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Abstract

Panel datasets have been increasingly used in economics to anal-
yse complex economic phenomena. One of the attractions of panel
datasets is the ability to use an extended dataset to obtain informa-
tion about parameters of interest which are assumed to have common
values across panel units. However, the assumption of poolability has
not been studied extensively beyond tests that determine whether a
given dataset is poolable. We propose an information criterion method
that enables the distinction of a set of series into a set of poolable se-
ries for which the hypothesis of a common parameter subvector cannot
be reject and a set of series for which the poolability hypothesis fails.
The method can be extended to analyse datasets with multiple clus-
ters of series with similar characteristics. We discuss the theoretical
properties of the method and investigate its small sample performance
in a Monte Carlo study.
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1 Introduction

Panel datasets have been used extensively in the econometric literature to

enable more accurate analysis of complex economic phenomena. However,

the validity of the assumption of poolability, i.e. the validity of the assump-

tion that panel units described by a given model have a common parameter

subvector for that model, has not received great attention in the literature.

Work in this area has concentrated on whether a given dataset is poolable

as a whole, i.e, whether the null hypothesis H0 : βj = β, j = 1, . . . , N holds,

where β is the assumed common parameter subvector of the N cross-sectional

units of the dataset. In that vein a common approach, discussed, in some

detail, in Baltagi (2001), is to use an extension of the Chow (1960) parameter

stability test on the pooled dataset. Other tests for this null hypothesis have

been developed by Ziemer and Wetzstein (1983) and Baltagi, Hidalgo, and

Li (1996).

However, if such tests reject the researcher is left with little idea of how

to proceed. In other words if we reject this null hypothesis we do not know

which series caused the rejection. It would be of some interest if a method

were available that would enable the distinction of the set of series into a

group of poolable and a group of nonpoolable series. Such methods seem

indeed possible and this paper is proposing one. Our method uses an in-

formation criterion search to distinguish between poolable and nonpoolable

series. If more than one series are actually poolable then the use of panel

methods to investigate the properties of this set of series is indeed more effi-

cient compared to univariate methods.

An alternative method that sorts poolable from nonpoolable series has

been recently suggested by Kapetanios (2003). That paper used a sequence
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of tests to achieve the sorting. The current methodology is useful in a more

general context. A possibility that has only recently been seriously consid-

ered in the econometric literature is the possibility that panel datasets are

in fact made up of smaller panels or clusters of series with the same charac-

teristics (see e.g. Paap, Frances, and Van Dijk (2003)). Methodologies such

as latent panel analysis may be useful but may face computational problems

for large datasets.

Our suggested methodology is relatively simple. For a given split of the

panel datasets into series that belong to a cluster and series that do not we

can easily estimate the cluster model and the individual models for the se-

ries that are assumed not to belong to the cluster, and get the value of an

information criterion. This defines a mapping from a given split of the panel

series to the value of an information criterion. Then, the chosen split is the

one that maximises an information criterion. This however poses a serious

computational problem. For a set of N series there exist 2N splits and there-

fore the problem quickly becomes impossible if all splits are to be evaluated.

To bypass this problem we suggest the use of nonstandard optimisation al-

gorithms. We suggest simulated annealing and genetic maximisation. These

are especially well suited to dealing with problems of optimising functions

whose domains are discrete sets. Further, we extend the analysis to splits

involving more than one clusters to which each series may belong. The prob-

lem is conceptually similar to that of one cluster.

Our approach is related to a large literature on clustering in other dis-

ciplines. We note the work by Cantu-Paz and Kamath (2003), who use

similar algorithms for determining decision trees in computer science, and by

Kakazawa, Shumway, and Taniguchi (1998) on clustering with an application

to seismology. In economics we note the work of Durlauf and Johnson (1995)
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on the classification of growth regressions and the work of Vahid (1999) on

an alternative clustering algorithm for panel datasets.

The paper is organised as follows: Section 2 sets out in detail the problem

we would like to address. Section 3 presents details on the maximisation

algorithms we consider. Section 4 presents a Monte Carlo exercise. Finally,

Section 5 concludes.

2 Theory

Let us consider the following panel data model

yj,t = αj + βjxj,t + εj,t, j = 1, . . . , N, t = 1, . . . , T. (1)

where xj,t is a k-dimensional vector of predetermined variables. This is a

standard panel data model where we do not need to specify the nature of the

cross sectional individual effect αj. Our discussion carries through both for

fixed and random effect models. We would like to investigate the restriction

βj = β, ∀j (2)

We now define the object we wish to estimate. To simplify the analysis

we assume that there exists one cluster of series with equal βj = β. For the

time being we will assume that there exists just one cluster of series with

equal βj and all the rest of the series have different βj. The more general

case is straightforward to deal with and will be discussed later. For every

series yj,t (and associated set of predetermined variables xj,t) define the bi-

nary object Ij which takes the value 0 if βj = β and 1 if βj 6= β. Then,

I = (I1, . . . , IN)′. We wish to estimate I0 where I0 denotes the true split.

