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Abstract

The problem of structural change justifiably attracts considerable attention in
econometrics. A number of different paradigms have been adopted ranging from struc-
tural breaks which are sudden and rare to time varying coefficient models which exhibit
structural change more frequently and continuously. This paper is concerned with para-
metric econometric models whose coefficients change deterministically and smoothly
over time. In particular we provide a new estimator for unconditional time varying
variances in regression models. A small Monte Carlo study indicates that the method
works reasonably well for moderately large sample sizes.
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1 Introduction

The investigation of structural change in econometric models has been assuming increasing

importance in the literature over the past couple of decades. This focus is not surprising.

Assuming wrongly that the structure of a model remains fixed over time, has very significant

and adverse implications. The first obvious implication is inconsistency of the parameter es-

timates. A distinct, yet related, implication is the fact that structural change chance is likely

to be responsible for most major forecast failures of time series models.

As a result a huge literature on modelling structural change has emerged. Most of the

work assumes that structural changes in parametric models occur rarely and are abrupt.

Another more recent strand of the literature takes a different approach. In this approach

the coefficients of parametric models are assumed to evolve over time. To achieve this the
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parameters are assumed to be stochastic processes leading to stochastic time varying co-

efficient (STVC) models. Such models bear resemblance to simple nonlinear econometric

models such as bilinear models (see Tong (1990)). STVC models have been used recently in

applied macroeconometric work by, e.g., Cogley and Sargent (2002), to model the evolution

of macroeconomic variables such as US inflation in the post WWII era. In this case coeffi-

cients have been assumed to evolve as random walks over time.

Yet another strand of the literature assumes that coefficients change but in a smooth

deterministic way. Such modelling attempts have a long pedigree in statistics starting with

the work of Priestley (1965). This paper suggested that processes may have time varying

spectral densities which change slowly over time. The context of this work is nonparametric.

This work has more recently been followed up by Dahlhaus (1996). A parametric alterna-

tive to this approach has been pursued by Robinson (1989) for linear regression models and

Robinson (1991) for nonlinear parametric models. Recently, Orbe, Ferreira, and Rodriguez-

Poo (2005) extended these results to include time varying seasonal effects. We will refer to

such parametric models as deterministic time varying coefficient (DTVC) models. A disad-

vantage of such an approach is that the coefficient change cannot be modelled or, for that

matter, forecast. Both of these are theoretically possible with STVC. However, an important

assumption underlying DTVC is that coefficients change slowly. As a result forecasting may

be carried out by assuming that the coefficients remain at their end-of-observed-sample value.

In the existing literature on DTVC models, the focus has been primarily on estimating re-

gression coefficients. However, the question of whether the variance of the error term changes

over time is perhaps equally relevant. As mentioned above, questions such as the evolution

of inflation and its variance are of direct interest to macroeconomists and policymakers. This

paper addresses this estimation problem. The note is structured as follows: Section 2 dis-

cusses the theoretical framework and proposes a new estimator. Section 3 presents a Monte

Carlo study. Finally, Section 4 concludes.

2 Theory

Let the model of interest be given by

yt = β(t)′xt + ut (1)

where yt and xt are the scalar dependent and k-dimensional explanatory variables respec-

tively. ut is given by σ(t)vt. The following assumptions provide information on the detailed
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specification of the above model:

Assumption 1 β(t) = βt/T where each element of βτ , βi,τ , i = 1, . . . , k, τ ∈ (0, 1), is

continuous and twice differentiable on (0, 1). σ(t)2 = σ2
t/T where σ2

τ , τ ∈ (0, 1), is continuous

and twice differentiable on (0, 1).

Assumption 2 xt is an α-mixing sequence with size −4/3 and finite 8-th moments. E(xisxjt) =

mij,s,t = mij(s/T, t/T ) + O(T−1) where mij(., .) is a twice differentiable function of both its

arguments.

