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1 Introduction

The unit root hypothesis has received a lot of attention in time series literature after the findings of Nelson

and Plosser (1982), that shocks have permanent effects on the level of most of economic series. Although

earlier evidence of units roots in the literature has been considerably challenged by the development of

unit root testing procedures which allow for structural changes (known as breaks) in the mean of the

series [see Perron (1989), Christiano (1992), Perron and Vogelsang (1992), Zivot and Andrews (1992), and

Lumsdaine and Papell (1997), inter alia], there are economic series (especially, financial) which strongly

favour the unit root hypothesis despite the lack of economic intuition or the occurrence of structural

changes in the economy. Typical examples of such series are the nominal interest rates [see Hall, Anderson

and Granger (1992), and Tzavalis and Wickens (1997)] and real exchange rates [see Papell (1997, 2002),

for a survey]. This evidence may be attributed to the fact that most of the testing procedures employed

to test the unit root hypothesis do not allow for changes in the error variance, which are apparent in

financial series.

The main difficulty for developing testing procedures allowing for changes in the variance within the

classical framework stems from the fact that, in general, it is difficult to identify some of the nuisance

parameters (including the error variance with a break-point) under the null [e.g. Garcia (1998), and Kim

and Nelson (1999)]. This problem becomes more severe when the break-point is treated as unknown. The

above difficulty can be overcome within the Bayesian model comparison framework. Furthermore, within

this framework, all the hypotheses under consideration (corresponding to either unit root or stationary

models) are treated symmetrically. This can increase the power of the Bayesian procedure to detect the

correct model generating the data. The main issue in the Bayesian approach is is to detect which out of

a number of competing hypotheses is the most likely to be consistent with the data. This can be done

by calculating the marginal likelihood of the data under each model by integrating the parameters of

the model out of the posterior density, in order to compute the posterior model probabilities. Finally,

another advantage of the Bayesian approach is that, in this framework, the identification of a break-point

in the series is considered as a part of the model selection problem.

Despite the plethora of studies considering Bayesian methods to compare unit root models with

stationary models, dating from Sims (1988)1, only recently Marriott and Newbold (2000) have shown

that these methods can be succesfully used to distinguish unit root models from stationary models

with a break-point. However, this study does not consider breaks in the error variance of the models,

which is the focus of our paper.2 Ignoring a break in the error variance of the models may increase the

strength of evidence for a unit root, independently on whether the models ignore breaks in the level of

the series, or not. The Bayesian approach that we suggest in this paper is based on analytic and Monte

Carlo integration techniques for the calculation of the marginal likelihood of the data under unit root
1See also Schotman and van Dijk (1991a), DeJong and Whiteman (1989,1991a,b), Sims and Uhlig (1991) and Koop

(1992, 1994).
2Bayesian methods diagnosing the presence of breaks in the mean or error variance have been developed by Wang and

Zivot (2000). But, these authors have not considered unit roots models.
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and stationary models allowing for breaks. To appraise the performance of our method, we conduct a

simulation study considering for values of the autoregressive parameters closed to unity. As empirical

applications of our method, we investigate if unit root evidence on US nominal Treasury bill rates and

some European real exchange rates against US dollar can be challenged by the presence of breaks in the

mean or the error variance of the series.

The remaining of the paper is organised as follows. In Section 2, we give all the necessary notation and

introduce the models of interest. In Sections 3 and 4, we discuss the Bayesian approach to inference and we

show how to calculate the marginal likelihood functions of the models under consideration, respectively.

In Section 5 we report the simulation results and in Section 6 we present the results of our empirical

applications. Finally, Section 6 concludes the paper.

2 The autoregressive model with a structural break in parame-

ters

Consider a non-linear autoregressive model of order one allowing for a break in the intercept, the autore-

gressive coefficient or the error variance at an unknown time point (referred to as break-point) T0

yt = (γ1 + δt) (1− φst) + φstyt−1 + σstεt, t = 1, ... . . . , T (1)

where yt, t = 1, ..., T is a sample of T consecutive observations, {st}, t = 1, . . . ..., T , is a binary process

with st = 1, if t ≤ T0, and st = 2, otherwise, indicating the subsample (segment) to which each observation

yt is assigned, δt =





0, if t ≤ T0

δ, if t > T0

is a dummy variable determining the change in the mean of yt

and εt are assumed to be independent and identically normally distributed. The initial observation of the

series {yt}, y0, is assumed to be known. This is a standard assumption in unit roots or structural breaks

literature, where deviations from the initial conditions of the series are of non-stationary nature. For the

autoregressive parameters φst , across the two segments of the sample, we assume that φst ∈ Ω ∪ {1},
where Ω = {φst | −1 < `st ≤ φst < 1}, st ∈ {1, 2}.

Writing model (1) as

yt =





γ1 + φ1(yt−1 − γ1) + σ1εt, t ≤ T0

γ2 + φ2(yt−1 − γ2) + σ2εt, t > T0,
(2)

where γ2 = γ1 + δ, it can be seen that this model can nest different models which can correspond

to economic hypotheses of interest for empirical work. The likelihood function for a sample of T ob-

servations, collected in the vector y = (y1, ... . . . , yT ), under model (2) with parameter vector θ =

(γ1, γ2, φ1, φ2, σ
2
1 , σ2

2 , T0) is given by

`(y | θ) = (2π)−T/2σ−T0
1 σ

−(T−T0)
2 exp

{
− 1

2σ2
1

T0∑
t=1

[yt − γ1 − φ1(yt−1 − γ1)]2
}

× exp

{
− 1

2σ2
2

T∑

t=T0+1

[yt − γ2 − φ2(yt−1 − γ2)]2
}

. (3)
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In a hypothesis testing setting, it is the unit root hypothesis, φst = 1, that is used as the null

hypothesis against the alternative of a stationary model, i.e. `1 ≤ φ1 < 1 and `2 ≤ φ2 < 1. Under the

unit root hypothesis, model (2) reduces to

yt =





yt−1 + σ1εt, t ≤ T0

yt−1 + σ2εt, t > T0.
(4)

This model assumes that the observations in the two segments of the sample (before and after the break-

point T0) follow random walk processes, but with different variances. We will refer to this model as the

broken-variance random walk model. The change in the error variance under the null hypothesis may be

attributed to an exogenous event, e.g. a monetary regime change announcement. If there is no structural

break in the error variance, i.e. σ2
1 = σ2

2 , then model (4) reduces to the standard (pure) random walk

model

yt = yt−1 + σεt. (5)

In a model comparison setting, we may consider several alternative hypotheses to the unit root

hypothesis which can be represented by models (4), or (5). For example, we can consider a model

with different error variances, across the two segments of the sample, but the same unconditional mean

(γ = γ1 = γ2), i.e.

yt = γ (1− φst) + φstyt−1 + σstεt. (6)

Further, we can assume that the autoregressive coefficient φ is also the same (φ = φ1 = φ2), thus leading

to the autoregressive model with different error variances

yt = γ (1− φ) + φyt−1 + σstεt. (7)

On the other hand, we can consider the case where the variances are equal across the two segments,

while the unconditional means (gammas) are different and the autoregressive coefficients are either dif-

ferent, i.e.

yt = (γ1 + δt) (1− φst) + φstyt−1 + σεt, (8)

or equal , i.e.

yt = (γ1 + δt) (1− φ) + φyt−1 + σεt. (9)

Finally, if there is not a structural break, then, under the alternative hypothesis of stationarity, model

(2) reduces to the standard autoregressive model

yt = γ (1− φ) + φyt−1 + σεt. (10)

For each of the reduced specifications of model (2), the likelihood function (3) can be modified according

to the respective vector of parameters.
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3 Bayesian Inference and Model Comparison

3.1 Bayesian Inference

The Bayesian approach to inference requires specifying a prior distribution for the unknown parameter

vector θ. After observing data y, our knowledge about θ is updated using information in the likelihood

function `(y | θ). Then, inference on the unknown parameter vector θ, given the data, is made from the

joint posterior distribution of θ, which is given, up to a constant of proportionality, by

p(θ | y) ∝ `(y | θ)p(θ).