We denote the estimate by Î.
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For every possible split of the dataset, I, one can obtain the value of an

information criterion. The generic form of such a criterion is usually

IC(I) = 2L(I)− CT (I) (3)

where L(I) is the log-likelihood of the model associated with the split I
and CT (I) is the penalty term associated with it. The three most usual

penalty terms are 2m̃, ln(T )m̃ and 2ln(ln(T ))m̃ associated with the Akaike,

Schwartz and Hannan-Quinn information criteria. m̃ is the number of free

parameters associated with the modelling of the whole dataset. Note that

m̃ depends on I. For example, if for some I there are N1 series belonging

to a cluster and N2 = N −N1 series which should be modelled individually,

then m̃ = (N2 + 1)k. It is straightforward under relatively weak conditions

on xj,t and εj,t, and using the results of say, Sin and White (1996), to show

that the split which maximises IC(.) will converge to I0 with probability

approaching one as T →∞ as long as CT (I) →∞ and CT (I)/T → 0.

More specifically, the assumptions needed for the results of Sin and White

(1996) to hold are mild and can be summarised as follows, assuming estima-

tion of the models is undertaken in the context of Gaussian or pseudo max-

imum likelihood: (i) Assumption A of Sin and White (1996) requires mea-

surability, continuity and twice differentiability of the log-likelihood function

and a standard identifiability assumption; (ii) A uniform weak law of large

numbers for the log-likelihood of each observation and its second derivative;

(iii) A central limit theorem for the first derivative of the log-likelihood of

each observation. (ii) and (iii) above can be obtained by assuming, e.g., that

xj,t are weakly dependent, say, near epoque dependent, processes and εj,t are

martingale difference processes. Hence, it is clear that consistency of model

selection as long as the penalty related conditions hold is straightforwardly

obtained.
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The problem is of course how to maximise the information criterion. For

small panels, evaluating the information criterion for all splits may be feasi-

ble. But as soon as N exceeds say 30 or 40 units, this strategy is bound to

fail. Since, I is a binary sequence there exist 2N splits to be evaluated. For

example, when N = 50 and optimistically assuming that 100000 splits can

be evaluated per second, we still need about 357 years for an evaluation of all

splits. We may alternatively treat this as a maximisation problem. Never-

theless, clearly standard maximisation algorithms do not apply. We resort to

two very powerful non-standard maximisation algorithm classes: simulated

annealing and genetic algorithms. These is discussed in the next section.

The above method can be extended to more complicated problems where

there may be more than one clusters. We next see how we can go about

formally casting the problem. Assume the presence of k clusters each with

a different value of β, say β(i), i = 1, . . . , k. Then, we define the object Ĩj

which takes the value i if the unit j belongs to the i-th cluster, i.e. βj =

β(i), or zero if the unit j does not belong to a cluster. Then, we want to

estimate Ĩ = (Ĩ1, . . . , ĨN)′. Once again we wish to maximise an information

criterion. Note that the number of splits now is given by (k + 1)N . Hence,

the optimisation problem is even more difficult. The above assumes that we

know the number of clusters. This may be considered restrictive. An obvious

extension is to maximise the information criterion for every k clusters and

then choose the value of k that maximises the criterion over k = 1, . . . , K for

some maximum number of clusters K.
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3 Nonstandard Optimisation Algorithms

In the previous section we saw how we translated the problem of clustering

individual series from panel datasets to a problem of maximising an informa-

tion criterion. On the one hand the space where the information criterion is

defined is discrete and hence standard optimisation methods cannot be ap-

plied. On the other hand, standard grid search which is usually implemented

to maximise the information criterion, as in, e.g., lag selection, is clearly in-

feasible due to the computational burden of the problem. One alternative is

to resort to nonstandard optimisation algorithms that do not require neither

smoothness nor continuity for the algorithm to converge.

