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Abstract

A reason-based choice correspondence rationalizes choice behaviour in terms

of a two-stage choice procedure. Given a feasible set S, the individual elim-

inates from it all of the dominated alternatives according to her �xed (not

necessarily complete) strict preference relation, in the �rst step. In the sec-

ond step, �rst she constructs for each maximal alternative identi�ed in the

�rst step its lower contour set (i.e., the set of alternatives which are domi-

nated by it in S), and then she eliminates from the maximal set all of those

alternatives so that the following justi�cation holds: there exists another

maximal alternative whose lower contour set strictly contains that of an-

other maximal alternative. This procedural model captures the basic idea

behind the experimental �nding known as "attraction e¤ect". We study

the rationalizability of reason-based choice correspondences axiomatically.

We relate our choice-consistency conditions to standard consistency propri-

eties. Our characterization result o¤ers testable restrictions on this �choice

anomaly�for large (but �nite) set of alternatives.

J.E.L. codes: D0.

Keywords: Reason-Based Choice, Revealed Preferences.



1 Introduction

Rationality of choice behaviour cannot be assessed without seeing it in the

context in which a choice is made (Sen, (1993) and (1997)). This view is

con�rmed by a sizeable amount of experimental �ndings which show that

when added to a choice set a new relatively inferior alternative can increase

the attractiveness of one of the alternatives obtainable from the original set

(see, Rieskamp, Busemeyer, and Mellers, (2006)).

This systematic observed choice behaviour, known as �asymmetric dom-

inance e¤ect�or �attraction e¤ect�,1 is explained in terms of bounded ra-

tionality. In a di¢ cult and con�ict-�lled decision, where there is no escape

from choosing, individuals choose by tallying defensible reasons for one al-

ternative versus the other, rather than by trading o¤ costs and bene�ts.

Furthermore, in this respect, the dominant structure of alternatives in the

choice set provides the decision-maker with good reasons for her choice (see,

Simonson (1989), Tversky and Simonson (1993), and Sha�r, Simonson, and

Tversky (1993), and the references cited therein).2

Let us give an example. Suppose that an individual wishes to buy herself

a digital camera for next holiday in Rome, and she has a choice among three

competing models, say, x, y, and x0, where each model is characterized by

exactly two equally important dimensions, say, price and quality. She may

�nd the choice between x (resp., x0) and y hard because x (resp., x0) is

better than y on one dimension (say, price) while y is better than x (resp.,

x0) on the other dimension (say, quality). She would �nd the choice between

1Strictly speaking these two e¤ects are slightly di¤erent, and the di¤erence refers to the

attributed levels of the new alternative that is added to the choice set. In this paper we

will refer only to the attraction e¤ect since the asymmetric dominance e¤ect is a special

case.
2A �rst formalization of how reasons a¤ect the individual�s decisions in a game theo-

retical framework appears in Spiegler (2002).
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x and x0 an easy one because the former dominates the latter with respect

to both dimensions. Thus, while she has a clear and indisputable reason for

choosing x over x0, she cannot hold any compelling reason for choosing only

x (resp., x0) from fx; yg (resp., fx0; yg) or only y from fx; yg and fx0; yg.
However, the fact that x0 is obtainable from fx; y; x0g and x is better priced
and of higher quality than x0, whilst y is only of higher quality, may provide

her with a reason for choosing only x from fx; y; x0g.
This pattern of observed choices - which is not con�ned to consumer

products, but also extends to choices among gambles, job applicants, po-

litical candidates (Rieskamp, Busemeyer, and Mellers, (2006)) - is partially

consistent with the standard economic interpretation of rationality which is

preference maximization.

In our example, the individual has an incomplete preference relation on

fx; y; x0g because she deems x and y choosable from fx; yg, x0 and y from
fx0; yg, and only x from fx; x0g and fx; y; x0g. For any feasible set she faces,
she chooses undominated alternatives relative to her preferences in that

set. However, contrary to what is envisaged from the standard preference

maximization hypothesis, she discards y from her choice. This suggests that

our individual may have re�ned her choice by using the information available

from the entire choice set (given her preferences) as a tie-breaking rule: As x

dominates x0, but y does not, the set of alternatives dominated by x strictly

contains that dominated by y, providing the individual with a convincing

reason for choosing only x from fx; y; x0g (see, e.g., Tversky and Simonson,
(1993), p. 1185).

