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Abstract

The paper addresses the issue of forecasting a large set of variables using multi-

variate models. In particular, we propose three alternative reduced rank forecasting

models and compare their predictive performance with the most promising existing

alternatives, namely, factor models, large scale bayesian VARs, and multivariate

boosting. Specifically, we focus on classical reduced rank regression, a two-step

procedure that applies, in turn, shrinkage and reduced rank restrictions, and the

reduced rank bayesian VAR of Geweke (1996). As a result, we found that using

shrinkage and rank reduction in combination rather than separately improves sub-

stantially the accuracy of forecasts, both when the whole set of variables is to be

forecast, and for key variables such as industrial production growth, inflation, and

the federal funds rate.
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1 Introduction

Forecasting future developments in the economy is a key element of the decision process

in policy making, consumption and investment decisions, and financial planning. While

some macroeconomic variables are of particular interest, e.g., GDP growth, inflation

or short term interest rates, the attention is more and more focusing on a larger set of

indicators, in order to obtain an overall picture of the expected evolution of the economy.

Recently there has been a boost in the developments of econometric methods for

the analysis of large datasets, starting with the pioneering work of Forni et al. (2000)

and Stock and Watson (2002a, 2002b). The key econometric tool in this context is the

factor model, where each of a large set of variables is split into a common component,

driven by a very limited number of unobservable factors, and an idiosyncratic component.

From a forecasting point of view, the idea is to use the estimated factors for predicting

future developments in, possibly, all the many variables under analysis. In practice,

factor models have produced fairly accurate forecasts when compared with standard

benchmarks, such as AR of VAR based predictions, for several countries and different

macroeconomic variables, see e.g. the meta analysis in Eickmeier and Ziegler (2006).

The good performance of factor models has stimulated a search for alternative meth-

ods with further enhanced predictive power, see e.g. the overview in Stock and Watson

(2006). These can be classified into methods for variable selection, such as LASSO (Tib-

shirani,1996, De Mol et al. 2006), or boosting (Bai and Ng 2007, Bühlmann, 2006, Lutz

and Bühlmann 2006), or bagging (Breiman 1996, Buhlmann and Yu 2002, Inoue and

Kilian 2004); Shrinkage estimators, such as ridge regression (De Mol et al. 2006) or

Bayesian VARs in the spirit of Doan, Litterman and Sims (1984) (e.g. Banbura et al.,

2007); and pooling procedures, where a large set of forecasts from alternative, possibly

small scale, models are combined together, see e.g. the survey in Timmermann (2006).

Surprisingly, most existing research has used large datasets only as predictors for a

small number of key macroeconomic variables, not considering the issue of forecasting

all the series in the dataset itself. As a result, most of the contributions cited above are

based on a single equation approach.

In this paper we focus on forecasting all the variables in a large dataset using mul-

tivariate models. In particular we propose three additional forecasting methods and

evaluate their performance in forecasting a large US macroeconomic dataset, comparing

them with the most promising existing alternatives, namely, large scale Bayesian VARs

(BVAR), multivariate boosting (MB), and factor models (SW).

Specifically, we focus on Reduced Rank Regressions (RR), which have a long history
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in the time series literature but have been so far only applied in small models, see e.g.

Velu et al. (1986), Reinsel (1983), Reinsel and Velu (1998), Camba-Mendez et al. (2003).

RR represents a natural extension of the methods proposed so far in the large dataset

literature. Actually, factor models can be obtained as a special case of Reduced Rank

Regression, and the parameter dimensionality reduction needed in large scale VARs can

be further enhanced by combining Bayesian priors with reduced rank restrictions.

We consider three types of RR. First, the classical RR, along the lines of Velu et al

(1986). Second, a two-step procedure that applies, in turn, shrinkage and reduced rank

restrictions (we label it RRP for Reduced Rank BVAR Posterior). Third, a Bayesian

RR (BRR), which imposes the rank reduction on the prior as well as on the posterior

mean, extending to the large scale context a proposal of Geweke (1996).

Being multivariate, the proposed reduced rank methods are well suited for medium

to large datasets of the dimension typically of interest for central banks, i.e. about

50-60 variables, but cannot handle, or can handle with computational difficulty, cases

in which the cross-sectional dimension is larger. For that very reason in our empirical

application we use 52 US macroeconomic variables taken from the dataset provided

by Stock and Watson (2005). The series have been chosen in order to represent the

main categories of indicators which are relevant for central banks in understanding and

forecasting developments in the macroeconomy. Basically, we have discarded from the

original dataset of Stock and Watson (2005) those variables containing roughly the same

information as others, such as the disaggregated sectoral data on industrial production

and prices. These variables are not of particular interest to be forecasted as they are

highly collinear, which may also create serious problems in estimation.