In complex problems, analytic calculation of the normalizing constant of p(θ | y) is not possible. Instead,

computationally intensive methods, such as Monte Carlo integration, Importance sampling and Markov

chain Monte Carlo (MCMC) methods, are used to simulate draws from the posterior distribution. MCMC

methods (see Gilks et. al., 1996) are based on the construction of an irreducible and aperiodic Markov

chain, with realizations θ(1), θ(2), . . . in the parameter space, which has p(θ | y) as its stationary distribu-

tion. Under mild regularity conditions, the realizations of this Markov chain converge to draws from the

posterior distribution of interest [see Roberts and Smith (1994)]. In many statistical applications of the

MCMC method a sample from the posterior distribution of interest is obtained via the Gibbs sampler

[see, for instance, Geman and Geman (1984), and Gelfand and Smith (1990)]. The Gibbs sampler updates

the components of θ one at a time by iteratively generating values from the complete set of their full

conditional distributions.

3.2 Bayesian Model Comparison

The objective of the Bayesian approach in the model comparison setting is to determine how probable

one model (corresponding to a hypothesis of interest) is relative to another, or various other alternative

models. Consider having K competing models m1, . . . , mK , each of which corresponds to a different

hypothesis. The posterior probability of model mk, k = 1, . . . , K, (or equivalently of hypothesis Hk) is

given by

p(mk | y) =
p(y | mk)p(mk)∑K
j=1 p(y | mj)p(mj)

,

where

p(y | mk) =
∫

`(y | θk,mk)dpk(θk) (11)

is the marginal likelihood of the vector of observations y under model mk, θk denotes the model specific

parameter vector for model mk, `(y | θk,mk) is the likelihood function given model mk, pk(θk) = p(θk |
mk) is the prior density of θk under model mk, and p(mk) is the prior probability of model mk. It can

be easily seen from (11), that the marginal likelihood under model mk is just the likelihood function

integrated over the specified prior distribution for that model, provided that the integration is feasible.

Equivalently, it can be seen as the normalizing constant of the posterior distribution of θk, defined as the

integral of the product likelihood times prior, which is known as the unnormalized posterior.
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In the context of hypothesis testing, inference about the comparison of two different models (say mk1 ,

corresponding to hypothesis Hk1 , and mk2 , corresponding to hypothesis Hk2) can be made using the

Bayes Factor (BF) of model mk1 against model mk2 given by

BF =
p(y | mk1)
p(y | mk2)

=
p(mk1 | y)
p(mk2 | y)

p(mk2)
p(mk1)

.

The Bayes Factor is the ratio of the posterior odds to the prior odds. For comparing more than two

models, the posterior probabilities of all models can be used as a measure of how probable each model is

relative to the others. We will follow the latter approach to compare the stationary and non-stationary

models presented in section 2.

4 Calculation of the marginal likelihood

The calculation of the posterior probabilities requires the evaluation of the marginal densities p(y | mk),

defined in (11). Such integrals are in general difficult to calculate; Kass and Raftery (1995) provide an

extensive description of available numerical strategies. However, if the prior specification is conjugate

to the likelihood function, at least some of the model parameters can be integrated out of the posterior

distribution analytically. Under our choice of prior, the marginal likelihood of the pure random walk and

of the random walk with broken-variance model can be easily calculated analytically by integration. For

the autoregressive break-point models under consideration, most (but not all) of the integrations in (11)

can be calculated analytically, while Monte Carlo integration can be used for the rest.

4.1 Prior specification

As stated before, implementation of the Bayesian methodology requires a prior specification for the

model parameters. This is very crucial in model comparison, as the choice of the prior can affect the

marginal likelihoods of the different models considered for generating the data. As a general principle,

note that flat priors tend to penalize more the models which are more complex [see Bernardo and Smith

(1994), chapter 6]. In the unit root problem, choosing an appropriate prior distribution is not an easy

task. Sims (1988) used a flat prior as an non-informative prior for testing the unit root hypothesis,

while Phillips (1991) argued that a flat prior is actually informative and proposed an ignorance prior (or

Jeffreys invariant prior). For the AR(1) model with constant term, Schotman and van Dijk (1991a,b)

used a proper and weakly informative Normal prior for the constant term, which is centered around the

initial observation y0 and its variance is determined by the other parameters of the model, a uniform

prior for the autoregressive coefficient, and a non-informative and improper prior for σ2.3 Other authors

have proposed prior distributions for the autoregressive coefficient with support that includes a region

beyond unity; for a comparative discussion see Bauwens, Lubrano and Richard (1999).
3For a detailed discussion on particular choices of prior distributions and their affection on inference and model compar-

ison see, for example, Sims (1991), Leamer (1991), Schotman and van Dijk (1991a,b), Koop and Steel (1991), DeJong and

Whiteman (1991c), Phillips (1991).
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In a Bayesian analysis of autoregressive models with structural breaks, the presence of different con-

stant terms γst and/or different autoregressive coefficients φst will complicate inference in the unit root

problem. Dealing with the comparison of unit root models with stationary models in this complex set-

ting, we choose a prior specification in the line of Schotman and van Dijk (1991a). We use a proper

prior distribution for the parameters of each of the models under consideration, which is a choice that

enables us to integrate the likelihood function with respect to the corresponding probability measure in

order to obtain the marginal likelihood of the model. In general, we use quite/weakly informative priors,

which are appropriate in a Bayesian model comparison setting. Except for the prior specification within

each model, in order to calculate the posterior model probabilities p(mk | y) one has to assign a prior

probability p(mk) to each model mk. We choose to assign equal prior probability to each of the models

under consideration, as a non-informative choice of prior.

For the autoregressive coefficient φst , we assume a uniform prior distribution over a part (`st , 1) of

the stationary region, i.e. p(φst
) = 1/(1− `st

), st = 1, 2. Choosing the lower bound `st
of the support of

φst
is a crucial step of the prior specification. If the range (`st

, 1) is not supported by the data, i.e. `st
is

small enough to include a significant interval with zero density to the left of the support of the posterior,

then the posterior model probabilities are biased against stationarity. With respect to the break point

T0, we use a discrete uniform distribution on the integers {1, ... . . . , T − 1}. For the error variances σ2
st

,

we assume the conjugate inverted Gamma priors IG(cst , dst), st = 1, 2. Finally, for γst , we adopt Normal

prior distributions N(µγst
, τ2

st
σ2

st
), with hyperparameters µγst

and τ2
st

, st = 1, 2.

In the reduced specification models with common error variances σ2
st

= σ2 [see equations (5), (8), (9)

and (10)], we assume that the prior distribution for the different γst is N(µγst
, τ2

st
σ2) and the prior for

σ2 is IG(c, d). For the rest of the parameters of these models, we use prior specifications similar with

that of the most general model (2). For the reduced models with common γ and different error variances

[(6) and (7)], we assume the prior N(µγ , σ2
γ) for γ, while for the rest of the parameters the priors are

assumed to be the same with those of model (2).

4.2 Analytic marginal likelihood calculation for Random walk models

For the broken-variance random walk model (4), with parameter vector θ = (σ2
1 , σ2

2 , T0), the unnormalized

posterior distribution `(y | θ)p(θ) can be integrated analytically with respect to the nuisance parameters

σ2
1 and σ2

2 . Then, the marginal likelihood p(y) for model (4) can be taken by the sum of the resulting

expression over the discrete support of the break-point T0, i.e.

T−1∑

T0=1





dc1
1 dc2

2

Γ(c1)Γ(c2) (T − 1) (2π)T/2

Γ
(
c1 + T0

2

)
[
d1 + 1

2

T0∑
t=1

(yt − yt−1)2
]c1+

T0
2

Γ
(
c2 + T−T0

2

)
[
d2 + 1

2

T∑
t=T0+1

(yt − yt−1)2
]c2+

T−T0
2





.

Note that the expression in brackets is the unnormalized marginal posterior distribution of the break-

point T0, with the sum being its normalizing constant. Therefore, for the Random walk break-variance
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model, the discrete marginal posterior distribution of T0 can be also calculated analytically.

For the pure Random walk model (5) with constant error variance, i.e. σ2 = σ2
1 = σ2

2 , the marginal

likelihood p(y) is given by

p(y) =
dc

Γ(c)(2π)T/2

Γ
(
c + T

2

)
[
d + 1

2

T∑
t=1

(yt − yt−1)2
]c+ T

2
.