3.1 Simulated Annealing

Simulated annealing is a generic term used to refer to a family of powerful

optimisation algorithms. In essence, it is a method that uses the objective

function to create a nonhomogeneous Markov chain that asymptotically con-

verges to the maximum of the objective function. It is especially well suited

for functions defined in discrete spaces like the information criteria consid-

ered here. Below, we give a description of the algorithm together with the

necessary arguments that illustrate its validity in our context. We describe

the operation of the algorithm when the domain of the function (informa-

tion criterion) is the set of binary strings i.e. {I = (I1, . . . , IN)′|Ii ∈ {0, 1}}.

Each step of the algorithm works as follows starting from an initial string

I0.

1. Using I i choose a neighboring string at random, denoted I∗
i+1. We

discuss the definition of a neighborhood below.

2. If IC(I i) < IC(I∗
i+1), set I i+1 = I∗

i+1. Else, set I i+1 = I∗
i+1 with
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probability e(IC(I∗i+1)−IC(Ii))/Ti or set I i+1 = I i with probability 1 −
e(IC(I∗i+1)−IC(Ii))/Ti .

Heuristically, the term Ti gets smaller making it more difficult, as the algo-

rithm proceeds, to choose a point that does not increase IC(.). The issue

of the neighborhood is extremely relevant. What is the neighborhood? In-

tuitively, the neighborhood could be the set of strings that differ from the

current string by one element of the string. But this may be too restrictive.

We can allow the algorithm to choose at random, up to some maximum in-

teger (say h), the number of string elements at which the string at steps i

and i+ 1 will differ. So the neighborhood is all strings with up to h different

bits from the current string. Another issue is when to stop the algorithm.

There are a number of alternatives in the literature. We have chosen to stop

the algorithm if it has not visited a string with higher IC(.) than the current

maximum for a prespecified number of steps (Bv) (Steps which stay at the

same string do not count) or if the number of overall steps exceeds some other

prespecified number (Bs). All strings visited by the algorithm are stored and

the best chosen at the end rather than the final one.

The simulated annealing algorithm has been proven by Hajek (1988) (see

also Del Moral and Miclo (1999)) to converge asymptotically, i.e. as i →∞,

to the maximum of the function almost surely as long as Ti = T0/ln(i) for

some T0 for sufficiently large T0. In particular, for almost sure convergence

to the maximum it is required that T0 > d∗. d∗ denotes the maximum depth

of all local maxima of the function IC(.). Heuristically, the depth of a local

maximum, I1, is defined as the smallest number E > 0 such that the func-

tion never falls below IC(I1)−E during its trajectory from1 this maximum

1A trajectory from J 1 to J 2 is a set of strings, J 11, J 12, . . . , J 1p, such that (i)
J 11 ∈ N(J 1), (ii) J 1p ∈ N(J 2) and (iii) J 1i+1 ∈ N(J 1i) for all i = 1, . . . , p, where
N(J ) denotes the set of strings that make up the neighborhood of J .
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to any other local maximum, I2, for which IC(I1) < IC(I2).

In the case of a single cluster the problem is already defined in terms of

binary strings. However, when more clusters are considered a slight modifica-

tion is needed. In particular, we write Ĩj in its binary form, so for example, 3

is written as 11 and so on. This poses a slight problem since for even numbers

of clusters, k, the simulated annealing algorithm may move to a neighbour-

ing point which denotes cluster k + 1 which does not exist. We solve this

problem by ensuring that any string that contains reference to cluster k + 1

is penalised by setting the information criterion to an extreme negative value.

3.2 The genetic algorithm (GA)

Once again, we describe the operation of the algorithm when the domain of

the function (information criterion) is the set of binary strings. The motivat-

ing idea of genetic algorithms is to start with a population of binary strings

which then evolve and recombine to produce new populations with ’better’

characteristics, i.e. higher values for the information criterion. We start with

an initial population represented by a N ×m matrix made up of 0’s and 1’s.

Columns represent strings. m is the chosen size of the population. Denote

this population (matrix) by P0. The genetic algorithm involves defining a

transition from Pi to Pi+1. The algorithm has the following steps:

1. For Pi create a m×1 ’fitness’ vector, pi, by calculating for each column

of Pi its ’fitness’. The choice of the ’fitness’ function is completely open

and depends on the problem. For our purposes it is the information

criterion. Normalise pi, such that its elements lie in (0, 1) and add up

to 1. Denote this vector by p∗i . Treat p∗i as a vector of probabilities

and resample m times out of Pi with replacement, using the vector p∗i
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as the probabilities with which each string with be sampled. So ’fit’

strings are more likely to be chosen. Denote the resampled population

matrix by P1
i+1.

