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1.  Introduction
This paper presents an overview of Agent-based Computational Economics

(ACE) models of endogenously determined relationships. This concerns models in
which agents not only (learn how to) play some (market or other) game, but also
(learn to) decide with whom to do that (or not). Such decisions may depend, for
example, on the perceived success of the interactions. These models of endogenous
interactions are to be distinguished from models in which the interactions between
agents are exogenously determined; for example by the given spatial positions of
agents, such as with cellular automata. An alternative way to put this is that in the
models with endogenous interactions discussed in this paper, the speed with which
connections can be updated is comparable to (or faster than) the speed with which
strategies in some underlying game can be updated, whereas in models with
exogenously determined interactions the speed of the network updating is so low that
the interaction structure can be taken as given.

The main motivation for studying models of endogenous interactions is that
endogeneity is a ubiquitous feature of the reality of social interactions. Therefore, a
theory of social interactions must take account of it. Consider, for example, the
following quote concerning market organization.

“Markets rarely emerge in a vacuum, and potential traders
soon discover that they may spend more time, energy, and other
resources discovering or making a market than on the trade itself. This
predicament is shared equally by currency traders, do-it-yourself
realtors, and streetwalkers! Their dilemma, however, seems to have
gone largely unnoticed by economists, who simply assume that
somehow traders will eventually be apprised of each other's existence
- to their mutual benefit or subsequent regret” (Blin (1980), p. S193).

Therefore, models of market organization going beyond assumptions of
perfectly competitive markets (either considering them as black boxes, or with
Walrasian auctioneers or invisible hands pulling the strings), explicitly focusing on the
"who interacts with whom?" question seem useful. The endogeneity of interactions is
equally ubiquitous in other social domains. As Skyrms & Pemantle (2000) observe:

"A child who is being bullied learns either to fight better or to
run away. Similarly, a player who obtains unsatisfactory results may
choose either to change strategies or to change associates" (p. 9340).

We will focus on ACE models. The basic idea of ACE modeling is that one
computes explicitly (either with paper and pencil, using a computer, or just mentally)
the actions and outcomes for each and every individual agent at each relevant
moment in time. Modeling individual agents computationally does not pose particular
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conceptual difficulties to economic theory. After all, as Lucas puts it, doing economics
means "programming robot imitations of people" (in Klamer (1984), p.49). In fact,
ACE modeling follows the same methodology of scientific inference as more
traditional mathematical modeling in economics, and should be seen as
complementary rather than an alternative to such more standard modeling. Both are
modeling approaches using equations and deduction. With standard mathematical
modeling in economics one typically specifies a certain micropattern (primitives and
rules of possible interaction) and then considers a macropattern as an equilibrium of
the thus specified model. In this traditional view, if a certain macropattern is not an
equilibrium of such a microspecification, then it is not explained. This is what Varian
(1984) calls "recoverability" (p. 3). The same applies to ACE modeling, where one
also focuses on the question whether it is possible to `recover' regularities known
from reality in relatively simple models (abstracting from many aspects of reality), and
analyzes how these regularities depend upon parameter choices or modeled
mechanisms. Both ACE models and formal, mathematical models are thus models
that are in themselves possible explanations for some real phenomena. Whereas the
insights offered by mathematical models are typically presented in the form of
theorems or propositions, ACE models seem to produce only computational
examples. However, as Judd (forthcoming) explains, even in this respect the two
approaches are similar because 'theorem' is just a plural of 'example'. Although
examples are produced in a somewhat different way in ACE models, there is no
fundamental difference in this respect.

The difference between ACE and more traditional mathematical modeling in
economics is a matter of the tools and techniques used: mathematical equations and
specifications versus computational instructions. This facilitates different
microspecifications and different ways to generate macropatterns, which in turn
allows for different types of analysis, addressing somewhat different questions. For
example, paying more attention to dynamic and non-equilibrium phenomena such as
bounded rationality and learning, while maintaining tractability might be easier with
ACE models. And as Tesfatsion (forthcoming) explains, this makes ACE similar to
constructive rather than classical mathematics.

Sometimes in the literature one can find people comparing the output of an
ACE model run on a computer to the data of laboratory experiments with real
(human) subjects, as if such a run were a test of some hypotheses, and as if the
computer output were data to be explained. Such a view does not seem very helpful.
As explained above, an ACE model is a model as much as a more traditional
mathematical economics model is. That is, the computer program in itself is the
(possible) explanation of some real phenomena. Running an ACE model on a
computer (no matter whether this is called a simulation, a computational test-bed, a
wind-tunnel experiment, or an artificial petri dish) is only a matter of analyzing the
model, checking its internal consistency and examining its properties.
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The studies presented in this paper may differ in a number of important
aspects from each other. (i) In the way connections are formed in a technical sense
(e.g., by sending a communication signal, making a trip to a store, being a neighbor,
etc.), and whether there are constraints formed by some underlying topology for the
connections (e.g., a lattice). (ii) The way connections are evaluated and established
in an economic sense (e.g., as myopic best-replies, or based on some learning
process). (iii) The type of game (if any) being played for a given interaction structure
or network. (iv) The way agents decide upon their strategies in such a game (e.g., as
myopic best-replies, or based on some learning process). (v) Whether the focus is on
the emerging interaction structure, or on the emerging strategies used in the
underlying game (e.g. the trade-off between risk- and payoff-dominance in
coordination games, or the sustainability of cooperation in prisoner's dilemma
games). We will focus on the first two of these dimensions, i.e., on the various ways
to model the endogenous interactions themselves.

mechanism paper section
random
local
residential pattern Schelling (1971) 2.1
resource gradient Epstein & Axtell (1996) 2.2
predictors Arthur (1994) 2.3
advertising/patronage Vriend (1995) 2.4
(threshold) expected payoff Ashlock et al. (1996) 2.5
arbitrary tags Riolo (1997) 2.6
trust Hanaki et al. (2004) 2.7
expected payoff/familiarity Kirman & Vriend (2001) 2.8
past success rate Chang & Harrington (forthcoming) 2.9
directed random search Jackson & Rogers (2004) 2.10

Table 1.  Different ways to model interactions in ACE models

Table 1 lists a number of different ways used in the ACE literature to model
interactions. The first two ways to model interactions are relatively well-known and
straightforward. Considering random interactions has been popular in particular in
work originating from evolutionary game theory. Local interactions have often been
modeled in the form of interactions with nearest neighbors, e.g., on a grid or lattice.
Notice that in these first two approaches the interactions are not endogenous.
Instead, they are determined through some exogenous random process or through
exogenously determined locations of the agents. Therefore, we will focus on the
other approaches listed. In all these approaches, the agents themselves decide
whether to establish, maintain, or severe a link with some other agent(s), and these
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decisions are usually somehow related to the perceived success of their interactions.
In the remainder of this paper we present an ACE paper (see table 1) for each of
these ways to model the endogenous determination of interactions.

