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1 Introduction

A considerable amount of recent work in time series econometrics has focused on alternative

representations compared with the conventional I(0) and I(1) paradigms. In particular, there

have been substantial developments in the modeling of long memory processes, and also in

the mainly unrelated area of modeling non-linearity. However, there has been relatively little

consideration of the issue of combining, or distinguishing between these types of processes.

Notable exceptions are Diebold and Inoue (2001) who show how a process with Markov

switching regime changes can be mistaken for a long memory process. Also, Kapetanios and

Shin (2002) suggested a formal test for distinguishing between non-stationary long memory

and nonlinear geometrically ergodic processes in small samples; while van Dijk, Frances, and

Paap (2002) considered a long memory and Exponential Smooth Transition Autoregressive

(ESTAR) model to represent the US unemployment rate. While the first two articles are

concerned about the possibility of confusing non-linearity and long memory, the third paper

addresses the possibility that a process may exhibit both long memory dynamics and non-

linearity in the short memory dynamics.

This paper focuses on the issue of providing a general, formal testing framework for non-

linearity in a time series process which may include a long memory, fractionally integrated

component. One motivation for the study is to provide a basis for determining whether an

apparent long memory model requires the addition of nonlinear terms. An attractive feature

of our procedure is that it does not require specification of the exact parametric form of

non-linearity, since a neural network approximation is used which is combined with the long

memory component. Two classes of tests are considered; the first is based on artificial neural

network approximations, while the second uses a Taylor series approximation. The power

performance of the test statistics are shown to depend on the order of the neural network

approximations and the number of lagged terms being included. The performance of the

various test statistics are documented by means of an extensive simulation study with a

variety of nonlinear data generating mechanisms. Some of the test statistics perform quite

well and give rise to optimism that nonlinear effects can be distinguished within a long

memory process. Our findings indicate the desirability of jointly modeling the nonlinear and

long memory components of a time series. As noted by Granger and Teräsvirta (1993) the

allowance for non-linearity can provide superior forecasts and improved economic intuition

for short memory processes, and our results indicate how these effects can be tested and

possibly incorporated into long memory processes.
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As previously indicated, the main emphasis in our paper is to provide a workable testing

strategy for testing against non-linearity in a long memory time series process. The power

performance of the tests can be significantly affected in small samples by the use of relatively

inefficient initial estimators of the long memory parameter. Hence, we consider the use of

several estimators of the long memory parameter in both the time and frequency domains.

Our simulation evidence is generally favorable to the Local Whittle estimator and also to a

time domain approximate MLE where the long memory parameter is estimated jointly with

terms from an artificial neural network expansion. These estimators are generally found to

be preferable to using the Fox-Taqqu estimator, although we must note that the Fox-Taqqu

estimator is estimating an ARFIMA model unlike the proposed artificial neural network

time domain estimators. Overall, the analysis shows the desirability of taking non-linearity

into account when estimating long memory components. In particular, we document the

extent to which the Local Whittle and other estimators of the long memory parameter is

adversely affected by certain types of non-linearity.

The paper also includes an extensive application of the above methodology to various

economic and financial time series. In general, the results indicate the widespread presence

of both nonlinear and long memory components in many macroeconomic time series, includ-

ing unemployment, monthly inflation rates and also in various definitions of real exchange

rates. However, the application to financial market data is less clear. The daily absolute

returns on seven major industrialized countries exchange rates against the US dollar are

found to be well represented by pure long memory for only three series. A series of fifteen

years of the daily logged Realized Volatility for the DM-$ appears to only possess marginal

non-linearity in addition to long memory. However, the corresponding series for the Yen-$

and the Yen-DM is found to exhibit significant non-linearity. The daily logged Realized

Volatility for five commodity futures contracts reveals almost pure long memory with no

discernible non-linearity.

The structure of the rest of the paper is as follows. Section 2 presents the theoretical

framework, with the details of the main theorem concerning the validity of the test statistics

when a consistent estimator of the long memory parameter is used, is placed in an appendix.

Section 3 discusses the various tests, and section 4 their implementation to the problem

of testing for neglected non-linearity. Section 5 presents some detailed simulation evidence

concerning the performance of the tests, while the next section discusses many different

empirical examples. There is also a short conclusions section.
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2 Nonlinear long memory models

Long memory, fractionally integrated processes were originally introduced by Granger and

Joyeux (1980), Granger (1980) and Hosking (1981) to represent the slow hyperbolic rates

of decay associated with the impulse response weights and autocorrelations of a series. See

Beran (1994) and Baillie (1996) for detailed surveys of these models and the latter for

discussion of the application to economics and finance. A univariate process with fractional

integration in its conditional mean can be represented as

(1− L)dyt = ut, t = 1, . . . , T (1)

where L is the lag operator and where ut is a short memory, I(0) process; then yt is said to be

fractionally integrated of order d, or I(d). In this study an I(0) process is defined according to

de Jong and Davidson (2000), as a process whose partial sums converge weakly to Brownian

motion. Hence, the parameter d represents the degree of “long memory” behavior for the

series. For −0.5 < d < 0.5 the process is stationary and invertible; while for 0.5 < d < 1, the

process does not have a finite variance, but for d < 1 the impulse response weights are finite,

which implies that shocks to the level of the series are mean reverting. If the short memory

component can be represented by an ARMA(p, q) process, then equation (1) becomes the

ARFIMA(p, d, q) model,

φ(L)(1− L)dyt = θ(L)εt (2)

where E(εt) = 0, E(ε2
t ) = σ2, E(εtεs) = 0, s 6= t, and where φ(L) and θ(L) are polynomials

in the lag operator of orders p and q respectively. The Wold decomposition, or infinite order

moving average representation of this process is given by

yt =
∞∑
i=0

ψi(d)εt−i (3)

while the infinite order autoregressive representation is given by

yt =
∞∑
i=1

πi(d)yt−i + εt (4)

For high lag i, these coefficients decay at very slow hyperbolic rates of ψi(d) ∼ c1i
d−1 and

πi(d) ∼ c2i
−d−1, where c1 and c2 are constants. The hyperbolic decay that is generated by

such a process is known as the ‘Hurst effect’, after Hurst (1951), who first discovered the

phenomenon in hydrological time series data. This paper considers situations where the

short memory process ut maybe a nonlinear process rather than a conventional pure ARMA
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process. For example, the long memory model in (1) can be combined with a short memory

ESTAR process,

ut = α0 +

pl∑
i=1

αiut−i +

pn∑
i=1

βi [1− exp(− γ1(ut−D − γ0)
2 )] ut−i + εt (5)

where D is the delay parameter. This model has been applied to the investigation of some

macroeconomic series; see van Dijk, Frances, and Paap (2002), Michael, Nobay, and Peel

(1996) and Sarantis (1999). However, there is no requirement to restrict attention to this

particular form of non-linearity and ut can be modelled in terms of other nonlinear structures

such as, threshold autoregressions or bilinear models.

It should be noted that while the theoretical properties of long memory models were

originally derived for the conditional mean, recent work has found strong empirical evidence

for the presence of long memory in transformations of absolute returns in equity and cur-

rency markets and realized volatility series associated with financial markets in general; see,

Ding, Granger, and Engle (1993), Andersen, Bollerslev, Diebold, and Labys (2001), Ander-

sen, Bollerslev, Diebold, and Labys (2003) and others. There has also been a corresponding

literature on the development of long memory ARCH models, see Baillie, Bollerslev, and

Mikkelsen (1996) and Bollerslev and Mikkelsen (1996), and long memory stochastic volatil-

ity models, see Breidt, Crato, and de Lima (1998). The methods developed in this paper

can be directly applied to either the levels of an economic or financial time series data, or

alternatively can be directly applied to absolute returns, or Realized Volatility, or any other

metric of financial market data.

In practice, the long memory parameter is generally unknown. Hence, it is important to

at least have a consistent estimate of the long memory parameter d, prior to the application

of the non-linearity test. One approach considered in this study, is to apply a test for non-

linearity to the series ut, which is obtained by fractionally filtering the original series yt using

a non-parametric estimate of d. An alternative method is to jointly estimate d with the pa-

rameters of the nonlinear structure. This method is also considered in this paper. It should

be noted that the application of standard ARFIMA model estimation is inappropriate due

to the possible neglected non-linearity, and will generally result in an inconsistent estimate

of d, if non-linearity exists. Under the alternative hypothesis of neglected non-linearity, the

construction of a test for non-linearity, using an ARFIMA estimate of d, is likely to be less

powerful than one based on the true value of d. It should be made clear that this issue is

related primarily to the power of the test. Under the null hypothesis, d will be estimated

consistently through an ARFIMA model and, therefore, the test will be correctly sized.
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The initial estimate of the long memory parameter may be based on approximate MLE

in the time domain, or alternatively a non-parametric approach in the frequency domain by

local Whittle or related techniques. The different effects of these estimators are analyzed in

the Monte Carlo study in section 5 of this paper. The tests developed in the paper may be

viewed as a first step to a parametric analysis of the neglected non-linearity through the use

of a model belonging to a class of nonlinear models used to investigate weakly dependent

stationary processes such as threshold autoregressive1 (TAR) or smooth transition autore-

gressive (STAR) models.

Our proposed solution for estimating d is to consider a neural network type model for

ut. Once d is estimated, an estimate of ut is obtained from fractionally filtering yt. This

estimate of ut is then tested for non-linearity using standard neural network tests described

in the next section.

3 Neural network models and tests

This section considers two different, but related tests for neglected non-linearity within the

maintained hypothesis of long memory. In general, the conditional mean of ut is allowed to

be

ut = F (ut−1 . . . ut−p) + εt (6)

which represents a possibly nonlinear autoregression involving the last p lags of the dependent

variable. There are two methods of dealing with this that are now considered.2

3.1 The artificial neural network test

The null hypothesis of this test is that the conditional mean of ut given lags of ut is a linear

function of the past information set, so that

P

{
E(ut|ut−1 . . . ut−p) = δ0 +

p∑
i=1

δiut−p

}
= 1 (7)

1Note that neural network specifications have been used to test for the presence of threshold type non-
linearity, see, e.g., Lee, White, and Granger (1993).