The idea of rationalizing choice correspondences in terms of a two-stage

choice procedure whereby the individual arrives at a choice by using the in-

formation obtainable from the entire set in the second round of elimination

appears in Ok (2004), who identi�es in these terms all the choice corre-
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spondences satisfying the canonical Property � (also known as Cherno¤

choice-consistency condition or basic contraction consistency). Property �

requires that an alternative that is deemed choosable from a feasible set

T and belongs to a subset S of T must be deemed choosable from S (Sen,

(1971)).

Indeed many contexts of choice which lead individuals to violate the

normatively appealing Property �, and so the weak axiom of revealed pref-

erence (WARP) proposed by Samuelson (1938),3 and the ways in which they

interact, await further investigation.

Returning to our consumer, suppose that another camera model y0 -

which is dominated by y with respect to both of the dimensions, whilst it

is of higher quality than x and x0 and worse priced than them �is added

to the set fx; y; x0g. In this new choice-context, the individual loses the

compelling reason which led her to choose x from fx; y; x0g because the set
of alternatives dominated by x does not contain that dominated by y, and

vice versa. The presence of y0 (which indeed should be irrelevant for her

choice) makes x and y reasonably choosable from the grand set, whereas

its absence makes only x choosable from fx; y; x0g. The combination of

these choices violates Property � even though there is nothing particularly

"unreasonable" in this pair of choices.

What is more, the described tie-breaking rule may lead an individual

to su¤er from certain framing manipulations. Let us give another exam-

ple. Suppose an employee spends her lunch vouchers in one of her local

restaurants. Assuming that her preferences may be incomplete and that her

vouchers are enough to get any kind of luncheon served at any chosen local

restaurant, on day 1 she steps into one of the local restaurants �nding three

3Analyses of these and related choice-consistency conditions can be found, among oth-

ers, in Moulin (1985), Sen (1971), Suzumura (1983). For a recent study of what kind of

preference maximization WARP characterizes, see Mariotti (2007).
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Day Menu Choice
1 {luncheon 1, luncheon 1’, luncheon 2} {luncheon 1}

2 {luncheon 2, luncheon 2’, luncheon 3} {luncheon 2}

3 {luncheon 3, luncheon 3’, luncheon 1} {luncheon 3}

Figure 1: Table 1.

kinds of luncheon on the menu (say, luncheon 1, luncheon 1�, and luncheon

2 ). Our employee strictly prefers luncheon 1 to luncheon 1�, whereas she

cannot make up her mind between luncheon 1 (resp., luncheon 1�) and lun-

cheon 2. To satisfy one�s hunger she goes for luncheon 1 as it dominates

luncheon 1�, but luncheon 2 does not. The day after (day 2) she steps into

another available local restaurant to explore her range of choices, and it is

serving three luncheons (say, luncheon 2, luncheon 2� and luncheon 3, where

luncheon 2 is the same luncheon served from the restaurant of day 1). Be-

cause she dithers between luncheon 2 (resp., luncheon 2�) and luncheon 3,

whereas she strictly prefers luncheon 2 to luncheon 2�, she goes for luncheon

2 as it seems the most �attractive�according to the menu of the day (i.e.,

luncheon 2 dominates luncheon 2�, but luncheon 3 does not). On day 3, she

decides to return to the restaurant of day 1 which is serving only luncheon 3,

luncheon 3� and luncheon 1 (luncheon 1 is the same luncheon served on day

1, and luncheon 3 is the same luncheon served from the restaurant of day

2). Since she strictly prefers luncheon 3 to luncheon 3�, while she cannot

make up her mind between luncheon 3 (resp., luncheon 3�) and luncheon 1,

she goes for luncheon 3 because it dominates luncheon 3�, but luncheon 1

does not. Her choices are displayed in Table 1.

The choices made over the three days may appear wierd from an eco-
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nomic perspective, but they are not as irrational in any minimal signi�cant

sense. The reason for this is that the employee�s preferences are insu¢ cient

to solve the decision problem that she faces, and so she constructs a reason

on the basis of the problem that she faces by using her known preferences.

