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Abstract

In this paper we suggest a number of statistical tests based on neu-
ral network models, that are designed to be powerful against structural
breaks in otherwise stationary time series processes while allowing for
a variety of nonlinear specifications for the dynamic model underlying
them. It is clear that in the presence of nonlinearity standard tests
of structural breaks for linear models may not have the expected per-
formance under the null hypothesis of no breaks because the model
is misspecified. We therefore proceed by approximating the condi-
tional expectation of the dependent variable through a neural network.
Then, the residual from this approximation is tested using standard
residual based structural break tests. We investigate the asymptoptic
behaviour of residual based structural break tests in nonlinear regres-
sion models. Monte Carlo evidence suggests that the new tests are
powerful against a variety of structural breaks while allowing for sta-
tionary nonlinearities.

JEL Classification: C22, C12, C45.
Key Words: Nonlinearity, Structural Breaks, Neural Networks

∗Department of Economics, Queen Mary, University of London, Mile End Rd., London
E1 4NS. Email: G.Kapetanios@qmul.ac.uk

1



1 Introduction

In the statistical literature considerable work has been devoted to the de-

velopment of theoretical results and methods for the detection of structural

breaks, defined as sudden changes in the parameters of otherwise stationary

dynamic models. Structural breaks present a serious challenge both for the-

oretical and applied statistics. Their presence leads to biases in estimation

and breakdown in forecasting. Virtually all the work in the area has concen-

trated on linear models. Nevertheless, nonlinear dynamic models have been

receiving increasing attention in the literature recently. One exception to this

is the paper by Delgado and Hidalgo (2000) where methods for estimating

break dates in nonlinear models have been proposed. However, no tests for

the detection of breaks in nonlinear models have been provided. It is clear

that once a particular nonlinear model has been selected, then methods that

have been developed for linear models can be readily modified to be applied

on nonlinear models. However, model selection between altenative nonlinear

models is notoriously difficult. Further, one may not wish to commit to one

particular model but simply test whether a dynamic model describing a given

time series has undergone a structural change while allowing for robustness

of the test to the possibility of nonlinearities in the dynamic model.

In this paper we provide a number of tests that are designed to be powerful

against structural breaks while allowing for a variety of nonlinear specifica-

tions for the dynamic model. It is clear that in the presence of nonlinearity

standard tests of structural breaks for linear models may not have the ex-

pected performance under the null hypothesis of no breaks because the model

is misspecified. Of course, many forms of nonlinearity may be accomodated

by appropriately extending the currently available procedures. For example,

when a linear model is fitted to a series which follows an ergodic nonlin-

ear process the residual series will be weakly dependent and nonparametric

methods may be used to modify the residual based structural break tests to
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account for this weak dependence.

This paper adopts a different approach. Rather than modify a structural

break test, we choose to approximate the conditional expectation of the de-

pendent variable by a neural network. Then, the residual from this approx-

imation is tested using standard residual based structural break tests. The

property that allows the approximation to work is the universal approximator

property of neural networks. Testing for structural breaks in an unspecified

nonlinear model has not attracted particular attention in the literature and

therefore no comparison with any available procedure is possible. However,

we expect our suggested method to work better than any nonparametric cor-

rection to standard structural break tests especially in small samples. The

reason is that any correction will have an asymptotic justification and given

the wide variety of alternative nonlinear models the small sample perfor-

mance of such a correction is likely to be very variable. As a by-product

of our analysis we provide a number of results. Firstly we provide a set of

conditions under which information criteria may be used to specify a neu-

ral network model. Secondly, we examine the asymptotic behaviour of the

cumulative sum of nonlinear least squares residuals both under the null hy-

pothesis of no break and under local alternative hypotheses.

The paper is structured as follows: Section 2 discusses the theoretical

aspects of the proposed methodology. Section 3 discuses the alternative

specifications for the particular testing procedures we propose. Section 4

presents Monte Carlo evidence on the performance of the procedures. Finally,

section 5 concludes. Proofs of the main theorems are in the Appendix.
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2 Theoretical Considerations

Let the model underlying the stochastic process yt be given by

yt = ft(yt−1, . . . , yt−k,x1,t) + εt (1)

To simplify notation we introduce xt = (yt−1, . . . , yt−k,x′
1,t)

′. We specify the

null hypothesis of no structural break to be given by

H0 : ft(.) = f(.) ∀t

Under the null hypothesis we approximate the true unknown model by a

neural network model. The neural network model takes the form

yt = α+
R∑
i=1

βig(xt, δi) + εt (2)

There exist large classes of functions, g(., .) for which such an approximation

holds. We propose nonlinear least squares (NLLS) as a general method of

estimating the neural network. The objective function of NLLS is given by

QT,R = QT,R(γ) =
T∑
t=1

(
yt − α−

R∑
i=1

βig(xt, δi)

)2

≡
T∑
t=1

GR(xt,γ)
2 ≡

T∑
t=1

qt

where γ = (α,β, δ′
1, . . . , δ

′
R)

′, and β = (β1, . . . , βR)
′. In what follows QT,R

and GR(., .) may be abbreviated to QT and G(., .) respectively if denoting

dependence on R is not of crucial importance to the argument. Below we

make a number of assumptions that will be used in the Theorems below.

Assumption 1 yt and x1,t are L2-NED processes of size -1/2 on processes

{(εt,v′
t)

′} and {vt} with finite fourth moments for all t, where εt and vt are

independent of each other, have finite second moments, are α-mixing of size

−r/r(r−2), r > 2 and have continuous densities with strictly positive support

over the relevant Cartesian space.

Assumption 2 The disturbances εt are stationary and ergodic, with

E(εt|Xt) = 0 E(ε2t |Xt) = σ
2

where Xt = σ(yt−s,xt−s+1|s ≥ 1)
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Assumption 3 For the neural network model δi 
= δj, i 
= j, i, j = 1, . . . , R.

Assumption 4 The neural network parameter space Γ = Γα × Γβ × ΓRδ is

compact. For each R and sample size T , the vector of parameters γ∗
T,R that

minimises the expectation of QT,R lies in the interior of Γ and is unique.

Assumption 5 g(., .) belongs to C2 in its first argument and to C3 in its

second argument

Assumption 6 The following uniform Lipschitz condition is satisfied for

(i) g(., δ), δ ∈ Γδ, (ii) each element of the first and second derivatives of

(i) with respect to its second argument, (iii) the supremum and infimum of

g(., δ) and its second derivative with respect to its second argument over open

balls B(δ, ρ) around δ and of radius ρ for all sufficiently small ρ.

|f(x1, δ)− f(x2, δ)| ≤ Bf
v∑
i=1

|xi1 − xi2|, ∀x1,x2

f ∈ {g, ∂g
∂δ
,
∂2g

∂δ∂δ′ , supB(δ,ρ)g, infB(δ,ρ)g, supB(δ,ρ)

∂2g

∂δ∂δ′ , infB(δ,ρ)

∂2g

∂δ∂δ′}

Note that if the Lipschitz condition is satisfied for the functions in (iii) in

Assumption 5 then it is satisfied for the function in (i) and the second set of

functions in (ii).

Assumption 7

lim
T→∞

1/T
T∑
t=1

E

[
supγ∈Γ

∣∣∣∣
∣∣∣∣∂qt∂γ

∣∣∣∣
∣∣∣∣
]
<∞

and

lim
T→∞

1/T
T∑
t=1

E

[
supγ∈Γ

∣∣∣∣
∣∣∣∣ ∂3qt
(∂γ)3

∣∣∣∣
∣∣∣∣
]
<∞

for all finite R.
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Assumption 8 Every element of ∂qt

∂γ
and ∂2qt

∂γ∂γ′ have finite first and second

moments for all t, all γ in Γ and all finite R.