4.3 Marginal likelihood calculation for autoregressive models with a break

point

For the autoregressive model (2), with φst
∈ Ω, the unnormalized posterior can be integrated analytically

with respect to the model parameters γ1, γ2, σ2
1 and σ2

2 . The steps of the multi-dimensional integration

are presented in Appendix A. From the final step, we can obtain the unnormalized marginal posterior of

(φ1, φ2), i.e. `(y|φ1, φ2)p(φ1, φ2), given by

T−1∑

T0=1

{
dc1
1 dc2

2

Γ(c1)Γ(c2)(2π)T/2 (1− l1) (1− l2) (T − 1)
Γ

(
c1 + T0

2

)
√

1 + T0τ2
1 (φ1 − 1)2

Γ
(
c2 + T−T0

2

)
√

1 + τ2
2 (T − T0)(φ2 − 1)2

×


d1 +

1
2τ2

1


µ2

γ1
+ τ2

1

T0∑
t=1

(φ1yt−1 − yt)
2 −

(
µγ1 + τ2

1 (φ1 − 1)
∑T0

t=1 (φ1yt−1 − yt)
)2

1 + T0τ2
1 (φ1 − 1)2







−(c1+
T0
2 )

×


d2 +

1
2τ2

2


µ2

γ2
+ τ2

2

T∑

t=T0+1

(φ2yt−1 − yt)
2 −

(
µγ2 + τ2

2 (φ2 − 1)
∑T

t=T0+1 (φ2yt−1 − yt)
)2

1 + τ2
2 (T − T0)(φ2 − 1)2







−(c2+
T−T0

2 )


.

The marginal likelihood for model (2) can be obtained by Monte Carlo integration of `(y|φ1, φ2)p(φ1, φ2)

with respect to the autoregressive parameters φ1 and φ2. Following Kass and Raftery (1995), we can use

Monte Carlo integration with Importance sampling to evaluate the integral
∫

p(φ1, φ2)`(y | φ1, φ2)dφ1dφ2.

After specifying an importance function, denoted as g (φ1, φ2), the importance weight of a random draw

(φ(i)
1 , φ

(i)
2 ) from g (φ1, φ2) can be defined as w(i) = p

(
φ

(i)
1 , φ

(i)
2

)
/g

(
φ

(i)
1 , φ

(i)
2

)
. Then, an estimate of the

marginal likelihood p(y), denoted as p̂(y), can be calculated as

p̂(y) =

∑N
i=1 w(i)`

(
y | φ(i)

1 , φ
(i)
2

)

∑N
i=1 w(i)

,

with all normalizing constants included, where (φ(i)
1 , φ

(i)
2 ), i = 1, . . . , N , denote a sample of N draws from

the importance function g (φ1, φ2). As importance function, we will adopt the product of two normal

densities N(µφi , σ
2
φi

) truncated at the support of φ1 and φ2, respectively. A natural choice for µφi can be

µφi = (`i + 1)/2, that is the center of the support (`i, 1) of φi. σ2
φi

should be chosen to be large enough,

so that the tails of the importance function to be sufficiently heavy.

The above procedure of calculating the marginal likelihood for the stationary autoregressive model

(2) can be applied to the other specifications of the break-point models nested in the general model (2).
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For model (6), which assumes a common mean, i.e. γ = γ1 = γ2, we can integrate the unnormalized

posterior with respect to the parameters σ2
1 , σ2

2 , φ1 and φ2. This yields the following formula for the

unnormalized marginal posterior `(y|γ)p(γ)

T−1∑

T0=1

{
dc1
1 dc2

2 π

Γ(c1)Γ(c2)(2π)
T+1

2 σγ (1− `1) (1− `2) (T − 1)

(
1
2

)−(c1+c2+
T
2 )

×Γ
[
2c1 + T0 − 1

2

]
Γ

[
2c2 + T − T0 − 1

2

]
(Ft1 (1)− Ft1 (`1)) (Ft2 (1)− Ft2 (`2))

× exp
[
− 1

2σ2
γ

(γ − µγ)2
][

T0∑
t=1

(yt−1 − γ)2
]−1/2 [

T∑

t=T0+1

(yt−1 − γ)2
]−1/2

×




T0∑
t=1

(yt − γ)2 + 2d1 −

[∑T0
t=1 (yt−1 − γ) (yt − γ)

]2

∑T0
t=1 (yt−1 − γ)2




−(c1+
T0−1

2 )

×




T∑

t=T0+1

(yt − γ)2 + 2d2 −

[∑T
t=T0+1 (yt−1 − γ) (yt − γ)

]2

∑T
t=T0+1 (yt−1 − γ)2




−(c2+
T−T0−1

2 )


.

In the last relationship, Ft1(·) stands for the non-central student-t distribution function with 2c1 +T0−1

degrees of freedom, non-centrality parameter given by

∑T0
t=1 (yt−1 − γ) (yt − γ)∑T0

t=1 (yt−1 − γ)2

and scale parameter given by

1

(2c1 + T0 − 1)
∑T0

t=1 (yt−1 − γ)2




T0∑
t=1

(yt − γ)2 + 2d1 −

[∑T0
t=1 (yt−1 − γ) (yt − γ)

]2

∑T0
t=1 (yt−1 − γ)2


 .

Ft2(·) stands for the non-central student-t distribution function with 2c2 +T −T0−1 degrees of freedom,

non-centrality parameter given by

∑T
t=T0+1 (yt−1 − γ) (yt − γ)
∑T

t=T0+1 (yt−1 − γ)2

and scale parameter given by

1

(2c2 + T − T0 − 1)
∑T

t=T0+1 (yt−1 − γ)2




T∑

t=T0+1

(yt − γ)2 + 2d2 −

[∑T
t=T0+1 (yt−1 − γ) (yt − γ)

]2

∑T
t=T0+1 (yt−1 − γ)2


 .

As for model (2), the marginal likelihood for model (6) can be obtained by Monte Carlo integration

of `(y|γ)p(γ) with respect to γ using the Importance function N(µγ , σ2
γ), where µγ is the sample mean

of yt, denoted as ȳ, and σ2
γ takes a sufficiently large value.
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Since the posterior distribution for the general model (2), or its reduced specifications, can not be in-

tegrated over some subset of the model parameters, the marginal posterior distribution of the break-point

T0 cannot be calculated analytically for those models. Instead, a sample from the posterior distribution

of T0 has to be obtained within an MCMC sampling scheme. For each specification, a Gibbs sampler can

be constructed to generate a sample from the conditional posterior distributions of the model parameters

including T0. Details of the sampler for model (2) can be found in Appendix B.

5 Simulation Study

In this section, we conduct a simulation study with the aim to assess the performance of the Bayesian

approach suggested in the previous sections to detect the correct data generating process and to identify a

break-point in the data. This exercise will enable us to see whether the Bayesian approach can distinguish

the unit root models from stationary autoregressive models allowing for a break in the mean or the error

variance of the models. To this end, we estimate the posterior model probabilities of the following models,

presented in Section 2,

m1 : yt = (γ1 + δt) (1− φst) + φstyt−1 + σstεt (general model (1))

m2 : yt = γ (1− φ) + φyt−1 + σstεt (common γ -common φ)

m3 : yt = (γ1 + δt) (1− φ) + φyt−1 + σεt (common σ2-common φ)

m4 : yt = γ (1− φst) + φstyt−1 + σstεt (common γ)

m5 : yt = (γ1 + δt) (1− φst) + φstyt−1 + σεt (common σ2)

m6 : yt = yt−1 + σstεt (random walk with broken variance)

m7 : yt = yt−1 + σεt (pure random walk)

m8 : yt = γ (1− φ) + φyt−1 + σεt (standard AR(1) model),

when data are generated from the models of interest m1 − m7. In our experiments, we consider

representative time series samples of size T = {200, 300, 500}, with break-points at T0 = {T/4, T/2, 3T/4}.
For the autoregressive parameters, we consider changes near to the unit root, i.e. φ1 = 0.90 and φ2 = 0.95,

while for the nuisance parameters we assume that γ1 = 0.01 and γ2 = 0.02, or γ2 = 0.03 (see Tables 1-7),

and σ2
1 = 0.009 and σ2

2 = 0.03, across the two segments of the sample. For the initial observation y0, we

assume that y0 = 0. The above values of the parameters are chosen so that to reflect bigger changes in

the variance than the mean of the series, which are consistent with many financial economic series.