Since each day there is a maximal luncheon (i.e., luncheon 1 on day 1, lun-

cheon 2 on day 2, and luncheon 3 on day 3) which outperforms the other

maximal one (i.e., luncheon 2, luncheon 3, and luncheon 1, respectively),

this allows her to complete her preferences by knocking the latter o¤.

Motivated by these observations, we believe that there is a need to shed

more light on the phenomenon of how individuals use the set under consid-

eration to identify the most �reasonable�alternatives following the revealed

preference approach introduced by Samuelson (1938), the importance of

which has been recently emphasized by Rubinstein and Salant (2006, 2007).4

With this aim we provide a full characterization of a choice correspon-

dence as exempli�ed above in terms of a two-stage choice procedure. Given

a feasible �nite set, the individual eliminates from the decision all of the

dominated alternatives according to her �xed (not necessarily complete)

strict preference relation, in the �rst step. In the second step, she elimi-

nates from the maximal set, identi�ed in the �rst step, those alternatives

which have the set of dominated alternatives strictly contained in that of

another undominated alternative. Whenever a choice correspondence can

be rationalized with the described two-stage rationalization, we say that the

choice correspondence is a reason-based choice correspondence.

The rest of the paper is organized as follows. We begin by outlining

our axiomatic framework, delineating the behavioural consistency properties

used in our characterization result. Next, we provide our characterization of

4For a set theoretical foundation of the revealed preference theory see Richter (1966).

For a recent survey on revealed preference see Varian (2005).

5



reason-based choice correspondences. We conclude with a brief discussion

of our result in relation to the literature.

2 Preliminaries

Let X be a universal �nite set of conceivable alternatives that is �xed from

now on. Let S be a collection of all nonempty subsets of X. By a choice
correspondence C on S we mean a map C which assigns a nonempty subset
C (S) of S to every S 2 S. Following Sen (1993), we read x 2 C (S) as x
is choosable from S. Moreover, given x; y 2 X, with x 6= y, x; y 2 C (S)
for some S 2 S does not necessarily mean that x is indi¤erent to y, but we
interpret it as both of them are choosable from S.

Two distinct alternatives x and y in X are said to be indistinguishable

on a set S 2 S, x; y =2 S, if, for all z 2 S, one of the following holds:

1. fxg = C (fx; zg) ) fyg = C (fy; zg);

2. fzg = C (fx; zg) ) fzg = C (fy; zg);

3. fx; zg = C (fx; zg) ) fy; zg = C (fy; zg).

Then x and y are indistinguishable one another if they behave in the

same way with respect to direct choice comparisons with other alternatives.

Observe that if x and y are not indistinguishable it does not necessarily

mean that they are C�incomparable as we are silent on C (fx; yg).5

The set of positive integers is denoted by N = f1; 2; :::g. Let �� X �X
be a binary relation onX which represents the individual preference relation.

As usual we write x � y for (x; y) 2�, and x � y for (x; y) =2�. A relation
�� X �X is acyclical if, for all t 2 N and for all x1; :::; xt 2 X, x� � x�+1

for all � 2 f1; 2; :::; t� 1g implies xt � x1. For any S 2 S, � (x; S) denotes
5For a choice theoretical study of incomplete preferences, see Eliaz and Ok (2006).
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the lower section of � restricted to S at x, i.e., � (x; S) = fy 2 Sjx 2
Snfyg; y � xg. S � T means that every alternative in S is in T , whilst

S � T means that S � T and S 6= T .
For S 2 S and a binary relation � on X, the set of �-maximal alter-

natives in S is M (S;�) = fx 2 Sjy � x for all y 2 Snfxgg. Whenever a
choice correspondence C on S has an acyclical relation � on X such that,

for all S 2 S,

C (S) = fx 2M (S;�) j � (x; S) �� (y; S) for no y 2M (S;�) nfxgg,

we say that C is a reason-based choice correspondence.

Now we de�ne some choice-consistency conditions of interest. The �rst

is borrowed by Sen (1977) which is much weaker than Property �.