We can anticipate that RR, and in particular RRP and BRR, produce fairly good

forecasts, more accurate than those of competing methods on average across several US

macroeconomic variables, when measured in the terms of mean square or mean absolute

forecast error (MSFE and MAFE). Moreover, they also perform well for key variables,

such as industrial production growth, inflation and the short term interest rate. This is

encouraging evidence that using shrinkage and rank reduction in combination improves

substantially the accuracy of forecasts.

The paper is structured as follows. In Section 2 we describe in more detail the

forecasting models under comparison, with a special focus on the different types of RR.

In Section 3 we present some theoretical results on the consistency of the parameter

estimates of VAR and reduced rank VAR models when the cross-sectional dimension

tends to infinity. In Section 4 we present the results of the forecast comparison exercise.

Section 5 concludes.

3



2 Forecasting Models

We are interested in forecasting the N -vector process Yt = (y1,t, y2,t, ..., yN,t)
0, where N is

large, using aNp-dimensional multiple time series of predictorsXt = (Yt−1, Yt−2, ...Yt−p)0,

observed for t = 1, ..., T . The baseline model is therefore a VAR(p):

Yt = A1Yt−1 +A2Yt−2 + ...+ApYt−p + et, (1)

where means have been removed. Defining B = (A1, A2, ...Ap)
0 equation (1) can be

compactly written as:

Yt = B0Xt + et. (2)

It is convenient to rewrite the VAR in (2) as a multivariate regression:

Y = XB +E. (3)

In equation (3) the observations are by row, and equations by column, so Y = (Y1, ..., YT )
0

is a T × N matrix of dependent variables, X = (X1, ...,XT )
0 is a T × M matrix of

explanatory variables, where M = Np.

The matrix E is the matrix of disturbances, which are assumed to be independent and

identically distributed across observations; that is, taking E = (e1, e2, ..., eT )0, then εi ∼
IIDN(0,Σ). We define r as the rank of the M ×N matrix of coefficients B, where of

course r ≤ N.

We focus on 6 forecasting models: reduced rank regression (RR), Bayesian VARs

(BVAR), multivariate boosting (MB), Bayesian reduced rank regression (BRR), reduced

rank Posterior (RRP), and factor models (SW).

SW and RR are both based on the idea of reducing dimensionality by imposing a

structure which summarizes the information contained in a large set of predictors by

focussing on some relevant linear combinations of them. An alternative route to obtain

a more parsimonious model might be to impose exclusion restrictions on the predictors.

However, excluding some variables from a regression is likely to be relatively ad hoc,

unless a coherent statistical framework is adopted to do so. BVAR and MB provide

a solution to this problem. Finally, BRR and RRP apply both shrinkage and rank

reduction. In the latter case the reduced rank is imposed after the estimation of a

BVAR has been performed. In the former case, the rank reduction is imposed on the

prior as well as on the posterior mean. Each forecasting model is described in details in

the following six subsections.
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2.1 Reduced Rank Regression (RR)

It is often the case that estimation of VAR(p) models results in a large number of

insignificant coefficients. Therefore, in order to obtain a more parsimonious model, one

might impose rank reduction, i.e. to assume that rk(B0) = r < N . This is equivalent to

the parametric specification:

Yt = α

Ã
pX

i=1

β0iYt−i

!
+ et = αβ0Xt + et, (4)

where α and β = (β
0
1, ..., β

0
p)
0 are respectively a N × r and a M × r matrices. The

model (4) was studied by Velu et al. (1986). Ahn and Reinsel (1988) suggested a more

general specification where the rank of the coefficient matrix on each lagged vector of

the explanatory variables may differ. However, this generalization creates computational

problems in the large N case. Therefore, we focus on (4).

In equation (4), it is assumed that the true rank of the matrices α and β are identical

and equal to r which is thus referred to as the rank of the system (4). However, note

that the ranks of βi, i = 1, ..., p, need not equal r; in particular, it can be rk(βi) ≤ r,

i = 1, ..., p.

An interesting special case of the RRVAR model (4), which resembles the autoregres-

sive index model of Reinsel (1983), results if βi = β∗Ki with rk(β∗) = r for some (r, r)

matrix Ki which need not be full rank, i = 1, ..., p, although K = (K 0
1, ...,K

0
p)
0 is. Hence,

β = (Ip ⊗ β∗)K and αβ0i = αiβ
0
∗, where αi = αK 0

i, in which case β
0
∗yt−i, i = 1, ..., p, may

be interpreted as dynamic factors for yt.