2. Perform cross over on P1
i+1. For cross over we do the following: Ar-

range all strings in P1
i+1, in pairs (assume that m is even). Denote a

generic pair by (aα
1 , aα

2 , . . . , aα
n), (aβ

1 , a
β
2 , . . . , a

β
n). Choose a random inte-

ger between 2 and n−1. Denote this by j. Replace the pair by the fol-

lowing pair: (aα
1 , aα

2 , . . . , aα
j , aβ

j+1, . . . , a
β
n), (aβ

1 , a
β
2 , . . . , a

β
j , aα

j+1, . . . , a
α
n).

Perform cross over on each pair with probability pc. Denote the new

population by P2
i+1. Usually pc is set to some number around 0.5-0.6.

3. Perform mutation on P2
i+1. This amounts to flipping the bits (0 or 1)

of P2
i+1 with probability pm. pm is usually set to a small number, say

0.01. After mutation the resulting population is Pi+1.

These steps are repeated a prespecified number of times (Bg). Each set of

steps is refereed to as generation in the genetic literature. If a string is to be

chosen this is the one with maximum fitness. For every generation we store

the identity of the string with maximum ’fitness’. At the end of the algorithm

the string with the highest information criterion value over all members of

the populations and all generations is chosen. One can think of the transition

from one string of maximum fitness to another as a Markov Chain. So this

is a Markov Chain algorithm. In fact, the Markov chain defined over all

possible strings is time invariant but not irreducible as at least the m − 1

least fit strings will never be picked. To see this note that in any population

there will be a string with more fitness than that of the m− 1 worst strings.

There has been considerable work on the theoretical properties of genetic

algorithms. Hartl and Belew (1990) and Del Moral and Miclo (1999) have

shown that with probability approaching one, the population at the n-th
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generation will contain the global maximum as n →∞. For more details see

also Del Moral, Kallel, and Rowe (2001).

4 Monte Carlo Study

4.1 Monte Carlo Setup

In this section we carry out a Monte Carlo investigation of our new method.

We consider two setups: A single cluster setup and a setup with three clusters.

Let

yj,t = φjyj,t−1 + εj,t, j = 1, . . . , N, t = 1, . . . , T (4)

where εj,t ∼ N(0, 1). We investigate the new method along a number of

different dimensions for the above model. Namely, we consider variations

in N , T and φj. More specifically, we consider T ∈ {100, 200, 400} and

N ∈ {25, 50, 75}.

For φj we consider the following setup: φj = 0.8 with probability δ over j

and φj ∼ U(γ1, γ2) with probability 1−δ. This is a general setup designed to

address a number of issues not widely discussed in the literature. Obviously,

the degree of variation in φj under the alternative hypothesis is of great im-

portance. Further, the choice of δ is likely to affect the performance of the

new method. We set δ ∈ {0.25, 0.5, 0.75}.

We choose γ1 = −0.9 and γ2 = 0.4. The performance measure we use is

the estimated probability of classifying a series as nonpoolable. This should

tend to zero for poolable series and to one for nonpoolable series. Denote the

number of Monte Carlo replications by B. This probability is calculated as
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follows in our experiments.

P̂ (Îu = 1|Iu = s) =
1

NsB

B∑

b=1

∑
Iq=s

Îb
q (5)

where Ns = N(1− δ)s + Nδ(1− s) and u denotes a generic series.

For multiple clusters we consider an extension of the above setup. In

particular, every series has an equal chance to be in any of the three clusters

or in no cluster. For clusters 1-3 the parameter φj is set to 0.9, 0.5 and 0.1

respectively. Otherwise, φj is uniformly distributed in (−0.25,−0.95).

For the search algorithms we choose the following parameters: Bv = 500,

Bs = 5000, m = 100 and Bg = 150, h = 1, T0 = 10, pc = 0.6, pm = 0.01.

This implies that for the simulated annealing we evaluate the loss function

5000 times whereas for the genetic algorithm we do so 15000. We view

the parameters for SA as reasonable, whereas the parameters for GA are

relatively low. We nevertheless choose them for GA since otherwise the

Monte Carlo analysis becomes prohibitively expensive. We carry out 250

Monte Carlo replications. Again anything significantly more than that is

prohibitively expensive. Note that the results reported here took more than

1 1/2 months of computer time on a personal computer with 3 Ghz processor

speed.

4.2 Results

In Tables 1-6 we report results for the experiments dealing with one cluster.

In these tables we report the probability of finding a series nonpoolable both

when it is in fact nonpoolable and when it is poolable. In Tables 7 and 8 we

report results for the three cluster experiments. There, for every (N, T ) pair

we report estimated probabilities that a series with a given cluster identifier
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will be found to belong to some cluster or to no cluster at all. More specifi-

cally, our results are reported in the form of 4× 4 matrices. The i-th row of

this matrix, i = 1, 2, 3, reports on series that belong to the i-th cluster. For

the fourth row we report results for series that do not belong in a cluster.