Property �2 (�2). For all S 2 S: x 2 C (S) ) x 2 C (fx; yg) for all
y 2 S.

The second property is a weakening of Sen�s (1971) Property �. Property

� demands that for all pair of feasible sets, say S and T , and for all pair of

alternatives, say x and y, if x and y are choosable from S, a subset of T ,

then y is choosable from T if and only if x is choosable from T . Our Weak

Property � on the other hand requires Sen�s Property � to hold if x and y

are indistinguishable one another on Tnfx; yg.
Weak Property � (W�). For all S; T 2 S : S � T , x; y 2 C (S), and

x; y indistinguishable on Tnfx; yg ) [y 2 C (T ), x 2 C (T )].

The third property is a weakening of Samuelson�s (1938) WARP, accord-

ing to which if x 2 C(S) and y 2 SnC(S), then there is no feasible set T ,
with x 2 T , such that y 2 C(T ). Our Weak WARP on the other hand

demands Samuelson�s WARP to hold if x is uniquely chosen from S, and we
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add to the set S a feasible set T such that x and y are indistinguishable one

another on T , with x; y =2 T .
Weak WARP (WWARP). For all S; T 2 S : fxg = C (S) and y 2

SnC (S)) [x; y indistinguishable on T , x; y =2 T ) y =2 C (S [ T )].

The following property is a straightforward strengthening of the choice

formulation of the so called "Condorcet Winner Principle" - labeled Binary

Dominance Consistency (BDC) by Ehlers and Sprumont (2006) -, according

to which for a feasible set, say T , with x 2 T , if x is uniquely chosen over
every other alternative obtainable from T , then x must be the only choice

from T . Our Strong BDC demands that for all pairs of feasible sets, say S

and T , if x is the only choice from S and it is uniquely chosen over every

other alternative obtainable from T , then x must be the only choice from

S [ T . Obviously, if our property holds, BDC follows.
Strong BDC (SBDC). For all S; T 2 S : fxg = C (S) and fxg =

C (fx; yg) for all y 2 T ) fxg = C (S [ T ).

Our next property is a particular weakening of Weak Axiom of Revealed

Non-Inferiority (WARNI) of Eliaz and Ok (2006), according to which for any

feasible set, say S, if for every y 2 C(S) there exists a feasible set, say T , such
that x 2 C(T ) and y 2 T , then x 2 C(S). Our Weak WARNI on the other
hand demands WARNI to hold if there exists a T , with fx; yg � T � S,

such that x is the only choice from T , and x is choosable over every other

y 2 S.
Weak WARNI (WWARNI). For all S 2 S, x 2 S : for all y 2 C (S)

there exists T � S : fxg = C (T ) and fx; yg � T , and x 2 C (fx; yg) for all
y 2 S ) x 2 C (S).

The �nal property that we will consider here for reason-based choice

correspondences plays a key role in the development of this paper. It posits
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that for three distinct alternatives obtainable from a universal set, say x,

y, and z, if x is strictly better than y and not worse than z, and y is not

worse than z, then x must be the only choice from fx; y; zg. This property is
motivated by the empirical research which established the importance of the

attraction e¤ect in decision making. Our property captures this phenomenon

requiring a bias toward the most defensible alternative in term of reasons.

Reason-Based Bias (RBB). For all distinct x; y; z 2 X : fxg =
C (fx; yg), x 2 C (fx; zg), and y 2 C (fy; zg)) fxg = C (fx; y; zg).

3 Reason-Based Choice Correspondences

The following theorem shows that whenever X is a universal �nite set of

alternatives, the axioms above characterize completely a reason-based choice

correspondence.

Theorem 1 A choice corresponce C on S is a reason-based choice cor-

respondence if and only if it satis�es Property �2 (�2), Weak Property

� (W�), Weak WARP (WWARP), Strong BDC (SBDC), Weak WARNI

(WWARNI), and Reason-Based Bias (RBB).

Proof. Suppose that C is a reason-based choice correspondence on S. That
C satis�es �2 is straightforward, thus omitted. We show that C satis�es the

remaining choice-consistency conditions listed above.

