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Abstract
Tests of ARCH are a routine diagnostic in empirical econometric

and financial analysis. However, it is well known that misspecification
of the conditional mean may lead to spurious rejections of the null
hypothesis of no ARCH. Nonlinearity is a prime example of this phe-
nomenon. There is little work on the extent of the effect of neglected
nonlinearity on the properties of ARCH tests. This paper provides
some such evidence and also new ARCH testing procedures that are
robust to the presence of neglected nonlinearity. Monte Carlo evidence
shows that the problem is serious and that the new methods alleviate
this problem to a very large extent.
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1 Introduction

Since the introduction of the autoregressive conditional heteroscedasticity

(ARCH) model by Engle (1982) testing for the presence of ARCH has be-

come a routine diagnostic in the econometric analysis of macroeconomic and

especially financial time series. A large variety of different tests have been

developed. The most usual is based on an autoregression of the squared

residual on a constant and its p lags whereby the joint significance of all the

lags included is tested.

As observed by a number of authors, tests for ARCH may reject the null

hypothesis of no ARCH if other misspecifications of the conditional mean

of the model are present. Notable cases include work by Bera, Higgins,

and Lee (1992), Bera and Higgins (1997) and Lumsdaine and Ng (1999).

Lumsdaine and Ng (1999) suggest procedures based on recursive residuals

that may alleviate misspecifications in the conditional mean and thereby

reduce the potential for falsely rejecting the null of no ARCH when other

forms of misspecification are present in the model. Bera and Higgins (1997)

observe that bilinear and ARCH models have a similar unconditional moment

structure raising the possibility that bilinear and ARCH processes may be

confused in practical applications.

The current paper follows on from this literature. In particular we sug-

gest that other forms of nonlinearity in the conditional mean may be causing

false rejection in testing for ARCH. Examples include nonlinearities of the

smooth transition autoregressive (STAR) form or the self-exciting thresh-

old autoregressive (SETAR) form. This observation in itself is not novel.

However, there is little work that investigates the interplay of the degree of

nonlinearity with the degree of rejection of the no-ARCH null hypothesis.

We carry out such investigation using Monte Carlo experiments.

Using this observation as a starting point we suggest new testing proce-

dures that enable valid detection of ARCH even in the presence of nonlinear-

ity. The approach we take is based on neural networks. Neural networks are
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a flexible form of nonlinear model that are able to approximate nonlinearities

of unknown form (up to the choice of variables that enter the nonlinear con-

ditional mean function) arbitrarily well and thereby produce well behaved

residuals under the null of no ARCH on which standard ARCH tests may

then be carried out.

However, obtaining the residuals of what are in effect neural network

models is not straightforward. Estimation using a standard neural network

specification based on the logistic function involves nonlinear least squares.

There are additional identification problems if the true DGP happens to

be linear. We avoid the need for complicated estimation techniques by us-

ing two alternative strategies that also resolve potential identification issues.

The first uses an alternative to the logistic neural network model, the radial

basis function (RBF) artificial neural network model. This type of neural

network has been used in the econometric literature to test for neglected

nonlinearity (see Blake and Kapetanios (2000a)). Estimation of such models

can be carried out using ordinary least squares. The second strategy uses

polynomial approximations of the logistic neural network specification fol-

lowing the work of Teräsvirta, Lin, and Granger (1993). Again, this leads to

a model that can be estimated using ordinary least squares.

The plan of the paper is as follows. Section 2 gives more details about the

nature of the problem we consider by drawing on previous work in the area.