Assumption 9

plimT→∞1/T
T∑
t=1

∂GR(xt,γ)

∂γ

∂GR(xt,γ)

∂γ

′

converges to a finite nonsingular matrix in probability for γ0 and for all finite

R.

Assumption 10

plimT→∞1/T
T∑
t=1

GR(xt,γ1)
∂2GR(xt,γ)

∂γ∂γ ′

∣∣∣∣
γ2

coverges to a finite matrix in probability for all γ1 and γ2 in an open neigh-

borhood of γ0 for all finite R.

In order to state precicely the approximation properties of a neural net-

work we need the following two definitions

Definition 1 A function g : R → [0, 1] is a sigmoidal function if it is non-

decreasing, limx→∞ g(x) = 1 and limx→−∞ g(x) = 0

Definition 2 A set of functions S = {g|g : R
r → R} is said to approximate

a function f : R
r → R in the supremum norm if for every ε > 0 there exists

g ∈ S such that, for every compact set K ⊂ R
r, supx∈K |f(x)− g(x)| < ε.

Theorem 1 If (i) f(.) is a continuous function, (ii) g(., δ) can be written as

g1(δ
1′xt + δ

2, δ3)), where δ = (δ1′ , δ2, δ3′)′ and (iii) g1(., δ
3) is (a) sigmoidal

or (b) belonging to the space of Lp-bounded functions, for some p ≥ 1, with

non-zero expectation with respect to Lebesque measure, then the set of neural

network specifications
∑R

i=1 βig(., δi) can approximate f(.) in the supremum

norm.
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Below we give a Lemma indicating that if a set of functions S approxi-

mates a function g in the supremum norm, then it approximates the same

function in the Kullback-Leibler metric under some weak conditions, i.e. for

every ε > 0 there exists f ∈ S such that
∫

Rr(ln f − ln g)fdx < ε

Lemma 1 For exponentially declining functions, f, g, i.e. |f(x)| < a1e
a′

2x

as x → −∞ and |f(x)| < a3e
−a′

4x as x → ∞ for some a1,a2,a3, a4 > 0,

approximation in the supremum norm implies approximation in the Kullback-

Leibler metric.

This lemma indicates that the approximation properties of neural net-

works imply equivalent approximation properties in the Kullback-Leibler

metric used to distinguish models with information criteria which we will use

below. Note that since the relevant functions in the Kullback-Leibler case

are densities the exponentially declining assumption is not very strict. Note

also that in the neural network case the functions involved are conditional

means (regressors) while in the Kullback-Lebler metric case they are densi-

ties. However, under a continuity assumption about the density of εt and the

fact that for every ε > 0 there exists δ > 0 such that if supx∈K |f − g| < δ
then supx∈K |h ◦ f − h ◦ g| < ε, under continuity of h, the two approximation

concepts are directly related.

In the context of the neural network specification theorem 1 guarantees

that a finite number of hidden units for the neural network will be sufficient

to provide an adequate approximation. However it says nothing about the

number of hidden units R which needs to be determined empirically. We

suggest the use of information criteria to pick the number of hidden units.

For each R and sample size T we associate a penalty function zT (R) with

each neural network specification. Then the chosen number of hidden units

is the one for which QT,R − zT (R) is maximised. Note that Theorem (1)

implies that, for given g there exists R0 such that (i) there exists ε > 0 for

which there is no model in the set of neural network models with R < R0
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for which supx|f(x) −
∑R

i=1 βig(xt, δi)| < ε and (ii) for all ε > 0 the set

of neural network models with R ≥ R0 approximates f(.) in the supremum

norm. The theorem says nothing about the uniqueness of the approximation

for given R. Uniqueness is needed for Theorem (2) and therefore assumed in

Assumption (4). We refer to R0 as the true number of hidden units.

Theorem 2 Under assumptions 1-10, and assuming that R0 > R
0 where R0

is the maximum number of hidden units searched by the information criterion

search, the number of hidden units needed to approximate sufficiently close

the unknown function f(.) can be estimated consistently if for R1 < R2,

limT→∞ zT (R2)− zT (R1) → ∞ and zT (R
2)− zT (R1) = op(T ).

By the above theorem we can assume R known for the neural network

specification in what follows. Then, we examine the asymptotic behaviour

of the normalised sum of the NLLS residuals. The test statistic is given by

B(T )(z) ≡ 1

σ̂
√
T

[Tz]∑
t=1

ε̂
(T )
t

We prove the following theorem.

Theorem 3 Under assumptions 1-10, the normalised sum of the NLLS resid-

uals converge to a standard Brownian bridge under the null hypothesis H0.

We now explore the local power of the testing procedure for the neural

network specification. We do not discuss the mapping between the unknown

function f(.), its parameters and the neural network specification under the

alternative hypotheses. We assume the following form for the local alterna-

tive hypotheses

HT : γ̃t,T = γ̃0 + 1/
√
Th(t/T ) (3)

where h(t/T ) is an arbitrary vector function defined on the interval [0, 1] and

γ̃ is a 1− 1 reparametrisation of γ defined in the proof of Theorem 3 in the

Appendix. We make the following additional assumptions:
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Assumption 11 h(t/T ) is a uniform limit of functions that are constant

on intervals

Assumption 12 For given γ̃0 the process yt is geometrically ergodic

Assumption 11 is imposed because it can be relatively easily verified for a

wide class of nonlinear processes and implies strict stationarity which is the

important condition needed for the local power properties of dynamic mod-

els. Under stationarity of the process, the Wald decomposition implies the

existence of an infinite MA representation. Such a representation implies the

existence of a mapping from γ̃ to the parameters of the MA representation.

Denote this mapping by Λ. Then we have the following two assumptions

Assumption 13 The coefficients of the infinite MA representation follow

ci = liu
i for a sequence of finite constants li and some u ∈ (0, 1).

Assumption 14 The uniform Lipschitz condition defined in Assumption 6

holds for Λ.

This is a relatively high level assumption which may seem difficult to verify

in general. However, it can be easily verified in simple cases such as, for

example, linear models. We prove the following theorem

Theorem 4 Under assumptions 1-14 and the local alternatives HT in (3)

B(T )(z) ⇒ B(z) + 1/σ

[∫ z

0

c′h(u)du− c′z
∫ 1

0

h(u)du

]

The above analysis can be extended in some ways which we will not

formalise but merely indicate. Firstly, we note that as long as a constant is

included in the nonlinear regression, the set of neural network models consid-

ered, need not include the model which approximates the unknown function

to the desired degree of closeness. In such a case the true disturbance simply
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becomes a weakly dependent, zero mean, process (which can be described by

the L2-NED class of processes) which is uncorrelated with the conditional

mean of the chosen neural network model. Then, it can easily be seen that

the distribution of the test statistic still has the same form albeit care needs

to be taken on the estimation of the variance used to normalise the partial

sum of residuals given that covariances of the residual process may need to

be taken into account. A kernel based estimate of the asymptotic long run

variance may be of use. Of course, in this case the local power properties

may change.

3 Neural Network Specifications

We need to choose suitable functions g(xt, δ). As we have seen in the theo-

retical discussion we formally need NLLS estimation for the specification of

the neural network. We have also seen that the behaviour of the residual

CUSUM test under the null hypothesis, will not be affected by wrong spec-

ification of the neural network model as long as proper care is taken with

the estimate of the long run variance of the residual process. So essentially

the computationally expensive NLLS procedure may be dispensed with and

alternative specification methods for the neural network may be used. Such

methods may not guarantee consistent estimation of the neural network pa-

rameters. We discuss such methods in this section.