So, for example, row 1 reports on series that belong to the cluster identi-

fied as cluster 1. The first column reports the estimated probability that a

series that belongs to cluster 1 will be found to belong to cluster 1, and so

on for columns 2 and 3. Column 4 reports the estimated probability that a

series belonging to cluster 1 will be found to belong to no cluster. Note that

the information criterion procedure names clusters in an ad hoc basis. That

means that the information criterion method may name cluster 1 as cluster

2. We identify clusters by the way the dataset is constructed. So, for, say,

N = 80, the first 20 series in the dataset have AR coefficient 0.9. We call

this cluster 1 and it is clearly different to cluster 2 in which series have AR

coefficients equal to 0.5. The procedure may find that a lot of series in the

group of the first 20 series belong to the same cluster. The procedure may

then give an ad hoc name to this cluster as, say, cluster 2. We rename this

cluster as cluster 1 in the reporting of the results.

Results are revealing. Overall, simulated annealing seems to work better

than the genetic algorithm. We see that for the one cluster case results

dramatically depend on the proportion of poolable series in the dataset.

Whereas, for a high proportion of poolable series, the algorithms work satis-

factorily, when there are few poolable series, the algorithms are less able to

distinguish between poolable and nonpoolable series.

Moving on to multiple clusters we see that there are variations in per-

formance depending mainly on the search algorithm and on the information

criterion used. BIC performs best, with HQ second and AIC last. Given the
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overall tendency of the algorithms to report that series actually belonging to

a cluster do not belong to one this result is reasonable, since it is less par-

simonious not to belong to a cluster and hence more parsimonious criteria

such as BIC will do better. The first cluster’s parameter is further away from

the average parameter for series not belonging to a cluster and hence it is

reasonable that series belonging to the first cluster will be identified best.

When the number of observations increases there is further overall tendency

for series to appear not to belong to clusters. For the AIC this is expected,

since it tends to choose overparametrised, and hence less parsimonious, mod-

els asymptotically. The SA algorithm always tends to err in favour of finding

a series either belonging to a cluster closer (in terms of parameters) to the

non-cluster group of series than its actual cluster or belonging to the non-

cluster group. This is easily seen by the upper triangularity of the matrices

of results in the tables. The GA algorithm can err either way and in general

is less accurate. Given its larger computational cost, we can conclude that

SA is to be preferred for empirical analysis.

5 Conclusion

The use of panel datasets for the investigation of a number of economic phe-

nomena has been increasing recently. Both the availability of larger datasets

and the development of new estimation methods methods specifically de-

signed for panel datasets can account for this.

An important advantage of panel methods is their ability to improve in-

ference compared to single unit methods. Nevertheless, this implies that the

parameter restrictions implied by the panel structure are valid. Poolability

tests exists to help with this problem but if they reject the null hypothesis of

poolability the researcher is often uncertain about the cause of the rejection,
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or in particular about the identity of the series that caused this rejection.

In other words a method that could distinguish poolable from nonpoolable

series within a panel dataset would be of interest to empirical researchers.

This paper has suggested such a method. It is based on the use of in-

formation criteria to evaluate splits of the dataset between poolable and

nonpoolable series. The method extends to cases where the dataset may

contain more than one cluster of series with similar characteristics. Max-

imisation of the information criterion is difficult using standard grid search

methods since the number of possible splits increases exponentially with the

number of series considered. Hence, we resort to nonstandard optimisation

methods. We find that in number of situations the methods work quite well.

Further research can illustrate both the use of the new method in empirical

contexts and the potential for alternative maximisation algorithms to give

rise to methods that improve upon the results reported here.
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Table 1: One cluster, SA, AIC
%Poolab (N, T ) 100 200 400

0.25 25 (
0.698
0.772) (

0.532
0.861) (

0.508
0.873)

50 (
0.709
0.808) (

0.748
0.830) (

0.667
0.878)

75 (
0.810
0.798) (

0.839
0.832) (

0.743
0.863)

0.50 25 (
0.410
0.894) (

0.444
0.875) (

0.372
0.944)

50 (
0.587
0.842) (

0.424
0.920) (

0.402
0.922)

75 (
0.458
0.905) (

0.618
0.886) (

0.551
0.905)

0.75 25 (
0.298
0.944) (

0.348
0.944) (

0.301
0.944)

50 (
0.404
0.921) (

0.424
0.926) (

0.377
0.926)