Section 3 discusses the new testing procedures we suggest. Section 4 provides

a Monte Carlo investigation of the new and existing testing procedures that

reveals the extent of the problem and the ability of the new tests to deal with

it. Although this is at a cost of reduced power for the detection of ARCH

when it actually is present, it is offset by the enormous gains in producing

properly sized tests. Section 5 concludes.
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2 Testing for ARCH under conditional mean

nonlinearity

We concentrate on the following univariate model for the series yt, t =

1, . . . , T :

yt = f(x1,t, . . . , xp,t; α) + εt (1)

where f(·; ·) is an unknown function and εt has mean zero, variance con-

ditional on a Borel measurable σ-field with respect to the exogenous (or

predetermined at time t) variables x1,t, x2,t . . . , xp,t denoted by It−1, given

by:

ht = β0 +

q∑

j=1

βjε
2
t−j (2)

and unconditional variance given by σ2. The variables xj,t are assumed to

be stationary and ergodic with finite second moments. This setup encom-

passes both linear and nonlinear autoregressive stationary models. The null

hypothesis of interest is:

H0 : β1 = . . . = βq = 0. (3)

If one assumes linearity then the conditional mean model becomes:

yt = α0 +

p∑

j=1

αjxj,t + εt. (4)

The estimated OLS residual is given by:

ε̂t = εt + f(x1,t, . . . , xp,t;α)− α̂0 −
p∑

j=1

α̂jxj,t = χt + εt (5)

with the squared residual given by:

ε2t + (f(x1,t, . . . , xp,t;α)− α̂0 −
p∑

j=1

α̂jxj,t)
2

+ 2εt(f(x1,t, . . . , xp,t;α)− α̂0 −
p∑

j=1

α̂jxp,t) = ε2t + ψt. (6)
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The expectation of the above conditional on It−1 is clearly not constant even

if the null hypothesis holds. Of course, this analysis holds for any misspeci-

fied conditional mean function and the root of the false rejection in ARCH

tests, under the null hypothesis, lies in the presence of serial correlation in ψt

as Lumsdaine and Ng (1999) have observed. Our conjecture is that nonlin-

earity in χt may induce large probabilities of rejection of the null hypothesis

of ARCH tests, under the null hypothesis, compared with linear misspecifi-

cation arising by, say, the omission of an extra lag for the conditional mean

model. Clearly, this probability will depend on many things chief among

which is the actual values of the parameters of the model and the nonlinear-

ity considered. Therefore, any rigorous theoretical demonstration is bound

to be of limited use. A heuristic argument for our conjecture may be given

as follows: Assume two cases of conditional mean misspecification. In the

first case the conditional mean is assumed to be constant when the true con-

ditional mean model is an AR(1) model. In the second case the assumed

model is an AR(1) model but the true model is a SETAR model of the form:

yt = γ0 + γ1I(yt−1 < r)yt−1 + γ2I(yt−1 ≥ r)yt−1 + εt (7)

where I(·) is the indicator function. In the first case:

χt = (α̂0 − α0) + α1yt−1. (8)

In the second case:

χt = (γ̂0 − γ0) + γ̃1I(yt−1 < r)yt−1 + γ̃2I(yt−1 ≥ r)yt−1

= (γ̂0 − γ0)γt−1yt−1 (9)

where γ̃i = α̂1 − γi, i = 1, 2 and:

γt−1 = γ̃1I(yt−1 < r) + γ̃2I(yt−1 ≥ r). (10)

In the first case variation in the conditional variance of the residual, under

the null of no ARCH, comes from yt−1 only. In the second case both γt−1 and

5



yt−1 contribute to the variation. This example is intended to illustrate the

possibility that neglected nonlinearity may induce complex forms of variation

in the conditional variance and therefore lead to acute problems of overre-

jection for standard ARCH tests. We indeed find this to be the case with a

variety of nonlinear models in Section 4. It is then reasonable to suggest that

methods for accounting for general forms of nonlinearity prior to applying

ARCH tests may be useful. The next section suggests such methods.

