neglected nonlinearities, we report, in Table 4,

probability values of misspecification test statistics for serial correlation (denoted SC) (LM

test for up to a fourth lag) and nonlinearity (denoted NONL) in the estimates of ε1,t, obtained

by our model. The nonlinearity test is that suggested by Teräsvirta, Lin, and Granger (1993)

and we use one lag of ε1,t. The results of this table support the specification of our model,

for most of the series. The only exceptions are with the CPI, MH, I, NAPM2, PCEPR2 and

AHE series for which the NONL test rejects the null hypothesis of linearity at a significance

level of 5%.

To track the changes of the mean reversion coefficient, over the sample, in Figures 4-6

we graphically present both filter and smoothed estimates of the state variable βt. The first

conclusion that can be drawn by inspecting the plots is that there are substantial changes in

βt, across the sample. For most of the series whose mean reversion coefficient changes was

found to be determined by large innovations, i.e. ρ1 = 0, the movements in βt are cyclical

and seem to follow changes in business conditions [see IP, PCE, MW], or monetary regime

changes [see CPI, MS2, MS, IR,SPR] accruing after the changes of the Federal Reserve’s

money markets operating procedures [see Tzavalis and Wickens (1996)]. In particular the

period in the late 70’s and early 80’s seems to be a particularly volatile period for the

persistence of the set of series we consider. CPI, MH, NAPM1, FER, IR1, BY, SPR, MS2,

MS3, DIR, PPI, PCEPR1, PCEPR2, and AHE are some of the series that underwent a

considerable change in their mean reversion coefficient in that period.
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5 Conclusion

Structural breaks have received plenty of attention in the econometric literature in the last

couple of decades. However, most of the work has concentrated on detecting breaks and

estimating model where the parameter changes are assumed to be fixed. In this paper we

suggested a model of structural breaks in the mean reversion coefficient of autoregressive time

series models whose both the timing and magnitude of changes are allowed to be stochastic

in nature. We assume that these changes are driven by changes related to the levels of the

series themselves, or the series innovations.

Monte Carlo results show that the performance of our model is adequate in tracking true

structural break type of changes in the mean aversion coefficient of the series.

As an empirical illustration, we apply our model to a number of US macroeconomic series

with the aim to investigate if there are apparent changes in the mean reversion coefficient

of the series. The results of this exercise have shown that there is a substantial number of

series whose mean reversion coefficient seems to considerably change cyclically, over time.

These changes seems to be driven by large innovations in the series which can be attributed

to changes in business conditions or monetary regime changes. A particular period of break

activity seems to be the late 70’s and early 80’s possibly related to the drastic changes in

terms of monetary policy that took place in the US during the period.
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Table 1: Monte Carlo results
(r, T ) (2.5, 200) (2.5, 1000) (2.93, 1000)
nb 6 30 11
Corr. Coeff. (Filter) 0.209 0.648 0.441
Corr. Coeff. (Forecast) 0.203 0.643 0.437
Corr. Coeff. (Smoothed) 0.364 0.794 0.641
Notes: nb denotes the number of breaks per T

Table 2: Proportion of time |ε1,t| > 2.55
Variable Prob(|ε1,t| > 2.55)

CPI 0.029
IP 0.027
IP2 0.029
MW 0.019
PCE 0.017
PCE2 0.021
PCE3 0.029
HA 0.019
MH 0.023
I 0.025

NAPM1 0.021
NAPM2 0.031

NO 0.031
MFG 0.073
FER 0.031
IR 0.038
BY 0.042
SPR 0.031
MS2 0.036
MS3 0.040
MS 0.029
MB 0.034
DIR 0.040
PPI 0.034

PCEPR1 0.130
PCEPR2 0.170

AHE 0.197
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Table 3: Parameter Estimates for the Model
Variable σ2

ε2
σ2

ε1
ρ1 ρ2 β0

CPI 0.03(∗) 0.95(0.06) −0.11(0.07) 0.47(∗) −0.33(0.16)