The overview will focus on the modeling of interactions as such, and will not
provide a complete summary of the papers. The prime objective, rather, will be to
catalogue the ACE ways to model endogenous interactions. We will also not attempt
a comparison to find the best (elements of each) approach, but rather we would
argue that the choice of model should depend on 'circumstances' to be modeled in a
broad sense, and on the purpose of the model. This includes issues such as the
cognitive capabilities of the agents and the opportunities to use them (e.g., for
interactions that are immediate, a fast and frugal way to guide interactions may be
appropriate), the number of agents involved, whether the interactions are face-to-face
(allowing for face recognition and use of simple physical cues as signals) or not,
whether the interactions are anonymous or not, whether they are repeated or not, and
whether trust is an issue or not.

The objective of this paper is not to attempt to reach a conclusion as to what
interaction patterns typically emerge in models with endogenous interactions (e.g.,
does a fully connected network ever appear?), or whether there are any general
differences in this sense between models with endogenous and models with
exogenous interactions.1 On the one hand, it seems much too early for such an
attempt. On the other hand, as Wilhite (forthcoming) shows, the relevance of the
interaction structure may be different for any different exogenous interaction
structure, not to mention the differences among models of endogenous interactions.
Similarly, in principle it could be that at some point we will be able to conclude that
models with exogenous interactions are satisfactory approximations to the social
reality of endogenous interactions. But for the moment any such conclusion would
seem premature.

                                                          
1 For example, Oechssler (1997), Dieckmann (1999), and Mailath et al. (2000) show
that for a certain class of coordination games endogeneity of interactions may directly
affect the equilibrium selected.
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2.  Various approaches

2.1 Schelling (1971): residential pattern
Schelling (1971) presents a spatial proximity model of neighborhood segregation.

Although Schelling does not actually use any computers, this must be one of the very
first ACE models.

There are two versions of this spatial proximity model: a one-dimensional (1D) and
a two-dimensional (2D) model. In the 1D model, individual agents are distributed along
a line. An agent's position is defined relative to his neighbors only, and agents can
always position themselves next to any agent. A given individual's neighborhood is
defined as the k nearest neighbors on either side of him. Agents towards the end of the
line will have fewer than 2k neighbors. Schelling's 2D model concerns a regular lattice
with bounds, such as a checkerboard.2  Each agent occupies one cell of the board, and
each cell can be occupied by only one agent at a time. Unlike in the 1D model, there
are also some free cells. The neighborhood of an individual agent is the so-called
Moore neighborhood. For an agent in the interior of the board this consists of the eight
cells directly surrounding his own location, with fewer neighbors for agents at the
boundary.

In both versions, Schelling considers a finite number of individual agents,
distinguishing two types of individuals. Each individual is concerned only with the
number of like and unlike neighbors. More specifically, each agent wants, for example,
at most 50% unlike neighbors; otherwise agents are indifferent.

--- Figure 1 about here ---

The time structure of the model is given in Figure 1. The starting configuration is
created by randomly distributing equal numbers of agents of each type. The dynamics,
then, are an iterative process of agents choosing myopic best-responses to the
residential locations chosen by the other agents. At each stage all agents that are not
satisfied are put in some arbitrary order. When an agent's turn comes, he moves to the
nearest satisfactory position. Since in the 1D version all positions are relative only, he
simply inserts himself between two agents (or at either end of the line), and his own
departure does not lead to an empty position.  In the 2D version, each agent who
wants to move has to find an empty location. At the next stage a new list of
unsatisfied agents is compiled, and so on. This process continues until no agent
wants to move anymore.

The interactions are endogenous in the following sense. Individual agents choose
their neighbors on the basis of the current residency pattern (neighborhood ratios of like
and unlike agents). As individual agents move, this residency pattern evolves. In fact,

                                                          
2 See also Sakoda (1971), which is based on Sakoda (1949), for a very similar model
of endogenous interactions.



7

there are two kinds of externalities with every move. A leaving agent changes the
neighborhood ratios for his old neighbors, while a newly arriving agent modifies the
ratios in his new neighborhood. In both cases, these externalities may be positive or
negative (depending on the perspective of the agents affected). Agents choose their
location directly in (myopic) response to the existing residential pattern right from the
start, and there is no learning (e.g., to be forward-looking) in this respect. Notice that
there is no further underlying game to be played. The only thing that matters to the
agents is with whom they interact, i.e., the proportions of each type in their own
neighborhood. In some of the other models we will see that the variable guiding the
interactions is some intermediate variable, and the agents can learn how this
intermediate variable relates to eventual payoffs.

--- Figure 2 about here ---

The random starting state is typically highly integrated. The usual outcome of the
dynamic process is a highly segregated state, although nobody actually prefers
segregation to integration. Figure 2 gives an example based on Schelling (1971),
showing the initial (integrated) and final (segregated) state. Does the endogeneity of
the interactions matter? Yes, it is all that matters. Many integrated equilibria exist (see
Pancs & Vriend (2003)). But externalities of each residential location choice (i.e., the
endogenous interaction choice) lead to an unraveling process (i.e., further
endogenously determined interactions) resulting eventually in segregation.
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2.2 Epstein & Axtell (1996): resource gradient
Epstein & Axtell (1996) study a number of different social behavioral

phenomena, ranging from simple gathering and consumption, to mating, cultural
transmission, combat, trade, credit, and the spreading of diseases.

These phenomena are studied in a so-called 'sugarscape'. This space
consists of a lattice in the shape of a torus (i.e., a 2D grid with each edge folded and
connected to the opposite edge). At each site, sugar can grow at a given rate up to
some maximum (which may differ from site to site). In the basic model, sugar is the
only commodity, and individual agents need it to survive, while in the model with
trade there is a second commodity, called spice, as well. Each site will generally
have some sugar and some spice, and can be occupied by at most one agent at a
time, with each agent occupying one cell. When an agent occupies a site, he
increases his wealth by accumulating the sugar (and spice) available at that site.
Each individual agent has a given metabolic rate, specifying how much sugar per
time step is consumed (decreasing the agent's wealth, i.e., sugar holdings), a given
maximum age, and lateral vision up to some given limit. In the variant with trade,
agents have also a utility function specified, and they have a metabolism for both
sugar and spice, needing both to survive. In other variations of the model, the agents
may also have their sex, and an array of arbitrary cultural attributes specified. Each
agent has at most four neighbors, comprising the agents occupying sites in his von
Neumann neighborhood (i.e., the sites laterally adjacent to his own site).