2It should be noted that other tests for non-linearity have been proposed in previous literature. For
example, Keenan (1985) and Tsay (1986) have suggested alternative tests based on Volterra expansions and
are a different approach to the framework considered in our study. See Li (2004) and Granger and Teräsvirta
(1993) for a review of alternative tests.
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The implementation of the test in our case requires estimation of d from an auxiliary equation

and the fractionally filtered series to be obtained from

ût = (1− L)d̂yt ≈
t−1∑
i=1

πi(d̂)yt−i (8)

The various methods for the estimation of d will be spelled out in the next section. The

implementation of the test requires use of the Lee, White, and Granger (1993) artificial

neural network (henceforth ANN) testing framework, which specifies that the nonlinear part

of F (.) in (6) is given by
∑q

j=1 φ(
∑p

i=1 γijût−i) where φ(λ) is the logistic function, given by

[1 + exp(−λ)]−1. As noted by Lee, White, and Granger (1993), this functional form can

approximate arbitrarily well any continuous function.

The coefficients γij are randomly generated from a uniform distribution over [γl, γh]. It

should be noted that the use of random γij has two purposes. First, it bypasses the need for

computationally expensive estimation techniques and second, and most importantly, solves

the identification problem for γij since these parameters are not identified under the null

hypothesis of linearity. For a given q, the constructed regressors φ(
∑p

i=1 γijût−i), j = 1, . . . , q

may suffer from multicollinearity. Following the suggestion of Lee, White, and Granger

(1993), we also take the q̃ largest principle components of the constructed regressors excluding

the largest one be used as regressors in

ût = α0 +

p∑
i=1

αiût−i +

q̃∑
j=1

βjφ̃j,t + εt (9)

where φ̃j,t denotes the (j + 1)-th principal component. A standard LM test is then be

performed and Lee, White, and Granger (1993) suggest constructing the test statistic as

TR2, where R2 is the uncentred squared multiple correlation coefficient of a regression of ε̂t

on a constant, ût−i, i = 1 . . . , p, φ̃j,t, j = 1, . . . , q̃, where ε̂t is the residual of the regression

of ût on a constant and ût−i, i = 1 . . . , p. Under the null hypothesis, this test statistic has

an asymptotic χ2
q̃ distribution. Under the alternative hypothesis, this test is consistent as

discussed in Stinchcombe and White (1998).

3.2 The Taylor expansion test

An alternative approach is motivated by the logistic neural network test proposed by Teräsvirta,

Lin, and Granger (1993) and has also been used by Blake and Kapetanios (2003). That test

approximates the logistic neural network by a Taylor expansion and tests for the significance

of these additional terms when they are subsequently substituted into the model. In particu-

lar, Teräsvirta, Lin, and Granger (1993) suggest the use of the third order Taylor expansion.
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In our framework, the model for ût then takes the form

ût = β0+

p∑
i=1

βiût−i+
3∑

j=2

p∑
i=1

γ0,i,jû
j
t−i+

p−1∑
i=1

p∑
j=i+1

γ1,i,jût−iût−j+
1∑

s=0

p−1∑
i=1

p∑
j=i+1

γ2,s,i,jû
2−s
t−i û

s+1
t−j +εt

(10)

Clearly, this is just one particular form of Taylor series expansion that is being used to

approximate the unknown function. Highly nonlinear data generating processes may well

require higher order terms and for this reason it is desirable to also consider the second order

expansion,

ût = β0 +

p∑
i=1

βiût−i +

p∑
i=1

γ0,i,2û
2
t−i +

p−1∑
i=1

p∑
j=i+1

γ1,i,jût−iût−j + εt (11)

Similarly we may also wish to consider the fourth order Taylor series expansion of

ût = β0 +

p∑
i=1

βiût−i +
4∑

j=2

p∑
i=1

γ0,i,jû
j
t−i +

p−1∑
i=1

p∑
j=i+1

γ1,i,jût−iût−j +

p−1∑
i=1

p∑
j=i+1

γ2,i,jû
2
t−iû

2
t−j+

1∑
s=0

p−1∑
i=1

p∑
j=i+1

γ3,s,i,jû
2−s
t−i û

s+1
t−j +

1∑
s=0

p−1∑
i=1

p∑
j=i+1

γ4,s,i,jû
3−2s
t−i û2s+1

t−j + εt (12)

Clearly these are very general approximations with considerable numbers of terms and

interactions. In order to restrict the number of parameters in the third and fourth order

Taylor series expansions, it was decided to only consider cross products and powers of up

to two lags. The restriction that the γ coefficients are all zero is tested using a Wald test.

In what follows the models underlying these tests are denoted as the TLGi models, i = 2, 3, 4.

4 Implementation of the tests

The first step in the implementation of the test is the estimation of d, which is needed to

construct the filtered series ût on which to apply the tests for non-linearity. We use three

of the standard methods for the estimation of d. First, for many models an approximate

MLE in the time domain is numerically straightforward. This is sometimes known as the

conditional sum of squares (CSS) method and has been successfully applied to models such

as ARFIMA with GARCH; see Baillie, Chung, and Tieslau (1996). Although the method

does not take into account starting values as considered by Sowell (1992a), it has been shown

in several studies to perform well in sample sizes of 100 observations or more: see Cheung
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(1993), Cheung and Diebold (1994) and Taqqu and Teverovsky (1998). The second tech-

nique is by MLE in the frequency domain using the method of Fox and Taqqu (1986). Both

these methods assume Gaussianity of the disturbances. The third method is by one of the

well known semi-parametric estimation procedures in the frequency domain. While there

are now many possible semi-parametric estimator available, the method used in this paper

is the Local Whittle estimator since it probably is the most widely used semi-parametric

estimator. See Taqqu and Teverovsky (1997) for further discussion of its properties. Also, it

generally has superior properties to other semi-parametric frequency domain estimators such

as that proposed by Geweke and Porter-Hudak (1983). It should be noted that estimation in

the time domain by assuming a pure ARFIMA model is problematic under the alternative

hypothesis of non-linearity, and it is expected that the tests would accordingly suffer from

low power. Clearly, it seems desirable to consider a model which approximates the nonlinear

structure of the series when estimating d. Following the discussion in the previous section,

the TLGi models for i = 2, 3, 4 are motivated as approximations to the nonlinear component

of the processes and furthermore are straightforward to estimate by approximate MLE in

the time domain.

We therefore use these models to estimate d by means of approximate MLE in the time

domain, by assuming Gaussianity of the white noise process εt. The equations to be estimated

are then

ut(d) = β0 +

p∑
i=1

βiut−i(d) +

p∑
i=1

γ0,i,2u
2
t−i(d) +

p−1∑
i=1

p∑
j=i+1

γ1,i,jut−i(d)ut−j(d) + εt (13)

ut(d) = β0 +

p∑
i=1

βiut−i(d) +
3∑

j=2

p∑
i=1

γ0,i,ju
j
t−i(d) +

p−1∑
i=1

p∑
j=i+1

γ1,i,jut−i(d)ut−j(d)+

1∑
s=0

p−1∑
i=1

p∑
j=i+1

γ2,s,i,ju
2−s
t−i (d)us+1

t−j (d) + εt (14)

ut(d) = β0 +

p∑
i=1

βiu
j
t−i(d) +

4∑
j=2

p∑
i=1

γ0,i,ju
j
t−j(d) +

p−1∑
i=1

p∑
j=i+1

γ1,i,jut−i(d)ut−j(d)+

p−1∑
i=1

p∑
j=i+1

γ2,i,ju
2
t−i(d)u2

t−j(d) +
1∑

s=0

p−1∑
i=1

p∑
j=i+1

γ3,s,i,ju
2−s
t−i (d)us+1

t−j (d)+
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1∑
s=0

p−1∑
i=1

p∑
j=i+1

γ4,s,i,ju
3−2s
t−i (d)u2s+1

t−j (d) + εt (15)

where ut(d) = yt −
∑t−p

l=0 π(d)lyt−l ≈ yt −
∑∞

l=0 π(d)lyt−l = (1− L)dyt. The notation ut(d) is

used to denote that the series is a function of d. This is in contrast to the final filtered series

obtained from the approximate time domain MLE and which is denoted by ût. It is worth

emphasizing that the TLG approximations are used twice in the testing procedure; first to

estimate d and obtain ût, and then again to test ût for non-linearity.

Both estimation and testing could be combined in a single step. However, the main inter-

est of this study is to obtain a feasible test statistic for non-linearity. Hence it is convenient

to distinguish the estimation of d from testing for neglected non-linearity in ût. The lag order

of the models, p, may be determined by an information criterion or chosen a priori. Once d

has been determined, the two non-linearity tests of the previous section can be applied by

using the infinite AR representation of yt to obtain ut. Given the higher moments used in

implementing the tests in equations (14) and (15), it is necessary to assume that E(us
t) < ∞

for s = 16.

Under the null hypothesis of no nonlinear structures and conditional upon knowing, or

consistently estimating the lag order p, the following theorem is useful for subsequent testing.

Theorem 1 Under the null hypothesis of linearity given by (7), given lag order p and for

d < 1/2 the asymptotic distribution of the tests does not change when the tests are based

on ût = yt −
∑t−p

l=0 πl(d̂)yt−l rather than ut = yt −
∑t−p

l=0 πl(d
0)yt−l where d̂ is obtained using

(13)-(15) and d0 is the true value of d.

The proof is given in the Appendix. Since the asymptotic distribution of the test statistic

for known d is simply a χ2, the proposed tests, based on estimates of d are also asymptoti-

cally χ2 distributed.

