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In this paper, a Bayesian approach is suggested to compare unit root models with stationary
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1 Introduction

The unit root hypothesis has received a lot of attention in time series literature after the findings of Nelson
and Plosser (1982), that shocks have permanent effects on the level of most of economic series. Although
earlier evidence of units roots in the literature has been considerably challenged by the development of
unit root testing procedures which allow for structural changes (known as breaks) in the mean of the
series [see Perron (1989), Christiano (1992), Perron and Vogelsang (1992), Zivot and Andrews (1992), and
Lumsdaine and Papell (1997), inter alia], there are economic series (especially, financial) which strongly
favour the unit root hypothesis despite the lack of economic intuition or the occurrence of structural
changes in the economy. Typical examples of such series are the nominal interest rates [see Hall, Anderson
and Granger (1992), and Tzavalis and Wickens (1997)] and real exchange rates [see Papell (1997, 2002),
for a survey]. This evidence may be attributed to the fact that most of the testing procedures employed
to test the unit root hypothesis do not allow for changes in the error variance, which are apparent in
financial series.

The main difficulty for developing testing procedures allowing for changes in the variance within the
classical framework stems from the fact that, in general, it is difficult to identify some of the nuisance
parameters (including the error variance with a break-point) under the null [e.g. Garcia (1998), and Kim
and Nelson (1999)]. This problem becomes more severe when the break-point is treated as unknown. The
above difficulty can be overcome within the Bayesian model comparison framework. Furthermore, within
this framework, all the hypotheses under consideration (corresponding to either unit root or stationary
models) are treated symmetrically. This can increase the power of the Bayesian procedure to detect the
correct model generating the data. The main issue in the Bayesian approach is is to detect which out of
a number of competing hypotheses is the most likely to be consistent with the data. This can be done
by calculating the marginal likelihood of the data under each model by integrating the parameters of
the model out of the posterior density, in order to compute the posterior model probabilities. Finally,
another advantage of the Bayesian approach is that, in this framework, the identification of a break-point
in the series is considered as a part of the model selection problem.

Despite the plethora of studies considering Bayesian methods to compare unit root models with
stationary models, dating from Sims (1988)!, only recently Marriott and Newbold (2000) have shown
that these methods can be succesfully used to distinguish unit root models from stationary models
with a break-point. However, this study does not consider breaks in the error variance of the models,
which is the focus of our paper.? Ignoring a break in the error variance of the models may increase the
strength of evidence for a unit root, independently on whether the models ignore breaks in the level of
the series, or not. The Bayesian approach that we suggest in this paper is based on analytic and Monte

Carlo integration techniques for the calculation of the marginal likelihood of the data under unit root

1See also Schotman and van Dijk (1991a), DeJong and Whiteman (1989,1991a,b), Sims and Uhlig (1991) and Koop

(1992, 1994).
2Bayesian methods diagnosing the presence of breaks in the mean or error variance have been developed by Wang and

Zivot (2000). But, these authors have not considered unit roots models.



and stationary models allowing for breaks. To appraise the performance of our method, we conduct a
simulation study considering for values of the autoregressive parameters closed to unity. As empirical
applications of our method, we investigate if unit root evidence on US nominal Treasury bill rates and
some European real exchange rates against US dollar can be challenged by the presence of breaks in the
mean or the error variance of the series.

The remaining of the paper is organised as follows. In Section 2, we give all the necessary notation and
introduce the models of interest. In Sections 3 and 4, we discuss the Bayesian approach to inference and we
show how to calculate the marginal likelihood functions of the models under consideration, respectively.
In Section 5 we report the simulation results and in Section 6 we present the results of our empirical

applications. Finally, Section 6 concludes the paper.

2 The autoregressive model with a structural break in parame-
ters

Consider a non-linear autoregressive model of order one allowing for a break in the intercept, the autore-

gressive coefficient or the error variance at an unknown time point (referred to as break-point) Tj

v =(n+06) (1 —¢s,) + s, Yt—1 + 05,6, t=1,.......T (1)

where y¢, t = 1,...,T is a sample of T consecutive observations, {s:}, t = 1,......,T, is a binary process

with s; = 1, if t < Tp, and s; = 2, otherwise, indicating the subsample (segment) to which each observation

0, if t<T
y; is assigned, §; = ’ =% sa dummy variable determining the change in the mean of y;
6, if t>1T,

and €; are assumed to be independent and identically normally distributed. The initial observation of the
series {9t }, Yo, is assumed to be known. This is a standard assumption in unit roots or structural breaks
literature, where deviations from the initial conditions of the series are of non-stationary nature. For the
autoregressive parameters ¢,,, across the two segments of the sample, we assume that ¢;, € QU {1},
where Q = {¢s, | —1 < s, < ¢, < 1}, sp € {1,2}.
Writing model (1) as
Y1+ (Y1 —m) tore, t<Tp
Y2 + P2(Yi—1 — Y2) + 026, > Ty,

where v9 = 71 + 6, it can be seen that this model can nest different models which can correspond

(2)

to economic hypotheses of interest for empirical work. The likelihood function for a sample of T' ob-

servations, collected in the vector y = (y1,......,yr), under model (2) with parameter vector § =

(’717,}/2a ¢1a (;5270-%’ U%a TO) is given by

To
T2 T —(T—Ta 1
Uy |6) = ©2n) T 2e "0, (T=T0) exp {_M Z[yt -1 = ¢1(ye-1 — 71)]2}
L ¢=1

1 T
X  expy—=—3 Z [ye =72 — d2(yr1 —72))% ¢ - (3)
203 t=Tp+1



In a hypothesis testing setting, it is the unit root hypothesis, ¢s, = 1, that is used as the null
hypothesis against the alternative of a stationary model, i.e. ¢1 < ¢; < 1 and ¢ < ¢ < 1. Under the

unit root hypothesis, model (2) reduces to

Yi—1 + o1, t<Tp
Yt = ’ (4)
Yi—1 + o2€s, t > Tp.

This model assumes that the observations in the two segments of the sample (before and after the break-

point Tp) follow random walk processes, but with different variances. We will refer to this model as the

broken-variance random walk model. The change in the error variance under the null hypothesis may be

attributed to an exogenous event, e.g. a monetary regime change announcement. If there is no structural
2

break in the error variance, i.e. 07 = o3, then model (4) reduces to the standard (pure) random walk

model

Yt = Yt—1 + O€t. (5)
In a model comparison setting, we may consider several alternative hypotheses to the unit root
hypothesis which can be represented by models (4), or (5). For example, we can consider a model
with different error variances, across the two segments of the sample, but the same unconditional mean

(Y= =), ie.
Yt :’7(1 _¢st)+¢styt71 + 05, €t- (6)
Further, we can assume that the autoregressive coefficient ¢ is also the same (¢ = ¢1 = ¢2), thus leading

to the autoregressive model with different error variances

yr =7 (1 — @)+ dyt—1 + 05,6 (7)

On the other hand, we can consider the case where the variances are equal across the two segments,
while the unconditional means (gammas) are different and the autoregressive coefficients are either dif-

ferent, i.e.

Y= (11 +6) (1= ¢s,) + s, Yt—1 + o€, (8)

or equal , i.e.
ye=(n+06) (1 — @)+ dyr—1 + oer. (9)

Finally, if there is not a structural break, then, under the alternative hypothesis of stationarity, model

(2) reduces to the standard autoregressive model

ye =7 (1 — @)+ dyi—1 + oes. (10)

For each of the reduced specifications of model (2), the likelihood function (3) can be modified according

to the respective vector of parameters.



3 Bayesian Inference and Model Comparison

3.1 Bayesian Inference

The Bayesian approach to inference requires specifying a prior distribution for the unknown parameter
vector . After observing data y, our knowledge about 6 is updated using information in the likelihood
function £(y | §). Then, inference on the unknown parameter vector 6, given the data, is made from the

joint posterior distribution of €, which is given, up to a constant of proportionality, by

p(0|y) oc(y | 0)p(0).