The prior specifications that we consider in our simulation study are of the general form described in

subsection 4.1. For γst , st = 1, 2, we adopt Normal prior distributions N
(
µγst

, τ2
st

σ2
st

)
. The value of µγst

determines the center of the prior distribution of γst , while τ2
st

determines the magnitude of the prior

variance of γst . We consider values of τ2
st

in the interval
(

1
1−`2st

,+∞
)

, where `st is the lower bound of

the support of φst . As an initial choice, we take µγ1 = y0, µγ2 = ȳ and τ2
1 = τ2

2 = 4. This prior is quite

informative with respect to the centers µγst
. In particular, the data dependent choices µγ1 = y0 and
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µγ2 = ȳ can help to identify a change in the mean of the series between the two sample segments. To

see if the Bayesian approach remains robust to alternative prior specifications for γst , we also consider a

prior for γst
with a weakly informative mean µγst

= y0 and τ2
st

= 1
1−`∗2st

, with `∗st
= 1+`st

2 , where `st
is

the prior and, hence, posterior, lower bound of the support of φst . This prior specification is in the line

of Schotman and van Dijk’s (1991a,b) prior. It implies a non data dependent prior which has the nice

feature that τ2
st

is determined by `∗st
, that is by the center of the support of φst

.4

For the remaining parameters of the models m1-m8, we consider the following priors. For the error

variance σ2
st

, we adopt IG(0.01, 0.01) priors. These distributions are rather defuse, non-informative priors.

For the autoregressive coefficients φst
, we assume uniform prior distributions over the interval (`st

, 1),

with `st
= 0.8 when the data are simulated from the true value φst

= 0.9, and with `st
= 0.9 when the

data are simulated from the true value φst = 0.95. Note, at this point, that the choice of `st is crucial

because it can affect the posterior model probabilities. `st should not be far away from unity so that

to include a significant interval with zero density to the left of the support of the posterior. But, it

should not be however closed enough to unity so that to leave an interval with non-zero density out of

the support of the posterior. To see if the posterior probabilities remain robust to different values of `st

than the above, a sensitivity analysis is conducted.

Tables 1-7 present the simulation results on the posterior model probabilities. Panel A presents the

results using the quite informative N(µγst
, τ2

st
σ2

st
) prior for µγst

, while Panel B presents the results using

the weakly informative N
(
y0, τ

2
st

σ2
st

)
prior, with τ2

st
= 1

1−`∗2st

. The results of the tables lead to the

following main conclusions:

First, the Bayesian approach can adequately distinguish the correct models generating the data,

especially the unit root models from the stationary ones. Note that the performance of the method

significantly increases with the sample size, T .

Second, the alternative prior specifications considered for γst do not seem to significantly affect the

performance of the Bayesian method to select the correct model of the data. Both the quite and weakly

informative priors for γst seem to select the correct model of the data with almost the same posterior

probabilities, with the weakly informative priors to perform slightly better in detecting the unit root

models.

In Tables 8 and 9 we present the results of the sensitivity analysis, for different values of `st , st = 1, 2.

For reasons of space, we report results of the posterior probabilities only for the general model m1 against

the random walk model with broken variance m6 when the data are generated from model m1 (see Table

8) and, conversely, for model m6 against model m1 when the data are generated from model m6 (see

Table 9). For both cases, we used the weakly informative prior for γst . The results of the tables indicate

that the posterior probabilities remain robust to the alternative values of `st , even for values of `st far

4We also considered a N

(
y0,

σ2
st

1−φ2
st

)
prior for γst , which corresponds to Schotman and van Dijk’s prior, allowing for a

break point. But, we found that the posterior model probabilities are not different from those found for the N
(
y0, τ2

st
σ2

st

)
,

with τ2
st

= 1

1−`∗2st

. These results are available upon request.
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below than unity.5 As expected, when the range (`st , 1) is large and it is not supported by the data

the posterior odds of the two models is biased against stationarity and this is reflected on the posterior

model probabilities. But as `st gets close to unity the posterior probabilities of the random walk model

decrease.

Next, we turn into answering the question whether the Bayesian approach can efficiently identify the

break-point of the series. To this end, in Figure 1 we present the histograms of the posterior distributions

of the break-point T0 for simulated data of size T = {200, 300, 500} from the general model, m1, with

break-points at the fractions {T/4, T/2, 3T/4} of the sample. In Figure 2 we present the exact marginal

posterior distributions of the break-point T0 for series of size T = {200, 300, 500} from the random walk

model with broken variance, m6, with break-points at the fractions {T/4, T/2, 3T/4} of the sample.

Inspection of the histograms indicate that the Bayesian methodology can efficiently identify the correct

break-point of the data for almost all the fractions of the sample. They show that the posterior mass

functions give very narrow ranges, which cover the true break-points. This becomes more apparent,

as the sample size increases. However, for smaller samples the performance of the Bayesian approach

is satisfactory when the posterior of T0 is analytically evaluated. This can be seen by comparing the

posterior distributions of T0 = T/4, for the two models.

6 Applications to financial data

In this section, we give some empirical applications of our Bayesian method using financial economic

series. In particular, we investigate whether evidence of unit roots in nominal US interest rates and

CPI-based real bilateral exchange rates against the US dollar can be attributed to structural breaks.

In implementing our method, we use prior distributions of the type described in section 4.1. For the

break-time T0, we use a discrete uniform distribution, while for the error variances σ2
st

, st = 1, 2 we

adopt IG(0.01, 0.01) priors. For the uniform priors of the autoregressive coefficients φst , we choose

hyperparameters values `st = 0.8, st = 1, 2, to reflect our prior ignorance about φst , as well as the fact

that the estimates of the autoregressive coefficients are expected to be near unity. Finally, for the constant

terms we adopt N(µγst
, τ2

st
σ2

st
) priors, with µγst

= y0 and τst = 2.3 for the nominal interest rates and

τst = 10 for the real exchange rates. These priors are quite informative with respect to the centers µγst
,

while the tuning hyperparameters τst are chosen so that the prior for the error variances to be consistent

with the magnitude of the data.

6.1 Structural changes in US interest rates

Our empirical application on the US nominal interest rates uses monthly data from 1970:01 to 1991:01

for the one-month and the one-year to maturity interest rates. These data were obtained from McCulloch

and Kown’s (1993) term structure data base and cover the period from 1979:09 to 1982:09, during which

5Analogous results can be obtained using the informative prior specification for µγst
.
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interest rates fluctuated freely due to changes in the monetary operating procedures by the Fed. These

procedures were abolished in 1982:09, when a pegged system of interest rates was adopted.

In Table 10a we present the posterior probabilities for all models m1-m8, while in Figure 3 we present

the graphs of the series together with the histogram of the break-point T0 of the most probable model

(here m2). To see if classical unit root sequential procedures can capture a potential break in the data

of unknown date, we also present plots of the Zivot-Andrews’ (1992) test statistic -henceforth ZA. This

statistic allows for a break only in the levels of the series. In contrast to the results of the ZA test

statistic, the results of our Bayesian method reveal that the unit root hypothesis can not be supported

by the data and that there is a break in the data. For all interest rates, the posterior probabilities for the

random walk models m6 or m7 are very small, compared with the stationary models, while the standard

autoregressive model m8 has zero posterior probability.

In Table 10b, we present the mean and standard deviations (in parentheses) of the posterior distri-

butions of the parameters’ estimates of model m2, which is found to be the most probable model of the

data. For T0, we also report the mode of the posterior distribution. This model allows for a break only in

the error variance. The results of the table and Figure 3 clearly indicate that the most likely break-point

date is very close (or coincides, for the one-month) to the date 1982:09 of the monetary regime change.

After this date, the variance of interest rates significantly reduced due to the changes in the monetary

operating procedures.

6.2 Structural changes in real exchange rates

Our empirical analysis for real exchange rates is based on the following countries’ currencies against the

US dollar: UK, Denmark, France and Netherlands, and it covers the period from 1974:07 to 1999:05.

Some of these series were analyzed by Schotman and van Dijk (1991a), who applied a Bayesian approach

to compare the pure random walk model with the standard stationary model for real exchange rates.

In Table 11a, we present the posterior probabilities of all models m1-m8, while in Figure 4 we plot

the real exchange series together with the histograms of the break-point T0 which is found to be the

most likely stationary model (here m5). As in Figure 3, we also plot the estimates of the sequential

ZA test statistic. The results of the table indicate that model m5, with a break in the mean and the

autoregressive coefficients, can better explain the real exchange rates series examined compared with the

random walk model. The only exception is the real exchange rate for the UK currency for which the

random walk model with broken variance seems to be the most probable model.Compared with Schotman

and van Dijk’s (1991a), our results indicate that it is more likely to reject the unit root hypothesis for

real exchange rates in a Bayesian framework which allows for structural breaks.