--- Figure 3 about here ---

As explained above, Epstein & Axtell study a whole range of behaviors. They
do this in a modular setup, in which forms of behavior can be added or taken away
as one likes. A typical sequence of events, following the initialization of all individual
agents and sites, is given in Figure 3. First, at all sites simultaneously, resources
grow at the given rate up to the limit of that site. The agents, then, move sequentially
(in random order). Each individual agent checks the sites within his field of vision,
moves to the best available location therein (if more than one he selects the nearest),
makes a record of his new neighbors (calling this his 'neighborhood'), and increases
his wealth by collecting the available sugar, while decreasing his wealth through his
metabolism. Agents reaching a negative wealth die. Once these basic modules have
finished, the optional trade module can be executed, in which agents may trade
sequentially (in random order). A trading agent places all agents on his
'neighborhood' list in random order, and processes this list sequentially, making one
transaction (if possible) with each of his neighbors by exchanging sugar for spice (or
the other way around). The amounts exchanged depend on their marginal rates of
substitution (as defined by the agents' utility functions) such that each trade leads to
a welfare improvement of all agents involved, and on a pre-defined bargaining rule.
After this, the optional combat module may be used, in which all agents sequentially
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(in random order) may combat with their neighbors. Finally, the optional agent
replacement module may be applied, in which agents who have reached their
maximum age, or have died for other reasons (e.g., due to lack of resources or
combat), are replaced by new agents with random characteristics.

All interactions are endogenous in the following sense. In all variants of the model,
all interactions depend exclusively on the location choices of the agents, and these
location choices are guided only by the resource availability, i.e., the distribution of
available sugar (and spice) on the landscape. As individual agents move around and
harvest sugar (and spice), the pattern of resource availability evolves. As in Schelling
(1971), agents choose best-responses to the existing resource pattern right from the
start, and there is no learning (e.g., how to react to certain resource patterns). In the
basic setup with only consumer-gatherers, there is only indirect interaction between the
agents. In the variants studying also other types of behavior (such as sex, trade, and
credit), there are direct interactions between the agents as well. These activities take
place in 'networks'. But these networks are essentially the (one-step) lagged von
Neumann neighborhoods,3 and these neighborhood choices depend only on the
resource availability on vacant sites. For example, in the variant with trade, an agent
does not take account of the potential gains from trade on a given location, and agents
just trade with whoever turns out to be an accidental new neighbor.

--- Figure 4 about here ---

Given the enormous range of behaviors studied in the various modules, we
will not try to summarize the results. For each of the modules interesting properties of
demographic, economic and other phenomena emerge. What is more, they show
that the behaviors of the various modules interact with each other. For example, the
outcomes of the economic process are influenced through the demographic
dynamics. Given that all interactions are essentially determined through the gradient
of the resources in the landscape, the emerging properties are remarkable. Figure 4
gives an example for the model with trade as the only optional module. The figure
shows the time series average trading price converging to the "market-clearing" level
of 1, which is the emergent property of the model with only bilateral interactions
determined through agents myopically following their resource gradient.

                                                          
3 These networks are formed as follows. When an agent moves in to the nearest best
available location within his field of vision, he records his neighbors. Subsequently
these neighbors may move on themselves. When, e.g., the trade module is
executed, an agent can only initiate trading with those people on his 'neighbor' list.
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2.3  Arthur (1994): predictors
Arthur (1994) examines the importance of inductive reasoning, and illustrates

this with the so-called 'El Farol' bar problem.
People like spending some time together in this bar, in particular on Thursday

nights with Irish music, unless it is too crowded. More specifically, Arthur (1994)
assumes that there is a fixed population of 100 agents, that agents enjoy spending
time together in the bar if fewer than 60 people are present, but prefer to stay home if
more than 60 show up. Hence, the question in the El Farol problem (and in similar
coordination problems) is which agents will interact with each other, and how will they
decide to do so (assuming that all agents make up their mind each time
independently).

Each individual agent is modeled as follows. An agent has an individualized
set of predictors in mind. Each predictor determines the expected number of people
attending on the basis of a sample of the past weeks' attendance figures. For
example, a predictor could be "the average attendance of the last four weeks", or
"the trend in the last eight weeks (bounded by 0, 100)". The agent keeps track of the
accuracy of each predictor, using the actual attendance figures.

--- Figure 5 about here ---

The time-structure of Arthur (1994) is the following (see Figure 5). The model
starts with randomly drawing a set of predictors for each agent individually from an
"alphabet soup" of predictors. At the beginning of each period, each agent chooses
one of his predictors, the one he currently believes to be the most accurate one.
Given the predicted attendance. An agent decides to go to the bar if and only if the
predicted number is less than 60. The actual attendance figure determined by all
these individual decisions is, then, used to update each agent's belief concerning the
accuracy of his attendance predictor.

The interactions are determined endogenously as follows. The individual
interaction decisions (whether to go to the bar or not) depend on the past pattern of
interactions (attendance figures), as different patterns of past attendances will typically
lead to different expected attendance figures and hence different interaction decisions
for most given predictors. Through these individual interaction decisions, the pattern of
interactions itself evolves, as they will form part of the interaction pattern on which future
interactions will be based. What is more, the view of an agent as to how a given
pattern of past attendance figures should lead to an interaction decision itself
evolves. That is, the agents learn which predictor to use by updating their beliefs as to
how accurate these predictors are, where this accuracy depends on the predictors used
by the other agents.

--- Figure 6 about here ---
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How does the interaction pattern evolve? Figure 6 shows the attendance
figures for 100 periods. As we see, it fluctuates around 60% attendance. That is, in
each period about 60% of the agents predict attendance below 60%, while another
40% forecast attendance above 60%. Obviously, these predictions cannot be all
correct at the same time. Hence, individual choices fluctuate over time as well, not
only because the attendance pattern fluctuates, but also because individual agents
continue revising the accuracy of their predictors. As Arthur (1994) puts it: "This is
something like a forest whose contours do not change, but whose individual trees do"
(p. 410)"
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2.4  Vriend (1995): advertising/patronage
Vriend (1995) presents an example of a computational approach to self-organization
of markets, in particular buyer-seller networks. The starting point is the idea that
market organization depends in a crucial way on knowledge of the identity of some
potential trading partners. Such knowledge requires some kind of communication or
interaction between the agents. Markets, then, emerge as the result of interacting
individual agents pursuing advantageous contacts. The paper analyzes the emerging
trading structure of the self-organized markets, the distribution of firm sizes etc.

--- Figure 7 about here ---

Each day, firms produce a certain commodity in advance, without knowing
what the demand on the day will be. They may attract the attention of potential
customers by sending information signals randomly into the population, directed at
nobody in particular (presenting themselves as sellers to the population), and by
offering a reliable service. Both production and signaling are costly. Consumers, then,
have the choice to either 'shop around' randomly, stay loyal to their current supplier,
or follow one of the information signals they received. Consumers want exactly one
unit per day (at a given price), and shopping takes place on a first-come first-served
basis. Figure 7 shows the structure of the model.