To prove that C satis�es W�, take any S; T 2 S, such that S � T , and
assume that x; y 2 C (S) and x and y are indistinguishable on Tnfx; yg.
Let y 2 C (T ). We show that x 2 C (T ). Because x; y 2 M (S;�), neither
x � y nor y � x. Since y 2 M (T;�), then z � y for no z 2 Tnfx; yg. As
x and y are indistinguishable on Tnfx; yg, z � x for all z 2 Tnfx; yg. It
follows that x 2M (T;�). Moreover, there does not exist z 2M (T;�) nfyg
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such that � (y; T ) �� (z; T ), by our supposition. Because x and y are

indistinguishable on Tnfx; yg � Snfx; yg, and neither x � y nor y � x,

we have that � (y; T ) =� (x; T ). It follows from our supposition that

x 2 C (T ). Suppose that y =2 C (T ). We show that x =2 C (T ). Assume, to
the contrary, that x 2 C (T ). By an argument similar to the case above, we
have that y 2 C (T ), a contradiction.

To show that C satis�es WWARP, let x; y 2 X be two distinct alterna-

tives, and take any S; T 2 S such that x; y 2 S and x; y =2 T . Suppose that
fxg = C (S), and x and y are indistinguishable on T . Then y =2 M (S;�)
or � (y; S) �� (x; S). If y =2 M (S;�), then y =2 M (S [ T;�). As C is

a reason-based choice correspondence it follows that y =2 C (S [ T ). Other-
wise, let consider � (y; S) �� (x; S). If fzg = C (fy; zg) for some z 2 T [S,
then y =2M (S [ T;�), and so y =2 C (S [ T ), by our supposition. Otherwise,
suppose fzg 6= C (fy; zg) for all z 2 T [S. It follows that y 2M (S [ T;�).
As x and y are indistinguishable on T , and � (y; S) �� (x; S), it follows

that � (y; S [ T ) �� (x; S [ T ). Therefore, we have that y =2 C (S [ T ), as
desired.

To show that C satis�es SBDC, take any S; T 2 S, and suppose that
fxg = C (S) and fxg = C (fx; yg) for all y 2 T . Because fxg = C (S),

it follows that either fxg = M (S;�) or � (z; S) �� (x; S) for all z 2
M (S;�) nfxg. As x � y for all y 2 Tnfxg it follows that x 2M (S [ T;�).
Suppose that M (S [ T;�) 6= fxg. Then, the only possible case is that z 2
M (S [ T;�) nfxg for some z 2 M (S;�) nfxg. Because � (z; S) �� (x; S)
and x � y for all y 2 Tnfxg, it follows that � (z; S [ T ) �� (x; S [ T ). Be-
cause this holds for any z 2M (S [ T;�) nfxg, with z 2M (S;�) nfxg, our
supposition implies that fxg = C (S [ T ). Otherwise, let M (S [ T;�) =
fxg. It follows from our supposition that fxg = C (S [ T ).
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To prove that C satis�es WWARNI, take any S 2 S, with x 2 S, and
suppose that for every y 2 C (S) there exists T � S such that fxg = C (T )
and fx; yg � T , and x 2 C (fx; yg) for all y 2 S. We show that x 2
C (S). By the way of contradiction, let x =2 C (S). Thus x =2 M (S;�)
or � (x; S) �� (z; S) for some z 2 M (S;�) nfxg. As x 2 C (fx; yg) for
all y 2 S, it follows that x 2 M (S;�). Thus, it must be the case that
� (x; S) �� (z; S) for some z 2 M (S;�) nfxg. If z 2 C (S), it follows
from our supposition that for no T � S it can be that fxg = C (T ) and

fx; zg � T , a contradiction. Otherwise, let z =2 C (S). As S is �nite and
C is a reason-based choice correspondence, there exists y 2 C (S) such that
y 2 M (S;�) and � (z; S) �� (y; S). By the transitivity of set inclusion,