IP 0.02(∗) 0.96(0.06) −0.10(0.08) 0.39(∗) 0.70(0.14)

IP2 0.03(0.03) 0.91(0.06) −0.39(0.06) 0.00(0.07) 0.31(0.12)

MW 0.04(∗) 0.97(0.06) −0.18(0.12) 0.48(∗) 0.39(0.21)

PCE 0.03(0.06) 0.96(0.06) −0.18(0.12) 0.29(2.09) −0.17(0.17)

PCE2 0.03(0.03) 0.95(0.06) −0.38(0.07) 0.00(0.06) 0.32(0.15)

PCE3 0.00(0.00) 0.99(0.06) −0.14(0.09) 0.14(0.62) −0.22(0.14)

HA 0.03(0.03) 0.82(0.05) 0.29(0.11) −0.11(1.93) 0.09(0.14)

MH 0.18(0.14) 0.93(0.06) −0.22(0.11) 0.02(0.06) 0.06(0.12)

I 0.09(0.08) 0.92(0.06) −0.09(0.08) 0.02(0.10) −0.18(0.13)

NAPM1 0.10(0.08) 0.94(0.06) −0.07(0.13) 0.00(∗) 0.05(0.05)

NAPM2 0.00(0.01) 0.97(0.06) −0.23(0.07) 0.19(0.74) −0.21(0.13)

NO 0.01(0.02) 0.96(0.06) −0.14(0.09) 0.65(0.82) −0.23(0.15)

MFG 0.02(0.00) 0.90(0.06) −0.28(0.05) 0.08(∗) 0.73(0.12)

FER 0.26(0.20) 0.92(0.06) 0.21(0.07) −0.00(0.08) 0.12(0.11)

IR 0.24(0.16) 0.92(0.06) 0.15(0.07) −0.00(∗) 0.17(0.11)

BY 0.02(0.04) 0.93(0.06) 0.27(0.07) −0.50(0.41) 0.32(0.13)

SPR 0.00(0.00) 0.98(0.06) −0.15(0.07) −0.21(1.76) −0.24(0.11)

MS2 0.02(0.01) 0.96(0.06) −0.10(0.07) 0.00(0.07) −0.38(0.10)

MS3 0.02(0.02) 0.88(0.06) −0.42(0.07) −0.84(0.12) −0.52(0.08)

MS 0.02(0.05) 0.92(0.06) −0.22(0.07) 0.67(0.92) −0.49(0.09)

MB 0.00(0.01) 0.95(0.06) −0.17(0.07) 0.65(0.51) −0.48(0.12)

DIR 0.02(0.02) 0.95(0.06) −0.24(0.07) 0.00(∗) −0.43(0.10)

PPI 0.01(0.01) 0.95(0.06) −0.26(0.07) 0.01(∗) −0.47(0.13)

PCEPR1 0.04(0.04) 0.93(0.06) 0.18(0.07) 0.55(0.51) 0.90(0.06)

PCEPR2 0.05(0.00) 0.88(0.06) 0.30(0.06) 0.00(∗) 0.94(0.06)

AHE 0.02(0.01) 0.83(0.05) 0.42(0.06) −0.00(∗) 0.94(0.08)
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Table 4: Misspecification Tests
Variable SC Test NONL Test

CPI 0.275 0.020
IP 0.999 0.477
IP2 0.998 0.154
MW 0.496 0.295
PCE 0.928 0.849
PCE2 0.975 0.955
PCE3 0.488 0.323
HA 0.995 0.621
MH 0.896 0.032
I 0.691 0.003

NAPM1 0.785 0.294
NAPM2 0.987 0.018

NO 0.256 0.522
MFG 0.614 0.201
FER 0.936 0.789
IR 0.813 0.523
BY 1.000 0.452
SPR 0.440 0.790
MS2 0.993 0.111
MS3 0.922 0.215
MS 0.774 0.008
MB 0.994 0.092
DIR 0.929 0.615
PPI 0.100 0.079

PCEPR1 0.876 0.255
PCEPR2 0.395 0.000

AHE 0.886 0.002

Data Appendix

The identities of the variables considered in this paper are given below.