In order to clarify the nature of the tests being proposed, it is useful to consider the p = 1

case for illustrative purposes. As previously explained, the Monte Carlo analysis considers

both parametric and a semiparametric frequency domain estimator for d. The approximate

time domain MLE for d are obtained from the models

ut(d) = β0 + β1ut−1(d) + εt

ut(d) = β0 + β1ut−1(d) + γ0,1,2u
2
t−1(d) + εt

ut(d) = β0 + β1ut−1(d) + γ0,1,2u
2
t−1(d)γ0,1,3u

3
t−1(d) + εt
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ut(d) = β0 + β1ut−1(d) + γ0,1,2u
2
t−1(d) + γ0,1,3u

3
t−1(d) + γ0,1,4u

4
t−1(d) + εt

The filtered series ût is then obtained from the estimate of d, and the subsequent ANN

non-linearity test consists of testing that βi = 0, i = 1, . . . , q̃ in the models

ût = α0 + α1ût−1 +

q̃∑
j=1

βjφ̃j,t + εt

and the TLG test consists of testing that γ0,1,j = 0, j = 2, 3, 4 in the following regressions

ût = β0 + β1ût−1 + γ0,1,2û
2
t−1 + εt

ût = β0 + β1ût−1 + γ0,1,2û
2
t−1γ0,1,3û

3
t−1 + εt

ût = β0 + β1ût−1 + γ0,1,2û
2
t−1 + γ0,1,3û

3
t−1 + γ0,1,4û

4
t−1 + εt

The above approach is then implemented in the following simulation study to investigate

the small sample properties of the procedures.

5 Simulation Study

This section reports the results obtained from a Monte Carlo study to investigate the size and

power properties of the proposed new tests. The simulation experiment considers neglected

non-linearity of the ESTAR form and is consistent with the type of non-linearity investigated

by van Dijk, Frances, and Paap (2002) in their analysis of US unemployment data. Tables

1 through 6 examine four experiments concerning the size of the test, where the model

generating the data are ARFIMA(1, d, 0) processes with the long memory parameter being

either 0.4 or 0.6 and with the autoregressive coefficient being either 0 (Experiment 1) or

0.8 (Experiment 2). Our study then considers 8 power experiments where the alternative

nonlinear hypothesis is a fractionally integrated model with d = 0.4, 0.6 and ut following

an ESTAR model. The precise specification of the ESTAR models is given below for

experiments 3 through 10:

• Exp. 3 α0 = 0, γ0 = 0, α1 = 0.8, β1 = −1.5 γ1 = 0.01

• Exp. 4 α0 = 0, γ0 = 0, α1 = 0.8, β1 = −1 γ1 = 0.01

• Exp. 5 α0 = 0, γ0 = 0, α1 = 0.8, β1 = −1.5 γ1 = 0.05

• Exp. 6 α0 = 0, γ0 = 0, α1 = 0.8, β1 = −1 γ1 = 0.05

• Exp. 7 α0 = 0, γ0 = 0, α1 = 1.3, β1 = −1.5 γ1 = 0.01
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• Exp. 8 α0 = 0, γ0 = 0, α1 = 1.3, β1 = −1 γ1 = 0.01

• Exp. 9 α0 = 0, γ0 = 0, α1 = 1.3, β1 = −1.5 γ1 = 0.05

• Exp. 10 α0 = 0, γ0 = 0, α1 = 1.3, β1 = −1 γ1 = 0.05

All the experiments, or designs, represent geometrically ergodic processes for ut. The last

four experiments allow for the corridor regime of the nonlinear process, (i.e. the regime closer

to the mean of the process), to be locally explosive as the polynomial of the autoregressive

part of the specification at the corridor regime has a root which is inside the unit circle.

Such processes have been found to be of particular use for modeling certain macroeconomic

series, such as US GDP by Kapetanios (2003). It is worth emphasizing that such processes

are still geometrically ergodic. This result has been proven for STAR models by Kapetanios,

Shin, and Snell (2003) using the drift condition by Tweedie (1975). Since these processes

are geometrically ergodic, they are also β-mixing and hence α-mixing by Davidson (1994,

Ch. 14), with sufficiently rapidly decaying mixing coefficients. Hence, these processes are

I(0) processes.

The ANN test and the TLG tests are applied to the process ût = ut(d̂) where d̂ has

been obtained from estimation of one of the four possible TLGi, models, where i = 1, 2, 3, 4.

The symbol TLG1 refers to a linear ARFIMA(p, d, 0) model; and where the linear model is

estimated in both the time and frequency domains3.

The Local Whittle semi-parametric estimator for d is obtained by minimizing the objec-

tive function

log

[
1

m

m∑
j=1

ω2d
j I(ωj)

]
− 2d

m

m∑
j=1

log(ωj) (16)

with respect to d, where I(ωj) is the periodogram given by

I(ωj) =
1

2πT

∣∣∣∣∣
T∑

j=1

yte
iωjt

∣∣∣∣∣

2

and m = [T 0.5]. The ANN test is denoted by ANN l
i , l = t, f, s, i = 0, 1, 2, 3, 4, where the sub-

script i refers to the TLG model used to estimate d and the superscript l refers to estimation

in either the time domain t, or the frequency domain f , or by means of the semiparametric

local Whittle estimator, s. The remaining notation includes the value i = 0, which indicates

that the true value of d has been used as a benchmark for comparison of the various tests.

3For details on estimation in the frequency domain see Harvey (1989).
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The TLG test is denoted by TLGl
j,i, l = t, f, s, i = 0, 1, 2, 3, 4, j = 3, where the subscript i

refers to the TLG model being used to estimate the d parameter. The superscript l refers to

estimation in the time or frequency domain or the semiparametric local Whittle estimator,

and finally the subscript j refers to the order of the Taylor expansion used to test the null

hypothesis of linearity. Following suggestions by Teräsvirta, Lin, and Granger (1993) this

study uses the value j = 3. Of course, different j could be envisaged following, e.g., Blake

and Kapetanios (2003) but no significant difference in performance was observed and so for

simplicity this study concentrates on the value of j = 3.

The error term εt is generated from a NID(0, 1) process for all replications; and the

results are presented for samples of size T = 100 and T = 400. Both rejection probabilities

and the average estimates of d are reported in the Tables.

Following the advice in Lee, White, and Granger (1993) the parameter setting is for

q = 10 in the application of the ANN test. The simulation also imposes q̃ = 2, γh = 2 and

γl = −2. The results in Tables 1 and 2 are for a data generating process with d = 0.4 and

with p = 1. Tables 3 through 6 are for a similar design, but with d = 0.6 and covers both

the cases of p of 1 and 2.

The results are quite revealing. First, it can be seen from Tables 2, 4 and 6, that all

the time domain based estimates of d, perform relatively well in terms of bias and RMSE

for most experiments. Note that these findings appear robust to both the stationary and

invertible ARFIMA(0, 0.4, 0) data generating process in Table 2 and the non-stationary

ARFIMA(0, 0.6, 0) process in Tables 4 and 6. However, the frequency domain Fox-Taqqu

estimator can be seen to have substantial upward biases in the non stationary settings of Ta-

bles 4 and 6. The Fox-Taqqu estimator performs well in Table 2 for a sample size of T = 400,

but the substantial upward bias is again evident for a sample size of T = 100 in Table 2.

The Local Whittle estimator is superior to others for the majority of experiments and the

stationary data generating process in Table 2, but tends to significantly over estimate d in

the non-stationary environments in Tables 4 and 6.

A further interesting feature is the behaviour of the semi-parametric Local Whittle es-

timator, which is expected to work despite the presence of non-linearity in the short run

dynamics. It is seen that for experiments 1 through 6 this estimator works well. However,

in experiments 7 through 10, where the nonlinear process is still geometrically ergodic and

also I(0) but highly persistent this estimator is severely biased upwards. Fortunately, the
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time domain approximate MLE based on the neural network specifications work quite well.

However, the most interesting results concern the rejection frequencies of the tests. The

tests based on estimates of d using either the linear models or the semiparametric estimator

are uniformly less powerful that the tests based on estimates of d from models approximating

the nonlinear models. In some cases the advantage can reach 20%. More interestingly the

proposed tests have comparable power to tests based on the true value of d. It is intuitive

to expect that tests using the true value of d possess the property of reaching the upper

bound in terms of power given specific linearity tests. Therefore, we can see that tests based

on an estimate of d obtained from a neural network type model have clearly better power

properties than tests based on an estimate of d obtained from ARFIMA models.

6 Empirical Applications

There have been mixed findings for the presence of long memory in economic and financial

time series. For example many studies have reported evidence of long memory in real GNP,

see Diebold and Rudebusch (1989) and Sowell (1992b). Similarly there is a wealth of evi-

dence on both long memory and non-linearity in inflation rates, but more mixed evidence

in other macroeconomic time series, with rather strong evidence in measures of volatility in

financial markets. This section considers some relevant applications.

Throughout the applications section we estimate the long memory parameter, d, using

both a linear autoregressive fractionally integrated (ARFIMA(p, d, 0)) model and a model

using a neural network approximation where we use a third order Taylor expansion. The

model is estimated by minimising the conditional sum of squares. The use of this algorithm

enables straightforward estimation for the neural network approximation model. In both

cases the lag order, p, is chosen using the Bayesian information criterion with maximum lag

order 4. The same maximum lag order is used throughout the empirical section for quarterly

data whereas 12 is used for monthly data and 4 for daily data. We then apply both the

ANN and TLG tests4 using the estimate of d obtained both from the linear and nonlinear

models. For the ANN test we follow Lee, White, and Granger (1993) and set q = 10, q̃ = 2,

γh = 2 and γl = −2.

4A third order Taylor expansion is used for the TLG test.

14



6.1 Real Exchange Rates

The first application considers real exchange rates, which have attracted a lot of attention in

the literature; see, e.g., Papell (1997) and Diebold, Husted, and Rush (1991). Some of the

main issues have been whether the series exhibit mean reversion, the duration of shocks, etc.

