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Abstract

This note shows that regime switching nonlinear autoregressive
models widely used in the time series literature can exhibit arbi-
trary degrees of long memory via appropriate definition of the model
regimes.
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1 Introduction

Nonlinear time series models have been used extensively in recent years to

investigate economic phenomena. A number of classes of models have been

popularised in the literature. Two of the main classes considered are thresh-

old models and Markov-Switching models. The main characteristic of both

classes is the non-constancy of the response of the dependent variables to the

explanatory variables. This response which is, in linear regression models,

simply the coefficient of the explanatory variable, is allowed to vary depend-

ing on the occurrence of given trigger events. The main difference between
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threshold models and Markov Switching models is that the first class assumes

that coefficients change with respect to the occurrence of some event in an

observed variable whereas for Markov Switching models the responses change

with respect to a change in state of an unobserved discrete Markov Chain.

A related strand of the literature on the investigation of highly persistent

processes looks at the presence of long memory in the data. Long memory and

nonlinearity have rarely been jointly analysed. Exceptions include Davidson

and Sibbertsen (2002), Diebold and Inoue (2001), van Dijk, Frances, and

Paap (2002) and Kapetanios and Shin (2002). Within this small set of pa-

pers two strands are apparent. One strand considers long-memory and non-

linearity as alternative representations which maybe confused and tries to

investigate their similarities and differences. Diebold and Inoue (2001) jux-

tapose the variance structures of long memory and Markov switching models.

Davidson and Sibbertsen (2002) discuss one class of nonlinear models which

have a similar variance structure to long memory models. Kapetanios and

Shin (2002) suggest a formal test for distinguishing between nonstationary

long memory and nonlinear geometrically ergodic models in small samples.

On the other hand van Dijk, Frances, and Paap (2002) investigate the pos-

sibility that the nature of the process driving the long memory process is

nonlinear. They apply such a model to US unemployment data with inter-

esting results.

This short paper is in the spirit of the first strand and in particular extends

the theoretical analysis of Diebold and Inoue (2001). That paper considered

simple Markov Switching models where the only explanatory variable that

was affected by the unobserved Markov chain was the constant implying the

process switched means at particular time periods. By allowing the time
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intervals in which the processes did not switch mean to grow to infinity on

average, Diebold and Inoue (2001) showed that the variance of the partial

sums of the process would grow at a similar rate to long memory processes.

The current paper takes up this idea and explores both Markov Switch-

ing and threshold models whose autoregressive parameter is allowed to switch

regimes. By appropriately specifying the model we can see that long memory

may emerge. Unlike Diebold and Inoue (2001) who focused on variances of

partial sums of the processes, we focus more on the autocovariance of the

process itself. This appears to be of greater interest as it relates more closely

to the economic concept of slow decay of shock effects. In statistical terms

we obtain autocovariances which decay hyperborically rather than exponen-

tially. Further, our model specification bridges the gap between standard

stationary autoregressive models whose autocovariances decay exponentially

and random walk models. A further advantage of our specification is the

ability to provide a somewhat structural interpretation of the emergence of

long memory rather than simply a statistical construct.

The note is structured as follows: Section 2 provides the setup of our

analysis. Section 3 provides some theoretical results. Finally, Section 4

concludes.

2 The setup

We consider the following simple model

yt = ρtyt−1 + εt, t = 1, . . . , T (1)

where ρt = 1 if It = 1 and ρt = ρ, |ρ| < 1 if It = 0 and εt is an i.i.d. pro-

cess with finite variance σ2. Depending on the specification of It this setup
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encompasses both threshold models and Markov-Switching models. More

specifically, if It = I{st=1} where I{.} denotes the indicator function and st is

an ergodic Markov Chain with transition matrix P , whose elements do not

depend on T , taking the values 1,2 then this is a Markov Switching model. If,

on the other hand, It = I{|xt−d|<r}, for finite r and some process xt (possibly

xt = yt) then this is a particular type of threshold model. As they stand these

models describe strictly stationary and I(0) process, where an I(0) process is

defined to be a process whose normalised partial sums converge to a Brow-

nian motion. This is easy to see for both models. For the threshold models

note that by the drift condition of Tweedie (1975) the model is easily seen

to be geometrically ergodic, hence asymptotically stationary and β-mixing.