In Table 11b, we report the mean and standard deviations of the posterior probabilities of model’s

m5 parameters, together with the mode of T0. The results of this table and Figure 4 indicate that there

is a substantial shift in the autoregression coefficient after 1985:01, implying higher speed of convergence

to the equilibrium real exchange rates after that date and a substantial appreciation of the US dollar,
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compared with the European currencies. This may be associated to Volcker’s tight monetary, stabilization

programme in early eighties which abruptly reduced US inflation.

6.3 Conclusions

In this paper, we have suggested a Bayesian approach to compare the random walk model with, or

without, structural changes in the error variance with the first-order stationary autoregressive model

allowing for a potential structural change (break) of an unknown date in any of its parameters. The

allowance for a structural change in the error variance, alongside the other parameters of the model, is

consistent with evidence on many financial series.

The Bayesian approach that we have followed in the paper employs analytic and Monte Carlo integra-

tion techniques for calculating the marginal likelihoods of the models, which are necessary for calculating

the posterior model probabilities. This is done under a choice of prior which is quite flexible to accom-

modate informative or less informative priors, often used in the unit root Bayesian literature. Simulation

results have shown that our method can adequately distinguish stationarity from unit roots, for mod-

erately large sample sizes. Empirical applications of our method to US nominal interest rates and real

bilateral exchange rates of European currencies against the US dollar have shown that, in contrast to clas-

sical testing procedures, the Bayesian approach favors stationary models allowing for structural breaks,

compared with unit root models.
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Appendix A
To compute the marginal likelihood (11) for the single change-point autoregressive model (2) we have

to integrate the unnormalized posterior with respect to the model parameters. We assume a Discrete

Uniform prior distribution for the time break T0, a Uniform U(`st , 1) prior for the autoregressive coefficient

φst
, Inverted Gamma IG(cst

, dst
) and Normal N(µγst

, τ2
st

σ2
st

) priors for the variances of the error processes

σ2
st

, and the constant terms γst
, respectively. We perform analytic integration with respect to the

parameters γ1, γ2, σ2
1 , and σ2

2 , then we take the sum over the discrete support of T0, and finally we use

Monte Carlo integration for φ1 and φ2 to obtain the marginal likelihood. The calculation of the integrals

with respect to γ1, γ2, σ2
1 , and σ2

2 are presented below.

The integral
∫

`(y|θ)p(θ)dγ1dγ2 of the unnormalized posterior with respect to the parameters γ1 and

γ2 results in

1

(2π)
T
2

dc1
1

Γ(c1)
dc2
2

Γ(c2)
1

T − 1
1

1− `1

1
1− `2

1√
1 + T0τ2

1 (φ1 − 1)2
1√

1 + (T − T0)τ2
2 (φ2 − 1)2

(
σ−2

1

)T0
2 +c1−1 (

σ−2
2

)T−T0
2 +c2−1

× exp




− (

σ−2
1

)

d1 +

1
2τ2

1


µ2

γ1
+ τ2

1

T0∑
t=1

(φ1yt−1 − yt)
2 −

(
µγ1 + τ2

1 (φ1 − 1)
∑T0

t=1 (φ1yt−1 − yt)
)2

1 + T0τ2
1 (φ1 − 1)2











× exp




− (

σ−2
2

)

d2 +

1
2τ2

2


µ2

γ2
+ τ2

2

T∑

t=T0+1

(φ2yt−1 − yt)
2 −

(
µγ2 + τ2

2 (φ2 − 1)
∑T

t=T0+1 (φ2yt−1 − yt)
)2

1 + (T − T0) τ2
2 (φ2 − 1)2











.

After integrating the above expression with respect to σ2
1 , and σ2

2 we obtain the integral
∫

`(y|θ)p(θ)dγ1dγ2dσ−2
1 dσ−2

2

which is given by

1

(2π)
T
2

dc1
1

Γ(c1)
dc2
2

Γ(c2)
1

T − 1
1

1− `1

1
1− `2

1√
1 + T0τ2

1 (φ1 − 1)2
1√

1 + τ2
2 (T − T0)(φ2 − 1)2

× Γ
[
c1 + T0

2

]
[
d1 + 1

2τ2
1

(
µ2

γ1
+ τ2

1

∑T0
t=1 (φ1yt−1 − yt)

2 −
(

µγ1+τ2
1 (φ1−1)

∑T0
t=1(φ1yt−1−yt)

)2

1+T0τ2
1 (φ1−1)2

)]c1+
T0
2

× Γ
[
c2 + T−T0

2

]
[
d2 + 1

2τ2
2

(
µ2

γ2
+ τ2

2

∑T
t=T0+1 (φ2yt−1 − yt)

2 − (µγ2+τ2
2 (φ2−1)

∑T
t=T0+1(φ2yt−1−yt))2

1+τ2
2 (T−T0)(φ2−1)2

)]c2+
T−T0

2

.

Finally, we obtain `(y|φ1, φ2)p(φ1, φ2) by taking the sum of the above expression over the discrete support

of T0.

Appendix B
The MCMC sampling scheme for obtaining draws from the posterior distribution of the parameters of

the break-point autoregressive model (2) is presented here. All the conditional distributions used are of

known functional form and, therefore, the parameters can be updated by using the Gibbs sampler. Note
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that at steps 1-5 certain parameters have been integrated out of the conditional posterior distribution

of the parameter that is updated at that step. These marginalizations help to reduce the correlations

among the components of the produced Markov chain.

• Step 1: Update the time break T0, from its conditional distribution p (T0 | y, φ1, φ2) , which is a

mass function proportional to

Γ
[
c1 + T0

2

]
Γ

[
c2 + T−T0

2

]
√

1 + T0τ2
1 (φ1 − 1)2

√
1 + τ2

2 (T − T0)(φ2 − 1)2
×


d1 +

1
2τ2

1


µ2

γ1
+ τ2

1

T0∑
t=1

(φ1yt−1 − yt)
2 −

(
µγ1 + τ2

1 (φ1 − 1)
∑T0

t=1 (φ1yt−1 − yt)
)2

1 + T0τ2
1 (φ1 − 1)2







−(c1+
T0
2 )

×


d2 +

1
2τ2

2


µ2

γ2
+ τ2

2

T∑

t=T0+1

(φ2yt−1 − yt)
2 −

(
µγ2 + τ2

2 (φ2 − 1)
∑T

t=T0+1 (φ2yt−1 − yt)
)2

1 + (T − T0) τ2
2 (φ2 − 1)2







−(c2+
T−T0

2 )

.

• Step 2: Update parameter γ1 from its conditional posterior distribution p (γ1 | y, T0, φ1), which is

a non-central Student-t distribution with 2c1 + T0 degrees of freedom, non-centrality parameter

µγ1 + τ2
1 (φ1 − 1)

∑T0
t=1(φ1yt−1 − yt)

1 + τ2
1 (φ1 − 1)2T0

and scale parameter
1

(2c1 + T0)(1 + τ2
1 (φ1 − 1)2T0)

×

2τ2

1 d1 + µ2
γ1

+ τ2
1

T0∑
t=1

(φ1yt−1 − yt)
2 −

(
µγ1 + τ2

1 (φ1 − 1)
∑T0

t=1 (φ1yt−1 − yt)
)2

1 + T0τ2
1 (φ1 − 1)2


 .

• Step 3: Update parameter γ2 from its conditional posterior distribution p (γ2 | y, T0, φ2), which is

a non-central Student-t distribution with 2c2 +T −T0 degrees of freedom, non-centrality parameter

µγ2 + τ2
2 (φ2 − 1)

∑T
t=T0+1(φ2yt−1 − yt)

1 + τ2
2 (φ2 − 1)2(T − T0)

and scale parameter
1

(2c2 + T − T0)(1 + τ2
2 (φ2 − 1)2(T − T0))

×

2τ2

2 d2 + µ2
γ2

+ τ2
2

T∑

t=T0+1

(φ2yt−1 − yt)
2 −

(
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2 (φ2 − 1)
∑T

t=T0+1 (φ2yt−1 − yt)
)2

1 + (T − T0) τ2
2 (φ2 − 1)2


 .

• Step 4: Update parameter σ2
1 from its conditional posterior distribution p

(
σ2

1 | y, T0, φ1

)
which is

an Inverted Gamma distribution with shape parameter

c1 +
T0

2
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and rate parameter

d1 +
1

2τ2
1


µ2

γ1
+ τ2

1

T0∑
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(φ1yt−1 − yt)
2 −
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 .