Assumption 3 vt is a stationary (0, 1) martingale difference sequence with finite 4-th mo-

ments which is independent of xt at all leads and lags.

Assumption 4 The function Kh(.) is a second order kernel with compact support [−1, 1]

and absolutely integrable Fourier transform.

Assumption 1 is a crucial assumption. It specifies both β(t) and σ2(t) to be smooth

deterministic functions of time. It is interesting to note that they depend not only on the

point in time t but also on the sample size T . This is necessary since in order to estimate

consistently a particular parameter one needs the sample size that relates to that parame-

ter to tend to infinity. This is achieved in this context by allowing an increasing number of

neighboring observations to be informative about β and σ2 at time t. In other words we have

to assume that as the sample size grows the functions βτ and στ stretch to cover the whole

period of the sample. This setup has precedents in the statistical literature. For example,

the concept of slowly varying processes of Priestley (1965) forms an early instance of similar

ideas. Assumptions 2 and 3 are standard mixing and moment conditions for the explanatory

variables and the remainder of the error term. It is important to note that xt is also allowed

to be nonstationary. Finally, assumption 4 relates to the kernel function that will be used

for estimation.

This specification for the variance of the error term, is clearly related, yet distinct, from

ARCH type models. Obviously, ARCH models specify the conditional variance of ut whereas

our setup focuses on the unconditional variance. One implication is that our specification

has nothing to say about the generating mechanism of στ . This has advantages and disad-

vantages. One advantage over parametric conditional variance specifications is that these

specifications may be wrong whereas our approach which is nonparametric is less likely to

be so, as mentioned by Robinson (1991) for regression models. Another implication is that
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parametric conditional specifications may possibly imply stationarity for yt whereas the un-

conditional specification we suggest is nonstationary unless σ2(t) = σ2.

Following Robinson (1989) and Orbe, Ferreira, and Rodriguez-Poo (2005), we propose

the following estimator for βτ .

β̂τ =

(
T∑

t=1

Kh
t,τxtx

′
t

)−1 (
T∑

t=1

Kh
t,τxtyt

)
(2)

where Kh
t,τ = (Th)−1K((τ − t)/Th). This estimator bears close resemblance to the standard

OLS estimator and it is easy to see that it is the closed form solution of the following

optimisation

min
β

T∑
t=1

Kh
t,τ (yt − β(t)′xt)

2 (3)

Following estimation of βτ we propose the following simple estimator for σ2
τ .

σ̂2
τ =

∑T
t=1 Kh

t,τ û
2
t∑T

t=1 Kh
t,τ

=
T∑

t=1

K̃h
t,τ û

2
t (4)

where

ût = yt − β̂(t)′xt (5)

and β̂(t) = β̂t/T . Here, we have assumed that the h used in (2) is the same as that used in

(4). However, they clearly do not need to be the same. Let us denote the parameter h used

in (2) by hβ whereas the parameter h used in (4) is denoted by hσ. In fact for the theorem

that follows we require hβ and hσ to be different. Now, denoting the Euclidean matrix norm

by ||.||, we can show the following theorem

Theorem 1 Under assumptions 1-4 and if

hσ = o(1), hβ = o(1) (6)

then

σ̂2
τ − σ2

τ = op(1) (7)

If further the following two conditions hold

hβ = O(T−(1−aβ)), hσ = O(T−(1−aσ)) where 4/5 > aσ > 2/3, 1 > aβ > 4/5 and aσ < 2aβ−1

(8)

infτ

∥∥∥∥∥
T∑

t=1

K
hβ

t,τ xtx
′
t

∥∥∥∥∥ > 0, ∀T (9)

4



then, it follows that

V −1/2
τ

(
σ̂2

τ − E(σ̂2
τ )

) d→ N(0, 1) (10)

where Vτ = limT→∞
∑T

t=1

(
K̃hσ

t,τ

)2

σ2(t) = O(T−1h−1
σ ) = O(T−aσ)