75 (
0.443
0.920) (

0.474
0.910) (

0.434
0.929)

For the notation (
a
b) we have that a gives the probability

that a poolable series will be classified as nonpoolable,
whereas b gives the probability that a nonpoolable series

will be classified as nonpoolable.
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Table 2: One cluster, SA, BIC
%Poolab (N, T ) 100 200 400

0.25 25 (
0.849
0.664) (

0.794
0.694) (

0.786
0.747)

50 (
0.744
0.700) (

0.628
0.788) (

0.624
0.829)

75 (
0.901
0.667) (

0.734
0.777) (

0.787
0.791)

0.50 25 (
0.235
0.870) (

0.517
0.759) (

0.261
0.894)

50 (
0.331
0.847) (

0.440
0.827) (

0.411
0.853)

75 (
0.399
0.833) (

0.417
0.842) (

0.367
0.863)

0.75 25 (
0.132
0.917) (

0.135
0.917) (

0.123
0.907)

50 (
0.094
0.944) (

0.171
0.912) (

0.143
0.917)

75 (
0.247
0.880) (

0.175
0.910) (

0.145
0.914)

See notes in Table 1

Table 3: One cluster, SA, HQ
%Poolab (N, T ) 100 200 400

0.25 25 (
0.659
0.741) (

0.841
0.741) (

0.778
0.772)

50 (
0.808
0.740) (

0.688
0.784) (

0.765
0.821)

75 (
0.857
0.737) (

0.810
0.799) (

0.591
0.856)

0.50 25 (
0.274
0.912) (

0.158
0.944) (

0.265
0.912)

50 (
0.376
0.878) (

0.627
0.829) (

0.440
0.862)

75 (
0.558
0.821) (

0.635
0.823) (

0.706
0.842)

0.75 25 (
0.181
0.944) (

0.202
0.944) (

0.149
0.944)

50 (
0.218
0.944) (

0.218
0.921) (

0.240
0.898)

75 (
0.215
0.944) (

0.285
0.917) (

0.276
0.917)

See notes in Table 1
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Table 4: One cluster, GA, AIC
%Poolab (N, T ) 100 200 400

0.25 25 (
0.921
0.741) (

0.810
0.812) (

0.714
0.846)

50 (
0.940
0.733) (

0.880
0.748) (

0.859
0.758)

75 (
0.927
0.680) (

0.930
0.698) (

0.924
0.681)

0.50 25 (
0.402
0.944) (

0.346
0.944) (

0.406
0.944)

50 (
0.464
0.933) (

0.482
0.940) (

0.444
0.940)

75 (
0.497
0.904) (

0.496
0.905) (

0.463
0.902)

0.75 25 (
0.339
0.944) (

0.377
0.944) (

0.380
0.944)

50 (
0.458
0.944) (

0.408
0.944) (

0.437
0.944)

75 (
0.449
0.938) (

0.450
0.944) (

0.444
0.944)

See notes in Table 1

Table 5: One cluster, GA, BIC
%Poolab (N, T ) 100 200 400

0.25 25 (
0.635
0.710) (

0.802
0.710) (

0.730
0.778)

50 (
0.842
0.697) (

0.919
0.707) (

0.915
0.745)

75 (
0.944
0.656) (

0.944
0.684) (

0.860
0.704)

0.50 25 (
0.235
0.907) (

0.218
0.926) (

0.137
0.944)

50 (
0.338
0.936) (

0.380
0.940) (

0.353
0.933)

75 (
0.431
0.887) (

0.414
0.901) (

0.418
0.896)

0.75 25 (
0.164
0.944) (

0.167
0.944) (

0.143
0.944)

50 (
0.265
0.940) (

0.279
0.944) (

0.262
0.944)

75 (
0.351
0.941) (

0.345
0.944) (

0.333
0.941)

See notes in Table 1
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Table 6: One cluster, GA, HQ
%Poolab (N, T ) 100 200 400

0.25 25 (
0.921
0.673) (

0.746
0.762) (

0.944
0.731)

50 (
0.944
0.719) (

0.859
0.740) (

0.889
0.746)

75 (
0.880
0.695) (

0.915
0.701) (

0.944
0.700)

0.50 25 (
0.231
0.944) (

0.226
0.944) (

0.261
0.944)

50 (
0.438
0.931) (

0.391
0.931) (

0.378
0.942)

75 (
0.436
0.884) (

0.447
0.884) (

0.469
0.905)

0.75 25 (
0.228
0.944) (

0.251
0.944) (

0.246
0.944)