• Step 5: Update parameter σ2
2 from its conditional posterior distributions p

(
σ2

2 | y, T0, φ2

)
which is

an Inverted Gamma distribution with shape parameter

c2 +
T − T0

2

and rate parameter

d2 +
1

2τ2
2
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 .

• Step 6: Update φ1 from its full conditional distribution, p
(
φ1 | y, T0, σ

2
1 , γ1

)
which is a truncated

Normal distribution on the interval (`1, 1) with mean

∑T0
t=1(yt − γ1)(yt−1 − γ1)∑T0

t=1(yt−1 − γ1)2

and variance
σ2

1∑T0
t=1(yt−1 − γ1)2

.

• Step 7: Update φ2 from its full conditional distribution, p
(
φ2 | y, T0, σ

2
2 , γ2

)
which is a truncated

Normal distribution on the interval (`2, 1) with mean

∑T
t=T0+1(yt − γ2)(yt−1 − γ2)∑T

t=T0+1(yt−1 − γ2)2

and variance
σ2
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.
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Table 1: Posterior model probabilities. Simulated data from model (2) [m1] using

γ1 = 0.01, γ2 = 0.02, φ1 = 0.90, φ2 = 0.95, σ2
1 = 0.009, and σ2

2 = 0.03.

T T0 m1 m2 m3 m4 m5 m6 m7 m8

200 50 0.3317 0.0381 0.1350 0.1141 0.2293 0.0183 0.0382 0.0953

200 100 0.7532 0.0403 0.0000 0.1915 0.0000 0.0151 0.0000 0.0000

200 150 0.4043 0.2899 0.0000 0.2814 0.0000 0.0243 0.0000 0.0000

300 75 0.7793 0.0522 0.0001 0.1601 0.0002 0.0081 0.0000 0.0001

300 150 0.4573 0.2205 0.0000 0.3124 0.0000 0.0098 0.0000 0.0000

300 225 0.5512 0.0962 0.0000 0.3489 0.0000 0.0037 0.0000 0.0000

500 125 0.4669 0.2135 0.0000 0.3106 0.0000 0.0089 0.0000 0.0000

500 250 0.6377 0.0584 0.0000 0.3009 0.0000 0.0029 0.0000 0.0000

500 375 0.6306 0.0135 0.0000 0.3556 0.0000 0.0003 0.0000 0.0000

200 50 0.2750 0.0466 0.1409 0.1557 0.2023 0.0236 0.0490 0.1070

200 100 0.6537 0.0491 0.0000 0.2761 0.0000 0.0211 0.0000 0.0000

200 150 0.3696 0.2939 0.0000 0.3067 0.0000 0.0298 0.0000 0.0000

300 75 0.6653 0.0741 0.0001 0.2481 0.0002 0.0121 0.0000 0.0001

300 150 0.3745 0.2397 0.0000 0.3732 0.0000 0.0126 0.0000 0.0000

300 225 0.5047 0.1001 0.0000 0.3904 0.0000 0.0049 0.0000 0.0000

500 125 0.3748 0.2524 0.0000 0.3607 0.0000 0.0121 0.0000 0.0000

500 250 0.5759 0.0709 0.0000 0.3492 0.0000 0.0040 0.0000 0.0000

500 375 0.6149 0.0146 0.0000 0.3701 0.0000 0.0004 0.0000 0.0000
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Table 2: Posterior model probabilities. Simulated data from model (7) [m2] using

γ1 = 0.01, γ2 = 0.01, φ1 = φ2 = 0.95, σ2
1 = 0.009, and σ2

2 = 0.03.

T T0 m1 m2 m3 m4 m5 m6 m7 m8

200 50 0.1144 0.1710 0.1809 0.1441 0.1682 0.0074 0.0101 0.2039

200 100 0.2876 0.3685 0.0029 0.3163 0.0028 0.0184 0.0002 0.0033

200 150 0.0309 0.0334 0.2950 0.0277 0.2481 0.0017 0.0101 0.3532

300 75 0.1952 0.2551 0.1046 0.2139 0.1007 0.0034 0.0016 0.1255

300 150 0.2791 0.4105 0.0019 0.2990 0.0018 0.0054 0.0000 0.0023

300 225 0.3631 0.3294 0.0000 0.3028 0.0000 0.0047 0.0000 0.0000

500 125 0.2782 0.2853 0.0000 0.4337 0.0000 0.0028 0.0000 0.0000

500 250 0.4813 0.1670 0.0000 0.3496 0.0000 0.0022 0.0000 0.0000

500 375 0.2867 0.3917 0.0000 0.3178 0.0000 0.0039 0.0000 0.0000

200 50 0.1116 0.1738 0.1715 0.1426 0.1641 0.0115 0.0157 0.2093

200 100 0.2729 0.3761 0.0028 0.3127 0.0028 0.0290 0.0003 0.0035

200 150 0.0302 0.0353 0.2756 0.0289 0.2424 0.0027 0.0163 0.3686

300 75 0.1919 0.2610 0.0948 0.2192 0.0941 0.0054 0.0026 0.1311

300 150 0.2417 0.4302 0.0019 0.3132 0.0018 0.0088 0.0000 0.0024

300 225 0.3367 0.3466 0.0000 0.3090 0.0000 0.0076 0.0000 0.0000

500 125 0.2704 0.2911 0.0000 0.4338 0.0000 0.0046 0.0000 0.0000

500 250 0.4289 0.1795 0.0000 0.3879 0.0000 0.0037 0.0000 0.0000

500 375 0.2740 0.3975 0.0000 0.3223 0.0000 0.0062 0.0000 0.0000
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Table 3: Posterior model probabilities. Simulated data from model (9) [m3] using

γ1 = 0.01, γ2 = 0.03, φ1 = φ2 = 0.95, σ2
1 = 0.009, and σ2

2 = 0.009.

T T0 m1 m2 m3 m4 m5 m6 m7 m8

200 50 0.0013 0.0015 0.3319 0.0014 0.2897 0.0000 0.0111 0.3631

200 100 0.0013 0.0015 0.3352 0.0014 0.2934 0.0000 0.0113 0.3559

200 150 0.0013 0.0015 0.3454 0.0014 0.2936 0.0001 0.0120 0.3448

300 75 0.0011 0.0014 0.3400 0.0011 0.2824 0.0000 0.0023 0.3716

300 150 0.0011 0.0014 0.3493 0.0012 0.2884 0.0000 0.0025 0.3561

300 225 0.0012 0.0013 0.3456 0.0012 0.2921 0.0000 0.0027 0.3560

500 125 0.0243 0.0314 0.2843 0.0269 0.2164 0.0000 0.0001 0.4166

500 250 0.0236 0.0317 0.2879 0.0269 0.2220 0.0000 0.0001 0.4079

500 375 0.0251 0.0320 0.2918 0.0264 0.2218 0.0000 0.0001 0.4028

200 50 0.0013 0.0016 0.3242 0.0014 0.2919 0.0001 0.0169 0.3627

200 100 0.0013 0.0015 0.3246 0.0014 0.2942 0.0001 0.0173 0.3595

200 150 0.0013 0.0016 0.3342 0.0014 0.2935 0.0001 0.0182 0.3498

300 75 0.0011 0.0015 0.3208 0.0013 0.2774 0.0000 0.0038 0.3941

300 150 0.0011 0.0015 0.3327 0.0012 0.2799 0.0000 0.0041 0.3794

300 225 0.0012 0.0014 0.3254 0.0012 0.2870 0.0000 0.0044 0.3794

500 125 0.0241 0.0354 0.2520 0.0302 0.2009 0.0000 0.0002 0.4572

500 250 0.0240 0.0345 0.2523 0.0291 0.2024 0.0000 0.0002 0.4574

500 375 0.0246 0.0370 0.2596 0.0290 0.2045 0.0000 0.0002 0.4450
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Table 4: Posterior model probabilities. Simulated data from model (6) [m4] using

γ1 = γ2 = 0.01, φ1 = 0.90, φ2 = 0.95, σ2
1 = 0.009, and σ2

2 = 0.03.