Each individual firm is specified as a set of alternative rules: binary strings,
determining a production and an advertising level. The fitness of each rule depends
on the actual payoffs generated using that rule, with fitter rules being more likely to
be used. This is a form of reinforcement learning. After each block of 50 days, the sets
of decision rules used by the individual firms evolve using a genetic algorithm: some
rules are eliminated, while others are reproduced, with selection based on the fitness
of the rules, applying crossover, and mutation. See also Brenner (forthcoming) and
Duffy (forthcoming) on reinforcement learning and genetic algorithms.

Each individual consumer consists of a set of 15 "if ... then .." rules to decide
how to shop: the conditions considered relate to the consumer's shopping experience
during the previous day (whether he was satisfied, whether he was late and found
only empty shelves, or whether he was simply lost in the mist and could not even find
a firm selling the commodity), and to his information state (whether he did or did not
receive any advertising signals from firms on this day). The possible actions for a
consumer to consider are whether to patronize (return to the last firm visited), to visit
one of the firms known to be selling this commodity through the advertisement
signals, or to try his luck visiting somebody chosen at random. The fitness of each
rule depends again on the actual payoffs generated using that rule, and fitter rules
are more likely to be used in the future.

The interactions are endogenous in the following senses. The firms decide with
how many people to link up through the number of advertising signals they send, and
influence how many of these interactions are successful through their output
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decisions. Their views on these decisions evolve as they gain experience about their
profitability. This profitability depends also on the shopping behavior of the
consumers. These shopping decisions depend on the success of their latest trip and
on whether they received advertising signals. These variables may evolve as the
result of decisions by the firms and other consumers, and the consumers' view on the
importance of these two variables may evolve as well.

--- Figure 8 about here ---

 What is the dynamic behavior of this model? First, starting from completely
random behavior, all agents are relatively quick to learn reasonable behavior
(production, signaling and shopping), leading to high efficiency and a good profit margin
for the firms, while heterogeneous behavior emerges among consumers and firms.
Second, does patronage occur, and what role does it play? As Figure 8 shows,
especially 'strict patronage' (i.e., patronage by a satisfied consumer) emerges. That
is, consumers quickly learn that in case they had been disappointed by a firm there is
much less reason to return to that firm than in case of previous success. Notice that it
is strict patronage that leads to the arbitrage of trading opportunities. For suppose
some firms offer higher service rates than other firms. Strict patronage would imply
that a firm not able to satisfy its clients is likely to loose some of its customers. Given
its level of production, that would mean a higher coefficient of customer satisfaction
on the next day. On the other hand, a firm satisfying its customers is likely to enlarge
its clientele, thus lowering its service rate. Hence, ceteris paribus, strict patronage
directly implies arbitrage of trading opportunities, in the sense of the equalization of
service rates across firms. Third, does communication matter? Yes, but it is costly and
directly related to the endogenous shopping behavior. As can be seen in Figure 2 in
Vriend (1995) (showing the costs per unit of sales), the firms, having reached profitable
decisions early on, then continue to increase their signaling level steadily, as they are
competing with each other to attract the consumers through the advertisement signals,
until some constant average level is reached with much lower profits for the firms. Thus,
communication matters, although the firms have no (explicit) clue as to why they send
such signals. They have no idea what governs shopping behavior. This is illustrated in
Figure 11 in Vriend (1995), showing the average signaling level for two versions of the
model: the standard version, and a variant in which consumers will always return to a
firm after a successful trip (i.e., fixed patronage). Although the firms do not know
anything about this, they immediately spot the difference in the value of advertising in
the latter setup, avoiding it almost completely, whereas high signaling levels are
reached in the standard version.
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 2.5  Ashlock, Smucker, Stanley & Tesfatsion (1996): (threshold) expected payoff
Ashlock, Smucker, Stanley & Tesfatsion (1996) study the effect of preferential

partner selection in an evolutionary study of the prisoner's dilemma game. The
Prisoner's Dilemma game studied is a standard two-player simultaneous-move game
in which each player can decide to Cooperate or to Defect with the resulting payoffs
being as follows: payoffs for mutual cooperation and mutual defection are 3 and 1
respectively, while a unilateral defector gets a payoff of 5, and the sucker payoff
equals 0.

Each individual agent is modeled as a finite automaton (Moore machine),
represented by a binary string. This string contains two parts. The first part specifies
the agent's dynamic game strategy in the iterated prisoner's dilemma. That is, this
specifies an agent's action in the first round plus his actions in later rounds, with the
latter being dependent on the history of play up to that point. The second part
determines the endogenous interactions of the agent (i.e., with whom this agent
wants to play the PD game).

--- Figure 9 about here ---

The time-structure of the ACE model of Ashlock et al. (1996) is shown in Figure
9. For a given generation of agents, there are 150 rounds. In each round, each agent
proposes to one opponent to play one round of the basic Prisoner's Dilemma game.
All proposals are evaluated, and each accepted pair plays the game. After 150
rounds, the set of agents is evolved using a genetic algorithm. That is, depending on
their performance, some agents are eliminated, while others are reproduced
(applying crossover to recombine successful strings and mutation to induce some
experimentation). The performance of an agent is measured by his fitness. This
fitness equals the sum of payoffs received by an agent divided by the number of payoffs
received. An agent receives a payoff either from playing a round of the Prisoner's
Dilemma game, or from the refusal of another agent to interact with him (in the latter
case the payoff will be 1.0). There is no payoff for an agent if he rejects himself
somebody's offer to play. If an agent neither makes nor receives any offers to play in a
given round, he receives a wallflower payoff of 1.6. The model considers 2000
generations.

The interactions are made endogenous as follows. Each individual agent keeps
track of the payoffs realized with each other individual agent in the population (either
from playing or from refusal by the other). An agent updates his assessment of another
agent by taking a convex combination of his existing assessment and his very latest
experience with that agent. Hence, this assessment is a weighted average of past
payoffs, placing more weight on recent interactions. The initial expected payoff is 3 for
each agent. When an agent makes a proposal to play the PD game, he will do so
only to the best agent in the population, provided this agent is tolerable (see below).
An agent receiving offers, on the other hand, will accept all offers from agents that
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are tolerable. An agent is tolerable if and only if the expected payoff with that agent is
greater than a certain threshold. This threshold forms part of the individual agent's
string, and evolves in the genetic step, such that threshold levels leading to higher
fitness are more likely to be reproduced. The initial thresholds of the individual agents
are uniform randomly drawn between 0 and 3.