3 Nonlinearity robust ARCH tests

Following on from the previous section it is clear that nonlinearity has the

potential to introduce problems in the detection of ARCH for dynamic mod-

els. We therefore require a test for ARCH that is robust to a large class of

nonlinearities. Artificial neural network models provide an ideal framework

for this analysis. This is due to the useful property that they can approx-

imate continuous functions arbitrarily well. More specifically, a continuous

function f(z) can be arbitrarily well approximated in the supremum norm

by
∑q

i=1 big(z
′
i) for finite q and z′i = d0,i + d′iz if either (i) g(·) is sigmoidal,

i.e. g(·) is non-decreasing with limz→−∞ g(z) = 0 and limz→∞ g(z) = 1 or (ii)

g(·) has non-zero Lebesgue measure expectation and is Lp bounded for some

p ≥ 1. For more details see Hornik, Stinchcombe, and White (1989), Stinch-

combe and White (1989) and Cybenko (1989).1 The universal approximator

properties of neural networks have been put to effect in the econometrics

literature by, among others, Lee, White, and Granger (1993) and Blake and

Kapetanios (2000a) to construct tests for neglected nonlinearity in stationary

models.2

In the present context we wish to robustify ARCH tests by fitting a neural

1See Campbell, Lo, and MacKinlay (1997) for an excellant introduction to artificial
neural networks, which covers the RBF networks that we use below. Bishop (1995) gives
a thorough and very readable account.

2See also Peguin-Feissolle (1999) and Blake and Kapetanios (2000b) for general ARCH
testing and Blake and Kapetanios (2003) for an application to unit root testing.
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network model to (1), obtaining the residuals and carrying out a standard

ARCH test. By the universal approximation property of the neural networks

for continuous functions discussed above we know that the model (1) may

be written as:

yt = a0 + a′1xt +

q∑

i=1

big(d0,i + d′ixt) + εt (11)

where xt = (x1,t, . . . , xp,t)
′ with g(·) now a known function. This specification

can then be estimated consistently and the residuals then tested for ARCH

using standard tests since ε̂t from the estimation of (11) will converge in

probability to εt. However estimation of (11), although feasible, may not be

easy as it requires nonlinear least squares for the function used for g(·). For
testing, however, this may not be necessary. There are neural network spec-

ifications or approximations of neural networks where such iterative schemes

are not needed for estimation. We consider two.

The first is a radial basis function (RBF) artificial neural network, which

is often referred to as a linear network. These are simple to define. Let

there be q centers, denoted cj, and a radius vector τ . Utilise a function

that is monotonically decreasing about cj. A natural choice is the Gaussian

function, and the appropriate RBF is:

g([c′j τ ′]′, xt) = e−‖(xt−cj)/τ‖2

(12)

where the division notation denotes element by element division. By the

monotonicity property, each RBF has maximum activation (of unity) when

the input vector coincides with the jth center independent of τ . Conversely,

if the input vector is far enough away from the center (controlled by τ) the

activation is zero.3 The linearity of this network derives from the property

that if the centers (cj) and radii (τ) are determined by some procedure then

3Other functional forms (such as the multiquadratic) have the same property and can
be used instead, although in experiments Blake and Kapetanios (2000a) found very little
difference in performance between various functions for the related problem of nonlinearity
testing.
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the RBFs can be straightforwardly used as additional regressors. The trick

is to use data-based procedures to determine both. It is convenient to use

a simple function of the data, such as a multiple of the maximum change

from period t to period t + 1 for all t of each input as the radius for that

input. In the previous related work cited above, we used the alternative

of a unit variance for the normalised data and found that it worked well.

This defines τ . Following Orr (1995), we then allow there to be T potential

centers (the cj) for the RBFs which is each of the vector of observations.

The RBFs thus obtained are ranked according to their ability to reduce the

unexplained variance of (11) when entered individually. Then we successively

add the sorted RBFs into (11) until we minimize an information criterion,

chosen to be AIC. This procedure is known as forward selection. The pair of

data-based procedures (normalisation to set the radii and center choice from

the data points by forward selection) yield a linear estimation problem for b

as all the terms in (12) are defined by the process.