1. CPI: CPI-U: ALL ITEMS (82-84=100,SA)

2. IP: INDUSTRIAL PRODUCTION: MANUFACTURING (1992=100,SA)

3. IP2: INDUSTRIAL PRODUCTION: NONDURABLE MANUFACTURING (1992=100,SA)
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4. MW: MERCHANT WHOLESALERS:NONDURABLE GOODS (MIL OF CHAINED

1992 DOLLARS)(SA)

5. PCE: PERSONAL CONSUMPTION EXPEND (CHAINED)-TOTAL (BIL 92$,SAAR)

6. PCE2: PERSONAL CONSUMPTION EXPEND (CHAINED)-TOTAL DURABLES

(BIL 92$,SAAR)

7. PCE3: PERSONAL CONSUMPTION EXPEND (CHAINED)-NONDURABLES (BIL

92$,SAAR)

8. HA: HOUSING AUTHORIZED: TOTAL NEW PRIV HOUSING UNITS (THOUS.,SAAR)

9. MH: MOBILE HOMES: MANUFACTURERS’ SHIPMENTS (THOUS.OF UNITS,SAAR)

10. I: INVENTORIES, BUSINESS DURABLES (MIL OF CHAINED 1992 DOLLARS,

SA)

11. NAPM1: NAPM INVENTORIES INDEX (PERCENT)

12. NAPM2: NAPM VENDOR DELIVERIES INDEX (PERCENT)

13. NO: NEW ORDERS, NONDEFENSE CAPITAL GOODS, IN 1992 DOLLARS (BCI)

14. MFG: MFG NEW ORDERS:DURABLE GOODS INDUST WITH UNFILLED OR-

DERS(MIL$,SA)
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15. FER: FOREIGN EXCHANGE RATE: CANADA (CANADIAN $ PER U.S.$)

16. IR: INTEREST RATE: U.S.TREASURY CONST MATURITIES,5-YR.(% PER ANN,NSA)

17. BY: BOND YIELD: MOODY’S BAA CORPORATE (% PER ANNUM)

18. SPR: Spread FYBAAC - FYFF

19. MS2: MONEY STOCK:M2(M1+O’NITE RPS,EURO$,G/P&B/D MMMFS&SAV&SM

TIME DEP(BIL$,SA)

20. MS3: MONEY STOCK: M3(M2+LG TIME DEP,TERM RP’S&INST ONLY MMMFS)(BIL$,SA)

21. MS: MONEY SUPPLY-M2 IN 1992 DOLLARS (BCI)

22. MB: MONETARY BASE, ADJ FOR RESERVE REQUIREMENT CHANGES(MIL$,SA)

23. DIR: DEPOSITORY INST RESERVES:NONBORROW+EXT CR,ADJ RES REQ

CGS(MIL$,SA)

24. PPI: PRODUCER PRICE INDEX: FINISHED GOODS (82=100,SA)

25. PCEPR1: PCE,IMPL PR DEFL:PCE (1987=100)

26. PCEPE2: PCE,IMPL PR DEFL:PCE; NONDURABLES (1987=100)

27. AHE: AVG HR EARNINGS OF CONSTR WKRS: CONSTRUCTION ($,SA)
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Figure 1: T = 1000, r = 2.5
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Figure 2: T = 200, r = 2.5
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Figure 3: T = 1000, r = 2.93
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Figure 4: Series: CPI, IP, IP2, MW, PCE, PCE2, PCE3, HA, MH
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Figure 5: Series: I, NAPM1, NAPM2, NO, MFG, FER, IR, BY, SPR
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Figure 6: Series: MS2, MS3, MS, MB, DIR, PPI, PCEPR1, PCEPR2, AHE
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