--- Figure 10 about here ---

What does this all imply for the organization of the interactions taking place?
Notice that, through their individual threshold levels, the agents care about the payoffs
to be expected from other individual agents. First, do agents learn to be picky in this
respect? The answer is "yes". The average threshold level increases over time from a
level of 1.5 to about 2.1. Second, does being picky matter? Again, the answer is
affirmative. The average fitness level increases from a random initial level of 2.25 to a
level just above 2.8. In a variant of the model, without allowing for endogenous
interactions (which would be the same as having a fixed low threshold level), the
average fitness reaches a level of about 2.3. This difference is due to changes in the
ways in which agents interact. In particular, the option of refusal gives agents a way to
protect themselves from defections without having to defect themselves. As a result,
ostracism of defectors occurs endogenously, while parasitic relations are also observed.
It is not true in general, however, that higher threshold levels will lead to higher average
fitness. There is some risk with caring too much about with whom one will interact. That
is, an agent's threshold level might be so high that no agent is acceptable anymore. As
a result, only wallflower payoffs are received. Figure 10 illustrates this. The figure shows
the frequency distribution over the fitness and threshold levels for all generations over
196 runs. In most cases we observe a high threshold going hand-in-hand with a high
average fitness, but there are a good number of generations with a very high threshold
and a low fitness. In those generations being too picky led to a breakdown of
interactions.
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2.6  Riolo (1997): arbitrary tags
Riolo (1997) studies the effects and evolution of tag-mediated selection of

partners in populations playing the Iterated Prisoner's Dilemma (IPD) game,
analyzing exactly the same basic Prisoner's Dilemma (PD) game as Ashlock et al.
(1996).

An individual agent is modeled as a 5-tuple, the first three real-encoded
parameters specifying his dynamic game strategy (whether to cooperate or not,
conditional on the history of play), and the last two parameters determining the
endogenous interactions.

--- Figure 11 about here ---

For a given generation, each agent has to find an opponent ten times. Each
successfully matched pair plays a 4-round IPD game.  Once this is all done, the set
of agents evolves. That is, some agents are eliminated while others are reproduced,
with selection based on the agents' fitness (depending on the payoffs realized), and
with noise added to the parameter values to induce some experimentation. Figure 11
shows the structure of the model.

The interactions are made endogenous as follows. Each individual agent i
uses some arbitrary tag τi in [0, 1]. This tag is some external label or (behavioral)
characteristic that can be easily recognized by other agents. One could, for example,
think of the tag τ here as a number written on an agent's forehead. When an agent
needs to find an opponent, he first selects a possible opponent randomly. He, then,
accepts this opponent on the basis of the similarity of their tags: probability (i agrees
to play j) = 1 - |τi - τj|b(i), where |τi - τj| measures the absolute distance between the
tags of the two agents and b(i) is a parameter in [0, 100] determining the 'pickiness' of
agent i. For any given value of b(i), agent i is more likely to interact with others the
closer their tags are.4 The opponent carries out a similar evaluation simultaneously,
and they will play the IPD only if both accept to do so. Otherwise an agent will
randomly try another possible opponent. There are search costs (to be subtracted
from an agent's eventual payoff) for each failed attempt to find an opponent. After
four failed attempts, an agent will have to play against a randomly chosen opponent,
who will have to accept. The tags τi are an element of the second part of the 5-tuple
specifying an individual agent, and evolve in the 'genetic' step, such that tag values
leading to higher fitness are more likely to be reproduced. The other element of the
second part of the 5-tuple specifying an individual agent consists of the 'pickiness'
parameter b. Notice that a high b implies indifference with respect to tags (the distance
does not matter), whereas a low b implies that the agent is very picky (the distance

                                                          
4 The similarity in the tag can be seen as a clue that the players can trust each other
as they may have a common understanding of the situation. Thus, somebody might
be reluctant to play a game with a person with a weird hairdo who does not wear a tie,
unless this player happens to go through life without a decent haircut and a tie himself.
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must be very small). The pickiness parameter b(i), being part of the 5-tuple specifying
an individual agent, evolves as well in the 'genetic' step, such that values leading to
higher fitness are more likely to be reproduced. Notice that selection and
reproduction take place at the level of the individual agents (each modeled as a 5-
tuple). That is, strategies, tags, and pickiness with respect to tags all evolve together
such that successful combinations are more likely to prosper.

Riolo's model has some similarity with models in which agents choose a
location in space, and then interact with nearby agents. That is, the abstract tag
signal can be seen as a location. Notice, however, that in Riolo's model part of the
endogeneity concerns the agents' choices whether or not to care about distance.
Such endogeneity seems less natural in space, where the economic importance of
the distance is typically exogenously given. One could also imagine an evolving
matching function as such, allowing, for example, agents to learn to play only against
large distance opponents. Again, this seems more natural with arbitrary tags than in real
space.

--- Figure 12 about here ---

What are the dynamics of this model to determine endogenous interactions?
First, do tags matter? The answer is "yes". As Figure 1 in Riolo (1997) shows, for a
given parameter value of b=0.02 for all agents, the use of tags leads to quicker and
more stable cooperation (resulting in higher average fitness). It is only without the tags
that we observe troughs in fitness levels due to systematic defections. The average
fitness with tags fluctuates around the expected payoff for random behavior. Hence,
what the tags seem to do is allow the agents to 'escape' from systematic defectors
(through the evolving tag values). Second, if the parameter b is no longer exogenously
fixed, will agents learn to care about tags (through the pickiness parameter b)? Figure
12 shows that this depends on the (indirect) search costs. The figure shows the
evolution of the pickiness parameter b over the generations. If the population starts out
caring about tags (b=0.01 initially) and there are no search costs, then the population
continues to care about tags (see the - line in Figure 12). But if there are search costs,
then the population slides into indifference with respect to tags (o line in Figure 12). If,
however, the population starts being relatively indifferent with respect to tags (b=2.00),
and there are no search costs, then the population may or may not evolve into one that
cares about tags (see □ and ∆ lines in Figure 12).
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2.7  Hanaki, Peterhansl, Dodds & Watts (2004): trust
Hanaki et al. (2004) study a repeatedly played one-shot version of a standard

Prisoner's Dilemma (PD) game. Just as Ashlock et al. (1996), they start from the
observation that defection is the dominant strategy, and ask the question whether
cooperation could be sustained with endogenously determined local interactions, with
the individual agents choosing their (number of) partners.

Each individual agent can choose a strategy for the one-shot PD and he can revise
his links with other agents. The agents are restricted to using the same PD strategy for
their entire neighborhood (i.e., all partners they are linked to). An individual agent's
payoffs are summed over all his interactions, and there are costs attached to interacting
with other agents, with the costs increasing in the number of partners.