In complex problems, analytic calculation of the normalizing constant of p(6 | y) is not possible. Instead,
computationally intensive methods, such as Monte Carlo integration, Importance sampling and Markov
chain Monte Carlo (MCMC) methods, are used to simulate draws from the posterior distribution. MCMC
methods (see Gilks et. al., 1996) are based on the construction of an irreducible and aperiodic Markov
chain, with realizations #(1),#(2) ... in the parameter space, which has p(# | y) as its stationary distribu-
tion. Under mild regularity conditions, the realizations of this Markov chain converge to draws from the
posterior distribution of interest [see Roberts and Smith (1994)]. In many statistical applications of the
MCMC method a sample from the posterior distribution of interest is obtained via the Gibbs sampler
[see, for instance, Geman and Geman (1984), and Gelfand and Smith (1990)]. The Gibbs sampler updates
the components of 6 one at a time by iteratively generating values from the complete set of their full

conditional distributions.

3.2 Bayesian Model Comparison

The objective of the Bayesian approach in the model comparison setting is to determine how probable
one model (corresponding to a hypothesis of interest) is relative to another, or various other alternative
models. Consider having K competing models my, ..., mg, each of which corresponds to a different

hypothesis. The posterior probability of model my, k = 1,..., K, (or equivalently of hypothesis H}) is

given by - o)
— ply | mi)p(my,
plms ) = < PSS,
where
ply | m) = / Uy | O mi)dpi(61) (11)

is the marginal likelihood of the vector of observations y under model my, 6; denotes the model specific
parameter vector for model my, €(y | 0, my) is the likelihood function given model my, pr(0x) = p(Ok |
my,) is the prior density of 8, under model my, and p(my) is the prior probability of model my. It can
be easily seen from (11), that the marginal likelihood under model my is just the likelihood function
integrated over the specified prior distribution for that model, provided that the integration is feasible.
Equivalently, it can be seen as the normalizing constant of the posterior distribution of 6y, defined as the

integral of the product likelihood times prior, which is known as the unnormalized posterior.



In the context of hypothesis testing, inference about the comparison of two different models (say my, ,
corresponding to hypothesis Hy,, and my,, corresponding to hypothesis Hy,) can be made using the

Bayes Factor (BF) of model my, against model my, given by

The Bayes Factor is the ratio of the posterior odds to the prior odds. For comparing more than two
models, the posterior probabilities of all models can be used as a measure of how probable each model is
relative to the others. We will follow the latter approach to compare the stationary and non-stationary

models presented in section 2.

4 Calculation of the marginal likelihood

The calculation of the posterior probabilities requires the evaluation of the marginal densities p(y | mg),
defined in (11). Such integrals are in general difficult to calculate; Kass and Raftery (1995) provide an
extensive description of available numerical strategies. However, if the prior specification is conjugate
to the likelihood function, at least some of the model parameters can be integrated out of the posterior
distribution analytically. Under our choice of prior, the marginal likelihood of the pure random walk and
of the random walk with broken-variance model can be easily calculated analytically by integration. For
the autoregressive break-point models under consideration, most (but not all) of the integrations in (11)

can be calculated analytically, while Monte Carlo integration can be used for the rest.

4.1 Prior specification

As stated before, implementation of the Bayesian methodology requires a prior specification for the
model parameters. This is very crucial in model comparison, as the choice of the prior can affect the
marginal likelihoods of the different models considered for generating the data. As a general principle,
note that flat priors tend to penalize more the models which are more complex [see Bernardo and Smith
(1994), chapter 6]. In the unit root problem, choosing an appropriate prior distribution is not an easy
task. Sims (1988) used a flat prior as an non-informative prior for testing the unit root hypothesis,
while Phillips (1991) argued that a flat prior is actually informative and proposed an ignorance prior (or
Jeffreys invariant prior). For the AR(1) model with constant term, Schotman and van Dijk (1991a,b)
used a proper and weakly informative Normal prior for the constant term, which is centered around the
initial observation yy and its variance is determined by the other parameters of the model, a uniform
prior for the autoregressive coefficient, and a non-informative and improper prior for o2.3 Other authors
have proposed prior distributions for the autoregressive coefficient with support that includes a region

beyond unity; for a comparative discussion see Bauwens, Lubrano and Richard (1999).

3For a detailed discussion on particular choices of prior distributions and their affection on inference and model compar-
ison see, for example, Sims (1991), Leamer (1991), Schotman and van Dijk (1991a,b), Koop and Steel (1991), DeJong and
Whiteman (1991c), Phillips (1991).



In a Bayesian analysis of autoregressive models with structural breaks, the presence of different con-
stant terms s, and/or different autoregressive coefficients ¢, will complicate inference in the unit root
problem. Dealing with the comparison of unit root models with stationary models in this complex set-
ting, we choose a prior specification in the line of Schotman and van Dijk (1991a). We use a proper
prior distribution for the parameters of each of the models under consideration, which is a choice that
enables us to integrate the likelihood function with respect to the corresponding probability measure in
order to obtain the marginal likelihood of the model. In general, we use quite/weakly informative priors,
which are appropriate in a Bayesian model comparison setting. Except for the prior specification within
each model, in order to calculate the posterior model probabilities p(my | y) one has to assign a prior
probability p(my) to each model my. We choose to assign equal prior probability to each of the models
under consideration, as a non-informative choice of prior.

For the autoregressive coefficient ¢,, we assume a uniform prior distribution over a part (¢5,,1) of
the stationary region, i.e. p(¢s,) = 1/(1 —¥4s,), st = 1,2. Choosing the lower bound 5, of the support of
¢s, is a crucial step of the prior specification. If the range (¢s,,1) is not supported by the data, i.e. ¢, is
small enough to include a significant interval with zero density to the left of the support of the posterior,

then the posterior model probabilities are biased against stationarity. With respect to the break point

2

St

Ty, we use a discrete uniform distribution on the integers {1,......,T — 1}. For the error variances o
we assume the conjugate inverted Gamma priors IG(cs,,ds, ), st = 1,2. Finally, for v,,, we adopt Normal
prior distributions N(u%t , 7202 ), with hyperparameters Moy, and Tft, se =1,2.

505,

In the reduced specification models with common error variances 02, = o2 [see equations (5), (8), (9)
and (10)], we assume that the prior distribution for the different v, is N(u.,,,7207) and the prior for
02 is IG(c,d). For the rest of the parameters of these models, we use prior specifications similar with
that of the most general model (2). For the reduced models with common ~ and different error variances

[(6) and (7)], we assume the prior N(i,02) for ~, while for the rest of the parameters the priors are

assumed to be the same with those of model (2).

4.2 Analytic marginal likelihood calculation for Random walk models

For the broken-variance random walk model (4), with parameter vector § = (02, 03,T}), the unnormalized
posterior distribution (y | #)p(#) can be integrated analytically with respect to the nuisance parameters
02 and o2. Then, the marginal likelihood p(y) for model (4) can be taken by the sum of the resulting

expression over the discrete support of the break-point Ty, i.e.