� (x; S) �� (y; S). Therefore, by our supposition, we have that for no

T � S it can be that fxg = C (T ) and fx; yg � T , a contradiction.
To prove that C meets RBB, let x; y; z 2 X be three distinct alternatives

such that fxg = C (fx; yg), x 2 C (fx; zg), and y 2 C (fy; zg). We show
that fxg = C (fx; y; zg). Assume, to the contrary, that fxg 6= C (fx; y; zg).
As C is a reason-based choice rule and y � x and z � x, we have that

x 2 M (fx; y; zg;�). If x � z, then z =2 M (fx; y; zg; P ), and so that fxg =
M (fx; y; zg;�). It follows from our supposition that fxg = C (fx; y; zg),
a contradiction. Otherwise, consider x; z 2 C (fx; zg). If fyg = C (fy; zg),
then z =2 M (fx; y; zg;�). Because fxg = M (fx; y; zg;�), it follows that
fxg = C (fx; y; zg), a contradiction. Therefore, let y; z 2 C (fy; zg). So, we
have that x; z 2 M (fx; y; zg;�). Because � (z; fx; y; zg) �� (x; fx; y; zg),
it follows from our supposition that fxg = C (fx; y; zg), a contradiction.

For the converse, assume that C satis�es �2, W�, WWARNI, SBDC,

WWARP, and RBB. Given X, de�ne the relation � on X as follows:

for x; y 2 X, with x 6= y: x � y , C (fx; yg) = fxg.
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We have to prove that, for all S 2 S,

C (S) = fx 2M (S;�) j � (x; S) �� (y; S) for no y 2M (S;�) nfxggg

holds true and that � is acyclic.
To show acyclicity of �, suppose x1; x2; :::; xt 2 X are such that x��1 �

x� for � 2 f2; :::; tg, that is, C
�
fx��1; x�g

�
= fx��1g for � 2 f2; :::; tg. Let

S = fx1; x2; :::; xtg � S. Suppose that x� 2 C (S) for � 2 f2; :::; tg. As
�2 holds, we have x� 2 C

�
fx��1; x�g

�
, and so x��1 � x� , a contradiction.

Then x� =2 C (S) for � 2 f2; :::; tg. It follows from the nonemptiness of

C that fx1g = C (S). Because xt 2 Snfx1g and �2 holds, we have x1 2
C
�
fx1; xtg

�
. This implies xt � x1, as desired.

Take any S 2 S, and let x 2 C (S). We show that x 2 M (S;�) and
� (x; S) �� (y; S) for no y 2M (S;�) nfxg. Assume, to the contrary, that
x =2M (S;�) or there exists y 2M (S;�) nfxg such that � (x; S) �� (y; S).
As x 2 C (fx; yg) for all y 2 S, by �2, the case x =2M (S;�) is not possible.
Thus, let x 2M (S;�) and � (x; S) �� (y; S) for some y 2M (S;�) nfxg.
Take any z 2� (y; S) n � (x; S). Because fyg = C (fy; zg), y 2 C (fx; yg),
and z 2 C (fx; zg), RBB implies fyg = C (fx; y; zg). It follows from SBDC

that fyg = C (� (y; S) [ fx; yg). If Sn (� (y; S) [ fx; yg) is empty, then x =2
C (S), a contradiction. Otherwise, let Snf� (y; S) [ fx; ygg be a nonempty
set. Because x and y are indistinguishable on Sn (� (y; S) [ fx; yg) and
fyg = C (� (y; S) [ fx; yg), WWARP implies x =2 C (S), a contradiction.

Assume that x 2M (S;�) and� (x; S) �� (y; S) for no y 2M (S;�) nfxg.
We show that x 2 C (S). Because x 2 M (S;�), it follows that x 2
C (fx; yg) for all y 2 S. If fxg = M (S;�), it is clear, by �2 and the non-
emptiness of C, that fxg = C (S). Otherwise, consider fxg 6=M (S;�). By
the nonemptiness of C, fxg = C (S) whenever y =2 C (S) for all y 2 Snfxg.
Thus, let y 2 C (S) for some y 2 Snfxg. It follows from the paragraph

above that y 2 M (S;�) and � (y; S) �� (z; S) for no z 2 M (S;�) nfyg.
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Therefore, fx; yg = C (fx; yg). If � (y; S) is empty, then � (x; S) must be
empty, and so W� implies x 2 C (S). Thus, let � (y; S) be a nonempty