50 (
0.338
0.944) (

0.327
0.944) (

0.306
0.944)

75 (
0.373
0.941) (

0.361
0.944) (

0.376
0.944)

See notes in Table 1
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Table 7: 3 clusters, SA
N T AIC BIC HQ

0.65 0.01 0.01 0.33 0.84 0.02 0.01 0.13 0.75 0.02 0.01 0.22
100 0.00 0.64 0.01 0.34 0.01 0.79 0.00 0.20 0.00 0.75 0.01 0.24

0.00 0.00 0.32 0.68 0.00 0.00 0.35 0.64 0.00 0.00 0.33 0.67
0.01 0.00 0.00 0.99 0.01 0.01 0.04 0.94 0.01 0.01 0.02 0.97
0.64 0.00 0.02 0.33 0.80 0.03 0.01 0.15 0.76 0.02 0.01 0.22

25 200 0.00 0.64 0.02 0.35 0.00 0.77 0.02 0.21 0.00 0.75 0.01 0.24
0.00 0.00 0.30 0.70 0.00 0.00 0.32 0.68 0.00 0.00 0.32 0.68
0.00 0.00 0.00 1.00 0.00 0.00 0.03 0.97 0.00 0.00 0.02 0.98
0.65 0.01 0.01 0.32 0.78 0.07 0.01 0.14 0.78 0.02 0.01 0.19

400 0.00 0.64 0.02 0.34 0.00 0.71 0.04 0.25 0.00 0.75 0.02 0.24
0.00 0.00 0.29 0.71 0.00 0.00 0.32 0.68 0.00 0.00 0.30 0.70
0.00 0.00 0.00 1.00 0.00 0.00 0.03 0.97 0.00 0.00 0.01 0.99
0.58 0.02 0.01 0.39 0.80 0.04 0.01 0.15 0.70 0.04 0.01 0.26

100 0.00 0.56 0.01 0.43 0.01 0.77 0.01 0.22 0.00 0.65 0.01 0.34
0.00 0.00 0.29 0.70 0.00 0.00 0.32 0.68 0.00 0.00 0.30 0.69
0.00 0.00 0.02 0.97 0.01 0.01 0.03 0.95 0.00 0.00 0.03 0.96
0.56 0.05 0.01 0.39 0.74 0.08 0.00 0.17 0.69 0.05 0.01 0.25

50 200 0.00 0.52 0.01 0.46 0.00 0.68 0.02 0.30 0.00 0.62 0.02 0.36
0.00 0.00 0.28 0.72 0.00 0.00 0.30 0.70 0.00 0.00 0.29 0.71
0.00 0.00 0.02 0.98 0.00 0.00 0.04 0.96 0.00 0.00 0.03 0.97
0.56 0.05 0.01 0.37 0.75 0.08 0.00 0.17 0.68 0.07 0.01 0.24

400 0.00 0.53 0.04 0.43 0.00 0.66 0.02 0.32 0.00 0.63 0.03 0.34
0.00 0.00 0.27 0.73 0.00 0.00 0.30 0.70 0.00 0.00 0.27 0.73
0.00 0.00 0.01 0.99 0.00 0.00 0.03 0.97 0.00 0.00 0.03 0.97
0.53 0.03 0.01 0.44 0.76 0.05 0.00 0.18 0.64 0.06 0.00 0.30

100 0.00 0.52 0.02 0.46 0.01 0.72 0.02 0.26 0.00 0.60 0.02 0.38
0.00 0.00 0.27 0.73 0.00 0.00 0.29 0.70 0.00 0.00 0.30 0.70
0.00 0.00 0.03 0.97 0.01 0.01 0.03 0.94 0.00 0.01 0.03 0.96
0.52 0.07 0.01 0.40 0.71 0.10 0.00 0.19 0.65 0.09 0.01 0.25

75 200 0.00 0.42 0.03 0.55 0.00 0.64 0.02 0.34 0.00 0.54 0.02 0.44
0.00 0.00 0.27 0.73 0.00 0.00 0.32 0.68 0.00 0.00 0.29 0.71
0.00 0.00 0.02 0.97 0.00 0.00 0.05 0.95 0.00 0.00 0.04 0.96
0.52 0.07 0.02 0.39 0.74 0.08 0.00 0.18 0.65 0.10 0.01 0.24

400 0.00 0.44 0.03 0.53 0.00 0.68 0.03 0.29 0.00 0.53 0.03 0.45
0.00 0.00 0.25 0.75 0.00 0.00 0.30 0.70 0.00 0.00 0.28 0.72
0.00 0.00 0.01 0.99 0.00 0.00 0.04 0.96 0.00 0.00 0.04 0.96