S ds' dy: e+ 2) (e + T5T0)
I'(c1)l(e2) (T — 1) (2m) 772 5 ot ot I
To=1 1 0 ) ) T
dit 3 2 (e =) do+3 > (W —yi-1)?
t=1 t=To+1

Note that the expression in brackets is the unnormalized marginal posterior distribution of the break-

point Ty, with the sum being its normalizing constant. Therefore, for the Random walk break-variance



model, the discrete marginal posterior distribution of Tj can be also calculated analytically.
For the pure Random walk model (5) with constant error variance, i.e. 0% = 0% = 03, the marginal
likelihood p(y) is given by
d° r (c + %)
p(y) = NCIE

T oty
d+ % > (W —ye-1)?
i=1
4.3 Marginal likelihood calculation for autoregressive models with a break
point
For the autoregressive model (2), with ¢;, € €, the unnormalized posterior can be integrated analytically

with respect to the model parameters v;, 72, 02 and o3. The steps of the multi-dimensional integration

are presented in Appendix A. From the final step, we can obtain the unnormalized marginal posterior of

((bla ¢2)7 ie. E(y|¢17 ¢2)p(¢13 ¢2)7 given by

b i3 e+ %) L er I50)
()T (e2)(2m)"72 (1= 12) (1= 1) (T = 1) \/T+ Tyrd (1 — 1)2 /1 + 73 (T — To)(d — 1)

To=1
2 To 2\ 1~ (@+3)

d 1 2 2 i 2 (M” 71 (010 = 1) 2052, (drye—1 — yt))

X + = + L _
1 572 py, + 7 2 (D1Y1—1 — Yt) T, 1)
T 2 _<C2+T;TO)

d 1 2 N 2 (MW + 73 (62 = 1) 2o 4_gy i1 (D201 — yt))

X |do + E Py, T T t TZ+1 (Poye—1 —ye)” — T 7'22(T A TFe—
=10

The marginal likelihood for model (2) can be obtained by Monte Carlo integration of £(y|¢1, ¢2)p(d1, d2)
with respect to the autoregressive parameters ¢; and ¢,. Following Kass and Raftery (1995), we can use
Monte Carlo integration with Importance sampling to evaluate the integral [ p(¢1, ¢2)l(y | ¢1, p2)dd1dgs.
After specifying an importance function, denoted as g (¢1, ¢2), the importance weight of a random draw
( (1i), (21)) from g (¢1,$2) can be defined as w® = p ( (11‘)’ ;Z)) /g ( gi), g)) Then, an estimate of the
marginal likelihood p(y), denoted as p(y), can be calculated as

S e (y |60, 01)

Zilil w® ’

with all normalizing constants included, where ( (1i), g)

py) =

),i=1,...,N, denote a sample of N draws from
the importance function g (¢1,¢$2). As importance function, we will adopt the product of two normal
densities N (g, , O‘Zi) truncated at the support of ¢; and ¢, respectively. A natural choice for p4, can be
te, = (¢; +1)/2, that is the center of the support (¢;,1) of ¢;. 0351, should be chosen to be large enough,
so that the tails of the importance function to be sufficiently heavy.

The above procedure of calculating the marginal likelihood for the stationary autoregressive model

(2) can be applied to the other specifications of the break-point models nested in the general model (2).



For model (6), which assumes a common mean, i.e. v = ;3 = 72, we can integrate the unnormalized
posterior with respect to the parameters 0%, 03, ¢; and ¢o. This yields the following formula for the
unnormalized marginal posterior ¢(y|y)p(7)

g 1y~ E)
> : 5

72 | D(e)T(e2)(2m) 5 oy (1—€1) (1= £5) (T — 1)

«T [201 . 1} r [262 B 1] (Fi (1) = Foy (6) (F (1) = Fia ()

. T ~1/2 - ~1/2
X exp {—%2 (v— uf] lz (ye—1 — 7)2] [ > (e - 7)2]

=To+1

To—1
1+ )

S G- -] ]
2321 (Yt-1 — 7)2

To
< > (e =) +2d —
t=1

~(ert Tt

2
T St g Weer =) (e =)
x| > (yt7)2+2d2{ - . }
t=To+1 Zt:TOH (Ye—1 =)

In the last relationship, Fy, () stands for the non-central student-¢ distribution function with 2¢; +7Tp —1

degrees of freedom, non-centrality parameter given by

Sl (Y1 — ) (e — )
221 (yt—l - ’Y)Q

and scale parameter given by

1 & ) [ZtTil T Y —
t 2dy — T 2
CoTD el DL SR (G — )

Fi, () stands for the non-central student-t distribution function with 2co +7 — Ty — 1 degrees of freedom,

non-centrality parameter given by

T
Zt:TO—H (ye—1 =) (Yt — )
T 2
Zt:TO-H (Ye—1—)

and scale parameter given by

2
T
| Syt oy T =) - 7]
T 2 Yt — 7 2 = T 2
(2e2+T =To=1) Y soq 1 (-1 =) |2 dot=To1 (Y-1—7)

As for model (2), the marginal likelihood for model (6) can be obtained by Monte Carlo integration
of £(y|y)p(y) with respect to v using the Importance function N(MWU%), where p., is the sample mean

of y;, denoted as g, and orfy takes a sufficiently large value.



Since the posterior distribution for the general model (2), or its reduced specifications, can not be in-
tegrated over some subset of the model parameters, the marginal posterior distribution of the break-point
Ty cannot be calculated analytically for those models. Instead, a sample from the posterior distribution
of Ty has to be obtained within an MCMC sampling scheme. For each specification, a Gibbs sampler can
be constructed to generate a sample from the conditional posterior distributions of the model parameters

including Tp. Details of the sampler for model (2) can be found in Appendix B.

5 Simulation Study

In this section, we conduct a simulation study with the aim to assess the performance of the Bayesian
approach suggested in the previous sections to detect the correct data generating process and to identify a
break-point in the data. This exercise will enable us to see whether the Bayesian approach can distinguish
the unit root models from stationary autoregressive models allowing for a break in the mean or the error
variance of the models. To this end, we estimate the posterior model probabilities of the following models,

presented in Section 2,

my:yr = (71 +0) (1 — ¢s,) + ¢s,yt—1 + 0s,6¢  (general model (1))
mo:yr =71 —¢)+ ¢dys—1 + 05,64 (common 7 -common ¢)
ms:y; = (71 +0;) (1 — ) + dys_1 + oe (common o-common ¢)
mya Yy =71 —bs,) + ¢s,Yt—1 + 05,64 (common =)

ms:yr = (y1+0:) (1 — bs,) + ¢s,y4—1 + 06 (common o?)

me : Yr = Yp—1 + 05,6 (random walk with broken variance)

mr Yt = yt—1 + oe; (pure random walk)

mg Yy =y (1 — @) + ¢yi—1 + o€ (standard AR(1) model),

when data are generated from the models of interest m; — m7. In our experiments, we consider
representative time series samples of size T' = {200, 300, 500}, with break-points at To = {T'/4,T/2,3T/4}.
For the autoregressive parameters, we consider changes near to the unit root, i.e. ¢; = 0.90 and ¢o = 0.95,
while for the nuisance parameters we assume that ; = 0.01 and 2 = 0.02, or 2 = 0.03 (see Tables 1-7),
and o7 = 0.009 and 03 = 0.03, across the two segments of the sample. For the initial observation yo, we
assume that yo = 0. The above values of the parameters are chosen so that to reflect bigger changes in
the variance than the mean of the series, which are consistent with many financial economic series.

The prior specifications that we consider in our simulation study are of the general form described in
subsection 4.1. For ~s,, s = 1,2, we adopt Normal prior distributions /N (,u%t , TSQt U?t). The value of oy,
determines the center of the prior distribution of v,,, while Tft determines the magnitude of the prior
variance of vys,. We consider values of Tszt in the interval #, +oo>, where /g, is the lower bound of

st

the support of ¢,,. As an initial choice, we take u,, = yo, t, = ¥ and 72 = 74 = 4. This prior is quite

informative with respect to the centers i, . In particular, the data dependent choices u,, = yo and

10



ly, = ¥y can help to identify a change in the mean of the series between the two sample segments. To

see if the Bayesian approach remains robust to alternative prior specifications for vs,, we also consider a

: 144, .
with £, = +2 t, where /;, is

prior for s, with a weakly informative mean p,, = yo and 72 = ﬁ,
St
the prior and, hence, posterior, lower bound of the support of ¢,,. This prior specification is in the line

of Schotman and van Dijk’s (1991a,b) prior. It implies a non data dependent prior which has the nice

*
St

feature that TSQt is determined by £ , that is by the center of the support of ¢,,.*

For the remaining parameters of the models m1-m8, we consider the following priors. For the error

2

variance o,

, we adopt 1G(0.01,0.01) priors. These distributions are rather defuse, non-informative priors.
For the autoregressive coefficients ¢g,, we assume uniform prior distributions over the interval (¢,,1),
with ¢;, = 0.8 when the data are simulated from the true value ¢s, = 0.9, and with ¢;, = 0.9 when the
data are simulated from the true value ¢,, = 0.95. Note, at this point, that the choice of ¢, is crucial
because it can affect the posterior model probabilities. ¢, should not be far away from unity so that
to include a significant interval with zero density to the left of the support of the posterior. But, it
should not be however closed enough to unity so that to leave an interval with non-zero density out of
the support of the posterior. To see if the posterior probabilities remain robust to different values of /g,

than the above, a sensitivity analysis is conducted.