The evidence has generally been mixed with less evidence of stationarity given data in the

post Bretton Woods regime. For the sake of comparison we take a similar data set as Cheung

and Lai (2001), who investigated the presence of long memory in Yen real exchange rates.

One of the motivations of their paper was to aim to explain the puzzle of the inability to re-

ject the null hypothesis of unit root nonstationarity using standard unit root tests. However,

in order to augment our investigation, we consider other datasets, and construct bilateral

real exchange rates against the i-th currency at time t (qi,t) as qi,t = si,t + pj,t − p∗i,t, where

j = JAPAN, US, GERMANY and si,t is the corresponding nominal exchange rate (i-th

currency per yen), pj,t the price level in the j-th numeraire country, and p∗i,t the price level of

the i-th country. Thus, a rise in qi,t implies a real numeraire country currency appreciation

against the i-th currency. The price levels are consumer price indices and all variables are in

logs. All data are from the International Monetary Fund’s International Financial Statistics

in CD-ROM and are not seasonally adjusted. All the data are quarterly, spanning from

1960Q1 to 2000Q4 for the Yen and 1957Q1-1998Q4 for the US Dollar and German Mark.

We consider a very large sample of countries in an attempt to make the empirical analysis

more comprehensive. The countries we consider vary from dataset to dataset depending on

data availability. Details on the countries for every dataset appear in the result Tables 7-9.

We see that evidence for non-linearity is widespread in the datasets we consider. For the Yen

real exchange rates, there are 16 countries (out of 33) for which both the ANN and TLG

tests reject the null hypothesis of no neglected non-linearity at the 10% significance level

when d̂ from the neural network approximation model is used. When d̂, estimated from the

ARFIMA model, is used both tests reject for 8 countries. The ANN and TLG tests seem

in general to reach similar conclusions. There is a number of instances where the estimates

of d from the linear and nonlinear model differ substantially. Looking at the countries for

which rejection of the null hypothesis is obtained some interesting results arise. There seems

to be little evidence for non-linearity in the series relating to major European countries. On

the other hand there is evidence for non-linearity in the Asia/Pacific area real exchange rates.

However, the DM denominated exchange rates exhibit considerable evidence of non-

linearity with 11 out of 18 countries rejecting the null of no non-linearity for the ANN test

hen d̂ from the neural network approximation model is used. When d̂, estimated from the

ARFIMA model, is used tests reject at most for 6 countries. In this dataset there is evidence
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for non-linearity for European countries. For the US, we find again evidence for non-linearity.

At least 6 countries out of 20 reject the null hypothesis.

6.2 European Unemployment Rates

This analysis examines a smaller dataset of unemployment rates for Finland, Germany,

Greece, Ireland and Netherlands for the period 1965Q1-2003Q3. The data were obtained

from the NiGem Database. The statistics are the same as those presented for the real

exchange rate subsection. Results are presented in Table 10 and it is found that the null

hypothesis of no neglected non-linearity is rejected for three of the five countries.

6.3 Monthly Inflation

The properties of monthly rates of inflation has been one of the most widely investigated

series in the economics and econometrics literature. A central issue in much of this re-

search has been the degree of persistence of the shocks, and is related to the controversy

concerning the possible existence of a unit root in inflation. In particular, Ball and Cec-

chetti (1990), Brunner and Hess (1998)), Barsky (1987) and Nelson and Schwert (1977),

have argued that US inflation contains a unit root so that shocks to inflation are completely

persistent. Alternatively, Hassler and Wolters (1995), Baillie, Chung, and Tieslau (1996),

Baum, Barkoulas, and Caglayan (1999), and others, have all found evidence that inflation

is fractionally integrated. The above articles provide quite consistent evidence across coun-

tries and time periods that inflation is fractionally integrated with a differencing parameter

which is significantly different from zero and unity. However, Brunner and Hess (1998) use

non-linear methods, particularly switching regime models to represent inflation. The time

series properties of inflation are important from a finance perspective, since as originally

noted by Rose (1988), most asset pricing models require ex post real rates of interest to be

stationary. For a long memory inflation process, this implies the existence of a non-standard

form of cointegration between inflation and nominal interest rates. The type and properties

of non-linearities are also important in terms of the real rate of interest.

The inflation series analyzed in this paper are monthly inflation defined as yt = ∆ln(CPIt),

where CPIt is monthly Consumer Price Index. The countries considered are US, Canada,

France, Germany, Italy, Japan, UK, Argentina and Brazil. The series extend from January

1957 to April 1990. We use this dataset as it was previously analysed by Baillie, Chung,

and Tieslau (1996). Results are presented in Table 11. The results are again very clear.

There is overwhelming evidence for neglected non-linearity especially when d is estimated
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using a TLG approximation. A notable result is that obtained for France where we see

that a negative estimate for d obtained using an ARFIMA(p, d.0) is reversed when a neural

network model is used.

6.4 Absolute Returns of Exchange Rates

Following Ding, Granger, and Engle (1993) there has been the widespread finding that

absolute returns in speculative auction markets have pronounced long memory features,

resulting in the very slow hyperbolic decay of their autocorrelations. Table 12 reports the

results of our tests to the absolute returns from daily exchange rate returns for the seven

freely floating exchange rates of Belgium, Canada, France, Germany, Italy, Japan and the

UK vis a vis the US dollar, from March 1980 through June 1998; a total of 4,950 observations.

Four of the absolute returns are found to have substantial non-linearity in addition to the

long memory component.

6.5 Realized Volatility of Exchange Rates

Following the work of Andersen, Bollerslev, Diebold, and Labys (2001) and Andersen, Boller-

slev, Diebold, and Labys (2003), there has been considerable recent interest in the compu-

tation and properties of Realized Volatility (RV) from high frequency financial market data.

The RV series have the attraction of being a pure, model free measure of volatility and does

not depend on the assumption of an ARCH, or stochastic volatility, or other model formu-

lation. Andersen, Bollerslev, Diebold, and Labys (2003) and Andersen, Bollerslev, Diebold,

and Labys (2001) show that under the assumption that logarithmic asset prices follow a uni-

variate diffusion, the volatility is naturally measured by the associated quadratic variation

process. The observed realized volatility is then calculated at the daily level by using the

high frequency squared returns aggregated over the day. Table 13 of this study reports the

results of the tests for non-linearity applied to the logarithm of the RV series of the DM-$,

Yen-$ and DM-Yen; where the RV series are computed from 3,045 days from December 1,

1986 through June 30, 1999. Our estimates of d from the time domain MLE are extremely

close to those of Andersen, Bollerslev, Diebold, and Labys (2001) and Andersen, Bollerslev,

Diebold, and Labys (2003) with the estimates of d being 0.385, 0.433 and 0.440 for the DM-$,

Yen-$ and DM-Yen respectively, compared with the respective estimates of 0.387, 0.413 and

0.430 reported by Andersen, Bollerslev, Diebold, and Labys (2003) from semi-parametric

estimation. They also use a multivariate semi-parametric estimator for the combined series

and report an estimate of d of 0.401. The tests for non-linearity are interesting. While the

RV series are often considered to be virtually pure long memory, our findings in Table 13

indicate a failure to reject linearity at the .05 level for the DM-$, but strong rejections at
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that level for the Yen-$ and Yen-DM. It may be that the non-linearity is due to jumps and

continuous price adjustments as suggested by Maheu and McCurdy (2002) in this context.

Hence the approach of estimating switching regime models and/or threshold, or STAR type

models may give rise to further improvements in modeling and forecasting RV in currency

markets.

6.6 Realized Volatility of Commodity Futures Returns

Table 14 investigates the presence of non-linearity on analogous RV series from commodity

futures market returns. In particular, 370 days of high-frequency data on the futures prices

of corn, soybeans, cattle, gasoline and gold from the Chicago Mercantile Exchange from May

3, 1999 through September 21, 2000 have been used. Since the commodities futures markets

are not so deep as equity or currency markets, the data were sampled every 15 minutes

at the high frequency level in order to construct the RV series. The results in Table 14

indicate that the series can be quite well approximated as fractional white noise processes.

In general there is no evidence of neglected non-linearity, which suggests there is no evidence

for additional modeling strategies of RV as suggested by Maheu and McCurdy (2002).

7 Conclusion

This paper has suggested some new tests for non-linearity in a time series process with a

fractionally integrated component. Our suggested procedure does not require specification

of the exact parametric form of non-linearity and is based on artificial neural network and

Taylor series approximations. We find that using a linear model to estimate the long mem-

ory parameter d prior to applying linearity tests leads to a significant loss of power and

we therefore suggest estimation of d using an approximate neural network model which is

capable of picking up arbitrary forms of non-linearity. We find that this strategy entails no

loss of power compared to the case of known d and we therefore recommend this approach.

The test statistics generally perform quite well and indicate that non-linear effects can be

distinguished within a long memory process.

We document the performance of different estimators of the long memory parameter. In

the application section, the results indicate widespread presence of both non-linear and long

memory components in many macroeconomic time series, including unemployment, monthly

inflation rates and also in various definitions of real exchange rates. There also seems to be

evidence of non-linearity in addition to long memory for daily absolute returns on some
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exchange rates against the US dollar; while there is also some evidence of non-linearity in

Realized Volatility for currencies, but none for five commodity futures returns.