Note that the geometric ergodicity result requires that xt is absolutely con-

tinuous with uniformly continuous and positive pdf. Then, the result follows.

For the Markov Switching model it is easily seen that the model is a near

epoque dependent (NED) process, (see Davidson (1994)) of any arbitrary

size. Hence, it satisfies a functional central limit theorem and it therefore is

I(0). We do not provide more details on these properties at this stage as the

analysis in the next section will elucidate our claims.

To obtain long memory behaviour and in particular slowly declining auto-

covariances, we will regulate the occurrence of the event It = 0. In particular,

the standard models assume that It = 0 occurs for a proportion of periods in

the sample which is bounded away from zero. But if we allow It = 0 to occur

increasingly rarely then the random walk behaviour will increasingly affect

the persistence of the process. So the idea is relatively simple. Whereas short

memory models allow random walk behaviour for some proportion of time

bounded away from one, if we allow increasingly long periods of random walk

behaviour then long memory emerges.
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A structural interpretation of this phenomenon is viewing the events It =

0 as increasingly rare events that constrain the evolution of the process. For

example, in economics one can come up with a number of economic processes

which may exhibit such behaviour. Processes such as exchange rates which

may be usually left to evolve freely in the financial markets but may be

constrained at particular points in time due to exceptional circumstances

such as financial crises come to mind.

3 Theoretical Results

3.1 Markov-Switching Models

In this section we provide our theoretical results. We first examine the

Markov Switching model. For simplicity we specify the transition matrix

for st, for every T , by

P =

(
1−$T 1−$T

$T $T

)
(2)

We introduce dependence of the transition matrix on T but do not spec-

ify any more details. These will be provided below. It is easy to estab-

lish that the stationary distribution of the chain, for given T , is (π1, π2) =

(1−$T , $T ). Then we prove the following theorem

Theorem 1 The process given by (1) with It = I{st=1}, where st is a two

state discreet Markov chain with transition matrix P given by (2) is covari-

ance stationary as long as (4) holds for $T .

Proof

We have the following representation for yt
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yt =
∞∑
i=0

ρ
∑i

j=1 I{st−j=2}εt−i =
∞∑
i=0

ci,tεt−i (3)

The condition for covariance stationarity of the process will be borne out

of the ensuing analysis. We start by examining the decay properties of the

coefficients of the above MA representation of the process. Note that (3) is

not the same as the Wold representation of the process, since firstly the Wold

representation will not necessarily exist unless yt is stationary and secondly

the coefficients ci,t depend on t. Note however, that ci,t is a stationary pro-

cess for each i.

We examine ci,t for large i. Asymptotically, we have

ρ
∑i

j=1 I{st−j=2} =
(
ρ

1
i

∑i
j=1 I{st−j=2}

)i

But, by the ergodicity of the chain and the standard law of large numbers

we have that

plimi→∞
1

i

i∑
j=1

I{si−j=2} = limi→∞$i

The same results holds in mean square (rather than in probability) since

I{si=2} is a uniformly integrable sequence. Hence, asymptotically

ρ
∑T

j=1 I{st−j=2} ∼ ρT$T

The process will be covariance stationary as long as ρ2T$ = o( 1
T
) since then

∑∞
i=0 E(c2

i,t) < ∞. In fact if ρ2T$ = O( 1
T 2−2d ) for 0 < d < 0.5 the process

exhibits long memory similar to that of ARFIMA processes with long memory

parameter d. This follows from the asymptotic form of the coefficients of the

MA representation of an ARFIMA process as given in (2.48) of Beran (1997).

So, we need to investigate conditions for that. We set $T = a ln T/T . We

have
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ρ2T$T = ρ2a ln T = T 2a ln ρ

So, we need

2a ln ρ < 2d− 2

which gives for d = 0.5

a >
−1

2 ln ρ
(4)

This is a condition for stationarity. A condition for stationary long memory

is
−1

ln ρ
> a >

−1

2 ln ρ
(5)

Obviously, for smaller a we have nonstationary long memory.

Q.E.D.

3.2 Threshold models

Now, let us examine threshold models. A simple threshold model, we focus

on, takes the form

yt = yt−1I{|vt|<r} + ρyt−1I{|vt|≥r} + εt (6)

where vt is an i.i.d. sequence which is independent of εt and εt is again i.i.d.

with variance σ2. Then, the following theorem holds

Theorem 2 The process given by (6) is covariance stationary as long as (7)

holds.