Tables 1-7 present the simulation results on the posterior model probabilities. Panel A presents the

results using the quite informative N (j,, , Tft aﬁt) prior for p., , while Panel B presents the results using
the weakly informative N (yO,TiUEt) prior, with 7'52t = —L . The results of the tables lead to the

2
1—03
following main conclusions:

First, the Bayesian approach can adequately distinguish the correct models generating the data,
especially the unit root models from the stationary ones. Note that the performance of the method
significantly increases with the sample size, T

Second, the alternative prior specifications considered for «,, do not seem to significantly affect the
performance of the Bayesian method to select the correct model of the data. Both the quite and weakly
informative priors for 7,, seem to select the correct model of the data with almost the same posterior
probabilities, with the weakly informative priors to perform slightly better in detecting the unit root
models.

In Tables 8 and 9 we present the results of the sensitivity analysis, for different values of ¢s,, s: = 1, 2.
For reasons of space, we report results of the posterior probabilities only for the general model m; against
the random walk model with broken variance mg when the data are generated from model m; (see Table
8) and, conversely, for model mg against model m; when the data are generated from model mg (see
Table 9). For both cases, we used the weakly informative prior for 7,,. The results of the tables indicate

that the posterior probabilities remain robust to the alternative values of /,,, even for values of ¢;, far

2
4We also considered a N <y0, %) prior for ~ys,, which corresponds to Schotman and van Dijk’s prior, allowing for a
st

break point. But, we found that the posterior model probabilities are not different from those found for the N (yo, ‘I'SQt agt),

with 72 = —L . These results are available upon request.
S¢ 1—@*2
St

11



below than unity.® As expected, when the range ({s,,1) is large and it is not supported by the data
the posterior odds of the two models is biased against stationarity and this is reflected on the posterior
model probabilities. But as £, gets close to unity the posterior probabilities of the random walk model
decrease.

Next, we turn into answering the question whether the Bayesian approach can efficiently identify the
break-point of the series. To this end, in Figure 1 we present the histograms of the posterior distributions
of the break-point Ty for simulated data of size T = {200, 300, 500} from the general model, m;, with
break-points at the fractions {T'/4,7/2,3T/4} of the sample. In Figure 2 we present the exact marginal
posterior distributions of the break-point T} for series of size T = {200, 300,500} from the random walk
model with broken variance, mg, with break-points at the fractions {T/4,7/2,3T/4} of the sample.
Inspection of the histograms indicate that the Bayesian methodology can efficiently identify the correct
break-point of the data for almost all the fractions of the sample. They show that the posterior mass
functions give very narrow ranges, which cover the true break-points. This becomes more apparent,
as the sample size increases. However, for smaller samples the performance of the Bayesian approach
is satisfactory when the posterior of Ty is analytically evaluated. This can be seen by comparing the

posterior distributions of Ty = T'/4, for the two models.

6 Applications to financial data

In this section, we give some empirical applications of our Bayesian method using financial economic
series. In particular, we investigate whether evidence of unit roots in nominal US interest rates and
CPI-based real bilateral exchange rates against the US dollar can be attributed to structural breaks.

In implementing our method, we use prior distributions of the type described in section 4.1. For the

2
St

break-time Ty, we use a discrete uniform distribution, while for the error variances o2, s, = 1,2 we
adopt 1G(0.01,0.01) priors. For the uniform priors of the autoregressive coefficients ¢s,, we choose
hyperparameters values /5, = 0.8, s; = 1,2, to reflect our prior ignorance about ¢s,, as well as the fact
that the estimates of the autoregressive coefficients are expected to be near unity. Finally, for the constant
terms we adopt IV (u%t,fft aft) priors, with . = yo and 75, = 2.3 for the nominal interest rates and
7s, = 10 for the real exchange rates. These priors are quite informative with respect to the centers p., ,
while the tuning hyperparameters 75, are chosen so that the prior for the error variances to be consistent

with the magnitude of the data.

6.1 Structural changes in US interest rates

Our empirical application on the US nominal interest rates uses monthly data from 1970:01 to 1991:01
for the one-month and the one-year to maturity interest rates. These data were obtained from McCulloch

and Kown’s (1993) term structure data base and cover the period from 1979:09 to 1982:09, during which

5 Analogous results can be obtained using the informative prior specification for Hoys, -
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interest rates fluctuated freely due to changes in the monetary operating procedures by the Fed. These
procedures were abolished in 1982:09, when a pegged system of interest rates was adopted.

In Table 10a we present the posterior probabilities for all models m1-m8, while in Figure 3 we present
the graphs of the series together with the histogram of the break-point T of the most probable model
(here m2). To see if classical unit root sequential procedures can capture a potential break in the data
of unknown date, we also present plots of the Zivot-Andrews’ (1992) test statistic -henceforth ZA. This
statistic allows for a break only in the levels of the series. In contrast to the results of the ZA test
statistic, the results of our Bayesian method reveal that the unit root hypothesis can not be supported
by the data and that there is a break in the data. For all interest rates, the posterior probabilities for the
random walk models m6 or m7 are very small, compared with the stationary models, while the standard
autoregressive model mg has zero posterior probability.

In Table 10b, we present the mean and standard deviations (in parentheses) of the posterior distri-
butions of the parameters’ estimates of model ms, which is found to be the most probable model of the
data. For T}, we also report the mode of the posterior distribution. This model allows for a break only in
the error variance. The results of the table and Figure 3 clearly indicate that the most likely break-point
date is very close (or coincides, for the one-month) to the date 1982:09 of the monetary regime change.
After this date, the variance of interest rates significantly reduced due to the changes in the monetary

operating procedures.

6.2 Structural changes in real exchange rates

Our empirical analysis for real exchange rates is based on the following countries’ currencies against the
US dollar: UK, Denmark, France and Netherlands, and it covers the period from 1974:07 to 1999:05.
Some of these series were analyzed by Schotman and van Dijk (1991a), who applied a Bayesian approach
to compare the pure random walk model with the standard stationary model for real exchange rates.

In Table 11a, we present the posterior probabilities of all models m1-m8, while in Figure 4 we plot
the real exchange series together with the histograms of the break-point T which is found to be the
most likely stationary model (here m5). As in Figure 3, we also plot the estimates of the sequential
ZA test statistic. The results of the table indicate that model m5, with a break in the mean and the
autoregressive coefficients, can better explain the real exchange rates series examined compared with the
random walk model. The only exception is the real exchange rate for the UK currency for which the
random walk model with broken variance seems to be the most probable model.Compared with Schotman
and van Dijk’s (1991a), our results indicate that it is more likely to reject the unit root hypothesis for
real exchange rates in a Bayesian framework which allows for structural breaks.

In Table 11b, we report the mean and standard deviations of the posterior probabilities of model’s
mb parameters, together with the mode of T. The results of this table and Figure 4 indicate that there
is a substantial shift in the autoregression coefficient after 1985:01, implying higher speed of convergence

to the equilibrium real exchange rates after that date and a substantial appreciation of the US dollar,
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compared with the European currencies. This may be associated to Volcker’s tight monetary, stabilization

programme in early eighties which abruptly reduced US inflation.