Appendix: Proof of Theorem 1

Define the following:

u(d) = (u1(d), . . . , uT (d))′

vt(d) = (1, ut−1(d), ut−1(d), . . . , ut−p(d))′

v(d) = (v1(d), . . . ,vT (d))′

Let zt(d) be the set of cross product regressors used to test the null hypothesis of neglected

non-linearity for the TLG test. A similar analysis can be applied to the ANN test. Then,

z(d) = (z1(d), . . . , zT (d))′

Mv(d) = I − v(d)(v(d)′v(d))−1v(d)′

Then, the Wald test of the null hypothesis is given by

W (d) = 1/σ̂2u(d)′Mv(d)z(d)(z(d)′Mv(d)z(d))−1z(d)′Mv(d)u(d) =

1/σ̂2(d)
[
1/
√

T (u(d)′Mv(d)z(d))
]
[1/T (z(d)′Mv(d)z(d))]

−1
[
1/
√

T (z(d)′Mv(d)u(d))
]

Denote the true value of d by d0. Then, the theorem is proven if we show that

W (d0)−W (d̂) = op(1) (17)

under the null hypothesis. This follows if we show that

σ̂2 − σ2 = op(1) (18)

1/
√

T (u(d0)′Mv(d
0)z(d0))− 1/

√
T (u(d̂)′Mv(d̂)z(d̂)) = op(1) (19)

and

1/T (z(d0)′Mv(d
0)z(d0))− 1/T (z(d̂)′Mv(d̂)z(d̂)) = op(1) (20)

and 1/T (z(d0)′Mv(d
0)z(d0)) has a positive definite probability limit. The last statement is

assumed to hold by assumption. Estimation of any of the models TLGi, i = 2, 3, 4 can be

shown straightforwardly to lead to an
√

T -consistent estimator of d or d0 − d̂ = Op(T
−1/2)

under the null hypothesis. This follows easily from the analysis following Theorem 1 of Li

and McLeod (1986). Further, this implies that (18) holds. We show that (19) holds. (20)
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can be shown to hold similarly. Here, we note that the statement of the Theorem is valid

for any T φ-consistent estimator of d, i.e., any estimator such that d̂− d0 = Op(T
−φ), φ > 0.

We have

1/
√

T (u(d0)′Mv(d
0)z(d0))−1/

√
T (u(d̂)′Mv(d̂)z(d̂)) = 1/

√
T

[
(u(d0)′ − u(d̂)′)Mv(d

0)z(d0)
]

(21)

+1/
√

T
[
u(d̂)′(Mv(d

0)−Mv(d̂))z(d0)
]

+ 1/
√

T
[
u(d̂)′Mv(d̂)(z(d0)− z(d̂))

]

Now examine the first term of (21)

1/
√

T
[
(u(d0)′ − u(d̂)′)Mv(d

0)z(d0)
]

= ||1/
√

T
[
(u(d0)′ − u(d̂)′)z∗(d0)

]
||

where ||A|| denotes matrix norm (≡ tr(A′A)) and z∗(d0) denotes the vector of residuals from

a regression of z(d0) on v(d0). But

1/
√

T
[
(u(d0)′ − u(d̂)′)z∗(d0)

]
= 1/

√
T

T∑
t=1

z∗′t (d0)(ut(d
0)− ut(d̂))

So we need to show that

||1/
√

T

T∑
t=1

z∗′t (d0)(ut(d
0)− ut(d̂))|| = op(1)

This holds if

1/T
T∑

t=1

z∗′t (d0)(ut(d
0)− ut(d̂)) = op(1)

and

1/T
T∑

t=1

(
z∗′t (d0)(ut(d

0)− ut(d̂))
)2

= op(1)

But

1/T
T∑

t=1

z∗′t (d0)(ut(d
0)− ut(d̂)) ≤

(
1/T

T∑
t=1

z∗′t (d0)2

)1/2 (
1/T

T∑
t=1

(ut(d
0)− ut(d̂))2

)1/2

and

1/T
T∑

t=1

(
z∗′t (d0)(ut(d

0)− ut(d̂))
)2

≤
(

1/T
T∑

t=1

z∗′t (d0)4

)1/2 (
1/T

T∑
t=1

(ut(d
0)− ut(d̂))4

)1/2

By the moment assumptions on ut we have that

(
1/T

T∑
t=1

z∗′t (d0)2

)1/2

= Op(1)
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and

(
1/T

T∑
t=1

z∗′t (d0)4

)1/2

= Op(1)

But

ut(d) = yt −
t∑

l=1

bl(d)yt−l

and

ut(d
0)− ut(d̂) =

t∑

l=1

(πl(d
0)− πl(d̂))yt−l

Therefore, by (4.17) of Wright (1995), for a T φ-consistent estimator of d

ut(d
0)− ut(d̂) = Op(T

−φ)

Hence,

1/T
T∑

t=1

(ut(d
0)− ut(d̂))2 = op(1)

and

1/T
T∑

t=1

(ut(d
0)− ut(d̂))4 = op(1)

Further, it is easy to see that

ui
t(d

0)− ui
t(d̂) = Op(T

−φ)

for i = 2, 3, 4. To see this note that for, say, i = 2,

u2
t (d

0)− u2
t (d̂) = (ut(d

0)− ut(d̂))(ut(d
0) + ut(d̂)) = Op(T

−φ)

Similar treatments can be used for higher values of i. Using the above, similar analysis can

be shown to hold for the other terms of (21). Thus, the result is proven.

References

Andersen, T. G., T. Bollerslev, F. X. Diebold, and P. Labys (2001): “The

Distribution of Realized Exchange Rate Volatility,” Journal of the American Statistical

Association, 96(2), 42–55.

21



(2003): “Modelling and Forecasting Realised Volatility,” Econometrica, 71(2), 579–

625.

Baillie, R. T. (1996): “Long Memory Processes and Fractional Integration in Economet-

rics,” Journal of Econometrics, 73, 5–59.

Baillie, R. T., T. Bollerslev, and H. O. Mikkelsen (1996): “Fractionally Integrated

Generalized Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics, 74,

3–30.

Baillie, R. T., C. F. Chung, and M. A. Tieslau (1996): “Analysing Inflation by the

Fractionally Integrated ARFIMA-GARCH Model,” Journal of Applied Econometrics, 11,

23–40.

Ball, L., and S. G. Cecchetti (1990): “Inflation and Uncertainty at Short and Long

Horizons,” Brookings Papers on Economic Activity, pp. 215–254.

Barsky, R. B. (1987): “The Fisher Hypothesis and the Forecastability and Persistence of

Inflation,” Journal of Monetary Economics, 19, 3–24.

Baum, C. F., J. T. Barkoulas, and M. Caglayan (1999): “Persistence in International

Inflation Rates,” Southern Economics Journal, 65, 900–913.

Beran, J. (1994): Statistics for Long Memory Processes. Chapman & Hall.

Blake, A. P., and G. Kapetanios (2003): “A Radial Basis Function Artificial Neural

Network Test for Neglected Nonlinearity,” Forthcoming in Econometrics Journal.

Bollerslev, T., and H. O. Mikkelsen (1996): “Modelling and Pricing Long Memory

in Stock Price Volatility,” Journal of Econometrics, 73, 151–184.

Breidt, J. F., M. Crato, and P. J. F. de Lima (1998): “On the Detection and

Estimation of Long Memory in Stochastic Volatility,” Journal of Econometrics, 83, 325–

348.

Brunner, A. D., and G. D. Hess (1998): “Are Higher Levels of Inflation Less Predictable?

A State-Dependent Conditional Heteroskedasticity Approach,” Journal of Business and

Economic Statistics, 11, 187–197.

Cheung, Y. W. (1993): “Tests for Fractional Integration: A Monte Carlo Investigation,”

Journal of Time Series Analysis, 14, 331–345.

22



Cheung, Y. W., and F. X. Diebold (1994): “On Maximum Likelihood Estimation of the

Differencing Parameter of Fractionally Integrated Noise with Unknown Mean,” Journal

of Econometrics, 62, 301–316.

Cheung, Y. W., and K. S. Lai (2001): “Long Memory and Nonlinear Mean Reversion in

Japanese Yen-Based Real Exchange Rates,” Journal of International Money and Finance,

20, 115–132.

Davidson, J. (1994): Stochastic Limit Theory, Advanced Tests in Econometrics. Oxford

University Press.

de Jong, R. M., and J. Davidson (2000): “The Functional Central Limit Theorem

and Convergence to Stochastic Integrals I: The Weakly Dependent Process,” Econometric

Theory, 16, 621–642.

Diebold, F. X., S. Husted, and M. Rush (1991): “Real Exchange Rates Under the

Gold Standard,” Journal of Political Economy, 99, 1252–1271.

Diebold, F. X., and A. Inoue (2001): “Long Memory and Regime Switching,” Journal

of Econometrics, 105, 131–159.

Diebold, F. X., and G. D. Rudebusch (1989): “Long Memory and Persistence in

Aggregate Output,” Journal of Monetary Economics, 24, 189–209.

Ding, Z., C. W. J. Granger, and R. F. Engle (1993): “A Long Memory Property of

Stock Returns and a New Model,” Journal of Empirical Finance, 1, 83–106.

Fox, R., and M. S. Taqqu (1986): “Large Sample Properties of Parameter Estimates for

Strongly Dependent Stationary Gaussian Processes,” Annals of Statistics, 14, 517–532.

Geweke, J., and S. Porter-Hudak (1983): “The Estimation and Application of Long

Memory Time Series Models,” Journal of Time Series Analysis, 4, 221–238.

Granger, C. W. J. (1980): “Long Memory Relationships and the Aggregation of Dynamic

Models,” Journal of Econometrics, 14, 227–238.