Proof. We will prove (10). In the course of the proof it will become obvious that (7) is

obtained without using (8)-(9). As a first step we need to explore the properties of β̂. We

show that

β̂τ − βτ = Op(V
1/2
τ ) (11)

where V 0
τ = limT→∞

∑T
t=1

(
K̃

hβ

t,τ

)2

= O(T−aβ). Orbe, Ferreira, and Rodriguez-Poo (2005)

discuss the asymptotic properties of β̂τ but only under stationarity of ut and so (11) is also

of independent interest. For this result we retrace the proof of Theorem 1 of Orbe, Ferreira,

and Rodriguez-Poo (2005). It is the case that the only point in the proof where the use of

assumptions 1 and 3 relating to ut make a difference is in expression (A.7) of Orbe, Ferreira,

and Rodriguez-Poo (2005). This expression is made up of terms of the form E(xitxjtu
2
t ). In

the case of Orbe, Ferreira, and Rodriguez-Poo (2005), and under an additional martingale

difference assumption for vt, these terms take the form mijτσ
2 whereas in our case they take

the form mijτσ
2
τ . Using this, the result of Theorem 1 of Orbe, Ferreira, and Rodriguez-Poo

(2005) goes through establishing (11). Next we examine

T∑
t=1

K̃hσ
t,τ u2

t −
T∑

t=1

K̃hσ
t,τ û2

t =
T∑

t=1

K̃hσ
t,τ ût(ût − ut)−

T∑
t=1

K̃hσ
t,τ ût(ut − ût) ≤ (12)

2 max
t

(β̂t − βt)
′

T∑
t=1

K̃hσ
t,τ xtut +

(
max

t
(β̂t − βt)

′
)(

max
t

(β̂t − βt)
) T∑

t=1

K̃hσ
t,τ x′txt (13)

We consider the framework of fixed design regression of Fan (1990). Let κt = xtut and

δt = x′txt. Then,
∑T

t=1 K̃hσ
t,τ xtut and

∑T
t=1 K̃hσ

t,τ x′txt are simply the estimators of E(κt|t)
and E(δt|t) in the fixed regressor regressions given by κt = µt + νt and δt = ηt + θt where

µt = E(κt|t) = 0, νt = xtut − E(κt|t), ηt = E(δt|t) = mt,t, θt = x′txt − E(δt|t) and

mt,t =
∑k

j=1 mjj,t,t. We first examine maxt(β̂t − βt).

max
t

(β̂t − βt) ≤ C max
τ

T∑
t=1

K̃
hβ

t,τ xtut ≤ C
(
T aβ max

τ
K̃

hβ

t,τ

) (
T−aβ

T∑
t=1

xtut

)
= (14)

Op(T
−aβ+1/2) = op(T

−1/2h−1/2
σ )

for some constant C > 0, by (8), (9), example 3.1 of Fan (1990) and Theorem 2.6 of Fan

(1990). Further, by an application of Theorem 2.3 of Fan (1990) on the regression of δt on

t, we get that (13) is op(T
−1/2h

−1/2
σ ). We, then, simply need to show that

V −1/2
τ

(
σ̄2

τ − E(σ̄2
τ )

) d→ N(0, 1) (15)
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where σ̄2
τ =

∑T
t=1 K̃hσ

t,τ u2
t . But, defining ξt = u2

t , σ̄2
τ is again an estimator of E(ξt|t) in the

fixed regressor regression given by ξt = ψt+ζt where ψt = E(ξt|t) = σ(t)2 and ζt = u2
t−σ(t)2.

Then, by Theorem 3.1 of Fan (1990) and under assumptions 1, 3, 4 and (8), (15) follows.

Remark 1 Condition (9) is a positive defineteness regularity condition resembling standard

regularity conditions in regression analysis.