See explanation of layout in page 13
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Table 8, 3 clusters, GA
N T AIC BIC HQ

0.38 0.09 0.06 0.47 0.45 0.07 0.07 0.42 0.42 0.08 0.06 0.45
100 0.06 0.38 0.08 0.49 0.07 0.42 0.08 0.43 0.05 0.40 0.07 0.47

0.06 0.05 0.32 0.57 0.06 0.06 0.36 0.53 0.05 0.06 0.34 0.55
0.06 0.05 0.04 0.86 0.06 0.08 0.04 0.82 0.06 0.07 0.04 0.82
0.40 0.09 0.06 0.45 0.43 0.06 0.07 0.45 0.40 0.08 0.07 0.46

25 200 0.05 0.37 0.06 0.51 0.05 0.41 0.08 0.46 0.06 0.38 0.07 0.49
0.06 0.04 0.33 0.58 0.05 0.05 0.33 0.57 0.05 0.05 0.32 0.58
0.06 0.06 0.05 0.83 0.08 0.07 0.03 0.82 0.07 0.05 0.03 0.86
0.41 0.07 0.07 0.45 0.41 0.08 0.06 0.45 0.42 0.08 0.06 0.44

400 0.05 0.37 0.07 0.52 0.05 0.41 0.07 0.48 0.05 0.38 0.09 0.48
0.05 0.05 0.32 0.59 0.05 0.05 0.32 0.58 0.06 0.05 0.31 0.58
0.06 0.05 0.04 0.85 0.06 0.06 0.04 0.83 0.05 0.05 0.04 0.86
0.39 0.11 0.09 0.41 0.40 0.09 0.10 0.41 0.38 0.12 0.09 0.41

100 0.10 0.35 0.10 0.45 0.08 0.38 0.11 0.42 0.10 0.36 0.11 0.43
0.08 0.08 0.31 0.53 0.11 0.09 0.31 0.49 0.09 0.09 0.32 0.50
0.10 0.09 0.06 0.75 0.09 0.10 0.07 0.74 0.09 0.10 0.06 0.75
0.38 0.12 0.08 0.43 0.39 0.11 0.08 0.42 0.38 0.11 0.08 0.42

50 200 0.09 0.35 0.11 0.45 0.09 0.37 0.10 0.44 0.10 0.37 0.10 0.44
0.08 0.08 0.30 0.54 0.09 0.09 0.31 0.52 0.08 0.09 0.29 0.54
0.08 0.09 0.06 0.76 0.09 0.09 0.07 0.75 0.10 0.11 0.07 0.73
0.37 0.11 0.10 0.42 0.38 0.11 0.09 0.43 0.38 0.09 0.08 0.45

400 0.09 0.37 0.07 0.47 0.09 0.38 0.08 0.45 0.09 0.36 0.11 0.44
0.08 0.08 0.30 0.54 0.08 0.08 0.34 0.51 0.08 0.09 0.31 0.52
0.11 0.10 0.06 0.73 0.09 0.09 0.07 0.75 0.10 0.10 0.06 0.73
0.35 0.13 0.11 0.41 0.36 0.14 0.11 0.38 0.36 0.14 0.10 0.40

100 0.13 0.33 0.13 0.42 0.11 0.36 0.11 0.42 0.13 0.35 0.12 0.41
0.11 0.11 0.30 0.49 0.11 0.12 0.31 0.46 0.12 0.11 0.29 0.48
0.12 0.11 0.09 0.68 0.11 0.11 0.09 0.69 0.11 0.11 0.08 0.70
0.35 0.14 0.11 0.40 0.36 0.14 0.11 0.39 0.35 0.13 0.11 0.41

75 200 0.12 0.34 0.11 0.43 0.12 0.36 0.13 0.40 0.11 0.35 0.12 0.42
0.12 0.11 0.29 0.48 0.11 0.11 0.29 0.49 0.12 0.11 0.30 0.47
0.11 0.12 0.08 0.69 0.11 0.09 0.09 0.71 0.11 0.11 0.08 0.70
0.36 0.15 0.11 0.38 0.36 0.12 0.11 0.41 0.36 0.13 0.10 0.42

400 0.11 0.35 0.11 0.43 0.12 0.34 0.13 0.41 0.12 0.33 0.12 0.42
0.10 0.11 0.30 0.49 0.12 0.11 0.29 0.48 0.10 0.10 0.30 0.50
0.11 0.09 0.09 0.71 0.10 0.11 0.08 0.72 0.12 0.10 0.08 0.69
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