Granger, C. W. J., and R. Joyeux (1980): “An Introduction to Long Memory Time

Series Models and Fractional Differencing,” Journal of Time Series Analysis, 1, 15–39.
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Table 1. Test Rejection Probabilities for Models with p = 1 and d=0.4

ANN tests
T=100 T=400

Exp ANN
f
1 ANNt

0 ANNt
1 ANNt

2 ANNt
3 ANNt

4 ANNs ANN
f
1 ANNt

0 ANNt
1 ANNt

2 ANNt
3 ANNt

4 ANNs

Exp 1 0.038 0.036 0.034 0.050 0.084 0.078 0.046 0.050 0.062 0.062 0.060 0.060 0.066 0.056
Exp 2 0.028 0.062 0.060 0.082 0.106 0.098 0.046 0.048 0.044 0.042 0.060 0.072 0.072 0.036
Exp 3 0.068 0.108 0.096 0.114 0.168 0.172 0.082 0.256 0.306 0.244 0.272 0.354 0.344 0.244
Exp 4 0.056 0.090 0.066 0.080 0.126 0.112 0.042 0.204 0.232 0.204 0.218 0.278 0.262 0.192
Exp 5 0.320 0.400 0.280 0.322 0.472 0.462 0.312 0.920 0.956 0.850 0.854 0.950 0.946 0.898
Exp 6 0.222 0.306 0.192 0.236 0.364 0.356 0.224 0.756 0.838 0.706 0.708 0.830 0.822 0.702
Exp 7 0.164 0.590 0.438 0.584 0.622 0.618 0.160 0.374 0.998 0.814 0.878 0.986 0.986 0.360
Exp 8 0.088 0.294 0.216 0.300 0.338 0.358 0.088 0.262 0.912 0.828 0.874 0.890 0.892 0.270
Exp 9 0.284 0.962 0.724 0.824 0.962 0.960 0.588 0.438 1.000 0.940 0.958 1.000 1.000 0.976
Exp 10 0.126 0.930 0.688 0.806 0.920 0.906 0.232 0.240 0.998 0.944 0.960 0.998 0.998 0.770

TLG tests
T=100 T=400

Exp TLG
f
3,1 TLGt

3,0 TLGt
3,1 TLGt

3,2 TLGt
3,3 TLG

f
3,4 TLGs TLG

f
3,1 TLGt

3,0 TLGt
3,1 TLGt

3,2 TLGt
3,3 TLG

f
3,4 TLGs

Exp 1 0.038 0.036 0.032 0.052 0.082 0.076 0.050 0.058 0.054 0.054 0.058 0.058 0.064 0.052
Exp 2 0.030 0.058 0.058 0.086 0.104 0.100 0.046 0.042 0.046 0.042 0.060 0.080 0.076 0.034
Exp 3 0.068 0.110 0.098 0.112 0.180 0.172 0.082 0.258 0.312 0.256 0.278 0.368 0.354 0.244
Exp 4 0.054 0.086 0.066 0.072 0.122 0.112 0.044 0.204 0.236 0.198 0.226 0.276 0.274 0.192
Exp 5 0.322 0.412 0.292 0.328 0.478 0.464 0.314 0.924 0.960 0.856 0.864 0.958 0.952 0.898
Exp 6 0.218 0.308 0.202 0.238 0.368 0.360 0.224 0.756 0.840 0.712 0.732 0.840 0.834 0.720
Exp 7 0.170 0.588 0.436 0.588 0.630 0.620 0.156 0.376 0.998 0.822 0.874 0.986 0.990 0.356
Exp 8 0.088 0.294 0.212 0.300 0.342 0.350 0.088 0.268 0.916 0.828 0.868 0.890 0.892 0.264
Exp 9 0.290 0.960 0.726 0.834 0.968 0.962 0.598 0.438 1.000 0.948 0.964 1.000 1.000 0.976
Exp 10 0.126 0.928 0.700 0.808 0.926 0.916 0.236 0.242 1.000 0.948 0.962 1.000 1.000 0.778
Notes: Numbers reported are estimated rejection probabilities in 1000 replications.
For ANN t

0 the true value of d has been used.
For ANN t

1, ANN t
2, ANN t

3, ANN t
4, d has been estimated using an ARFIMA(p, d, 0) model and (13), (14) and (15) respectively.

For ANNf
1 and ANNs, d has been estimated using Fox-Taqqu and Local Whittle respectively.

For all ANN tests testing was carried out using (9).
For all TLG tests testing was carried out using (10).
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Table 2. Properties of the Estimated Long Memory Parameter for p = 1 and d=0.4

Average estimated d over replications
T=100 T=400

Exp FT t1 t2 t3 t4 LW FT t1 t2 t3 t4 LW
Exp 1 0.409 0.201 0.211 0.223 0.248 0.388 0.409 0.361 0.358 0.356 0.356 0.399
Exp 2 0.744 0.383 0.390 0.381 0.402 0.544 0.480 0.375 0.385 0.385 0.387 0.433
Exp 3 0.603 0.327 0.346 0.347 0.363 0.475 0.436 0.347 0.350 0.354 0.362 0.413
Exp 4 0.635 0.324 0.336 0.349 0.359 0.488 0.443 0.362 0.367 0.370 0.372 0.426
Exp 5 0.454 0.203 0.234 0.290 0.308 0.415 0.408 0.292 0.301 0.364 0.366 0.392
Exp 6 0.507 0.262 0.286 0.303 0.322 0.436 0.404 0.298 0.314 0.357 0.357 0.397
Exp 7 1.239 0.331 0.382 0.398 0.398 1.197 1.119 0.258 0.311 0.423 0.420 1.201
Exp 8 1.249 0.385 0.413 0.402 0.402 1.168 1.103 0.393 0.414 0.435 0.434 1.127
Exp 9 1.062 0.259 0.334 0.388 0.395 0.777 1.008 0.231 0.262 0.388 0.390 0.530
Exp 10 1.174 0.294 0.353 0.392 0.399 0.987 1.122 0.237 0.268 0.386 0.390 0.728

RMSE of estimate of d
T=100 T=400

Exp FT t1 t2 t3 t4 LW FT t1 t2 t3 t4 LW
Exp 1 0.248 0.487 0.477 0.464 0.433 0.363 0.200 0.255 0.260 0.263 0.265 0.279
Exp 2 0.320 0.299 0.295 0.308 0.299 0.302 0.219 0.253 0.247 0.247 0.246 0.252
Exp 3 0.259 0.341 0.327 0.326 0.318 0.326 0.220 0.287 0.284 0.274 0.268 0.267
Exp 4 0.270 0.333 0.329 0.319 0.316 0.323 0.214 0.269 0.266 0.260 0.259 0.262
Exp 5 0.271 0.454 0.426 0.362 0.350 0.347 0.234 0.357 0.349 0.253 0.250 0.278
Exp 6 0.259 0.403 0.386 0.359 0.348 0.347 0.244 0.340 0.326 0.264 0.265 0.268
Exp 7 0.642 0.357 0.296 0.275 0.276 0.614 0.522 0.416 0.362 0.212 0.209 0.614
Exp 8 0.650 0.308 0.270 0.286 0.287 0.574 0.505 0.293 0.254 0.215 0.212 0.535
Exp 9 0.498 0.409 0.350 0.232 0.226 0.342 0.433 0.419 0.389 0.215 0.212 0.203
Exp 10 0.584 0.379 0.321 0.236 0.234 0.464 0.526 0.401 0.368 0.216 0.213 0.231
Notes: The estimators FT , t1, t2, t3, t4 and LW have been obtained using
Fox-Taqqu, ARFIMA(p, d, 0), (13), (14), (15) and Local Whittle respectively.
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Table 3. Test Rejection Probabilities for Models with p = 1 and d=0.6

ANN tests
T=100 T=400

Exp ANN
f
1 ANNt

0 ANNt
1 ANNt

2 ANNt
3 ANNt

4 ANNs ANN
f
1 ANNt

0 ANNt
1 ANNt

2 ANNt
3 ANNt

4 ANNs

Exp 1 0.048 0.032 0.042 0.058 0.082 0.078 0.060 0.034 0.036 0.044 0.048 0.048 0.052 0.046
Exp 2 0.038 0.056 0.054 0.068 0.116 0.112 0.042 0.024 0.042 0.034 0.054 0.074 0.070 0.026
Exp 3 0.080 0.084 0.088 0.110 0.156 0.144 0.064 0.246 0.316 0.272 0.302 0.358 0.354 0.260
Exp 4 0.044 0.076 0.072 0.090 0.136 0.124 0.054 0.152 0.202 0.170 0.198 0.272 0.270 0.176
Exp 5 0.304 0.410 0.314 0.360 0.488 0.484 0.324 0.884 0.950 0.860 0.868 0.942 0.954 0.874
Exp 6 0.182 0.260 0.210 0.246 0.314 0.320 0.196 0.688 0.804 0.720 0.744 0.812 0.810 0.686
Exp 7 0.130 0.626 0.460 0.564 0.626 0.618 0.308 0.294 0.992 0.610 0.750 0.932 0.936 0.458
Exp 8 0.058 0.306 0.228 0.296 0.322 0.320 0.128 0.216 0.930 0.626 0.696 0.752 0.752 0.520
Exp 9 0.262 0.974 0.774 0.888 0.978 0.970 0.568 0.508 0.998 0.964 0.976 1.000 0.996 0.956
Exp 10 0.182 0.900 0.690 0.790 0.912 0.896 0.334 0.292 0.998 0.944 0.958 0.996 0.996 0.774

TLG tests
T=100 T=400

Exp TLG
f
3,1 TLGt

3,0 TLGt
3,1 TLGt

3,2 TLGt
3,3 TLG

f
3,4 TLGs TLG

f
3,1 TLGt

3,0 TLGt
3,1 TLGt

3,2 TLGt
3,3 TLG

f
3,4 TLGs

Exp 1 0.052 0.036 0.042 0.058 0.082 0.078 0.054 0.038 0.034 0.036 0.044 0.048 0.048 0.040
Exp 2 0.036 0.060 0.056 0.078 0.120 0.114 0.046 0.024 0.048 0.034 0.046 0.068 0.068 0.026
Exp 3 0.082 0.080 0.088 0.108 0.166 0.148 0.066 0.254 0.330 0.286 0.310 0.358 0.358 0.260
Exp 4 0.048 0.074 0.072 0.088 0.138 0.130 0.058 0.154 0.194 0.176 0.208 0.280 0.268 0.174
Exp 5 0.300 0.416 0.310 0.358 0.496 0.482 0.326 0.892 0.958 0.868 0.878 0.960 0.960 0.882
Exp 6 0.190 0.258 0.218 0.256 0.326 0.318 0.194 0.698 0.810 0.726 0.744 0.822 0.822 0.684
Exp 7 0.130 0.622 0.458 0.568 0.626 0.624 0.304 0.290 0.994 0.606 0.750 0.934 0.936 0.462
Exp 8 0.058 0.308 0.224 0.288 0.326 0.306 0.126 0.218 0.928 0.628 0.698 0.750 0.752 0.524
Exp 9 0.266 0.978 0.784 0.902 0.980 0.974 0.570 0.502 1.000 0.968 0.980 1.000 0.998 0.958
Exp 10 0.178 0.908 0.692 0.796 0.910 0.906 0.334 0.294 1.000 0.946 0.962 1.000 1.000 0.772
See notes in Table 1
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Table 4. Properties of the Estimated Long Memory Parameter for p = 1 and d=0.6