In the context of testing for neglected nonlinearity, Lee, White, and

Granger (1993) choose the logistic function. This is a monotonic function,

with output bounded between 0 and 1. It is sigmoidal and therefore fulfills

the conditions required for approximability of any continuous function. An-

other class of functions which satisfy approximability conditions and further

can be used to construct an easily estimated neural network is the radial basis

function (RBF) class. A RBF is a function which is monotonic about some

center. Let us start by specifying neural networks which use this function.
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Define q centers by cj and a radius vector τ . We interest ourselves only in

those functions that are monotonically decreasing about cj. The Gaussian

RBF is then

ψ([c′
j τ ′]′,xt) = exp

(
−‖xt − cj‖2

τ 2

)
. (4)

By the monotonicity property, each RBF has maximum activation (of unity)

when the input vector coincides with the jth center independent of τ . Con-

versely, if the input vector is far enough away for the center the activation

is zero, controlled by τ . Other functional forms, such as the multiquadratic,

have the same properties and can be used instead. See Campbell, Lo, and

MacKinlay (1997) for an introduction to artificial neural networks in general,

which covers RBF networks. Bishop (1995) gives a more thorough account.

This function being an exponential function satisfies necessary conditions

needed for approximability of any general continuous function.

We need to determine the centers c and radii τ for each RBF, and the

number, q, of ‘hidden units’ used. We use data-based procedures for both.

The radii are fixed first. It is common practice in the ANN literature to

use a fixed multiple of the maximum change from period t to period t + 1,

t = 1, . . . , T of each input as the radius for that input (see Orr (1995)).

We fix the radii at twice this for all possible centers and hence RBFs, ap-

propriate for time-series data. We then allow there to be T potential RBFs

by using all the observations themselves as possible centers. Following Orr

(1995), we add RBFs to the regression in order of maximum reduction in

the unexplained variance. We successively add RBFs until we minimize an

information criterion. Conditional on a particular set of RBFs it is clear

that estimation of the neural networks involves least squares estimation of

the coefficients β in (2).

We move on to discuss the logistic neural network. For this the function,

g(·, ·) in (2) is given by φ(δ′xt) where φ(λ) is the logistic function, given by
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[1 + exp(−λ)]−1. Clearly estimation of the coefficients δj is a complicated

affair involving nonlinear least squares. To avoid this we follow Lee, White,

and Granger (1993) who in the context of nonlinearity testing have obtained

the actual coefficients, δj by randomly generating each element of the vector

from a uniform distribution over [δl, δh]. Then, the estimation problem for

the rest of the neural network reduces to a standard least squares applica-

tion. For given R, the constructed regressors φ(δ′
jxt), j = 1, . . . , R, may

suffer from multicollinearity. Lee, White, and Granger (1993) suggest that

R̃ largest principle components of the constructed regressors excluding the

largest one be used as extra regressors in (2). We modify the above pro-

cedure by Lee, White, and Granger (1993) by allowing for model selection

between the hidden units. This is done as follows: We generate a large num-

ber of hidden units and choose those that explain most of the variation in

the dependent variable yt. Again an information criterion is used to decide

the number of hidden units chosen.

Teräsvirta, Lin, and Granger (1993) have in the context of nonlinear-

ity testing, suggested the use of a polynomial approximation to the logistic

neural network. The authors suggest that a procedure which tests for the

significance of the squares, cubes and cross products of the original regressors

should be powerful against a wide variety of departures from linearity. As an

example, in a model with two regressors, x1,t and x2,t, the joint significance

of the following terms is tested: x2
1,t, x

2
2,t, x

3
1,t, x

3
2,t, x

2
1,tx2,t and x1,tx

2
2,t. We

use their procedure as an alternative to a neural network for our problem.

The above may be considered as a third order Taylor approximation to the

logistic neural network. We further extend their procedure to allow for data

dependent selection of the desired order of the approximation through an

information criterion up to a fourth order approximation.

The second stage of the test involves testing the residuals, from the least
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squares regression involved in fitting the neural network or its polynomial

approximation, for structural breaks. We have theoretically motivated the

validity of the NLLS residual CUSUM test. In the Monte Carlo section we

use the recursive and NLLS residual CUSUM tests. Under the proposed

specifications for the neural network models the estimation problem reduces

to a linear least squares problem and therefore we refer to the residual based

structural break tests as OLS CUSUM and recursive residual CUSUM tests.

4 Monte Carlo

In this section we present some Monte Carlo evidence on the performance of

the new procedures we propose for testing against the presence of structural

breaks. Let us first decribe the data generation processes we consider. We

consider three classes of nonlinear autoreressive models and linear autoregres-

sive models. The nonlinear models are self-exciting threshold autoregressive

(SETAR) models, logistic smooth autoregressive (LSTAR) models and ex-

ponential smooth autoregressive (ESTAR) models. They have the following

forms. The m-regime SETAR model is given by:

yt = φ
Jt
0 +

p∑
i=1

φJt
i yt−i + σ

Jtεt (5)

where Jt = i if yt−d ∈ Ai, ∪m
i=1Ai = R, Ai ∩ Aj = ∅, ∀i 
= j and ε is a zero

mean, unit variance i.i.d. sequence with finite fourth moments. We see that,

Ai, i = 1, . . . ,m are defined by partitioning the real line into segments. We

restrict the partition by assuming that Ai, ∀i, is compact. The parameters

(threshold) controlling this partition are denoted by r1, . . . , rm−1. The model

is denoted by SETAR(φ1
0, . . . φ

1
p; . . . ;φ

m
0 , . . . φ

m
p ;σ

1, . . . , σp; r1, . . . , rm−1;m; d; p).

The class of STAR models we will consider is given by:

yt = φ0 + ψ0F (yt−d) +
p∑
i=1

(φi + ψiF (yt−d))yt−i + σεt (6)
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where F (·) is some smooth function. Usually, two forms for F (·) are used.
One is the exponential function, F (λ) = 1− exp(−λ2) giving rise to an ES-

TAR model and the other is the logistic function F (λ) = [1+exp(−λ)]−1 giv-

ing rise to an LSTAR model. We will denote the LSTAR and ESTAR models

by LSTAR(φ0, . . . , φp;ψ0, . . . , ψp;σ; d; p) andESTAR(φ0, . . . , φp;ψ0, . . . , ψp;σ; d; p)

respectively. A linear autoregressive model will be denoted byAR(φ0, . . . , φp;σ; p)