A second approach that is amenable to linear estimation is motivated by

a test of neglected nonlinearity that approximates the logistic neural network

developed by Teräsvirta, Lin, and Granger (1993). The logistic network uses:

g(d, xt) = 1/(1 + e−d′xt) (13)

for the activation function. As remarked above, to estimate the complete

nonlinear model (all the parameters a, b and d) is costly. Teräsvirta, Lin,

and Granger (1993) suggest a third-order Taylor expansion of the logistic

neural network is used instead. This choice of expansion is arbitrary, and can

clearly be replaced by the n-th order Taylor expansion of the logistic neural

network. This turns out to be an n-th order polynomial in (x1,t + . . .+ xp,t),

where the operational order of the Taylor expansion needs to be chosen.

In common with our treatment of the RBF network we use an information

criterion, again AIC. This is chosen from expansions of order two, three and

four where for simplicity for the third and fourth order Taylor expansions

only cross products of (powers of) up to two variables are considered.
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Note that there is a problem here that the model we estimate is not

necessarily appropriate for a linear model. Indeed, for a linear model the

additional terms should be absent. This identification problem was solve

by Lee, White, and Granger (1993) by adding a fixed number randomly

generated logistic functions as regressors. Our two procedures solve it by the

use of the information criterion, which is restricted to pick a minimum of one

additional regressor. Our test for ARCH, of course, uses the residuals from

this model.

After fitting the (approximate) neural network model, the residuals ob-

tained can be tested using any residual-based ARCH test. The asymptotic

distribution of the usual LM ARCH test is still χ2
q under the null hypothe-

sis and assuming no nonlinearity. Further refinement of the new tests may

be contemplated if the techniques suggested by Lumsdaine and Ng (1999)

are combined with the neural network specifications. In particular if, as sug-

gested by Lumsdaine and Ng (1999), (functions of) lags of recursive residuals

from the original linear specification in (1), help in picking up misspecifica-

tions in the conditional mean then augmenting the variable set xt by (func-

tions of) this lagged recursive residual may further improve the performance

of the tests under the null hypothesis. Additionally, OLS residuals may be

used in place of recursive residuals. In small samples these will introduce

biases since they depend on the whole of the sample via the parameter es-

timates but asymptotically these parameter estimates will converge to some

limit and the lagged OLS residuals will not cause any further asymptotic

biases.

4 Monte Carlo experiments

In this section we carry out Monte Carlo experiments to illustrate the problem

arising out of pronounced nonlinearity in the context of ARCH testing and

the extent to which the new tests alleviate the problem. The issue occurs
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under the null hypothesis and therefore the size performance of the existing

tests is under scrutiny. Nevertheless, it is important that the new methods

do not reduce the power of the ARCH tests unduly. Therefore, there is the

usual tradeoff between power and size which needs to be explored.

We concentrate on nonlinear autoregressive models and add a linear

AR(1) model given by yt = αyt−1 + εt for comparison. We consider three

different classes of nonlinear models under the null hypothesis. These are

SETAR, STAR and bilinear models. The models are given by:

yt = γ1I(yt−1 < r)yt−1 + γ2I(yt−1 ≥ r)yt−1 + εt (14)

yt = δ1yt−1 + δ2(1− e−δ3y2
t−1)yt−1 + εt (15)

and:

yt = ζεt−1yt−1 + εt (16)

Under the null hypothesis of no ARCH both the conditional and uncondi-

tional variance of εt is equal to σ2 which is set to 1 for all size experiments.

We consider one DGP from the AR class, four DGPs from SETAR models,

four DGPs from STAR models and three DGPs from bilinear models. The

coefficients for each class are:

• AR Model

– Experiment 1: α = 0·5.

• SETAR Models

– Experiment 2: γ1 = 0·1, γ2 = 0·5, r = 0.

– Experiment 3: γ1 = −0·1, γ2 = 0·5, r = 0.