set. It follows that � (x; S) is nonempty as well. If � (x; S) =� (y; S) for
some y 2 C (S), W� implies x 2 C (S). So, let � (x; S) 6=� (y; S) for all

y 2 C (S). Thus, for any y 2 C (S), there exists z 2� (x; S) n � (y; S)

and w 2� (y; S) n � (x; S). Therefore, for all y 2 C (S), fx; y; zg � S for

some z 2� (x; S) n � (y; S). Since fxg = C (fx; zg), z 2 C (fy; zg), and
x 2 C (fx; yg) it follows from RBB that fxg = C (fx; y; zg). Because this
holds for any y 2 C (S), WWARNI implies x 2 C (S).

The mutual independence of choice-consistency conditions used in The-

orem 1 has been relegated to the Appendix A.

Observe that a reason-based choice correspondence does not meet Sen�s

(1977) Property 
2, according to which for any feasible set, say S, if x 2
C (fx; yg) for all y 2 S, then x 2 C (S). To see it, suppose that an individual
has the following preferences among three distinct alternatives: x � x0,

x � y and y � x, and x0 � y and y � x0. If our individual follows the reason-

based procedural choice, then her choices are y 2 C (fx; yg), y 2 C (fx0; yg),
and fxg = C (fx; x0; yg) which contradicts Property 
2. It follows that

Property �2 is not equivalent to Property � in our framework (that is, Sen�

s (1977, p.65) Propositon 10 is not ful�lled). Needless to say, Sen�s (1971)

Property 
 is not necessary for a reason-based choice correspondence. It

also follows that our reason-based choice correspondences do not necessarily

meet the standard �binariness�property.

4 Concluding Remarks

Motivated by the vast literature on the attraction e¤ect, we provide a char-

acterization of reason-based choice correspondences which captures the basic
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idea behind this choice �anomaly�.

Our characterization result is obtained by using the standard revealed

preference methodology. Thus we suppose that our individual possesses

a (not necessarily complete) preference relation which is revealed by her

choices. From the normative point of view our choice-consistency conditions

are appealing because they never lead an individual to make �bad�choices

(i.e., dominated alternatives) even though most of them are weaker than

the conventional choice-consistency conditions (i.e., Property �, Property

�, Samuelson�s WARP). Nonetheless, a reason-based choice correspondence

lends itself to certain framing manipulations that are hard to explain only

from the point of view of preference maximization. However, it di¤ers from

other rules which allow an individual to reveal a �xed cyclic preference

relation (see, Ehlers and Sprumont (2006), Lombardi (2006)).

In this work we have attempted to analyse how o¤ered sets may induce

an individual to follow a particular guidance in her decisions, and how this

a¤ects her choices across sets. Needless to say, reasons that guide decisions

are likely to be diverse. In this respect, for example, Baigent and Gaertner

(1996) characterize a choice procedure in which the individual�s choices are

guided by a self-imposed constraint of �choosing a non unique largest or

otherwise a second largest alternative�from each o¤ered set.

Our two-stage choice model can be contrasted with other decision-making

procedures recently suggested in the literature. Closer to our reason-based

choice rules are the two-stage procedural choice models suggested by Houy

(2006), Manzini and Mariotti (2006, 2007), Rubinstein and Salant (2006).

The �rst author proposes a choice model in which an individual eliminates

maximal alternatives identi�ed in the �rst-stage according to her conserva-

tive mood. In contrast to the history dependent choice model of Houy, in

our model the choices of an individual are driven by the set under consider-
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ation whenever her preferences are insu¢ cient to solve the decision problem

that she deals with. Manzini and Mariotti (2006, 2007) and Rubinstein and

Salant characterize slightly di¤erent two-stage choice models which have

the following property in common: the individual arrives at a choice by

eliminating some of the shortlisted alternatives identi�ed in the �rst stage

according to a �xed asymmetric (and not transitive) preference relation.6

In contrast to their two-stage choice procedures, in our model an individual

constructs in the second-stage a (not necessarily complete) binary relation

(i.e., the strict set inclusion) according to her known preferences on the set

of alternatives under consideration to knock o¤ some of the alternatives that

survive the �rst round of elimination.