where the notation is obvious. For the experiments concerning the null hy-

pothesis we consider five cases each using one of the nonlinear (or in the

first case linear) autoregressive models. These are given by AR(0,0.5;1;1),

SETAR(0,0.5;0,0.5;0,-0.5;1,1,1;-1,0;3,1,1), SETAR(0,0.95;0,1.5;0,0.5;1,1,1;-1,0;3,1,1),

LSTAR(0,0.8;0,-1.2;1,1,1) and ESTAR(0,0.8;0,-1.2;1,1,1) respectively and will

be referred to as experiments 1-5. We also consider 12 experiments to de-

termine the power properties of the proposed tests. The first 9 experiments

consider breaks in nonlinear dynamic models. We use the following notation

to denote the data generating process. A process denoted {M1;α;M2} fol-

lows the model M1 for the first α proportion of the sample and model M2

for the rest of the sample. The nine experiments referred to as experiments

6-14 are given by

{SETAR(0, 0.8; 0, 0.8; 0,−0.8; 1, 1, 1;−1, 0; 3, 1, 1); 0.25;SETAR(0, 0.2; 0, 0.2; 0,−0.2; 1, 1, 1;−1, 0; 3, 1, 1)}

{SETAR(0, 0.8; 0, 0.8; 0,−0.8; 1, 1, 1;−1, 0; 3, 1, 1); 0.5;SETAR(0, 0.2; 0, 0.2; 0,−0.2; 1, 1, 1;−1, 0; 3, 1, 1)}

{SETAR(0, 0.8; 0, 0.8; 0,−0.8; 1, 1, 1;−1, 0; 3, 1, 1); 0.75;SETAR(0, 0.2; 0, 0.2; 0,−0.2; 1, 1, 1;−1, 0; 3, 1, 1)}

{SETAR(0, 0.8; 0, 0.8; 0,−0.8; 1, 1, 1;−1, 0; 3, 1, 1); 0.25;ESTAR(0, 0.2; 0,−0.4; 1; 1; 1)}

{SETAR(0, 0.8; 0, 0.8; 0,−0.8; 1, 1, 1;−1, 0; 3, 1, 1); 0.5;ESTAR(0, 0.2; 0,−0.4; 1; 1; 1)}

{SETAR(0, 0.8; 0, 0.8; 0,−0.8; 1, 1, 1;−1, 0; 3, 1, 1); 0.75;ESTAR(0, 0.2; 0,−0.4; 1; 1; 1)}

{SETAR(0, 0.8; 0, 0.8; 0,−0.8; 1, 1, 1;−1, 0; 3, 1, 1); 0.25;LSTAR(0, 0.2; 0,−0.4; 1; 1; 1)}

{SETAR(0, 0.8; 0, 0.8; 0,−0.8; 1, 1, 1;−1, 0; 3, 1, 1); 0.5;LSTAR(0, 0.2; 0,−0.4; 1; 1; 1)}
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{SETAR(0, 0.8; 0, 0.8; 0,−0.8; 1, 1, 1;−1, 0; 3, 1, 1); 0.75;LSTAR(0, 0.2; 0,−0.4; 1; 1; 1)}

Finally, experiments 13-15 consider linear processes and are given by

{AR(0.5, 0.8; 1; 1); 0.25;AR(0.5, 0.2; 1; 1)}

{AR(0.5, 0.8; 1; 1); 0.5;AR(0.5, 0.2; 1; 1)}

{AR(0.5, 0.8; 1; 1); 0.75;AR(0.5, 0.2; 1; 1)}

Note that in all of the above cases the structural break entails a shift in the

unconditional mean of the process, as required by the theory we developed in

the previous section for the tests to have local power. The nonlinear models

have no constant but asymmetry coming from the fact that the regimes of

SETAR models are asymmetric with respect to zero, leads to nonzero means

for the nonlinear processes.

We consider sample sizes of T=100, 200. For each sample, 20 initial ob-

servations are dropped to minimise dependence on initial conditions which

are set to zero. All errors are standard normal pseudo-random variables.

We now discuss in detail the tests that we use. There are three dimensions

on the testing procedures we consider. The name of each testing procedure

will reflect that. The dimensions are:

• The neural network or approximation to a neural network used. These

are the RBF, logistic and the polynomial approximation to the logistic

neural network. The first three letters of the procedure name reflect

the neural netork used. RBF stands for the RBF network, LOG for

the logistic and PAP for the polynomial approximation.

• The choice of model selection criterion carried out to determine the

hidden units or order of the polynomial approximation. The fourth
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and fifth letter of the procedure name reflects that. In particular, for

the Akaike criterion the letters AC are used, for the BIC criterion the

letters BC are used and for the Hannan-Quinn criterion the letters HC

are used. If a polynomial approximation is used and no search is carried

out over the order of the approximation, a number appears indicating

the order of the approximation (e.g. 03). Note that the Akaike criterion

is not consistent in the sense of Theorem 2 whereas BIC and HQ are.

• The structural break test that is being used on the residuals of the

neural network. If the recursive residual CUSUM test is used the letter

RC appear at the end of the name of the procedure. Otherwise, for

OLS residuals the letters OC appear.

Throughout, xt is set to the first lag of yt. We further consider two tests

of structural breaks when a linear AR(1) model has been fitted to the data.

We do this to compare the properties of these tests when a nonlinear model

underlies the data. These tests are the recursive and OLS residual CUSUM

test denoted by RC and OC respectively. The number of hidden units on

which model selection is carried out is equal to the number of obervations for

the RBF network, equal to the [T/10] for the logistic neural network, where

[.] denotes integer part. For the logistic neural network, if no information

criterion is used, the number of hidden units is set to [T/10] whereas the

number of principle components of those hidden units is set to [T/50]. The

support of the uniformly generated random numbers which are generated for

the coefficients γ is [−2, 2]. For the polynomial approximation, the minimum

order is 2 and the maximum 4.

Tables 1-5 present the rejection probabilities for the tests for all exper-

iments. Several conclusions emerge. We first comment on the estimated

rejection probabilites under the five null hypotheses. In general the tests

based on OLS residuals underreject. For example for samples of 100 observa-

tions the actual size is close to 2.5 % for a nominal size of 5%, for a number
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of tests. On the other hand, the tests based on recursive residuals tend to

overreject under the null hypothesis. However, as far as the nonlinear recur-

sive residual tests are concerned the overrejection is not very pronounced.

The linear recursive residual tests overreject more significantly. In par-

ticular, for experiment 3, we see that the linear recursive residual CUSUM

test overrejects quite significantly having an estimated rejection probability

of 13.6% at 200 observations. Experiment 3 is of a special nature. The non-

linear process in that experiment, although globally ergodic, has both asym-

metric outer regimes and explosive roots in the middle regime. The process

is geometrically ergodic because both outer regimes have stable roots. Such

rather extreme nonlinearities have the potential to lead to strange behaviour

for the linear tests, in small samples, whereas the nonlinear tests seem able

to handle them. This is one reason for preferring the nonlinear tests. We

note that in results not shown here1 we observe all tests to have good size

properties for larger samples (1000 observations).

Moving on to power properties, a number of features emerge. The method

of approximating the function does not seem to make a significant difference.

The main source of difference in performance seems to come from the choice

of the structural break test used once the approximation has been estimated.

This feature is apparent in the size properties of the test as well. Having said

that, we observe a slightly weaker performance for the polynomial approx-

imation based neural network test in a few cases for the recursive residual

based CUSUM test.

The tests based on OLS residuals do significantly better compared to the

recursive residual tests when the break is at the middle or end of the sam-

ple. The recursive residual tests do relatively better for breaks which are

1But available upon request.
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nearer the start of the sample. Nevertheless, the OLS residual based tests

still outperform the recursive residual based tests for such breaks as well, in

general. The performance of the tests when a linear model with a break is

the true model is quite good. The tests are slightly less powerful against that

alternative than against the nonlinear alternatives. They have particularly

low power for linear processes and breaks near the end of the sample.

Comparing the nonlinear tests against the standard linear tests we see

that the nonlinear recursive residual based tests outperform their linear coun-

terparts for all nonlinear alternative hypotheses and have roughly equal power

to them for the linear alternative hypotheses. The OLS residual based linear

tests do slightly better than the nonlinear residual based tests for breaks at

the start and middle of the sample. The linear tests have lower power than

the nonlinear ones for breaks towards the end of the sample. Of course, this

case is of added interest when investigation of real time issues is undertaken.

The nonlinear tests do equally well with the linear ones for breaks at the end

of the sample for linear processes.