T T0 m1 m2 m3 m4 m5 m6 m7 m8

200 50 0.3393 0.0370 0.1335 0.1121 0.2285 0.0183 0.0381 0.0930

200 100 0.7593 0.0388 0.0000 0.1867 0.0000 0.0151 0.0000 0.0000

200 150 0.4046 0.2891 0.0000 0.2818 0.0000 0.0245 0.0000 0.0000

300 75 0.7894 0.0498 0.0001 0.1524 0.0002 0.0081 0.0000 0.0001

300 150 0.4637 0.2170 0.0000 0.3093 0.0000 0.0100 0.0000 0.0000

300 225 0.5528 0.0949 0.0000 0.3486 0.0000 0.0037 0.0000 0.0000

500 125 0.4760 0.2105 0.0000 0.3043 0.0000 0.0092 0.0000 0.0000

500 250 0.6458 0.0563 0.0000 0.2949 0.0000 0.0030 0.0000 0.0000

500 375 0.6328 0.0130 0.0000 0.3538 0.0000 0.0003 0.0000 0.0000

200 50 0.2872 0.0437 0.1350 0.1530 0.2037 0.0238 0.0493 0.1044

200 100 0.6523 0.0503 0.0000 0.2766 0.0000 0.0209 0.0000 0.0000

200 150 0.3711 0.3001 0.0000 0.2991 0.0000 0.0297 0.0000 0.0000

300 75 0.6775 0.0683 0.0001 0.2417 0.0002 0.0121 0.0000 0.0001

300 150 0.3877 0.2449 0.0000 0.3544 0.0000 0.0130 0.0000 0.0000

300 225 0.5141 0.1042 0.0000 0.3771 0.0000 0.0047 0.0000 0.0000

500 125 0.3865 0.2364 0.0000 0.3646 0.0000 0.0125 0.0000 0.0000

500 250 0.5702 0.0673 0.0000 0.3584 0.0000 0.0040 0.0000 0.0000

500 375 0.6045 0.0140 0.0000 0.3811 0.0000 0.0004 0.0000 0.0000
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Table 5: Posterior model probabilities. Simulated data from model (8) [m5] using

γ1 = 0.01, γ2 = 0.03, φ1 = 0.90, φ2 = 0.95, σ2
1 = σ2

2 = 0.009.

T T0 m1 m2 m3 m4 m5 m6 m7 m8

200 50 0.0014 0.0007 0.2616 0.0011 0.5038 0.0002 0.0434 0.1878

200 100 0.0013 0.0007 0.2575 0.0010 0.5157 0.0002 0.0407 0.1830

200 150 0.0012 0.0010 0.3379 0.0011 0.3829 0.0001 0.0136 0.2622

300 75 0.0011 0.0006 0.2542 0.0008 0.4976 0.0000 0.0149 0.2307

300 150 0.0011 0.0006 0.2645 0.0009 0.4706 0.0000 0.0062 0.2562

300 225 0.0011 0.0007 0.2507 0.0011 0.4719 0.0000 0.0050 0.2696

500 125 0.0010 0.0004 0.2587 0.0009 0.5358 0.0000 0.0049 0.1983

500 250 0.0010 0.0003 0.2455 0.0009 0.5904 0.0000 0.0029 0.1590

500 375 0.0012 0.0002 0.2229 0.0010 0.6703 0.0000 0.0012 0.1032

200 50 0.0013 0.0008 0.2730 0.0013 0.4534 0.0002 0.0564 0.2136

200 100 0.0013 0.0008 0.2694 0.0012 0.4642 0.0002 0.0538 0.2091

200 150 0.0012 0.0011 0.3499 0.0013 0.3393 0.0001 0.0171 0.2900

300 75 0.0010 0.0007 0.2713 0.0010 0.4371 0.0001 0.0208 0.2680

300 150 0.0010 0.0007 0.2780 0.0011 0.4151 0.0000 0.0085 0.2956

300 225 0.0010 0.0008 0.2655 0.0013 0.4160 0.0000 0.0065 0.3089

500 125 0.0010 0.0005 0.2489 0.0010 0.5227 0.0000 0.0065 0.2195

500 250 0.0010 0.0004 0.2374 0.0011 0.5828 0.0000 0.0038 0.1736

500 375 0.0012 0.0002 0.2150 0.0011 0.6745 0.0000 0.0014 0.1066
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Table 6: Posterior model probabilities. Simulated data from model (4) [m6] using

γ1 = γ2 = 0, φ1 = φ2 = 1, σ2
1 = 0.009, and σ2

2 = 0.03.

T T0 m1 m2 m3 m4 m5 m6 m7 m8

200 50 0.0765 0.0514 0.1134 0.0264 0.0929 0.2286 0.3254 0.0853

200 100 0.3495 0.0734 0.0000 0.0459 0.0000 0.5312 0.0000 0.0000

200 150 0.1347 0.1765 0.0000 0.1099 0.0000 0.5790 0.0000 0.0000

300 75 0.2207 0.0527 0.0001 0.0156 0.0000 0.7104 0.0004 0.0001

300 150 0.0768 0.1262 0.0000 0.0417 0.0000 0.7553 0.0000 0.0000

300 225 0.0330 0.1570 0.0000 0.0497 0.0000 0.7603 0.0000 0.0000

500 125 0.0413 0.0535 0.0000 0.0068 0.0000 0.8983 0.0000 0.0000

500 250 0.0125 0.0602 0.0000 0.0088 0.0000 0.9185 0.0000 0.0000

500 375 0.0031 0.0751 0.0000 0.0116 0.0000 0.9102 0.0000 0.0000

200 50 0.0819 0.0432 0.0968 0.0373 0.0860 0.2405 0.3424 0.0719

200 100 0.3104 0.0776 0.0000 0.0966 0.0000 0.5154 0.0000 0.0000

200 150 0.1263 0.1584 0.0000 0.0967 0.0000 0.6186 0.0000 0.0000

300 75 0.0676 0.0502 0.0000 0.0426 0.0000 0.8391 0.0005 0.0000

300 150 0.0331 0.0967 0.0000 0.0277 0.0000 0.8426 0.0000 0.0000

300 225 0.0239 0.1100 0.0000 0.0306 0.0000 0.8354 0.0000 0.0000

500 125 0.0136 0.0177 0.0000 0.0078 0.0000 0.9608 0.0000 0.0000

500 250 0.0054 0.0599 0.0000 0.0057 0.0000 0.9290 0.0000 0.0000

500 375 0.0027 0.0361 0.0000 0.0040 0.0000 0.9573 0.0000 0.0000
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Table 7: Posterior model probabilities. Simulated data from model (5) [m7] using

γ1 = γ2 = 0, φ1 = φ2 = 1, σ2
1 = σ2

2 = 0.03.

T T0 m1 m2 m3 m4 m5 m6 m7 m8

200 50 0.0011 0.0011 0.1943 0.0009 0.1634 0.0038 0.4867 0.1486

200 100 0.0010 0.0011 0.1966 0.0009 0.1622 0.0038 0.4831 0.1514

200 150 0.0011 0.0011 0.1855 0.0009 0.1655 0.0038 0.4874 0.1547

300 75 0.0004 0.0005 0.1356 0.0003 0.0863 0.0037 0.6684 0.1047

300 150 0.0005 0.0005 0.1318 0.0002 0.0895 0.0037 0.6681 0.1056

300 225 0.0005 0.0006 0.1345 0.0002 0.0888 0.0037 0.6687 0.1030

500 125 0.0001 0.0003 0.0476 0.0001 0.0235 0.0043 0.8684 0.0558

500 250 0.0001 0.0003 0.0531 0.0001 0.0252 0.0043 0.8647 0.0522

500 375 0.0001 0.0003 0.0510 0.0001 0.0242 0.0043 0.8684 0.0516

200 50 0.0011 0.0010 0.2097 0.0008 0.1973 0.0036 0.4644 0.1221

200 100 0.0011 0.0009 0.2097 0.0008 0.1948 0.0036 0.4631 0.1260

200 150 0.0012 0.0009 0.2018 0.0008 0.1988 0.0036 0.4651 0.1278

300 75 0.0003 0.0004 0.0721 0.0002 0.0441 0.0045 0.8111 0.0674

300 150 0.0002 0.0003 0.0691 0.0002 0.0442 0.0045 0.8132 0.0682

300 225 0.0003 0.0004 0.0718 0.0002 0.0450 0.0045 0.8123 0.0655

500 125 0.0000 0.0000 0.0186 0.0000 0.0071 0.0047 0.9507 0.0188

500 250 0.0000 0.0001 0.0218 0.0000 0.0081 0.0047 0.9463 0.0190

500 375 0.0000 0.0001 0.0204 0.0000 0.0076 0.0047 0.9490 0.0181
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Table 8: Posterior probabilities of the AR change-point model (2) for different values of `1 and `2,

compared to the broken-variance Random walk model (4). Simulated data from model (2) using

γ1 = 0.01, γ2 = 0.02, φ1 = 0.90, φ2 = 0.95, σ2
1 = 0.009, and σ2

2 = 0.03.