--- Figure 13 about here ---

The dynamics of the model are given in Figure 13. The model starts with a given
number of agents being assigned random actions and beliefs (see below) and without
any links between agents. Each period, all agents simultaneously play one round of the
PD with all their partners. At the end of each period, with some exogenously given
probability, individual agents can update their PD strategy, and with some other
exogenously given probability they can update their local network, after which they play
another round of the PD. When they update their interaction structure, with some
exogenously given probability they either try to severe an existing link or to form a new
link, and if this fails they try the opposite action. To choose a PD strategy, each agent
copies the most successful strategy in his neighborhood (including his own), where the
measure of success is the sum of all current payoffs. If an agent had no partners before,
he randomly chooses to cooperate or defect in the next period.

The interactions are endogenous in the following sense. When looking for a link to
severe, an agent chooses one of his existing partners randomly, and terminates the
relationship if the net benefit of doing so is positive, myopically assuming other agents
will not change behavior and the network remains otherwise unchanged too. No
consent is needed. To form a link, on the other hand, consent is needed. Hence, both
agents, myopically comparing costs and benefits, need to find positive net marginal
payoffs. A potential new partner can be selected either among the partners of his
current partners (with the probability of any partner being chosen proportional to the
number of shared partners) or be a randomly chosen stranger from the entire
population. The probability used to decide between these two routes to a new partner is
exogenously fixed. That is, the agents do not learn which route to follow. How to
estimate the expected payoff of a new partner? If it is a partner of a partner, this partner
will inform the agent about the most recent PD strategy of this new partner. If the
potential new partner is a stranger, the initial expected payoff depends on trust, which is
effectively the subjective probability that such an agent will cooperate. This trust level
itself evolves. That is, it is updated every period such that it is a weighted average of the
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cooperation levels experienced by the agent (with greater weights for more recent
experiences). The experiences that matter in this respect are either (in one version of
the model) all others interacted with (including ongoing interactions) or (in another
version) only all new partners interacted with. The agents' view on this does not evolve.
That is, although the agents update their trust levels, they do not learn on which
interactions they should base their trust.

--- Figure 14 about here ---

Hanaki et al. (2004) present an extensive analysis for a wide range of parameter
values. Figure 14 shows the relative frequency distribution of average cooperation
levels reached in 10,000 runs of 10,000 periods for a population of 1000 agents, with
the other parameter values sampled randomly from pre-specified ranges. As we see,
substantial amounts of cooperation can occur. They show that the amount (and
volatility) of cooperation relies on networks being sparse (both globally and locally),
which is facilitated by high connection costs. In a fully-connected network, where
cooperators and defectors interact with the same agents, all agents would quickly learn
to defect (which is the dominant strategy). They find that cooperation levels are higher
when new partners are chosen at random from the whole population rather than friends
of friends. On the one hand, this is due to the fact that relying exclusively on friends to
find new partners leads to too high connectivity, and hence collapse of cooperation (see
above). On the other hand, the advantage of interacting with strangers is that
cooperation can expand. Friends of friends are acceptable only if it is known (through
the friends) that they cooperate anyway. But strangers are acceptable depending on the
trust of the agent looking for new partners. This trust (based on past experiences) is an
imperfect substitute for information. As a result, such agents may seek interaction with
current defectors, possibly leading to the recruitment of defectors. If these defectors are
relatively isolated, they may immediately be converted (through the payoffs) to
cooperation if the cooperating agent initiating the link has enough cooperators in his
network. Obviously, this implies that assortive matching is essential, i.e., there must be
a limit to this willingness to interact with defectors. The eventual amount of cooperation
developed is the net result of these two forces. The balance is due to the endogenous
trust level. That is, the amount of expansion is determined endogenously. Imperfectly
informed agents are open enough for new contacts while all the time updating their
beliefs about their environment.
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2.8  Kirman & Vriend (2001): expected payoff/familiarity
Kirman & Vriend (2001) study the evolving structure of an actual market: the

wholesale fish market of Marseille. They focus in particular on two stylized facts of
that real market: price dispersion and the loyalty of buyers to sellers.

Each day the following sequence of events takes place in this model (see Figure
15). In the morning, before the market opens, the sellers purchase their supply for
the day, without knowing the demand they will face during the day. The market, then,
opens, and the buyers (who want one unit each of the fish) choose the queue of a
seller in the market hall. The sellers handle their queues sequentially, giving each
individual buyer a 'take-it-or-leave-it’ price (thus, prices are not posted). Once the
sellers have handled all queues, the morning session is over. In the afternoon, the
market re-opens, allowing unsatisfied buyers from the morning sessions to choose
again a queue of a seller. With all queues handled by the sellers, the market closes,
and all unsold stocks perish. The buyers, then, re-sell their fish outside the market.
The model considers 5000 days.

--- Figure 15 about here ---

Each individual seller must decide the quantity to supply, how to handle
queues, and which prices to ask during the morning and afternoon sessions. For
each decision they use a set of alternative rules. The fitness of each rule depends on
the actual payoffs realized when using the rule, and fitter rules are more likely to be
used again. An individual buyer chooses a seller in the morning, and possibly
(another) one in the afternoon.  Whenever a buyer hears a price, he will need to
decide whether to accept or reject the price. For each of these decisions an individual
buyer has a set of decision rules at his disposal, being more likely to use the fitter
rules, with these fitnesses depending on the payoffs generated by these rules.

The interactions are endogenous as follows. The choice of which seller to visit
for the buyers depends directly on the average payoffs a buyer realized with each
seller, such that more satisfactory sellers (in the sense of offering a better
combination of service and prices) are more likely to be visited by a buyer. When the
sellers handle their queues, they can do this in any order they like. That is, they may
give precedence to some buyers over other buyers. They do this on the basis of the
familiarity of the faces of the buyers in their queue. This familiarity is basically a
weighted average of past presences of a buyer in a certain seller's queue, and it
evolves directly as the result of the buyer's shopping behavior. What is more, the
sellers' view concerning the relevance of this familiarity may evolve. That is, an
individual seller can move a more loyal buyer either towards the front or the back of a
queue. The probability for a buyer to be served next is a function of a buyer's loyalty,
and this function depends on a choice parameter, such that different values of this
parameter give either more or less advantage or disadvantage to loyal buyers. The
sellers learn which parameter value to use through reinforcement, such that values
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that led to higher payoffs in the past are more likely to be used again. To decide upon
a price to ask from an individual buyer, a seller takes into account the familiarity of
the buyer's face too, as well as the remaining stock and remaining queue at that
moment.  Each seller uses a set of alternative rules linking these two factors to
prices, and learns through reinforcement which rule to use.