5 Conclusion

Despite the widespread use of nonlinear models in recent econometric work

little attention has focused on the detection of structural breaks in models

that may contain nonlinearity. In this paper we have provided a number of

new tests for detecting structural breaks in processes which follow nonlinear

dynamic time series models of unknown functional form. We have used neu-

ral networks to construct approximations to the unknown functional form of

the model and subsequently we have proposed the use of standard structural

break tests for detecting structural breaks. The validity of fitting neural net-

work models with information criteria has been shown and the asymptotic

behaviour of structural break tests based on NLLS residuals has been estab-

lished. The use of alternative approximation methods may be considered but
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in this paper we concetrate on neural networks due to the relative computa-

tional ease of their use.

An extensive Monte Carlo study has provided evidence on the perfor-

mance of the tests and several conclusions have emerged. Firstly the choice

of the neural network approximation is not of vital importance. The choice of

the structural break test to use is of greater importance. Evidence suggests

that OLS residual based tests are better behaved under the null hypothesis

and more powerful in a number of alternatives hypotheses. The power of

these tests under linear alternatives seems to be acceptable. Standard linear

tests have been shown to be useful in detecting breaks in nonlinear models as

well but in some cases, where the nonlinearity of the process is pronounced,

some of these tests may have bad size properties. The combination of linear

and nonlinear tests for breaks, possibly through the use of Bonferroni in-

equalities, might be of interest and could be investigated in future research.
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Appendix

Proof of Theorem 1

The theorem follows directly from a number of existing results. Case (a)

follows from Theorem 2.3 of Hornik, Stinchcombe, and White (1989) or alter-

natively Cybenko (1989). Case (b) follows from Theorem 2.1 of Stinchcombe

and White (1989)

QED

Proof of Lemma 1

We need to prove that supx∈K |f(x) − g(x)| < ε, for all compact sets

K ⊂ R, implies
∫

Rr(ln f − ln g)fdx < ε. For
∫
K
(ln f − ln g)fdx > δ, for

some compact K and δ > 0, it is necessary that (ln f(x) − ln g(x)) > ε, for

some ε, x. But this is not allowed by the assumption of supremum norm

approximation. Finally, we need to show that for each ε > 0 there exists a

compact set K such that
∫
K
(f−g)fdx−∫

R
(f−g)fdx < ε. But this is easily

seen to hold by the exponentially declining assumption.

QED

Proof of Theorem 2

Denote the summands of the NLLS objective function by qt. To prove

the theorem we have to prove a number of statements. These statements

represent the conditions of Proposition 4.2 of Sin and White (1996) applied

to the neural network specification. The statements are given below

1. QT belongs almost surely to C1 over Γ

21



2. E(QT ) exists, is continuously differentiable and ∂E(QT )
∂γ

= E(∂QT

∂γ
)

3. For each R and sample size T , the vector of parameters γ∗
T,R that

minimises the expectation of QT,R lies in the interior of Γ

4. γ∗
T,R is unique.

5. qt is almost surely twice-differentiable

6. The determinant of T−1 ∂2QT

∂γ∂γ′ is strictly positive in some open sphere

around γ∗T,R.

7. E
[
T−1 ∂2QT

∂γ∂γ′

]
is Op(1).

8. qt satisfies a uniform weak law of large numbers (UWLLN)

9. Each element of ∂qt

∂γ
satisfies a central limit theorem (CLT)

10. Each element of ∂2qt

∂γ∂γ′ satisfies a uniform weak law of large numbers

(UWLLN)

11. If R1 < R0, lim inft→∞ [T−1E(QT,R2)− T−1E(QT,R1)]

12. If R1 > R0, QT,R2 −QT,R1 = Op(1)

In this context we need to clarify the definition of a CLT, a UWLLN and

a pointwise law of large numbers (PWLLN). A sequence of random variables,

{qt}T1 , is said to satisfy a CLT if (i) E(q2t ) exists and there is a sequence {σT}
of nonstochastic, finite and positive scalars such that σ−1

T T
−1/2

∑T
t=1 (qt − E(qt)) ⇒

N(0, 1).

A sequence of random variables, {qt(γ)}T1 , is said to satisfy a UWLLN

for γ ∈ Γ if (i) for each γ ∈ Γ T−1
∑T

t=1E(qt(γ)) exists and is continuous

for all T . (ii)

supγ∈Γ

∣∣∣∣∣T−1

T∑
t=1

[qt(γ)− E(qt(γ))]
∣∣∣∣∣ = op(1)
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A sequence of random variables, {qt}T1 , is said to satisfy a PWLLN if

T−1

T∑
t=1

[qt(γ)− E(qt(γ))] = op(1)

We first prove that regularity conditions (1)-(7) above hold. Then we

prove conditions (8)-(12). (1) follows from assumption 5. (2) follows from

the finite second moment conditions on yt, xt and εt and the continuity and

infinite support assumption on the processes εt and vt. (3) and (4) follows

from assumption 4. (5) follows from assumption 5. (6) follows from the equal-

ity in probability limit of T−1 ∂2QT

∂γ∂γ′ and plimT→∞1/T
∑T

t=1
∂GR(xt,γ)

∂γ
∂GR(xt,γ)

∂γ

′

and assumption 9. The equality in probability limit follows from assump-

tions 8 and 10 and the analysis of Amemiya (1985, pp. 132-133). (7) follows

from assumption 8.

To prove a CLT for ∂qt

∂γ
we have the following. From assumptions ∂qt

∂γ

has finite first and second moment. From assumption and Assumption since

yt and xt are L2-NED processes of size −1/2 and ∂g(.,.)
∂γ

satisfies the relevant

Lipschitz condition then ∂qt

∂γ
is, suitably normalised, a L2-NED process of size

−1/2. This implies from theorem 24.6 of Davidson (1994), and the mixing

properties of εt and vt, that
∂qt

∂γ
follows a CLT as defined above, where the

normalising constants of that theorem are taken to be given by expression

(24.29) of Davidson (1994).

To prove a UWLLN for qt and
∂2qt

∂γ∂γ

′
we use results from Andrews (1987).

For the first part of the UWLLN to hold we need existence and continuity

of the average expectation. By assumption this holds. To satisfy the second

part of the definition we use the main theorem of Andrews (1987). We need

the following to hold: (i) PWLLNs for (a) supγ∈B(γ,ρ)qt(γ) (b) infγ∈B(γ,ρ)qt(γ)

(c) supγ∈B(γ,ρ)
∂qt(γ)
∂γ

and (d) infγ∈B(γ,ρ)
∂qt(γ)
∂γ

for all γ and all sufficiently small

ρ, and (ii) Assumption A5 of Andrews (1987). Assumption A5 of Andrews

(1987) holds by assumption. The PWLLNs are obtained as follows: By as-
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sumption and Theorem of Davidson (1994) we get that the functions (a)-(d)

are L2-NED processes. Assumption gives L2 boundedness for these func-

tions. These two facts are used to satisfy the conditions of Theorem 19.11 of

Davidson (1994) which results in the required PWLLNs. No size restrictions

on the NED processes are needed.

To prove that, for R1 < R0, lim inft→∞ [T−1E(QT,R2)− T−1E(QT,R1)] we

have that for x ∈ R where R is a set with non-zero Lebesque measure,

|GR1(x,γ)− f(x)| > δ for some constant δ. Otherwise R1 ≥ R0. From this

and the uncorrelatedness of the conditional mean and the error sequence, the

result easily follows.

To prove that, for R1 > R0, QT,R2 − QT,R1 = Op(1) we can use a first

order Taylor expansion of both QT,R1 and QT,R2 around the true value of γ,

γ0 and since the elements of ∂qt

∂γ
follow a CLT and (γ̂ − γ0) = Op(T

−1/2)

for both QT,R1 and QT,R2 from standard NLLS analysis (or alternative see

theorem 3) below), the result follows.