Average estimated d over replications
T=100 T=400

Exp FT t1 t2 t3 t4 LW FT t1 t2 t3 t4 LW
Exp 1 0.659 0.444 0.466 0.465 0.479 0.602 0.642 0.568 0.572 0.569 0.568 0.641
Exp 2 0.990 0.643 0.669 0.658 0.676 0.738 0.785 0.613 0.621 0.621 0.622 0.658
Exp 3 0.859 0.607 0.622 0.609 0.630 0.674 0.704 0.577 0.590 0.584 0.593 0.633
Exp 4 0.909 0.613 0.634 0.625 0.649 0.701 0.717 0.591 0.604 0.609 0.615 0.660
Exp 5 0.753 0.550 0.573 0.556 0.567 0.643 0.671 0.535 0.540 0.582 0.581 0.632
Exp 6 0.771 0.544 0.568 0.557 0.572 0.641 0.666 0.554 0.566 0.579 0.576 0.628
Exp 7 0.538 0.558 0.581 0.594 0.594 1.133 0.857 0.422 0.448 0.568 0.572 1.200
Exp 8 0.237 0.540 0.551 0.549 0.565 1.080 0.454 0.482 0.490 0.517 0.519 1.086
Exp 9 1.212 0.516 0.577 0.596 0.602 0.920 1.182 0.421 0.454 0.591 0.594 0.750
Exp 10 1.260 0.533 0.592 0.609 0.616 1.087 1.245 0.422 0.460 0.590 0.591 0.918

RMSE of estimate of d
T=100 T=400

Exp FT t1 t2 t3 t4 LW FT t1 t2 t3 t4 LW
Exp 1 0.185 0.341 0.313 0.325 0.312 0.288 0.082 0.120 0.091 0.105 0.113 0.187
Exp 2 0.474 0.164 0.193 0.194 0.207 0.304 0.302 0.110 0.120 0.123 0.120 0.197
Exp 3 0.372 0.174 0.186 0.190 0.207 0.294 0.213 0.125 0.127 0.114 0.120 0.188
Exp 4 0.405 0.173 0.187 0.199 0.216 0.300 0.230 0.121 0.126 0.123 0.126 0.190
Exp 5 0.297 0.231 0.234 0.192 0.198 0.291 0.168 0.178 0.174 0.090 0.090 0.187
Exp 6 0.308 0.204 0.197 0.188 0.188 0.296 0.180 0.148 0.143 0.098 0.103 0.189
Exp 7 0.634 0.255 0.221 0.213 0.233 0.555 0.592 0.279 0.235 0.128 0.132 0.622
Exp 8 0.612 0.267 0.265 0.255 0.269 0.487 0.577 0.264 0.245 0.225 0.227 0.500
Exp 9 0.637 0.245 0.214 0.092 0.094 0.430 0.590 0.241 0.213 0.027 0.039 0.245
Exp 10 0.675 0.229 0.214 0.128 0.128 0.543 0.652 0.217 0.204 0.027 0.027 0.367
See notes in Table 2.
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Table 5. Test Rejection Probabilities for Models with p = 2 and d=0.6

ANN tests
T=100 T=400

Exp ANN
f
1 ANNt

0 ANNt
1 ANNt

2 ANNt
3 ANNt

4 ANNs ANN
f
1 ANNt

0 ANNt
1 ANNt

2 ANNt
3 ANNt

4 ANNs

Exp 1 0.032 0.028 0.046 0.082 0.070 0.050 0.050 0.040 0.034 0.052 0.050 0.044 0.054 0.048
Exp 2 0.046 0.036 0.054 0.084 0.104 0.078 0.032 0.036 0.048 0.026 0.084 0.098 0.078 0.038
Exp 3 0.038 0.042 0.048 0.076 0.102 0.080 0.038 0.068 0.084 0.074 0.096 0.148 0.120 0.070
Exp 4 0.046 0.048 0.042 0.080 0.110 0.074 0.034 0.066 0.082 0.066 0.088 0.140 0.118 0.074
Exp 5 0.096 0.094 0.108 0.150 0.156 0.140 0.112 0.240 0.204 0.212 0.228 0.260 0.250 0.214
Exp 6 0.070 0.096 0.092 0.122 0.148 0.110 0.070 0.166 0.158 0.134 0.198 0.202 0.178 0.142
Exp 7 0.124 0.394 0.274 0.396 0.392 0.384 0.174 0.282 0.894 0.548 0.800 0.876 0.872 0.408
Exp 8 0.102 0.208 0.202 0.240 0.246 0.226 0.122 0.230 0.810 0.652 0.732 0.788 0.774 0.478
Exp 9 0.196 0.402 0.280 0.374 0.390 0.416 0.236 0.298 0.596 0.504 0.544 0.624 0.620 0.486
Exp 10 0.142 0.464 0.322 0.440 0.434 0.438 0.174 0.172 0.670 0.550 0.608 0.694 0.720 0.362

TLG tests
T=100 T=400

Exp TLG
f
3,1 TLGt

3,0 TLGt
3,1 TLGt

3,2 TLGt
3,3 TLG

f
3,4 TLGs TLG

f
3,1 TLGt

3,0 TLGt
3,1 TLGt

3,2 TLGt
3,3 TLG

f
3,4 TLGs

Exp 1 0.038 0.036 0.042 0.062 0.106 0.090 0.036 0.042 0.044 0.046 0.042 0.058 0.056 0.044
Exp 2 0.054 0.050 0.056 0.088 0.158 0.120 0.050 0.040 0.042 0.042 0.068 0.132 0.130 0.038
Exp 3 0.068 0.054 0.064 0.082 0.156 0.120 0.070 0.166 0.168 0.188 0.212 0.306 0.278 0.166
Exp 4 0.046 0.062 0.056 0.080 0.140 0.104 0.058 0.128 0.124 0.118 0.150 0.226 0.192 0.118
Exp 5 0.212 0.268 0.232 0.266 0.390 0.340 0.224 0.832 0.888 0.848 0.858 0.896 0.892 0.824
Exp 6 0.166 0.172 0.164 0.200 0.304 0.246 0.158 0.572 0.646 0.568 0.604 0.690 0.672 0.556
Exp 7 0.134 0.398 0.342 0.416 0.480 0.434 0.186 0.546 0.996 0.836 0.944 0.996 0.996 0.474
Exp 8 0.068 0.172 0.188 0.216 0.260 0.228 0.090 0.466 0.848 0.744 0.826 0.860 0.856 0.442
Exp 9 0.416 0.860 0.694 0.774 0.896 0.858 0.494 0.748 1.000 0.988 0.994 1.000 1.000 0.952
Exp 10 0.222 0.768 0.560 0.664 0.804 0.748 0.230 0.304 1.000 0.960 0.968 1.000 1.000 0.706
See notes in Table 1
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Table 6. Properties of the Estimated Long Memory Parameter for p = 2 and d=0.6

Average estimated d over replications
T=100 T=400

Exp FT t1 t2 t3 t4 LW FT t1 t2 t3 t4 LW
Exp 1 0.675 0.405 0.441 0.448 0.470 0.623 0.657 0.565 0.567 0.562 0.554 0.625
Exp 2 0.803 0.493 0.572 0.585 0.619 0.739 0.701 0.491 0.522 0.519 0.554 0.658
Exp 3 0.750 0.461 0.548 0.556 0.554 0.687 0.669 0.450 0.480 0.503 0.534 0.643
Exp 4 0.742 0.454 0.530 0.552 0.601 0.690 0.685 0.452 0.486 0.514 0.539 0.640
Exp 5 0.695 0.440 0.508 0.523 0.561 0.644 0.656 0.494 0.518 0.556 0.569 0.625
Exp 6 0.713 0.455 0.533 0.526 0.566 0.681 0.651 0.463 0.491 0.533 0.545 0.639
Exp 7 1.190 0.584 0.626 0.665 0.685 1.115 0.879 0.447 0.527 0.603 0.598 1.164
Exp 8 1.196 0.608 0.646 0.694 0.717 1.078 0.531 0.554 0.574 0.616 0.615 1.090
Exp 9 0.880 0.585 0.641 0.574 0.589 0.891 0.938 0.495 0.561 0.597 0.596 0.754
Exp 10 0.986 0.587 0.643 0.580 0.611 1.048 1.160 0.486 0.532 0.596 0.598 0.908

RMSE of estimate of d
T=100 T=400

Exp FT t1 t2 t3 t4 LW FT t1 t2 t3 t4 LW
Exp 1 0.236 0.430 0.364 0.362 0.355 0.280 0.105 0.150 0.132 0.158 0.194 0.192
Exp 2 0.424 0.434 0.359 0.358 0.331 0.314 0.253 0.318 0.300 0.330 0.275 0.199
Exp 3 0.385 0.441 0.350 0.333 0.335 0.303 0.218 0.367 0.322 0.294 0.267 0.195
Exp 4 0.391 0.446 0.369 0.340 0.332 0.303 0.233 0.369 0.323 0.293 0.248 0.196
Exp 5 0.359 0.430 0.352 0.311 0.300 0.303 0.189 0.302 0.260 0.197 0.165 0.195
Exp 6 0.357 0.439 0.346 0.333 0.318 0.320 0.198 0.340 0.286 0.220 0.203 0.193
Exp 7 0.629 0.311 0.251 0.153 0.188 0.531 0.582 0.292 0.195 0.074 0.043 0.580
Exp 8 0.616 0.297 0.265 0.173 0.200 0.483 0.639 0.222 0.173 0.073 0.073 0.503
Exp 9 0.504 0.339 0.281 0.213 0.208 0.399 0.434 0.261 0.187 0.033 0.035 0.239
Exp 10 0.579 0.293 0.245 0.215 0.197 0.497 0.591 0.242 0.183 0.038 0.039 0.357
See notes in Table 2.
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Table 7. Tests for Non-Linearity on Yen real exchange rates.