Remark 2 The conditions of Theorem 1 are sufficient for normality but we have not inves-

tigated whether they are necessary. Results from the standard nonparametric literature such

as those obtained by, e.g., Ziegelmann (2002) suggest that a sharper normality result may

be obtainable in our case which allows for using the same bandwidth for βτ and σ2
τ . Our

result is based on deriving a uniform rate of convergence as in (14). It is possible that an

alternative line of proof can strengthen the result of Theorem 1.

2.1 Choice of h

An important question relating to the estimation of σ2
τ concerns the choice of h. For hβ

we suggest using a leave-one-out penalised residual sum of squares objective function. In

particular hβ can be determined by minimising numerically

T∑
t=1

(
yt − β̃(t)′xt

)2

pβ(hβ) (16)

where

pβ(hβ) =

(
1− 1

T
√

2π

T∑
t=1

x′t

(
T∑

i=1

K
hβ

t,t/T xix
′
i

))−1

(17)

and

β̃(t) = β̃t/T =

(
T∑

i=1,i 6=t

K
hβ

i,i/T xix
′
i

)−1 (
T∑

i=1,i 6=t

K
hβ

i,i/T xiyi

)
(18)

For more details, see also Orbe, Ferreira, and Rodriguez-Poo (2005). Similarly, hσ can be

determined by minimising numerically

T∑
t=1

(
û2

t − σ̃2
t/T

)2
pσ(hσ) (19)

where, using the Rice criterion,

pσ(hσ) =

(
1− 2

Thσ

√
2π

)−1

(20)

and

σ̃2
t/T =

∑T
i=1,i 6=t K

hσ

i,i/T û2
i∑T

i=1,i6=t K
hσ

i,i/T

(21)
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Table 1: Average MSE for β̂τ and σ̂2
τ

nb/T 100 200 400

β̂τ

4 0.174 0.130 0.060
8 0.193 0.175 0.156
ns σ̂2

τ

3 0.647 0.355 0.194
6 0.714 0.581 0.388

3 Monte Carlo Study

3.1 Monte Carlo Setup

In this section we present a Monte Carlo study on the small sample properties of the new

estimator. We consider the following model.

yt = βtxt + ut (22)

where xt ∼ N(0, 1)

βt = sin
(nbπ

T

) (
1− t

T

)
(23)

and ut ∼ N(0, σ2
t ) where

σ2
t = sin

(nsπ

T

)
+ 2 (24)

T = 100, 200, 400. The parameters nb and ns control the rate at which the functions change

over time. We set nb = 4, 8 and ns = 3, 6. We set hβ and hσ using (16)-(21). The truncated

standard normal kernel is used throughout.

3.2 Monte Carlo Results

Results are reported in Table 1 and Figures 1-2. Table 1 reports the average MSE for β̂τ and

σ̂2
τ across all replications for the six experiments we consider. Figure 1 presents the average

σ̂2
τ across replications over time together with the true σ2

τ . The first column of panels for

Figure 1 present results for nb = 4 and ns = 3. The second column of panels present results

for nb = 8 and ns = 6. Results clearly indicate that performance of the estimator improves

with the number of observations and deteriorates with the speed at which the functions

change over time.
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4 Conclusion

Structural change is justifiably a major concern in econometric modelling. A number of

different paradigms have been adopted ranging from structural breaks which are sudden and

rare to time varying coefficient models which exhibit structural change more frequently and

continuously. This paper is concerned with parametric econometric models whose coefficients

and error variance change deterministically and smoothly over time.

In particular we provide and discuss the theoretical properties of an estimator for uncon-

ditional time varying variances in regression models. A small Monte Carlo study indicates

that the method works reasonably well for moderately large sample sizes.
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Figure 1: The first column of panels for Figure 1 present results for nb = 4 and ns = 3. The
second column of panels present results for nb = 8 and ns = 6. For the three rows of panels,
T = 100, 200, 400 respectively.
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