All the above together with the conditions given on the penalty functions

in the statement of the theorem imply that the conditions of Proposition 4.2

(a) and (c) of Sin and White (1996) hold implying consistency of selection

by information criteria.

QED

Proof of Theorem 3

Without loss of generality we can reparametrize the neural network model

such that it is given by

yt = α̃+
n∑
t=1

β̃ig̃(xt, δi) + εt
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where

g̃(xt, δi) = g(xt, δi)− 1/T
T∑
t=1

g(xt, δi)

The test statistic is given by

B(T )(z) =
1

σ̂
√
T

[Tz]∑
t=1

ε̂
(T )
t

Now

ε̂
(T )
t = εt − [G̃(xt, ˆ̃γ)− G̃(xt, γ̃

0)]

where

G̃(xt, γ̃) = α̃+
R∑
t=1

β̃ig̃(xt, δi)

γ̃ = (α̃, β̃1, . . . , β̃n, δ1, . . . , δn). A first order Taylor expansion of G̃(., .)

around γ̃0 gives

G̃(xt, ˆ̃γ) = G̃(xt, γ̃
0) + Gγ̃

t (γ̃
0)(ˆ̃γ − γ̃0) +Op((ˆ̃γ − γ̃0)′(ˆ̃γ − γ̃0))

or

G̃(xt, ˆ̃γ)− G̃(xt, γ̃
0) = Gγ̃

t (γ̃
0)(ˆ̃γ − γ̃0) +Op(T

−1)

where Gγ̃
t (γ̃

0) ≡ ∂G̃(xt,γ̃)
∂γ̃

∣∣∣
γ̃=γ̃0

and ˆ̃γ is the NLLS estimate of γ̃0. From the

results of Proposition 4.1 of Sin and White (1996) which follow from the

assumptions made in Theorem 2, (ˆ̃γ − γ̃0) = Op(T
−1/2). So

1√
T

[Tz]∑
t=1

ε̂
(T )
t =

1√
T

[Tz]∑
t=1

εt − 1√
T

[Tz]∑
t=1

Gγ̃
t (γ̃

0)(ˆ̃γ − γ̃0)

where we have disregarded op(T
−1/2) terms. We want to prove that

plimT→∞sup0≤z≤1

∣∣∣∣∣∣1/
√
T


 [Tz]∑

t=1

Gγ̃
t (γ̃

0)(ˆ̃γ − γ̃0)− z
T∑
t=1

εt




∣∣∣∣∣∣ = 0 (7)

If this holds then the test statistic may be written as

1/
√
T


 [Tz]∑

t=1

εt − z
T∑
t=1

εt



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which by standard results converges to a normalised Brownian bridge. Now

to prove (7) we have that

1/
√
T

[Tz]∑
t=1

Gγ̃
t (γ̃

0)(ˆ̃γ − γ̃0) =

(
1/T

Tz∑
t=1

Gγ̃
t (γ̃

0)

)√
T (ˆ̃γ − γ̃0)

Now by the reparametrisation of the model we know that

plimT→∞1/T
T∑
t=1

Gγ̃
t (γ̃

0) = (1, 0, . . . , 0) ≡ c′ (8)

It follows that

plimT→∞1/T
Tz∑
t=1

Gγ̃
t (γ̃

0) = (z, 0, . . . , 0)

Also we have that by a first order Taylor expansion of the first derivative of

the NLLS obective function

∂QT

∂γ̃

∣∣∣∣
γ̃=ˆ̃γ

=
∂QT

∂γ̃

∣∣∣∣
γ̃=γ̃0

+
∂2QT

∂γ̃∂γ̃ ′

∣∣∣∣
γ̃=γ̃0

(ˆ̃γ − γ̃0) +Op((ˆ̃γ − γ̃0)′(ˆ̃γ − γ̃0))

or, by assumptions 8, 9 and 10 and by the definition and consistency of the

NLLS estimator

√
T (ˆ̃γ − γ̃0) =

[
1/T

T∑
t=1

Gγ̃
t (γ̃

0)′Gγ̃
t (γ̃

0)

]−1

1/
√
T

T∑
t=1

Gγ̃
t (γ̃

0)′εt =

R−1
T 1/

√
T

T∑
t=1

Gγ̃
t (γ̃

0)′εt

Partitioning the above expression gives

√
T (ˆ̃γ − γ̃0) = 1/

√
T

(
1 0
0 R∗

T

)−1 ( ∑T
t=1 εt∑T

t=1 G∗′
t εt

)

where the starred entries indicate partitioning of the relevant matrix and vec-

tor. Multiplying out the expression and using (8), gives the required result

and proves the theorem.
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QED

Proof of Theorem 4

The neural network model becomes

yT,t = αt,T +
R∑
i=1

βT,t,ig(xt, δT,t,i) + εt

First note that the formal analysis that follows assumes that the RHS vari-

ables do not form a triangular array like the LHS variable and are therefore

exogenous. However we show that this assumption which excludes the pres-

ence of lagged dependent variables is of no consequence for the analysis and

is adopted to simplify the notation. We first derive the first order asymp-

totic relationship between the NLLS estimator under the null hypothesis and

the NLLS estimator under the local alternative hypotheses. Under the null

hypothesis we have shown in Theorem 3 that

(ˆ̃γ − γ̃0) =

(
T∑
t=1

Gγ̃
t (γ̃

0)′Gγ̃
t (γ̃

0)

)−1 T∑
t=1

Gγ̃
t (γ̃

0)′εt

Denote the NLLS estimator under the local alternative by ¯̃γ. We derive the

probability limit of
√
T (¯̃γ − γ̃). By a similar Taylor expansion of the first

derivative of the NLLS objective function around γ̃0 to the one carried out

in the proof of the previous theorem we have that

(¯̃γ − γ̃0) =

(
T∑
t=1

Gγ̃
t (γ̃

0)′Gγ̃
t (γ̃

0)

)−1 T∑
t=1

Gγ̃
t (γ̃

0)′(yt − G̃(xt, γ̃
0)) =

(
T∑
t=1

Gγ̃
t (γ̃

0)′Gγ̃
t (γ̃

0)

)−1 T∑
t=1

Gγ̃
t (γ̃

0)′(εt + G̃(xt, γ̃t,T )− G̃(xt, γ̃
0))

By a first order Taylor expansion of G̃(., .) around γ̃0 we have that G̃(xt, γ̃t,T )−
G̃(xt, γ̃

0) is equal to 1/
√
TGγ̃

t (γ̃
0)h(t/T ). Thus,

(¯̃γ − ˆ̃γ) =

(
T∑
t=1

Gγ̃
t (γ̃

0)′Gγ̃
t (γ̃

0)

)−1

1/
√
T

T∑
t=1

Gγ̃
t (γ̃

0)′Gγ̃
t (γ̃

0)h(t/T )
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Now consider the residuals of the NLLS estimation under the local alternative

hypotheses. We have

yt,T − G̃(xt, ¯̃γ) = εt + G̃(xt, γ̃t,T )− G̃(xt, ¯̃γ)

= εt+G̃(xt, γ̃
0)−G̃(xt, ˆ̃γ)+(G̃(xt, γ̃t,T )−G̃(xt, γ̃

0))−(G̃(xt, ¯̃γ)−G̃(xt, ˆ̃γ))

The first three terms of the above expression are exactly the same as those

appearing in the same expansion under the null hypothesis. Therefore, we

examine the fourth and fifth terms. We start with the fifth term. A first

order Taylor expansion of G̃(., .) around ˆ̃γ shows that G̃(xt, ¯̃γ)− G̃(xt, ˆ̃γ) is

equal to Gγ̃
t (γ̃

0)(¯̃γ − ˆ̃γ) From the above analysis we know that this is equal

to

Gγ̃
t (γ̃

0)