6.3 Conclusions

In this paper, we have suggested a Bayesian approach to compare the random walk model with, or
without, structural changes in the error variance with the first-order stationary autoregressive model
allowing for a potential structural change (break) of an unknown date in any of its parameters. The
allowance for a structural change in the error variance, alongside the other parameters of the model, is
consistent with evidence on many financial series.

The Bayesian approach that we have followed in the paper employs analytic and Monte Carlo integra-
tion techniques for calculating the marginal likelihoods of the models, which are necessary for calculating
the posterior model probabilities. This is done under a choice of prior which is quite flexible to accom-
modate informative or less informative priors, often used in the unit root Bayesian literature. Simulation
results have shown that our method can adequately distinguish stationarity from unit roots, for mod-
erately large sample sizes. Empirical applications of our method to US nominal interest rates and real
bilateral exchange rates of European currencies against the US dollar have shown that, in contrast to clas-
sical testing procedures, the Bayesian approach favors stationary models allowing for structural breaks,

compared with unit root models.
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Appendix A

To compute the marginal likelihood (11) for the single change-point autoregressive model (2) we have
to integrate the unnormalized posterior with respect to the model parameters. We assume a Discrete
Uniform prior distribution for the time break Tp, a Uniform U (¢,, 1) prior for the autoregressive coefficient

¢s,, Inverted Gamma IG(cs,, ds, ) and Normal N (u., , T, priors for the variances of the error processes

) s:, s,)

§t7 and the constant terms +s,, respectively. We perform analytic integration with respect to the

o
parameters y1, Y2, 05, and o3, then we take the sum over the discrete support of Ty, and finally we use
Monte Carlo integration for ¢; and ¢2 to obtain the marginal likelihood. The calculation of the integrals
with respect to 1, 72, 0%, and o3 are presented below.
The integral [ ¢(y|0)p(8)dy1dys of the unnormalized posterior with respect to the parameters v; and
o results in
1 d¢ de2 1 1 1 1 1
@2m)z D(e) T(e2) T =11 =l 1= Lbo \/T+ TorP (¢ — 1)2 /1 + (T — Tp)73 (2 — 1)2

(01_2) Toye—1 (02_2) T-T0 4 cp1

i 2
2 To
_ 1 0 5 (le + 71 (01— 1) 222 (drye—1 — yt))
X exp { — (‘71 2) dy + 72712 ,uil + 7'12 E (Dr1ye—1 — )" — T T0712(¢1 —1)
_ z F (62— 1) X gy (0 )’
1 (M’Y2 + T 2= t=To+1 2Yt—1 — Yt )
-2 2 2 2
— d — E - _
X exp (02 ) 2+ 277 My, + T3 e (P2yt—1 — Yt) L5 (T —Tp) 2(6s — 102
=10

After integrating the above expression with respect to o7, and 02 we obtain the integral [ £(y|0)p(0)dyidyadoy *doy?
which is given by
1 dst d3? 1 1 1 1 1
)5 D e T=11= R 1= \/TT Tyriton 17 V14 30 Do)z 12

rfer+ %]
X T
[ (1y 4721 =1 70, Sy 1-90)) ot
T 2 1— - 1Yt—1—Yt
di+ 3 (ugl +7E 32 (G191 = 9)” — T )]
T [eo + T550]
X 2 62+T_TO ’
T 2 (Mt (=) ST o1 (b2ye-1—y1) ’
da + % (/%2 +73 Zt:To-H (P2yt—1 —ye)” — (ing 7 1+T§(T—tToT)O(:512—1)2 : >}

Finally, we obtain £(y|¢1, ¢2)p(d1, P2) by taking the sum of the above expression over the discrete support
of Tp.

Appendix B

The MCMC sampling scheme for obtaining draws from the posterior distribution of the parameters of
the break-point autoregressive model (2) is presented here. All the conditional distributions used are of

known functional form and, therefore, the parameters can be updated by using the Gibbs sampler. Note

15



that at steps 1-5 certain parameters have been integrated out of the conditional posterior distribution
of the parameter that is updated at that step. These marginalizations help to reduce the correlations

among the components of the produced Markov chain.

e Step 1: Update the time break T, from its conditional distribution p (Ty | y, @1, ¢2), which is a

mass function proportional to

I [01 + %] T [CQ + T;TO} «
V1+Tori(¢1 — 12/ 1+ 73(T = To)(¢2 — 1)?

: JORD Nt )\
1 b ) (,“'n +7i (01— 1) 2 (D1ye—1 —ue )
di4 =5 | 12, +72 Y (d1ye—1—ye)” — x
1 2712 Heyy 1 ;( 1Yt-1 = Yt) 1+T0712(¢1 —1)2
, . 2y 7 (c2t+752)
ot — | 2 472 i (aye—1—ye)” — (“72 72 (02 = 1) 2oy (2901 — yt)>
272 (He T2 27t=1 It 1+ (T —To) 13 (¢p2 — 1)?

t=To+1

e Step 2: Update parameter +; from its conditional posterior distribution p (1 |y, To, ¢1), which is
a non-central Student-t distribution with 2¢; + Ty degrees of freedom, non-centrality parameter

fg, + TE(d1 = 1) 000 (dr1ye—1 — i)
1+ 78(¢1 — 1)2Tp

and scale parameter
1

(2¢1 + To)(1 + 77 (¢ — 1)2Tp

2
it (s + 72 (61 =D EE, (G191 —90))
2724 2 2 ) — =

Tidi s, + T ;:1 (P191-1 — yr) T Tor2(or — 172

)><

e Step 3: Update parameter 7, from its conditional posterior distribution p (v2 | y, To, ¢2), which is

a non-central Student-t distribution with 2co +T — T}y degrees of freedom, non-centrality parameter

[y, + 75 (P2 — 1) Z?:TO+1(¢2%—1 —Yt)
14+ 73(¢2 — 1)X(T = Tp)

and scale parameter

1
(23 + T —To)(1+ 72(¢2 — 12(T — To)) *
L 9 (/‘72 + 73 (p2 — 1) Z;‘F:TOJA (P2yt—1 — %))2

2rydy + 13, + 15 Y (Do — )’ -

S 1+ (T —To) 72(dy — 1)2

e Step 4: Update parameter o2 from its conditional posterior distribution p (a% |y, To, qﬁl) which is

an Inverted Gamma distribution with shape parameter

T
C1—|—§0
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and rate parameter

2
To 2 (/1“’71 + 712 ((,251 - ].) Zle (¢1yt—1 _ yt))

2 2
+ T -1 -
Hyy T 71 ;:1 (P1yt—1 — Y1) 1+ Tor2 (o1 — 1)2

dy +

1
272

Step 5: Update parameter o3 from its conditional posterior distributions p (a% |y, To, (bg) which is
an Inverted Gamma distribution with shape parameter

T-T,
2

c2 +
and rate parameter

2
d 2 (:“72 + 7—22 (2 —1) Z?:TO+1 <¢2yt71 - yt))

1
dy+ 5= | 12, + 75 (P2yt—1 — Y1)
273 | T2 2 tz%;rl 1+ (T —To) 73 (2 — 1)2

Step 6: Update ¢1 from its full conditional distribution, p (qﬁl |y, To, a%,’yl) which is a truncated

Normal distribution on the interval (¢1,1) with mean

S (e — 1) W1 —m1)
ZtTil(yt—l — )2

and variance

2
01

= .
Zti1 (yt—l - 71)2

Step 7: Update ¢o from its full conditional distribution, p ((;52 |y, To, 0'37’72) which is a truncated

Normal distribution on the interval (¢2,1) with mean

T
Zt:TO.H(yt —%2)(Yt—1 — 72)
T
Zt:Tg+1(yt—1 —72)?

and variance

2
02

T .
Zt:T0+1(yt—1 —72)?
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Table 1: Posterior model probabilities. Simulated data from model (2) [m4] using

v = 0.01, 72 = 0.02, ¢ = 0.90, ¢ = 0.95, 02 = 0.009, and o2 = 0.03.