--- Figure 16 about here ---

What kind of interaction pattern does this imply? First, does loyalty emerge? As
Figure 16 shows, loyalty does emerge (on average). The loyalty index used is such that
it would be 1 if buyers were perfectly loyal, and 0.10 if buyers were not loyal at all. As
buyers do not even know the concept loyalty (they just pick a firm each day), and sellers
are indifferent with respect to loyalty to start with, why do buyers become loyal? As it
turns out, most buyers get a higher average payoff when returning to the same seller
the next day than when switching. This occurs mainly through a better service rate of
loyal buyers. Why do sellers offer this advantage to loyal buyers? Sellers realize higher
gross revenues when dealing with loyal buyers, which is related mainly to a higher
acceptance rate. Second, does this familiarity of faces matter? The answer is "yes", and
the role it can play with respect to market organization is illustrated nicely by a setup in
which there are three types of buyers. The difference between these three types is in
the given prices for which they can re-sell outside the market (imagine, e.g., a cheap
corner shop versus a posh restaurant). The model explains how 'high' buyers (those
that can re-sell for a higher price) do not only pay higher prices than 'low' buyers, but
also find higher prices than the latter. This happens notwithstanding the fact that in this
model no trader knows about this difference between types of buyers, and no trader can
recognize any type of buyer. But different types of buyers notice their different payoffs at
the end of each day. This affects their evaluation of their price acceptance/rejection
decisions, and their evaluation of the sellers they visited. Hence, this will influence their
shopping behavior. These differences in shopping patterns are indirectly picked up by
the sellers through the familiarity of buyer faces. In turn, this leads to different
treatments in queues and different prices. What is more, differences among sellers
emerge. Some sellers learn to specialize in 'high' buyers, some others in 'low' buyers.
The latter ask lower prices, experience nevertheless a higher rejection rate, maintain a
lower supply/sales ratio, leading to a lower service rate, and put loyal customers
towards the end of the queue.
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2.9  Chang & Harrington (forthcoming): past success rate
Chang & Harrington (forthcoming) study the issue of discovery and diffusion

of knowledge, and the social networks that may thus arise.
They consider a population of individuals, who all have to solve the same

given number of separate tasks. A method to solve a given task is described by a
sequence of binary bits. Hence, each individual agent's method to solve his entire set
of tasks is simply a binary vector of bits. Each individual agent has an optimal, target
vector that describes the optimal way to solve all his tasks. Chang & Harrington
(forthcoming) assume that individual agents, although they can not simply pick the
optimal method themselves, can rank any two method vectors on their Hamming
distance from their target vector (which is effectively the number of bits that is
different in the two vectors). The individual target vectors may change over time
following some pre-specified dynamic process. This implies that there is a persistent
need for the individual agents to discover new methods, and for such knowledge to
be diffused.

--- Figure 17 about here ---

The time-structure is the following (see Figure 17). Having drawn all initial method
vectors and target methods randomly, and avoiding any bias in favor of imitation or
innovation, or any bias favoring the observation of one individual over another, in each
period each individual agent goes through the following sequence: An agent decides
whether to innovate (all by himself) or to imitate another agent. If he decides to
innovate, then he randomly chooses a method for a randomly chosen task. If,
however, he decides to imitate, then he chooses an agent to imitate, and copies the
method from this other agent for a randomly chosen task. In both cases (innovation
and imitation), the method obtained is actually adopted only if its adoption gets the
agent closer to his target vector (using the Hamming distance as measure).

The endogenous interactions are modeled as follows. The structure of
interactions depends solely on the success of past interactions. This success
depends on the distribution of the vectors of methods adopted by the agents as such,
and their state relative to the target vector. But the agents do not use any information
about this directly.  As the agents interact (or not), the distribution of method vectors
changes. The agents' view as to whether they should innovate or imitate (and if so,
whom) evolves as the agents learn through their own experience. The choice of an
agent between imitation and innovation (i.e., whether to interact with others or
whether to stay alone) is a probabilistic decision. The decision weight for each
depends essentially on the number of successes when choosing that option in the
past. In addition, the weights decrease each period through some decay. In case an
agent opts for imitation, the choice of the agent to be imitated is made in a similar
probabilistic way. The weight for a given agent in the population is increased each
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time that agent has been imitated successfully, and it decreases through some
decay.

--- Figure 18 about here ---

Chang & Harrington (forthcoming) focus on the properties of the emerging
social networks. In much of their analysis they partition the population into a fixed
number of groups to get some persistent similarity in goals, as the dynamics of the
target vectors of all agents within a group follow some stochastic process (modeling
turbulence in the task environment) such that they stay within certain bounds. The
individual agents know nothing about this, and one of the questions is whether they
will imitate other agents, and if so to what extent they will learn to imitate agents from
their own group or from other groups. The analysis is based on 20 runs of 20,000
periods with 20 individual agents. Figure 18 shows the interaction probabilities for all
individual agents for a setup with four fixed groups of five agents. The 20 individual
agents are ordered identically on both the horizontal and vertical axis according to their
group association. Lighter shades indicate higher probabilities of interaction. Notice that
individual agents cannot imitate themselves, which shows up as black diagonal cells. As
we see, there are four 5x5 blocks that are clearly lighter, indicating that agents learn to
interact more with agents within their group than with other agents. Notice that agents
within their group are pursuing similar goals, but this is not known to the individual
agents. Further analysis shows that this property is stronger the more groups are similar
within and different from other groups.
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2.10  Jackson & Rogers (2004): directed random search
Jackson & Rogers study some abstract network formation process, and in

particular the question which processes may lead to power laws and small worlds,
properties that have often been observed empirically in large networks. More
precisely, they focus on the following three stylized features of such networks: highly
clustered connections (which means that two agents linked to a given agent are
themselves likely to be linked to each other as well), small maximal distances
between nodes (which means that any two nodes in the network can be linked
through a short path), and a power law in the upper tail for the distribution of node
degrees  (which means that there are more nodes with very few or with very many
connections than one would expect if links were formed independently).

--- Figure 19 about here ---

Jackson & Rogers consider an abstract model of network growth, without any
further economic interaction. Figure 19 shows the time-structure of the model. At each
time step, one individual agent is added to the network. Before joining the network,
the individual agent forms two samples of potential links. First, he creates a uniform
randomly chosen sample out of all agents in the current network, and second, he
forms another sample chosen uniform randomly out of all agents who are currently
directly linked to the agents in his first sample. In the basic setup the net benefit of a
link is independently and identically distributed across pairs. Given the two samples of
potential links, the new agent myopically chooses any links within those samples
providing him with positive net utility. Once linked, agents remain linked forever, and no
further payoff relevant events occur for these agents.

The links formed are endogenous in the following sense. The choice of
agents sampled by a new agent depends on the existing network structure. More
precisely, the second sample consisting of partners of the first uniform randomly
generated sample of agents is affected directly by the existing network structure. As
new agents form links, this network structure evolves. The agents' view on the
relevance of certain network structures, however, does not evolve, as the agents do
not learn anything. That is, the sizes of the two samples, and the fact to use these
two sampling methods are determined exogenously. This is irrelevant in the basic
version of the model. Since the net utilities for pairs are independent and identical
draws, any sampling method is as good as any other. But as soon as the net utility of
connecting to a certain node depends on the existing network structure this is no
longer true.