To conclude we observe that Masatlioglu and Ok (2006) axiomatize a

reference-dependent procedural choice model in which an individual, en-

dowed with an objective utility function, solves sequentially a two-stage

constrained utility maximization problem where the constraints depend on

her status quo alternative - if she cannot �nd an alternative yielding her a

higher utility level than that brought to her by the status quo alternative,

she keeps the latter. Our model di¤ers from the choice model of Masatli-

oglu and Ok in many respects. Mainly we have investigated how in the

second-stage a convincing reason (i.e., the information inferable from the

entire o¤ered set) plays a role in decision making rather than investigating

how a reference alternative a¤ects the decisions that an individual makes.

6 Indeed, Manzini and Mariotti (2007) suggest a choice model in which an individual

may use several asymmetric preference relations to arrive at a choice.
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Figure 2: Binary Choices.

A Appendix

To complete the proof of Theorem 1, we show that Property �2 (�2), Weak

Property � (W�), Weak WARNI (WWARNI), Strong BDC (SBDC), Weak

WARP (WWARP), and Reason-Based Bias (RBB) are independent.

Suppose that u; v; w; x; y and z are distinct feasible alternatives, and let

choice in pairs be as displayed in Figure 2, where a ! b stands for fag =
C (fa; bg), whilst no arrow between a and b stands for fa; bg = C (fa; bg).

For an example violating only �2, �xX = fu; x; zg, and suppose C (X) =
X. C is not a reason-based choice correspondence because z =2M (S;�) but
z 2 C (S). �2 is violated as z =2 C (fx; zg). All other choice-consistency
conditions are satis�ed.

For an example violating only W�, �x X = fu; x; zg, and suppose
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C (X) = fug. C is not a reason-based choice correspondence because

x 2 M (S;�) and there does not exist a 2 M (S;�) nfxg such that �
(x; S) �� (a; S) but x =2 C (X). W� is violated because fu; xg = C (fu; xg),
u and x are indistinguishable on fzg, and u 2 C (X) but x =2 C (X). All
other choice-consistency conditions are satis�ed.

For an example violating only WWARNI, �x X = fv; w; x; zg. Let C (S)
be a reason-based choice correspondence for all S 2 SnX, and suppose
C (X) = fvg. C is not a reason-based choice correspondence because x 2
M (X;�) and there does not exist a 2M (X;�) nfxg such that � (x;X) ��
(a;X), but x =2 C (X). WWARNI is violated because v 2 C (X), and

there exists S = fv; x; zg � X such that fxg = C (S) and fx; vg � S,

x 2 C (fa; xg) for all a 2 X, but x =2 C (X). All other choice-consistency
conditions are satis�ed.

For an example violating only SBDC, �x X = fu; v; y; zg. Let C (S)
be a reason-based choice correspondence for all S 2 SnX, and suppose
C (X) = fu; yg. C is not a reason-based choice correspondence because

u; y 2 M (S;�) and � (y; S) �� (u; S), but y 2 C (X). SBDC is violated
because C (fu; v; yg) = fug and fug = C (fu; zg) but C (X) 6= fug. All
other choice-consistency conditions are satis�ed.

For an example violating only WWARP, �x X = fw; x; y; zg. Let

C (S) be a reason-based choice correspondence for all S 2 SnX, and sup-
pose C (X) = Xnfzg. C is not a reason-based choice correspondence be-

cause w; x; y 2 M (S;�), � (w;S) ;� (y; S) �� (x; S), but w; y 2 C (X).
WWARP is violated because C (fx; y; zg) = fxg, y =2 C (fx; y; zg), x and y
are indistinguishable on fwg, but y 2 C (X). All other choice-consistency
conditions are satis�ed.

For an example violating only RBB, �x X = fx; y; zg. Let C (X) =
fx; yg. C is not a reason-based choice correspondence because x; y 2M (S;�),
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� (y; S) �� (x; S), but y 2 C (X). RBB is violated because fxg =
C (fx; zg), x 2 C (fx; yg), z 2 C (fy; zg), but C (fx; y; zg) 6= fxg. All

other choice-consistency conditions are satis�ed.
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