Ty my ma ms my ms me my mg

200
200
200

50 0.3317 0.0381 0.1350 0.1141 0.2293 0.0183 0.0382 0.0953
100 0.7532 0.0403 0.0000 0.1915 0.0000 0.0151 0.0000 0.0000
150 0.4043 0.2899 0.0000 0.2814 0.0000 0.0243 0.0000 0.0000

300
300
300

75 0.7793 0.0522 0.0001 0.1601 0.0002 0.0081 0.0000 0.0001
150 0.4573 0.2205 0.0000 0.3124 0.0000 0.0098 0.0000 0.0000
225 0.5512 0.0962 0.0000 0.3489 0.0000 0.0037 0.0000 0.0000

500
500
500

125 0.4669 0.2135 0.0000 0.3106 0.0000 0.0089 0.0000 0.0000
250 0.6377 0.0584 0.0000 0.3009 0.0000 0.0029 0.0000 0.0000
375 0.6306 0.0135 0.0000 0.3556 0.0000 0.0003 0.0000 0.0000

200
200
200

50 0.2750 0.0466 0.1409 0.1557 0.2023 0.0236 0.0490 0.1070
100 0.6537 0.0491 0.0000 0.2761 0.0000 0.0211 0.0000 0.0000
150 0.3696 0.2939 0.0000 0.3067 0.0000 0.0298 0.0000 0.0000

300
300
300

75 0.6653 0.0741 0.0001 0.2481 0.0002 0.0121 0.0000 0.0001
150 0.3745 0.2397 0.0000 0.3732 0.0000 0.0126 0.0000 0.0000
225 0.5047 0.1001 0.0000 0.3904 0.0000 0.0049 0.0000 0.0000

500
500
500

125 0.3748 0.2524 0.0000 0.3607 0.0000 0.0121 0.0000 0.0000
250 0.5759 0.0709 0.0000 0.3492 0.0000 0.0040 0.0000 0.0000
375 0.6149 0.0146 0.0000 0.3701 0.0000 0.0004 0.0000 0.0000
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Table 2: Posterior model probabilities. Simulated data from model (7) [ms] using

v1 =0.01, v3 = 0.01, ¢; = ¢3 = 0.95, 62 = 0.009, and o2 = 0.03.

T TO mq mo ms my ms me my ms

200 50 0.1144 0.1710 0.1809 0.1441 0.1682 0.0074 0.0101 0.2039
200 100 0.2876 0.3685 0.0029 0.3163 0.0028 0.0184 0.0002 0.0033
200 150 0.0309 0.0334 0.2950 0.0277 0.2481 0.0017 0.0101 0.3532

300 75 0.1952 0.2551 0.1046 0.2139 0.1007 0.0034 0.0016 0.1255
300 150 0.2791 0.4105 0.0019 0.2990 0.0018 0.0054 0.0000 0.0023
300 225 0.3631 0.3294 0.0000 0.3028 0.0000 0.0047 0.0000 0.0000

500 125 0.2782 0.2853 0.0000 0.4337 0.0000 0.0028 0.0000 0.0000
500 250 0.4813 0.1670 0.0000 0.3496 0.0000 0.0022 0.0000 0.0000
500 375 0.2867 0.3917 0.0000 0.3178 0.0000 0.0039 0.0000 0.0000

200 50 0.1116 0.1738 0.1715 0.1426 0.1641 0.0115 0.0157 0.2093
200 100 0.2729 0.3761 0.0028 0.3127 0.0028 0.0290 0.0003 0.0035
200 150 0.0302 0.0353 0.2756 0.0289 0.2424 0.0027 0.0163 0.3686

300 75 0.1919 0.2610 0.0948 0.2192 0.0941 0.0054 0.0026 0.1311
300 150 0.2417 0.4302 0.0019 0.3132 0.0018 0.0088 0.0000 0.0024
300 225 0.3367 0.3466 0.0000 0.3090 0.0000 0.0076 0.0000 0.0000

500 125 0.2704 0.2911 0.0000 0.4338 0.0000 0.0046 0.0000 0.0000
500 250 0.4289 0.1795 0.0000 0.3879 0.0000 0.0037 0.0000 0.0000
500 375 0.2740 0.3975 0.0000 0.3223 0.0000 0.0062 0.0000 0.0000
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Table 3: Posterior model probabilities. Simulated data from model (9) [ms] using

v = 0.01, 72 = 0.03, ¢1 = ¢ = 0.95, 02 = 0.009, and o2 = 0.009.

T TO mq mo ms my ms me my ms

200 50 0.0013 0.0015 0.3319 0.0014 0.2897 0.0000 0.0111 0.3631
200 100 0.0013 0.0015 0.3352 0.0014 0.2934 0.0000 0.0113 0.3559
200 150 0.0013 0.0015 0.3454 0.0014 0.2936 0.0001 0.0120 0.3448

300 75 0.0011 0.0014 0.3400 0.0011 0.2824 0.0000 0.0023 0.3716
300 150 0.0011 0.0014 0.3493 0.0012 0.2884 0.0000 0.0025 0.3561
300 225 0.0012 0.0013 0.3456 0.0012 0.2921 0.0000 0.0027 0.3560

500 125 0.0243 0.0314 0.2843 0.0269 0.2164 0.0000 0.0001 0.4166
500 250 0.0236 0.0317 0.2879 0.0269 0.2220 0.0000 0.0001 0.4079
500 375 0.0251 0.0320 0.2918 0.0264 0.2218 0.0000 0.0001 0.4028

200 50 0.0013 0.0016 0.3242 0.0014 0.2919 0.0001 0.0169 0.3627
200 100 0.0013 0.0015 0.3246 0.0014 0.2942 0.0001 0.0173 0.3595
200 150 0.0013 0.0016 0.3342 0.0014 0.2935 0.0001 0.0182 0.3498

300 75 0.0011 0.0015 0.3208 0.0013 0.2774 0.0000 0.0038 0.3941
300 150 0.0011 0.0015 0.3327 0.0012 0.2799 0.0000 0.0041 0.3794
300 225 0.0012 0.0014 0.3254 0.0012 0.2870 0.0000 0.0044 0.3794

500 125 0.0241 0.0354 0.2520 0.0302 0.2009 0.0000 0.0002 0.4572
500 250 0.0240 0.0345 0.2523 0.0291 0.2024 0.0000 0.0002 0.4574
500 375 0.0246 0.0370 0.2596 0.0290 0.2045 0.0000 0.0002 0.4450
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Table 4: Posterior model probabilities. Simulated data from model (6) [m4] using

Y1 =72 = 0.01, ¢1 = 0.90, ¢po = 0.95, 02 = 0.009, and o2 = 0.03.