-- Figure 20 about here ---

The analysis of this agent-based model of Jackson & Rogers is in part formal
mathematical, in part based on mean-field approximations, and in part computational.
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They show that the model explains high clustering, which does not go to zero as the
network grows (unlike a number of alternative network formation processes). This
seems due to the search method, as any two nodes linked to by a new agent are
likely to have been selected in part because they were linked to each other. The
diameters of the networks tend to be small, which seems again related to the
directed search method. As search is directed towards nodes with relatively large
degree, new links are likely to shorten paths for many existing nodes. Finally, they
show that the degree distribution of nodes has a scale-free upper tail. Scale-free
means that the 'connectedness' (the distribution of links per node) does not vary with
the scale of the network. This can be expressed by a power law as the probability of
any given node being connected to k other nodes is (1/k)n, where n is some constant
parameter. Figure 20 shows a log-log plot of the complementary cumulative
distribution function of node degrees. The solid curve is from a mean-field
approximation, and the dotted curve from the computational analysis. The latter is
based on a run of 10,000 periods, in which both samples were always of size two,
and all agents sampled offer positive net payoffs (which means that they are
acceptable links). As we see, the upper tail of the distribution is nearly linear,
indicating a scale-free distribution, but the lower tail is not scale-free.
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3. Concluding remarks
Although the models discussed cover a wide range of possibilities to model

endogenous interactions, we can detect some kind of prototype of modeling
endogenous interactions. This prototype seems to consist of up to three elements. (i)
The interactions are directed (guided) by some variable x, e.g., because the agents
are 'picky' with respect to this variable x. (ii) This variable x itself evolves directly as a
result of the interactions. (iii) The agents' view of the relevance of variable x evolves,
as they may learn, e.g., how and how much they care about it.

Where can the ACE modeling of endogenous interactions go from here? Obviously
the approaches discussed could be improved, and alternatives may be created. It
seems in particular interesting if various approaches could be used for the same
underlying game or economic situation, to analyze the possible differences in dynamics.
In the introduction we argued that the choice of interaction mechanism should depend
on the 'circumstances' to be modeled in a broad sense, and on the purpose of the
model. But it would seem interesting to add one level of endogeneity to the
interaction mechanisms discussed in this paper, i.e., to let the type of endogenous
interaction itself be determined endogenously. This would allow us to study why certain
endogenous interaction mechanisms (depending on past payoffs, proximity, familiarity
of faces, simple physical cues or tags, trust, advertisements, ...) seem to be relevant for
certain types of interactions but not for others.

4.  For further reading
Galouye (1964). For a start, consider the following quotes:

"We can electronically simulate a social environment. We can populate
it with subjective analogs - reactional identity units. By manipulating the
environment, by prodding the ID units, we can estimate behaviour in
hypothetical situations." (p. 7/8).

And:
 "... the simulator ... would ... be exploring fully the unpredictable fields
of social interaction and human relationships as a means of suggesting
a more orderly society, from the bottom up!" (p. 10).
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1 run: initial allocation of agents

- all unsatisfied put on list
- from list in arbitrary order:

unsatisfied move to nearest
until all satisfied avail. satisfactory position

Figure 1.  Structure of Schelling (1971)



initial state steady state

Figure 2.  Emergence of segregation
Source: Based on Schelling (1971)



1 run: initialize agents and sites

all sites simultaneously grow resources

each agent sequentially:
- moves
- creates new neighborhood list
- accumulates sugar (spice)
- metabolizes sugar (spice)
- dies (if wealth negative)

indefinitely
(optional) each agent sequentially:

- trades with agents
on his neighborhood list

(optional) each agent sequentially:
- combats

(optional) agent replacement

Figure 3.  Structure of Epstein & Axtell (1996)



Figure 4.  Typical time series for average trade price 

Source: Epstein & Axtell (1996)



1 run: initialize agents

- each agent selects predictor
- each agent makes attendance decision

100x - each agent updates belief concerning
accuracy predictor used

Figure 5.  Structure of Arthur (1994)
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Figure 6.  Numbers attending in first 100 weeks

Source: Arthur (1994)



1 run: initialize agents

50 days:
- firms produce in advance
- firms present themselves as such
- consumers shop (random order)
- reinforcement decision rules

(firms and consumers)
60x

- evolve rule sets indiv. firms
(selection based on fitness,
crossover, mutation)

Figure 7.  Structure of Vriend (1995)
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Figure 8.  Evolution of patronage rate

Source: Vriend (1995)



1 run: initialize agents

for 150 rounds:
- each player proposes opponent
- proposals evaluated
- each accepted pair plays one PD
- each player updates expected

payoffs from opponents
2000x

- evolve set of players
(selection based on fitness,
crossover, mutation)

Figure 9.  Structure of Ashlock et al. (1996)
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Figure 10.  Distribution of threshold and fitness levels

Source: Ashlock et al. (1996)



1 run: initialize agents

for each player 10 times:
- player finds opponent
- matched pair plays 4-round IPD

5000x
- evolve set of players

(selection based on fitness,
with noise added)

Figure 11.  Structure of Riolo (1997)
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1 run: initialize agents

all agents simultaneously
play 1-shot PD game
(same strategy for all links)

some agents can update PD strategy
10,000x

some agents can update connections
(either severe or create one link)

Figure 13.  Structure of Hanaki et al. (2004)
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1 run: initialize agents

morning:
- all sellers purchase supply
- market opens
- all buyers choose queue seller
- all sellers handle queues

afternoon:
- market opens
- all unsat. buyers choose queue
- all sellers handle queues
- unsold stocks perish
- all buyers re-sell outside market

5000x
reinforcement decision rules:

- sellers: quantities to supply,
how to handle queues,
which prices to ask

- buyers: choice seller,
prices to accept/reject

Figure 15.  Structure of Kirman & Vriend (2001)
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Figure 16.  Evolution of loyalty
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1 run: initialize agents and target methods

each agent:
- decides to innovate or imitate
- if innovate:

choose random method
for random task

- if imitate:
choose agent to imitate,

20,000x copy method random task
- adopts new method if better
- updates belief about

innovation v. imitation
- updates belief about

agent imitated (if any)

stochastic change target methods

Figure 17.  Structure of Chang & Harrington (2003)



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
j

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Figure 18.  Interaction probabilities between agents i and j

Source: Chang & Harringon (2004)



1 run: initial state: nothing

one new agent to be added:
- randomly samples potential links
- creates second sample:

randomly out of those linked
to agents in first sample

- checks payoff with
10,000x each sampled potential link

- creates all sampled links
offering positive utility

Figure 19.  Structure of Jackson & Rogers (2004)
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