T = 200 T = 300 T = 500

`1 `2 T0 = 50 T0 = 100 T0 = 150 T0 = 75 T0 = 150 T0 = 225 T0 = 125 T0 = 250 T0 = 375

0.5 0.6 0.7968 0.9137 0.7593 0.9340 0.8621 0.9493 0.8547 0.9568 0.9956

0.5 0.7 0.8291 0.9343 0.8131 0.9474 0.8845 0.9629 0.8808 0.9703 0.9969

0.5 0.8 0.8830 0.9563 0.8500 0.9640 0.9183 0.9703 0.9166 0.9772 0.9979

0.5 0.9 0.9190 0.9685 0.8674 0.9775 0.9450 0.9829 0.9464 0.9882 0.9989

0.6 0.6 0.8096 0.9252 0.7955 0.9420 0.8794 0.9548 0.8748 0.9694 0.9965

0.6 0.7 0.8574 0.9430 0.8403 0.9529 0.8971 0.9651 0.8973 0.9735 0.9973

0.6 0.8 0.8986 0.9615 0.8685 0.9699 0.9270 0.9758 0.9249 0.9826 0.9982

0.6 0.9 0.9306 0.9734 0.8893 0.9814 0.9516 0.9861 0.9537 0.9893 0.9990

0.7 0.6 0.8404 0.9330 0.8346 0.9521 0.8962 0.9621 0.8963 0.9726 0.9969

0.7 0.7 0.8771 0.9485 0.8617 0.9636 0.9153 0.9737 0.9142 0.9793 0.9978

0.7 0.8 0.9093 0.9667 0.8919 0.9738 0.9372 0.9797 0.9334 0.9838 0.9984

0.7 0.9 0.9389 0.9762 0.9066 0.9843 0.9600 0.9885 0.9618 0.9917 0.9992

0.8 0.6 0.8025 0.9169 0.8609 0.9457 0.9215 0.9729 0.9225 0.9770 0.9976

0.8 0.7 0.8434 0.9356 0.8885 0.9586 0.9351 0.9764 0.9332 0.9824 0.9982

0.8 0.8 0.8874 0.9558 0.9137 0.9706 0.9512 0.9842 0.9497 0.9877 0.9987

0.8 0.9 0.9224 0.9689 0.9259 0.9826 0.9675 0.9908 0.9686 0.9931 0.9993
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Table 9: Posterior probabilities of the broken-variance Random walk model (4) for different values

of `1 and `2, compared to the AR change-point model (2). Simulated data from model (4) using

γ1 = γ2 = 0, φ1 = φ2 = 1, σ2
1 = 0.009, and σ2

2 = 0.03.

T = 200 T = 300 T = 500

`1 `2 T0 = 50 T0 = 100 T0 = 150 T0 = 75 T0 = 150 T0 = 225 T0 = 125 T0 = 250 T0 = 375

0.6 0.6 0.9878 0.9915 0.9887 0.9969 0.9976 0.9986 0.9995 0.9997 0.9996

0.6 0.7 0.9817 0.9870 0.9836 0.9960 0.9964 0.9982 0.9988 0.9998 0.9999

0.6 0.8 0.9720 0.9783 0.9739 0.9938 0.9955 0.9971 0.9981 0.9997 0.9998

0.6 0.9 0.9324 0.9216 0.9453 0.9880 0.9899 0.9934 0.9965 0.9991 0.9995

0.7 0.6 0.9809 0.9854 0.9858 0.9968 0.9975 0.9981 0.9981 0.9998 0.9999

0.7 0.7 0.9729 0.9784 0.9770 0.9933 0.9955 0.9968 0.9984 0.9993 0.9998

0.7 0.8 0.9576 0.9628 0.9640 0.9911 0.9938 0.9950 0.9966 0.9990 0.9997

0.7 0.9 0.9029 0.8777 0.9257 0.9771 0.9847 0.9922 0.9933 0.9983 0.9992

0.8 0.6 0.9717 0.9738 0.9817 0.9896 0.9952 0.9972 0.9976 0.9993 0.9995

0.8 0.7 0.9582 0.9596 0.9697 0.9881 0.9936 0.9962 0.9976 0.9991 0.9996

0.8 0.8 0.9350 0.9323 0.9464 0.9816 0.9918 0.9934 0.9976 0.9986 0.9994

0.8 0.9 0.8533 0.7879 0.9076 0.9589 0.9781 0.9867 0.9913 0.9980 0.9991

0.9 0.6 0.9441 0.9339 0.9609 0.9812 0.9894 0.9923 0.9966 0.9979 0.9993

0.9 0.7 0.9258 0.9132 0.9426 0.9795 0.9902 0.9920 0.9961 0.9986 0.9993

0.9 0.8 0.8885 0.8609 0.9137 0.9672 0.9843 0.9882 0.9941 0.9976 0.9987

0.9 0.9 0.7491 0.6203 0.8339 0.9257 0.9581 0.9715 0.9869 0.9954 0.9980
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Table 10a: Interest Rates. Posterior model probabilities.

m1 m2 m3 m4 m5 m6 m7 m8

One-month 0.1722 0.4606 0.0000 0.2211 0.0000 0.1461 0.0000 0.0000

One-year 0.2626 0.3086 0.0000 0.2132 0.0000 0.2156 0.0000 0.0000

Table 10b: Interest Rates. Posterior means and standard errors (in parenthesis) of the parameters

of the most probable model m2 : yt = γ (1− φ) + φyt−1 + σst
εt (common γ -common φ)

T0 (mode) T0 (mean) γ σ2
1 σ2

2 φ

One-month 1982:09 1982:11 7.209 0.953 0.271 0.953

(4.3) (0.881) (0.121) (0.061) (0.023)

One-year T0 (mode) T0 (mean) γ σ2
1 σ2

2 φ

1982:11 1983:09 7.669 0.681 0.149 0.961

(11.5) (0.915) (0.082) (0.029) (0.024)

Table 11a: Real Exchange Rates. Posterior model probabilities.

m1 m2 m3 m4 m5 m6 m7 m8

United Kingdom 0.0000 0.0000 0.0754 0.0000 0.3860 0.0000 0.4308 0.1078

Denmark 0.0244 0.0609 0.0151 0.0260 0.4272 0.3321 0.0990 0.0153

France 0.0090 0.0180 0.0356 0.0084 0.5640 0.0996 0.2265 0.0389

Netherlands 0.0020 0.0030 0.0337 0.0019 0.7033 0.0161 0.2030 0.0369

Table 11b: Real Exchange Rates. Posterior means and standard errors (in parenthesis) of the

parameters of the most probable model m5 : yt = (γ1 + δt) (1− φst) + φstyt−1 + σεt (common σ2)

T0 (mode) T0 (mean) γ1 γ2 σ2 φ1 φ2

United Kingdom 1985:01 1985:03 0.459 0.357 0.0002 0.984 0.879

(28.9) (0.029) (0.006) (0.00002) (0.018) (0.033)

Denmark 1985:01 1985:02 7.384 5.535 0.035 0.991 0.912

(8.3) (0.548) (0.073) (0.003) (0.007) (0.018)

France 1985:01 1985:01 5.718 4.585 0.021 0.991 0.907

(16.8) (0.458) (0.096) (0.002) (0.014) (0.021)

Netherlands 1985:01 1985:02 3.239 2.603 0.008 0.992 0.905

(11.9) (0.256) (0.036) (0.0006) (0.0097) (0.021)
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Figure 1: Histograms of the posterior distributions of the break-point T0 for simulated data of size

T = {200, 300, 500} from the general model m1 with true values T0 = {T/4, T/2, 3T/4}.
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Figure 2: Exact marginal posterior distributions of the break-point T0 for simulated data of size

T = {200, 300, 500} from the random walk model with broken variance, m6, with true value T0 =

{T/4, T/2, 3T/4} .
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Figure 3: Real interest rates series with posterior distribution of the break date and ZA test statistic.
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Figure 4: Real exchange rates series with posterior distribution of the break date and ZA test statistic.
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