– Experiment 4: γ1 = −0·3, γ2 = 0·9, r = 0.

– Experiment 5: γ1 = −0·8, γ2 = 0·9, r = 0.

• STAR Models
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– Experiment 6: δ1 = 0·5, δ2 = −0·5, δ3 = 0·05.
– Experiment 7: δ1 = 0·5, δ2 = −0·5, δ3 = 0·5.
– Experiment 8: δ1 = 0·9, δ2 = −1·4, δ3 = 0·05.
– Experiment 9: δ1 = 0·9, δ2 = −1·4, δ3 = 0·5.

• Bilinear Models

– Experiment 10: ζ = 0·1.
– Experiment 11: ζ = 0·3.
– Experiment 12: ζ = 0·7.

For experiments relating to power we consider the following ARCH model.

The AR(1) model above is used for the conditional mean and an ARCH(1)

model of ht = β0 + β1ε
2
t for the conditional variance. For each of three

experiments the parameters are:

• ARCH Models

– Experiment 13: α = 0·5, β0 = 0·1, β1 = 0·1.
– Experiment 14: α = 0·5, β0 = 0·1, β1 = 0·5.
– Experiment 15: α = 0·5, β0 = 0·1, β1 = 0·9.

All errors are obtained from the GAUSS normal pseudo-random number gen-

erator. For every sample, initial conditions are set to zero and 20 observa-

tions are dropped to minimise dependence on the choice of initial conditions.

Throughout the lag order, p, is set to 1. We consider samples of 100 and 200

observations.

We consider two ARCH tests: The first is the usual LM-test (and denoted

LM in the tables) and the second is the ARCH test developed by Peguin-

Feissolle (1999) which is a residual-based test using neural network ideas

derived from the work of Lee, White, and Granger (1993) (denoted NN in
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the tables). We choose this test because we wish to illustrate that radically

different ARCH tests suffer from the problem of overrejection under the null

to a similar extent and can benefit from the approach we suggest. We have

two possible nonlinear modelling choices. The subscript tlg denotes the use

of the Taylor expansion method and the subscript rbf denotes use of the

RBF neural network. Also we consider two extended ARCH tests. The

superscript r denotes augmentation of the variable set by the lag of the

recursive residual and its square, as suggested by Lumsdaine and Ng (1999),

whereas the superscript o denotes similar augmentation of the variable set

only using the lag of the OLS residual. Results in the form of rejection

probabilities are presented in Tables 1–4. We do not report size corrected

powers because it is not clear what are the proper empirical critical values to

use to correct the rejection probabilities under the alternative. As we will see

the rejection probabilities under the null of no ARCH vary greatly depending

on the nonlinear model used.

The results make very interesting reading. The performance of the LM

andNN tests depend markedly on the nonlinear model used. Rejection prob-

abilities under the null reach level of 90% for the bilinear model, which was

expected given the work of Bera and Higgins (1997), but even for SETAR and

STAR models pronounced nonlinearity, measured by the difference between

γ1 and γ2 for SETAR models and the magnitude of δ2 for STAR models, in-

duces rejection probabilities of up to 50%. Clearly nonlinearity in the mean

and ARCH are difficult to distinguish using standard tests. The recursive

residual tests of Lumsdaine and Ng (1999) are considerable improvements on

the standard tests. Rejection probabilites fall substantially but still remain

quite high for very nonlinear conditional mean processes. For example for

the most extreme SETAR model, experiment 5, and 200 observations the

rejection probability for the LM test is 26%.

Moving on to the new testing procedures we observe a dramatic improve-

ment. Rejection probabilities are very close to 5%. None of the SETAR or
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STAR nonlinear models can induce even minor departures from the correct

siginificance level. Bilinear models still produce overrejections. However this

is to be expected: The variables involved in the bilinear model include the

lagged error. This is not included in the set of variables used in the construc-

tion of the neural network. Therefore, the nonlinearity cannot be completely

captured. However, even for these models noticable and worthwhile improve-

ment is observed. In particular adding recursive or OLS residuals produces

satisfactory rejection probabilities apart from the final Bilinear model, ex-

periment 11, where the nonlinearity is very pronounced.