Proof
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Similarly to the analysis of Markov-Switching models, we can write:

yt =
∞∑
i=0

ρ
∑i

j=1 I{|vt−j |≥r}εt−i

We therefore focus on the behaviour of
∑i

j=1 I{|vt−j |≥r} as i →∞. From the

proof of theorem 1, we know that a sufficient condition for stationarity is

that
∑i

j=1 I{|vt−j |≥r} = om.s.(ln i). In other words, we are interested in the

behaviour of extreme realisations of vt. To pose the problem more concretely,

we are looking for r as a function of T such that only om.s.(ln T ) realisations

of |vt| out of a sample of size T exceed r. The theory of intermediate order

statistics provides answers to this problem. Define the i-th order statistic

of the sequence {vt}T
1 as vi:T . Then, the focus of interest is the behaviour

of vT−k+1:T when T → ∞, k → ∞ and k/T → 0. Denote the distribution

and density functions of vt as Fv and fv respectively. Then, by Theorem 2.1

of Falk (1989) we know that there exist sequences of constants cT,k and dT,k

depending on Fv such that

supB∈B
∣∣P (

c−1
T,k(vT−k+1:T − dT,k) ∈ B

)−N(0,1)(B)
∣∣ → 0

where B is the Borel σ-algebra on R, P (x ∈ B) denotes the probability

measure of x and N(0,1)(B) is P (x ∈ B) when x ∼ N(0, 1). Hence,

r = rT = o(cT,ln T a + dT,ln T ) (7)

for some constant a is a sufficient condition for stationarity. For example, if

vt ∼ N(0, 1) then

cT,ln T = T (ln T )−1/2φ(Φ−1(1− ln T/T ))

and

dT,ln T = Φ−1(1− ln T/T )
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Figure 1:

In general, the sequences cT,ln T and dT,ln T are such that

lim
T→∞

cT,ln T /aT,ln T = 1

and

lim
T→∞

(dT,ln T − bT,ln T )/aT,ln T = 0

where

bT,ln T = F−1
v (1− ln T/T )

and

aT,ln T = (lnT )1/2/(Tfv(bT,ln T ))

Q.E.D.

Of course these results can, in principle, be generalised for dependent

processes vt. In particular, mixing processes in the sense of definition 3.7.1

of Galambos (1978) (this is similar to standard strong mixing but applied
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Figure 2:

only to the tails of the relevant distribution) which also satisfy a bound on

the probability that any two observations will take large values have been

shown to obey similar laws concerning the behaviour of order statistics as

i.i.d. processes. (see (Galambos, 1978, Ch. 3 Sec. 7))

Our analysis has been focused on nonlinear models with one lag. Multi-

lag extensions of these results are obviously possible. In particular, what

is needed is simply the existence of two regimes, one of which has an au-

toregressive polynomial with a unit root and occurs most of the time and

another regime whose autoregressive polynomial has roots lying outside the

unit circle and occurs rarely.

To give an empirical flavour of our results we have simulated processes

for the Markov Switching and threshold models we have discussed. More

specifically, for the Markov switching model we have used ρ = 0.9 and
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Figure 3:

a = −1.9
2 ln ρ

. For the threshold model we have used ρ = 0.9 and rT = 0.25 ∗
T (ln T )−1/2φ(Φ−1(1 − ln T/T )). Throughout σ2 = 1. For comparison we

have also simulated an ARFIMA(0,0.49,0) process. Again the variance of

the i.i.d. process driving the ARFIMA process is σ2 = 1. For all processes

T = 10000. All noise terms are standard normal. In Figure 1, we present

the autocorrelation functions as estimated from the data. In Figures 2-4, we

present the process realisations. Clearly the processes are very persistent.

Looking at the realisations, it is clear that the processes although covariance

stationary look much more like a random walk than the ARFIMA process.

4 Conclusion

This short paper has illustrated the potential of persistent nonlinear autore-

gressive processes to produce long memory behaviour. We have extended in

a number of directions the results of Diebold and Inoue (2001) who looked at
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Figure 4:

simple (not autoregressive) Markov Switching models and found configura-

tions that resulted in long memory. In particular, we have shown that simple

nonlinear regime switching autoregressive models can exhibit long memory

behaviour as long as the less persistent regime occurs increasingly rarely.
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