(
T∑
t=1

Gγ̃
t (γ̃

0)′Gγ̃
t (γ̃

0)

)−1

1/
√
T

T∑
t=1

Gγ̃
t (γ̃

0)′Gγ̃
t (γ̃

0)h(t/T )

We also have from above that

G̃(xt, γ̃t,T )− G̃(xt, γ̃
0) = 1/

√
TGγ̃

t (γ̃
0)h(t/T )

Combining the above results gives that

yt,T − G̃(xt, ¯̃γ) = ε̂+ 1/
√
TGγ̃

t (γ̃
0)h(t/T )−

Gγ̃
t (γ̃

0)

(
T∑
t=1

Gγ̃
t (γ̃

0)′Gγ̃
t (γ̃

0)

)−1

1/
√
T

T∑
t=1

Gγ̃
t (γ̃

0)′Gγ̃
t (γ̃

0)h(t/T )

This implies that

1/
√
T

[Tz]∑
t=1

(yt,T − G̃(xt, ¯̃γ)) =
1√
T

[Tz]∑
t=1

ût +
1

T

[Tz]∑
t=1

Gγ̃
t (γ̃

0)h(t/T )− (9)

1

T

[Tz]∑
t=1

Gγ̃
t (γ̃

0)


(

1/T
T∑
t=1

Gγ̃
t (γ̃

0)′Gγ̃
t (γ̃

0)

)−1

1/T
T∑
t=1

Gγ̃
t (γ̃

0)′Gγ̃
t (γ̃

0)h(t/T )




(10)
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The first term tends to a Brownian bridge by Theorem 1. By the FCLT we

have for the second term

1

T

[Tz]∑
t=1

Gγ̃
t (γ̃

0)h(t/T ) ⇒
∫ z

0

c′h(u)du

uniformly in z. Finally, for the third term we firstly have(
1/T

T∑
t=1

Gγ̃
t (γ̃

0)′Gγ̃
t (γ̃

0)

)−1

1/T
T∑
t=1

Gγ̃
t (γ̃

0)′Gγ̃
t (γ̃

0)h(t/T ) ⇒ R−1R

∫ 1

0

h(u)du

Secondly 1/T
∑[Tz]

t=1 Gγ̃
t (γ̃

0)
p→ c′z. And so

1

T

[Tz]∑
t=1

Gγ̃
t (γ̃

0)


(

1/T
T∑
t=1

Gγ̃
t (γ̃

0)′Gγ̃
t (γ̃

0)

)−1

1/T
T∑
t=1

Gγ̃
t (γ̃

0)′Gγ̃
t (γ̃

0)h(t/T )


 ⇒

c′z
∫ 1

0

h(u)du

Combining these results leads to the stated result. The proof of the theorem

is completed if we show that the conclusion of the theorem is not affected

if we allow for lagged dependent variables in the RHS variables entering the

neural network. For that it is sufficient to show that

T∑
t=1

(yt,T − yt)2 = Op(1) (11)

If this condition holds then the previous analysis is easily seen to hold when

xt,T which contains lagged values of yt,T is replaced for xt. Such a replace-

ment leads to expression (9) with extra terms involving xt,T − xt which are

asymptotically negligible if (11) holds. For any T the models generating yt,T

and yt differ by the use of γ̃0 and γ̃t,T respectively. By the boundedness of

h(.), for some vector of constants d1 γ̃0 − γ̃t,T = d1/
√
T . We now examine

the infinite MA representation of yt and yt,T . We analyse the case with no ex-

ogenous variables only, to simplify analysis. Introducing exogenous variables

does not alter the essence of the argument, since the infinite MA representa-

tion would be in terms of both εt and the exogenous variables but otherwise
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the analysis would be the same. We have that γ̃0 − γ̃t,T = d1/
√
T . We de-

note the two sets of MA coefficients by ci and cT,i, i = 1, . . . , respectively. By

assumptions 12 and 13, |ci − cT,i| ≤ dT,i/
√
T for some sequence of constants

dT,i ∼ ui, u ∈ (0, 1). We now examine yt − yt,T

yt − yt,T =
T∑
t=1

ciεt−i −
T∑
t=1

cT,iεt−i =
T∑
t=1

d∗T,ic
∗
i,T εt−i

where the sequence c∗T,i ∼ ui, u ∈ (0, 1), and the sequence d∗T,i is made up of

O(T−1/2) constants. By the Markov inequality we can show that the square

of the above term is Op(T
−1) if its variance is O(T−1). We have that the vari-

ance of
∑T

t=1 d
∗
T,ic

∗
i εt−i is smaller than the variance of maxi d

∗
T,i

∑T
t=1 c

∗
i εt−i

which by the infinite MA representation has variance which is O(T−1). From

this the required result follows upon summation.

QED
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Table 1: Rejection Probabilities of structural break tests for Experi-
ments 1-5

Test Experiment
Sample Size Sample Size Sample Size Sample Size Sample Size
100 200 100 200 100 200 100 200 100 200

OC 0.022 0.032 0.024 0.037 0.014 0.026 0.017 0.041 0.022 0.033
RC 0.066 0.091 0.053 0.079 0.112 0.136 0.068 0.086 0.043 0.053

RBFACOC 0.019 0.028 0.024 0.037 0.005 0.020 0.013 0.031 0.018 0.031
RBFBCOC 0.024 0.049 0.024 0.035 0.008 0.023 0.017 0.038 0.022 0.032
RBFHCOC 0.022 0.037 0.024 0.036 0.006 0.022 0.015 0.034 0.020 0.030
LOGACOC 0.023 0.031 0.024 0.039 0.006 0.016 0.013 0.032 0.022 0.038
LOGBCOC 0.023 0.029 0.021 0.036 0.006 0.013 0.011 0.035 0.019 0.035
LOGHCOC 0.024 0.032 0.025 0.036 0.007 0.019 0.011 0.034 0.018 0.035
PAPACOC 0.019 0.030 0.021 0.034 0.006 0.015 0.011 0.031 0.019 0.032
PAPBCOC 0.022 0.031 0.020 0.035 0.009 0.021 0.012 0.035 0.019 0.030
PAPHCOC 0.020 0.030 0.020 0.036 0.008 0.018 0.012 0.033 0.018 0.032
PAP03OC 0.019 0.031 0.022 0.034 0.002 0.012 0.010 0.032 0.016 0.033
RBFACRC 0.049 0.050 0.051 0.065 0.041 0.043 0.054 0.058 0.043 0.044
RBFBCRC 0.066 0.073 0.054 0.071 0.052 0.050 0.061 0.077 0.047 0.065
RBFHCRC 0.060 0.064 0.052 0.070 0.050 0.046 0.058 0.075 0.047 0.056
LOGACRC 0.050 0.077 0.041 0.053 0.077 0.083 0.045 0.064 0.040 0.052
LOGBCRC 0.052 0.080 0.045 0.062 0.079 0.090 0.055 0.068 0.043 0.057
LOGHCRC 0.052 0.079 0.047 0.062 0.073 0.093 0.048 0.072 0.043 0.050
PAPACRC 0.049 0.074 0.048 0.056 0.075 0.078 0.044 0.063 0.039 0.052
PAPBCRC 0.050 0.075 0.045 0.063 0.074 0.082 0.045 0.066 0.043 0.059
PAPHCRC 0.050 0.075 0.045 0.058 0.073 0.079 0.044 0.067 0.042 0.054
PAP03RC 0.043 0.078 0.039 0.059 0.078 0.077 0.039 0.065 0.035 0.055
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Table 2: Rejection Probabilities of structural break tests for Experi-
ments 6-8