When we consider the rejection probabilities under the alternative we see

that the new procedures do not exhibit a very marked reduction in these

probabilities, as desired. In particular we observe a reduction of about 20%

for tests that do not include recursive or OLS residuals for samples of 100

observations and only a reduction of about 10% for samples of 200 observa-

tions. In some cases, as in Table 4, there is almost no loss of power for the

NNtlg and NNrbf tests. The results are indeed very encouraging and clearly

suggest that the new methods are useful.

5 Conclusions

It is well known that tests for ARCH are powerful against a wider variety of

misspecifications. In particular it is well known from the work of Lumsdaine

and Ng (1999) and others that misspecification in the conditional mean may

lead to spurious rejection of the no ARCH hypothesis. However, apart from

the general heuristic methods of Lumsdaine and Ng (1999) there is little in

terms of methods to avoid this problem.

This paper tries to suggest a solution in the case where the conditional

mean function suffers from neglected nonlinearity of unknown form. We

suggest the use of neural networks to approximate to an arbitrary level of

accuracy the unknown nonlinearity and having removed it, test the residuals
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for ARCH using standard tests. Monte Carlo evidence has suggested that

the new methods are able to remove the large distortions introduced by

nonlinearity at a rather modest cost in terms of power loss.
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Table 1: Monte Carlo Results for T = 100 and ARCH LM tests

LM LM r LMtlg LMrbf LM r
tlg LM r

rbf LMo
tlg LMo

rbf

Size
AR 1 0.050 0.037 0.029 0.027 0.031 0.034 0.027 0.024
SETAR 2 0.043 0.026 0.027 0.026 0.023 0.027 0.029 0.025

3 0.049 0.039 0.031 0.035 0.024 0.027 0.031 0.029
4 0.144 0.081 0.029 0.028 0.023 0.031 0.031 0.027
5 0.280 0.130 0.023 0.026 0.019 0.023 0.032 0.027

STAR 6 0.048 0.040 0.037 0.036 0.027 0.031 0.026 0.031
7 0.050 0.037 0.044 0.041 0.042 0.042 0.031 0.041
8 0.137 0.088 0.042 0.046 0.026 0.034 0.036 0.027
9 0.097 0.077 0.031 0.033 0.022 0.034 0.024 0.026

Bilin 10 0.051 0.030 0.026 0.023 0.021 0.026 0.023 0.021
11 0.458 0.127 0.046 0.046 0.037 0.033 0.018 0.032
12 0.905 0.773 0.471 0.410 0.194 0.299 0.099 0.307

Power
ARCH 13 0.112 0.085 0.074 0.074 0.036 0.044 0.039 0.057

14 0.701 0.567 0.491 0.464 0.246 0.314 0.236 0.333
15 0.887 0.764 0.643 0.627 0.407 0.488 0.324 0.524
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Table 2: Monte Carlo Results for T = 200 and ARCH LM tests

LM LM r LMtlg LMrbf LM r
tlg LM r

rbf LMo
tlg LMo

rbf

Size
AR 1 0.047 0.037 0.037 0.040 0.027 0.032 0.033 0.033
SETAR 2 0.055 0.047 0.044 0.041 0.042 0.045 0.046 0.043

3 0.064 0.039 0.042 0.040 0.033 0.041 0.034 0.031
4 0.258 0.124 0.036 0.037 0.035 0.038 0.047 0.041
5 0.487 0.266 0.044 0.045 0.042 0.039 0.042 0.039