T TO mq mo ms my ms me my ms

200 50 0.3393 0.0370 0.1335 0.1121 0.2285 0.0183 0.0381 0.0930
200 100 0.7593 0.0388 0.0000 0.1867 0.0000 0.0151 0.0000 0.0000
200 150 0.4046 0.2891 0.0000 0.2818 0.0000 0.0245 0.0000 0.0000

300 75 0.7894 0.0498 0.0001 0.1524 0.0002 0.0081 0.0000 0.0001
300 150 0.4637 0.2170 0.0000 0.3093 0.0000 0.0100 0.0000 0.0000
300 225 0.5528 0.0949 0.0000 0.3486 0.0000 0.0037 0.0000 0.0000

500 125 0.4760 0.2105 0.0000 0.3043 0.0000 0.0092 0.0000 0.0000
500 250 0.6458 0.0563 0.0000 0.2949 0.0000 0.0030 0.0000 0.0000
500 375 0.6328 0.0130 0.0000 0.3538 0.0000 0.0003 0.0000 0.0000

200 50 0.2872 0.0437 0.1350 0.1530 0.2037 0.0238 0.0493 0.1044
200 100 0.6523 0.0503 0.0000 0.2766 0.0000 0.0209 0.0000 0.0000
200 150 0.3711 0.3001 0.0000 0.2991 0.0000 0.0297 0.0000 0.0000

300 75 0.6775 0.0683 0.0001 0.2417 0.0002 0.0121 0.0000 0.0001
300 150 0.3877 0.2449 0.0000 0.3544 0.0000 0.0130 0.0000 0.0000
300 225 0.5141 0.1042 0.0000 0.3771 0.0000 0.0047 0.0000 0.0000

500 125 0.3865 0.2364 0.0000 0.3646 0.0000 0.0125 0.0000 0.0000
500 250 0.5702 0.0673 0.0000 0.3584 0.0000 0.0040 0.0000 0.0000
500 375 0.6045 0.0140 0.0000 0.3811 0.0000 0.0004 0.0000 0.0000
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Table 5: Posterior model probabilities. Simulated data from model (8) [ms] using

v = 0.01, 72 = 0.03, ¢1 = 0.90, b3 = 0.95, 02 = 02 = 0.009.

T TO mq mo ms my ms me my ms

200 50 0.0014 0.0007 0.2616 0.0011 0.5038 0.0002 0.0434 0.1878
200 100 0.0013 0.0007 0.2575 0.0010 0.5157 0.0002 0.0407 0.1830
200 150 0.0012 0.0010 0.3379 0.0011 0.3829 0.0001 0.0136 0.2622

300 75 0.0011 0.0006 0.2542 0.0008 0.4976 0.0000 0.0149 0.2307
300 150 0.0011 0.0006 0.2645 0.0009 0.4706 0.0000 0.0062 0.2562
300 225 0.0011 0.0007 0.2507 0.0011 0.4719 0.0000 0.0050 0.2696

500 125 0.0010 0.0004 0.2587 0.0009 0.5358 0.0000 0.0049 0.1983
500 250 0.0010 0.0003 0.2455 0.0009 0.5904 0.0000 0.0029 0.1590
500 375 0.0012 0.0002 0.2229 0.0010 0.6703 0.0000 0.0012 0.1032

200 50 0.0013 0.0008 0.2730 0.0013 0.4534 0.0002 0.0564 0.2136
200 100 0.0013 0.0008 0.2694 0.0012 0.4642 0.0002 0.0538 0.2091
200 150 0.0012 0.0011 0.3499 0.0013 0.3393 0.0001 0.0171 0.2900

300 75 0.0010 0.0007 0.2713 0.0010 0.4371 0.0001 0.0208 0.2680
300 150 0.0010 0.0007 0.2780 0.0011 0.4151 0.0000 0.0085 0.2956
300 225 0.0010 0.0008 0.2655 0.0013 0.4160 0.0000 0.0065 0.3089

500 125 0.0010 0.0005 0.2489 0.0010 0.5227 0.0000 0.0065 0.2195
500 250 0.0010 0.0004 0.2374 0.0011 0.5828 0.0000 0.0038 0.1736
500 375 0.0012 0.0002 0.2150 0.0011 0.6745 0.0000 0.0014 0.1066
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Table 6: Posterior model probabilities. Simulated data from model (4) [mg] using

M=% =0,¢ = ¢ =1, 02 =0.009, and 03 = 0.03.

T TO mq mo ms my ms me my ms

200 50 0.0765 0.0514 0.1134 0.0264 0.0929 0.2286 0.3254 0.0853
200 100 0.3495 0.0734 0.0000 0.0459 0.0000 0.5312 0.0000 0.0000
200 150 0.1347 0.1765 0.0000 0.1099 0.0000 0.5790 0.0000 0.0000

300 75 0.2207 0.0527 0.0001 0.0156 0.0000 0.7104 0.0004 0.0001
300 150 0.0768 0.1262 0.0000 0.0417 0.0000 0.7553 0.0000 0.0000
300 225 0.0330 0.1570 0.0000 0.0497 0.0000 0.7603 0.0000 0.0000

500 125 0.0413 0.0535 0.0000 0.0068 0.0000 0.8983 0.0000 0.0000
500 250 0.0125 0.0602 0.0000 0.0088 0.0000 0.9185 0.0000 0.0000
500 375 0.0031 0.0751 0.0000 0.0116 0.0000 0.9102 0.0000 0.0000

200 50 0.0819 0.0432 0.0968 0.0373 0.0860 0.2405 0.3424 0.0719
200 100 0.3104 0.0776 0.0000 0.0966 0.0000 0.5154 0.0000 0.0000
200 150 0.1263 0.1584 0.0000 0.0967 0.0000 0.6186 0.0000 0.0000

300 75 0.0676 0.0502 0.0000 0.0426 0.0000 0.8391 0.0005 0.0000
300 150 0.0331 0.0967 0.0000 0.0277 0.0000 0.8426 0.0000 0.0000
300 225 0.0239 0.1100 0.0000 0.0306 0.0000 0.8354 0.0000 0.0000

500 125 0.0136 0.0177 0.0000 0.0078 0.0000 0.9608 0.0000 0.0000
500 250 0.0054 0.0599 0.0000 0.0057 0.0000 0.9290 0.0000 0.0000
500 375 0.0027 0.0361 0.0000 0.0040 0.0000 0.9573 0.0000 0.0000
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Table 7: Posterior model probabilities. Simulated data from model (5) [m7] using

11 =7=0,¢1=¢=1,0f =03 =0.03.

T TO mq mo ms my ms me my ms

200 50 0.0011 0.0011 0.1943 0.0009 0.1634 0.0038 0.4867 0.1486
200 100 0.0010 0.0011 0.1966 0.0009 0.1622 0.0038 0.4831 0.1514
200 150 0.0011 0.0011 0.1855 0.0009 0.1655 0.0038 0.4874 0.1547

300 75 0.0004 0.0005 0.1356 0.0003 0.0863 0.0037 0.6684 0.1047
300 150 0.0005 0.0005 0.1318 0.0002 0.0895 0.0037 0.6681 0.1056
300 225 0.0005 0.0006 0.1345 0.0002 0.0888 0.0037 0.6687 0.1030

500 125 0.0001 0.0003 0.0476 0.0001 0.0235 0.0043 0.8684 0.0558
500 250 0.0001 0.0003 0.0531 0.0001 0.0252 0.0043 0.8647 0.0522
500 375 0.0001 0.0003 0.0510 0.0001 0.0242 0.0043 0.8684 0.0516

200 50 0.0011 0.0010 0.2097 0.0008 0.1973 0.0036 0.4644 0.1221
200 100 0.0011 0.0009 0.2097 0.0008 0.1948 0.0036 0.4631 0.1260
200 150 0.0012 0.0009 0.2018 0.0008 0.1988 0.0036 0.4651 0.1278

300 75 0.0003 0.0004 0.0721 0.0002 0.0441 0.0045 0.8111 0.0674
300 150 0.0002 0.0003 0.0691 0.0002 0.0442 0.0045 0.8132 0.0682
300 225 0.0003 0.0004 0.0718 0.0002 0.0450 0.0045 0.8123 0.0655

500 125 0.0000 0.0000 0.0186 0.0000 0.0071 0.0047 0.9507 0.0188
500 250 0.0000 0.0001 0.0218 0.0000 0.0081 0.0047 0.9463 0.0190
500 375 0.0000 0.0001 0.0204 0.0000 0.0076 0.0047 0.9490 0.0181
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Table 8: Posterior probabilities of the AR change-point model (2) for different values of ¢; and /o,

compared to the broken-variance Random walk model (4). Simulated data from model (2) using

v = 0.01, 72 = 0.02, ¢ = 0.90, ¢p5 = 0.95, 02 = 0.009, and o2 = 0.03.