Country ANN t
3 TLGt

3,3 d(1) ANN t
1 TLGt

3,1 d(2)

US 0.004 0.003 0.380 0.011 0.013 0.276
Germany 0.882 0.904 0.235 0.893 0.897 0.223
France 0.698 0.706 0.275 0.713 0.711 0.271
Italy 0.068 0.039 0.307 0.129 0.080 0.421
UK 0.189 0.204 0.224 0.239 0.256 0.317
Canada 0.170 0.175 0.415 0.230 0.233 0.327
Australia 0.004 0.004 0.187 0.006 0.005 0.238
Austria 0.002 0.001 0.435 0.003 0.003 0.381
Belgium 0.728 0.740 0.184 0.716 0.725 0.176
Denmark 0.540 0.521 0.425 0.585 0.552 0.475
Finland 0.095 0.099 0.844 0.407 0.424 0.482
Greece 0.021 0.018 0.160 0.045 0.045 0.219
Hungary 0.491 0.520 0.282 0.822 0.831 0.098
Iceland 0.003 0.002 0.206 0.003 0.002 0.204
Korea 0.012 0.012 0.116 0.011 0.011 0.168
Mexico 0.819 0.837 0.063 0.809 0.805 0.128
Netherlands 0.897 0.907 0.290 0.901 0.905 0.285
New Zealand 0.012 0.012 0.786 0.111 0.105 0.272
Norway 0.574 0.626 0.361 0.714 0.708 0.414
Portugal 0.017 0.014 0.251 0.047 0.047 0.368
Spain 0.816 0.848 0.330 0.880 0.870 0.362
Sweden 0.075 0.082 0.130 0.564 0.621 0.384
Switzerland 0.893 0.908 0.577 0.913 0.912 0.552
Turkey 0.059 0.056 0.433 0.108 0.080 0.311
Singapore 0.442 0.445 0.292 0.521 0.536 0.347
Malaysia 0.001 0.000 0.276 0.695 0.708 0.522
Indonesia 0.000 0.000 0.793 0.130 0.146 0.281
Thailand 0.000 0.000 0.282 0.000 0.000 0.327
Philippines 0.024 0.027 0.091 0.704 0.708 0.285
Sri Lanka 0.110 0.108 0.160 0.321 0.344 0.246
Chile 0.701 0.727 0.309 0.689 0.737 0.096
Colombia 0.303 0.315 0.249 0.314 0.322 0.276
Venezuela 0.286 0.300 0.379 0.923 0.936 0.074
No. of Rejections 16 16 8 10
Notes: Probability values of neglected nonlinearity tests and estimated long
memory parameters. The third column presents an estimate of d, denoted d(1), using the TLG
approximation whereas the sixth column presents an estimate of d, denoted d(2)

using an ARFIMA(p, d, 0) model. No. of rejections reported at 10% significance level.
W t

3 , T t
3,3, W t

1 and T t
3,1 are defined in page 12.
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Table 8. Tests for Non-Linearity on DM real exchange rates.

Country ANN t
3 TLGt

3,3 d ANN t
1 TLGt

3,1 d

Australia 0.141 0.158 0.383 0.142 0.159 0.364
Austria 0.001 0.001 0.037 0.049 0.051 -0.171
Belgium 0.016 0.016 0.790 0.133 0.135 0.420
Canada 0.076 0.086 0.555 0.127 0.137 0.473
Finland 0.256 0.258 0.417 0.349 0.329 0.494
France 0.004 0.004 0.293 0.004 0.005 0.259
Italy 0.002 0.004 0.497 0.008 0.006 0.405
Luxemburg 0.001 0.004 0.772 0.128 0.134 0.351
Malta 0.691 0.706 0.402 0.762 0.751 0.435
Netherlands 0.313 0.340 0.112 0.327 0.345 0.133
New Zealand 0.948 0.962 0.202 0.958 0.962 0.200
Norway 0.520 0.559 0.399 0.929 0.913 0.554
Potrugal 0.037 0.037 0.586 0.322 0.334 0.419
S. Africa 0.000 0.000 0.202 0.001 0.000 0.275
Spain 0.086 0.092 0.593 0.271 0.262 0.389
Sweden 0.008 0.009 0.429 0.027 0.028 0.395
Switzerland 0.094 0.110 0.316 0.096 0.105 0.327
UK 0.440 0.458 0.490 0.750 0.769 0.350
No. of Rejections 11 10 6 5
See notes in Table 7.
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Table 9. Tests for Non-Linearity on US real exchange rates.

Country ANN t
3 TLGt

3,3 d ANN t
1 TLGt

3,1 d

Australia 0.037 0.038 0.173 0.040 0.040 0.239
Austria 0.070 0.074 0.337 0.082 0.085 0.406
Belgium 0.109 0.111 0.367 0.103 0.106 0.378
Canada 0.998 0.997 0.260 0.995 0.997 0.279
Finland 0.077 0.100 0.354 0.106 0.102 0.366
France 0.148 0.150 0.397 0.144 0.153 0.389
Germany 0.129 0.134 0.418 0.158 0.164 0.380
Greece 0.416 0.425 0.129 0.471 0.480 0.087
Italy 0.033 0.036 0.352 0.044 0.046 0.412
Japan 0.008 0.008 0.406 0.010 0.011 0.453
Luxemburg 0.146 0.155 0.407 0.182 0.210 0.365
Netherlands 0.933 0.933 0.222 0.917 0.932 0.202
New Zealand 0.453 0.482 0.387 0.443 0.483 0.393
Norway 0.052 0.062 0.213 0.060 0.081 0.317
Portugal 0.131 0.135 0.449 0.151 0.149 0.377
S. Africa 0.001 0.001 0.221 0.001 0.001 0.199
Spain 0.229 0.228 0.380 0.228 0.246 0.407
Sweden 0.315 0.330 0.382 0.411 0.425 0.466
Switzerland 0.660 0.691 0.336 0.668 0.684 0.398
UK 0.069 0.101 0.169 0.152 0.137 0.270
No. of Rejections 8 6 6 6
See notes in Table 7.
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Table 10. Tests for Non-Linearity on European Unemployment rates.

Country ANN t
3 TLGt

3,3 d ANN t
1 TLGt

3,1 d

Finland 0.109 0.115 1.461 0.113 0.141 1.255
Germany 0.000 0.000 1.231 0.017 0.016 0.490
Greece 0.000 0.000 0.708 0.607 0.596 1.318
Ireland 0.219 0.294 1.170 0.284 0.349 1.237
Netherlands 0.023 0.023 0.569 0.037 0.036 0.385
No. of Rejections 3 3 2 2
See notes in Table 7.

Table 11. Tests for Non-Linearity on Inflation rates.

Country ANN t
3 TLGt

3,3 d ANN t
1 TLGt

3,1 d

US 0.009 0.009 0.508 0.012 0.011 0.487
Canada 0.072 0.070 0.368 0.781 0.165 0.550
France 0.007 0.007 0.610 0.617 0.006 -0.217
Germany 0.433 0.438 0.292 0.441 0.438 0.284
Italy 0.025 0.031 0.314 0.145 0.158 0.422
Japan 0.002 0.003 0.170 0.967 0.077 0.367
UK 0.416 0.014 0.225 0.519 0.172 0.353
Argentina 0.000 0.000 0.224 0.005 0.000 0.270
Brazil 0.040 0.000 0.142 0.001 0.001 0.373
No. of Rejections 7 8 3 5
See notes in Table 7.
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Table 12. Tests for Non-Linearity on Exchange Rate Daily Absolute Returns.

Country ANN t
3 TLGt

3,3 d ANN t
1 TLGt

3,1 d

Belgium 0.117 0.119 0.158 0.000 0.000 0.223
Canada 0.151 0.152 0.212 0.203 0.204 0.223
France 0.030 0.029 0.176 0.035 0.001 0.228
Germany 0.005 0.005 0.167 0.000 0.000 0.227
Italy 0.000 0.000 0.223 0.108 0.079 0.224
Japan 0.000 0.000 0.196 0.000 0.000 0.215
UK 0.216 0.226 0.208 0.263 0.231 0.211
No. of Rejections 4 4 4 5
See notes in Table 7.

Table 13. Tests for Non-Linearity on Exchange Rate Log Realized Volatility.

Exch. Rate ANN t
3 TLGt

3,3 d ANN t
1 TLGt

3,1 d

DM-$ 0.084 0.084 0.385 0.877 0.111 0.458
Yen-$ 0.039 0.039 0.433 0.043 0.043 0.442
Yen-DM 0.012 0.012 0.440 0.507 0.161 0.250
No. of Rejections 3 3 1 1
See notes in Table 7.

Table 14. Tests for Non-Linearity on Commodity Futures Log Realized Volatility.

Commodity ANN t
3 TLGt

3,3 d ANN t
1 TLGt

3,1 d

Corn 0.547 0.527 0.303 0.520 0.529 0.308
Soybeans 0.745 0.741 0.182 0.764 0.746 0.174
Cattle 0.202 0.193 0.290 0.199 0.235 0.244
Gasoline 0.239 0.244 0.176 0.243 0.245 0.169
Gold 0.805 0.772 0.210 0.932 0.775 0.207
No. of Rejections 0 0 0 0
See notes in Table 7.
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