Test Experiment
Sample Size Sample Size Sample Size
100 200 100 200 100 200

OC 0.324 0.754 0.479 0.901 0.116 0.426
RC 0.198 0.473 0.134 0.274 0.077 0.117

RBFACOC 0.179 0.598 0.411 0.837 0.120 0.473
RBFBCOC 0.197 0.622 0.443 0.852 0.138 0.484
RBFHCOC 0.190 0.613 0.429 0.848 0.131 0.478
LOGACOC 0.179 0.601 0.408 0.831 0.129 0.496
LOGBCOC 0.194 0.607 0.422 0.845 0.141 0.498
LOGHCOC 0.192 0.600 0.421 0.837 0.135 0.503
PAPACOC 0.176 0.591 0.401 0.829 0.122 0.495
PAPBCOC 0.185 0.603 0.425 0.851 0.137 0.497
PAPHCOC 0.183 0.597 0.414 0.838 0.128 0.496
PAP03OC 0.176 0.600 0.401 0.839 0.123 0.498
RBFACRC 0.291 0.533 0.169 0.323 0.047 0.122
RBFBCRC 0.323 0.592 0.186 0.394 0.070 0.132
RBFHCRC 0.313 0.575 0.179 0.361 0.066 0.128
LOGACRC 0.220 0.471 0.150 0.321 0.062 0.114
LOGBCRC 0.250 0.546 0.174 0.389 0.071 0.138
LOGHCRC 0.245 0.514 0.167 0.367 0.065 0.132
PAPACRC 0.231 0.523 0.162 0.371 0.060 0.132
PAPBCRC 0.248 0.540 0.174 0.389 0.072 0.138
PAPHCRC 0.239 0.530 0.168 0.376 0.065 0.134
PAP03RC 0.197 0.499 0.149 0.363 0.064 0.136
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Table 3: Rejection Probabilities of structural break tests for Experi-
ments 9-11

Test Experiment
Sample Size Sample Size Sample Size
100 200 100 200 100 200

OC 0.540 0.940 0.722 0.993 0.230 0.691
RC 0.256 0.602 0.148 0.401 0.078 0.129

RBFACOC 0.363 0.871 0.657 0.981 0.276 0.762
RBFBCOC 0.392 0.882 0.679 0.986 0.287 0.768
RBFHCOC 0.380 0.878 0.671 0.984 0.283 0.767
LOGACOC 0.378 0.873 0.669 0.979 0.311 0.776
LOGBCOC 0.391 0.883 0.680 0.981 0.318 0.792
LOGHCOC 0.386 0.878 0.673 0.983 0.308 0.789
PAPACOC 0.368 0.876 0.659 0.981 0.294 0.778
PAPBCOC 0.385 0.881 0.676 0.983 0.304 0.788
PAPHCOC 0.376 0.879 0.666 0.983 0.300 0.785
PAP03OC 0.358 0.882 0.661 0.983 0.287 0.780
RBFACRC 0.405 0.730 0.243 0.546 0.079 0.140
RBFBCRC 0.452 0.808 0.283 0.618 0.090 0.168
RBFHCRC 0.438 0.789 0.275 0.599 0.080 0.154
LOGACRC 0.322 0.653 0.231 0.522 0.091 0.165
LOGBCRC 0.332 0.725 0.255 0.593 0.093 0.190
LOGHCRC 0.329 0.711 0.244 0.583 0.103 0.186
PAPACRC 0.322 0.708 0.240 0.588 0.092 0.182
PAPBCRC 0.337 0.737 0.242 0.602 0.092 0.198
PAPHCRC 0.331 0.728 0.245 0.597 0.093 0.188
PAP03RC 0.298 0.674 0.222 0.587 0.078 0.186
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Table 4: Rejection Probabilities of structural break tests for Experi-
ments 12-14

Test Experiment
Sample Size Sample Size Sample Size
100 200 100 200 100 200

OC 0.418 0.852 0.584 0.949 0.145 0.556
RC 0.270 0.533 0.175 0.341 0.075 0.122

RBFACOC 0.231 0.709 0.503 0.894 0.189 0.611
RBFBCOC 0.259 0.734 0.526 0.907 0.209 0.633
RBFHCOC 0.249 0.728 0.517 0.903 0.194 0.622
LOGACOC 0.239 0.712 0.509 0.904 0.199 0.640
LOGBCOC 0.253 0.728 0.525 0.907 0.201 0.654
LOGHCOC 0.249 0.725 0.517 0.909 0.195 0.648
PAPACOC 0.233 0.716 0.489 0.896 0.179 0.643
PAPBCOC 0.245 0.727 0.519 0.909 0.187 0.656
PAPHCOC 0.238 0.720 0.499 0.902 0.177 0.644
PAP03OC 0.237 0.720 0.495 0.904 0.179 0.644
RBFACRC 0.348 0.594 0.221 0.425 0.076 0.128
RBFBCRC 0.396 0.665 0.237 0.480 0.092 0.153
RBFHCRC 0.383 0.648 0.233 0.464 0.084 0.146
LOGACRC 0.282 0.575 0.193 0.420 0.076 0.140
LOGBCRC 0.313 0.642 0.225 0.483 0.078 0.167
LOGHCRC 0.307 0.628 0.218 0.469 0.083 0.157
PAPACRC 0.292 0.607 0.211 0.467 0.082 0.155
PAPBCRC 0.314 0.640 0.223 0.485 0.080 0.162
PAPHCRC 0.303 0.627 0.214 0.475 0.079 0.165
PAP03RC 0.252 0.585 0.200 0.451 0.077 0.153
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Table 5: Rejection Probabilities of structural break tests for Experi-
ments 15-17

Test Experiment
Sample Size Sample Size Sample Size
100 200 100 200 100 200

OC 0.563 0.893 0.645 0.940 0.201 0.515
RC 0.277 0.496 0.192 0.384 0.088 0.153

RBFACOC 0.187 0.570 0.384 0.726 0.157 0.406
RBFBCOC 0.218 0.585 0.445 0.735 0.192 0.412
RBFHCOC 0.204 0.568 0.408 0.729 0.169 0.408
LOGACOC 0.223 0.669 0.502 0.831 0.200 0.518
LOGBCOC 0.249 0.705 0.546 0.842 0.224 0.534
LOGHCOC 0.238 0.689 0.526 0.830 0.208 0.533
LOGNSOC 0.223 0.638 0.488 0.815 0.174 0.488
PAPACOC 0.219 0.661 0.495 0.839 0.191 0.512
PAPBCOC 0.260 0.710 0.534 0.850 0.215 0.549
PAPHCOC 0.232 0.690 0.513 0.841 0.201 0.525
PAP03OC 0.227 0.718 0.491 0.830 0.176 0.493
RBFACRC 0.346 0.428 0.206 0.294 0.065 0.095
RBFBCRC 0.442 0.608 0.293 0.408 0.095 0.123
RBFHCRC 0.399 0.528 0.244 0.344 0.075 0.109
LOGACRC 0.239 0.383 0.175 0.344 0.066 0.123
LOGBCRC 0.276 0.502 0.202 0.401 0.069 0.134
LOGHCRC 0.261 0.458 0.192 0.383 0.068 0.136
LOGNSRC 0.243 0.419 0.193 0.341 0.062 0.138
PAPACRC 0.253 0.488 0.190 0.391 0.068 0.122
PAPBCRC 0.271 0.510 0.195 0.402 0.067 0.131
PAPHCRC 0.262 0.500 0.191 0.398 0.068 0.128
PAP03RC 0.240 0.480 0.193 0.387 0.062 0.125
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