T =200 T = 300 T = 500
by by Ty=50 Tp=100 Tp =150 Tp =75 Tp =150 Tp =225 Ty=125 Tp =250 1Tp =375
0.5 0.6 0.7968 0.9137 0.7593 0.9340 0.8621 0.9493 0.8547 0.9568 0.9956
0.5 0.7 0.8291 0.9343 0.8131 0.9474 0.8845 0.9629 0.8808 0.9703 0.9969
0.5 0.8 0.8830 0.9563 0.8500 0.9640 0.9183 0.9703 0.9166 0.9772 0.9979
0.5 09 0.9190 0.9685 0.8674 0.9775 0.9450 0.9829 0.9464 0.9882 0.9989
0.6 0.6 0.8096 0.9252 0.7955 0.9420 0.8794 0.9548 0.8748 0.9694 0.9965
0.6 0.7 0.8574 0.9430 0.8403 0.9529 0.8971 0.9651 0.8973 0.9735 0.9973
0.6 0.8 0.8986 0.9615 0.8685 0.9699 0.9270 0.9758 0.9249 0.9826 0.9982
0.6 0.9 0.9306 0.9734 0.8893 0.9814 0.9516 0.9861 0.9537 0.9893 0.9990
0.7 0.6 0.8404 0.9330 0.8346 0.9521 0.8962 0.9621 0.8963 0.9726 0.9969
0.7 0.7 08771 0.9485 0.8617 0.9636 0.9153 0.9737 0.9142 0.9793 0.9978
0.7 0.8 0.9093 0.9667 0.8919 0.9738 0.9372 0.9797 0.9334 0.9838 0.9984
0.7 09 0.9389 0.9762 0.9066 0.9843 0.9600 0.9885 0.9618 0.9917 0.9992
0.8 0.6 0.8025 0.9169 0.8609 0.9457 0.9215 0.9729 0.9225 0.9770 0.9976
0.8 0.7 0.8434 0.9356 0.8885 0.9586 0.9351 0.9764 0.9332 0.9824 0.9982
0.8 0.8 0.8874 0.9558 0.9137 0.9706 0.9512 0.9842 0.9497 0.9877 0.9987
0.8 0.9 0.9224 0.9689 0.9259 0.9826 0.9675 0.9908 0.9686 0.9931 0.9993
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Table 9: Posterior probabilities of the broken-variance Random walk model (4) for different values
of ¢; and ¢2, compared to the AR change-point model (2). Simulated data from model (4) using
=9 =0, ¢ = ¢ =1, 07 =0.009, and o3 = 0.03.

T =200 T = 300 T = 500

G by To=50 To=100 To=150 Tp=75 To=150 To=225 T,=125 Tp=250 Ty =375

0.6 0.6 0.9878 0.9915 0.9887 0.9969 0.9976 0.9986 0.9995 0.9997 0.9996
0.6 0.7 0.9817 0.9870 0.9836 0.9960 0.9964 0.9982 0.9988 0.9998 0.9999
0.6 0.8 0.9720 0.9783 0.9739 0.9938 0.9955 0.9971 0.9981 0.9997 0.9998
0.6 09 0.9324 0.9216 0.9453 0.9880 0.9899 0.9934 0.9965 0.9991 0.9995

0.7 0.6 0.9809 0.9854 0.9858 0.9968 0.9975 0.9981 0.9981 0.9998 0.9999
0.7 0.7 09729 0.9784 0.9770 0.9933 0.9955 0.9968 0.9984 0.9993 0.9998
0.7 0.8 0.9576 0.9628 0.9640 0.9911 0.9938 0.9950 0.9966 0.9990 0.9997
0.7 0.9 0.9029 0.8777 0.9257 0.9771 0.9847 0.9922 0.9933 0.9983 0.9992

0.8 0.6 09717 0.9738 0.9817 0.9896 0.9952 0.9972 0.9976 0.9993 0.9995
0.8 0.7 0.9582 0.9596 0.9697 0.9881 0.9936 0.9962 0.9976 0.9991 0.9996
0.8 0.8 0.9350 0.9323 0.9464 0.9816 0.9918 0.9934 0.9976 0.9986 0.9994
0.8 09 0.8533 0.7879 0.9076 0.9589 0.9781 0.9867 0.9913 0.9980 0.9991

0.9 0.6 09441 0.9339 0.9609 0.9812 0.9894 0.9923 0.9966 0.9979 0.9993
0.9 0.7 0.9258 0.9132 0.9426 0.9795 0.9902 0.9920 0.9961 0.9986 0.9993
0.9 0.8 0.8885 0.8609 0.9137 0.9672 0.9843 0.9882 0.9941 0.9976 0.9987
0.9 09 0.7491 0.6203 0.8339 0.9257 0.9581 0.9715 0.9869 0.9954 0.9980
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Table 10a: Interest Rates. Posterior model probabilities.

mq mo ms my ms me mr ms
One-month  0.1722 0.4606 0.0000 0.2211 0.0000 0.1461 0.0000 0.0000
One-year  0.2626 0.3086 0.0000 0.2132 0.0000 0.2156 0.0000 0.0000

Table 10b: Interest Rates. Posterior means and standard errors (in parenthesis) of the parameters

of the most probable model ms : ys = v (1 — ¢) + dpys—1 + 05,6, (common ~ -common ¢)

To (mode) Tp (mean) y o2 o3 o)
One-month 1982:09 1982:11 7.209 0.953 0.271 0.953
(4.3)  (0.881) (0.121) (0.061) (0.023)

One-year Ty (mode) Ty (mean) ¥ o? o2 )
1982:11 1983:09 7.669  0.681 0.149  0.961
(11.5) (0.915) (0.082) (0.029) (0.024)

Table 11a: Real Exchange Rates. Posterior model probabilities.

my ma ms my ms me mry ms

United Kingdom 0.0000 0.0000 0.0754 0.0000 0.3860 0.0000 0.4308 0.1078
Denmark 0.0244 0.0609 0.0151 0.0260 0.4272 0.3321 0.0990 0.0153
France 0.0090 0.0180 0.0356 0.0084 0.5640 0.0996 0.2265 0.0389

Netherlands 0.0020 0.0030 0.0337 0.0019 0.7033 0.0161 0.2030 0.0369

Table 11b: Real Exchange Rates. Posterior means and standard errors (in parenthesis) of the

parameters of the most probable model ms : y; = (y1 +6;) (1 — ¢s,) + b5, 411 + o€ (common o°)

Ty (mode) Tp (mean) " Yo o? é1 ¢2

United Kingdom ~ 1985:01  1985:03  0.459  0.357  0.0002 0984  0.879
(28.9)  (0.029) (0.006) (0.00002) (0.018)  (0.033)

Denmark 1985:01  1985:02  7.384 5535  0.035 0.991  0.912
(8.3) (0.548) (0.073)  (0.003)  (0.007)  (0.018)

France 1985:01  1985:01  5.718  4.585  0.021 0.991  0.907
(16.8)  (0.458) (0.096)  (0.002)  (0.014)  (0.021)

Netherlands 1985:01  1985:02  3.239  2.603  0.008 0.992  0.905

(11.9)  (0.256) (0.036)  (0.0006)  (0.0097) (0.021)
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Figure 1: Histograms of the posterior distributions of the break-point T, for simulated data of size

T = {200, 300,500} from the general model m; with true values To = {T'/4,T/2,3T/4}.
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Figure 2: Exact marginal posterior distributions of the break-point 7y for simulated data of size
T = {200,300,500} from the random walk model with broken variance, mg, with true value Ty =

(T/4,T/2,3T/4} .
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Figure 3: Real interest rates series with posterior distribution of the break date and ZA test statistic.
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Figure 4: Real exchange rates series with posterior distribution of the break date and ZA test statistic.
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