STAR 6 0.044 0.039 0.036 0.036 0.039 0.047 0.034 0.035
7 0.050 0.042 0.025 0.027 0.026 0.029 0.033 0.032
8 0.208 0.150 0.041 0.041 0.041 0.041 0.046 0.042
9 0.221 0.184 0.037 0.039 0.028 0.033 0.035 0.030

Bilin 10 0.080 0.030 0.030 0.027 0.024 0.025 0.028 0.027
11 0.777 0.173 0.071 0.066 0.043 0.051 0.034 0.047
12 0.998 0.972 0.834 0.783 0.580 0.716 0.372 0.666

Power
ARCH 13 0.255 0.204 0.175 0.176 0.114 0.132 0.121 0.141

14 0.955 0.915 0.887 0.874 0.749 0.799 0.715 0.814
15 0.988 0.977 0.917 0.916 0.854 0.882 0.811 0.890
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Table 3: Monte Carlo Results for T = 100 and ARCH NN tests

NN NN r NNtlg NNrbf NN r
tlg NN r

rbf NNo
tlg NNo

rbf

Size
AR 1 0.052 0.046 0.039 0.036 0.025 0.029 0.026 0.029
SETAR 2 0.057 0.033 0.023 0.024 0.020 0.020 0.021 0.019

3 0.053 0.034 0.020 0.022 0.019 0.020 0.013 0.021
4 0.163 0.085 0.027 0.029 0.016 0.021 0.022 0.023
5 0.301 0.146 0.026 0.029 0.027 0.025 0.026 0.018

STAR 6 0.063 0.036 0.035 0.042 0.023 0.025 0.023 0.031
7 0.058 0.036 0.024 0.021 0.032 0.030 0.024 0.031
8 0.156 0.088 0.023 0.025 0.024 0.022 0.026 0.027
9 0.136 0.106 0.028 0.029 0.015 0.022 0.012 0.016

Bilin 10 0.072 0.034 0.025 0.025 0.025 0.022 0.018 0.028
11 0.451 0.128 0.054 0.051 0.023 0.040 0.021 0.036
12 0.957 0.869 0.643 0.585 0.272 0.436 0.144 0.387

Power
ARCH 13 0.130 0.096 0.087 0.089 0.055 0.062 0.050 0.070

14 0.734 0.654 0.615 0.577 0.378 0.438 0.352 0.444
15 0.945 0.900 0.838 0.817 0.628 0.720 0.542 0.721
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Table 4: Monte Carlo Results for T = 200 and ARCH NN tests

NN NN r NNtlg NNrbf NN r
tlg NN r

rbf NNo
tlg NNo

rbf

Size
AR 1 0.048 0.038 0.027 0.029 0.029 0.024 0.028 0.028
SETAR 2 0.066 0.039 0.035 0.029 0.031 0.026 0.023 0.029

3 0.077 0.038 0.026 0.028 0.026 0.023 0.021 0.023
4 0.282 0.128 0.045 0.038 0.025 0.028 0.026 0.025
5 0.502 0.264 0.036 0.038 0.024 0.030 0.021 0.033

STAR 6 0.048 0.038 0.032 0.032 0.025 0.022 0.028 0.025
7 0.065 0.047 0.014 0.014 0.027 0.017 0.023 0.016
8 0.240 0.178 0.031 0.033 0.023 0.023 0.031 0.026
9 0.275 0.213 0.035 0.038 0.031 0.043 0.023 0.037

Bilin 10 0.105 0.030 0.025 0.024 0.024 0.021 0.021 0.023
11 0.761 0.181 0.091 0.087 0.052 0.065 0.026 0.063
12 1.000 0.989 0.929 0.894 0.698 0.852 0.445 0.800

Power
ARCH 13 0.238 0.176 0.160 0.152 0.108 0.117 0.115 0.126

14 0.969 0.949 0.944 0.938 0.850 0.885 0.842 0.893
15 0.999 0.995 0.985 0.973 0.961 0.975 0.931 0.974
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