Given the assumed system rank r, Velu et al. (1986) suggested an estimation method

for the parameters α and β that may be shown to be quasi-maximum likelihood (see

also Reinsel and Velu, 1998). Denote the sample second moment matrices by SY Y

= T−1Y 0Y, SY X = T−1Y 0X, SY X = S0XY , and SXX = T−1X 0X. Hence, the co-

variance matrix of the unrestricted LS residuals, SY Y,X = SY Y − SY XS
−1
XXSXY is the

unrestricted quasi-ML estimator of the error process variance matrix. Additionally,

let {λ}Tt=1, λ21 ≥ λ22 ≥ ... ≥ λ2N ≥ 0 denote the ordered squared eigenvalues of the

N × N matrix S
−1/2
Y Y,XSY XS

−1
XXSXY S

−1/2
Y Y,X with associated eigenvectors {vi}Tt=1 subject

to the normalization v0ivj = 1 if i = j and 0 otherwise, and let V̂ = (v1, v2, ..., vr). The

quasi-ML estimators for α and β are given by α̂ = S
1/2
Y Y,X V̂ and β̂ = S−1XXSXY S

−1/2
Y Y,X V̂ ,

so that B̂0 = S
1/2
Y Y,X V̂ V̂

0S−1/2Y Y,XS
−1
XXSXY .
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2.2 Bayesian VAR (BVAR)

Bayesian methods allow to impose restrictions on the data, but also to let the data

speak. The exclusion restrictions are imposed as priors, so if some a-priori excluded

variable turns out to be relevant in the data, the posterior estimate would contain such

information. This provides a way of solving the curse of dimensionality problem without

resorting to ad-hoc exclusion of some variables.

In this paper we implement a Normal-Inverted Wishart version of the so-called Min-

nesota prior of Doan et al. (1984) and Litterman (1986). This version of the prior

was proposed by Kadiyala and Karlsson (1997) and allows both to gain substantially in

terms of computational efficiency and to avoid the inconvenient assumption of fixed and

diagonal residual variance matrix. The use of this prior for forecasting macroeconomic

variables with large datasets has been recently advocated by Banbura et al (2007), who

however focus on a smaller set of key macroeconomic variables when evaluating forecast-

ing performance.

The Minnesota prior shrinks parameter estimates towards a random walk represen-

tation and it has proven to be robustly good in forecasting. In particular, the prior

expectations and variances of A1, A2, ..., Ap under the Minnesota prior are:

E[A
(ij)
k ] =

(
1 for j = i, k = 1

0 otherwise
, V [A

(ij)
k ] =

(
φ 1
k2

for j = i, ∀ k
φ 1
k2
θσ2i σ

−2
j for j 6= i, ∀ k

,

(5)

while the residual variance matrix Σ is fixed and diagonal: diag(σ21, ..., σ
2
N ). The hyper-

parameter φ measures the overall tightness of the prior, and we will return to it later

in this subsection. The factor 1/k2 is the rate at which prior variance decreases with

increasing lag length while the ratio σ2i /σ
2
j accounts for the different scale and variability

of the data. Finally, the parameter θ imposes additional shrinkage on the coefficients

attached to a regressor when it is not a lag of the dependent variable in a given equation.

Kadiyala and Karlsson (1997) propose a version of this prior which allows to avoid

the inconvenient assumption of a fixed and diagonal residual variance matrix and to gain

substantially in terms of computational efficiency, at the cost of setting θ = 1.The prior

has a Normal-Inverted Wishart form:

Σ ∼ iW (v0, S0); B | Σ ∼ N(B0,Σ⊗Ω0) (6)

where the parameters v0, S0, B0,Ω0 are such that the expectation of Σ is equal to the

fixed residual covariance matrix of the Minnesota prior, and the prior expectation and
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variance of B is that of the Minnesota prior (with θ = 1). Moreover, as we forecast after

transforming variables to get stationarity, we set E[A(ii)1 ] = 0 rather than E[A(ii)1 ] = 1 to

be consistent with the random walk assumption on the original variables. This provides

us with the following prior expectations and variances for A1, A2, ..., Ap:

E[A
(ij)
k ] = 0; V [A

(ij)
k ] = φ

1

k2
σ2i σ

−2
j (7)

The hyperparameter φ measures the tightness of the prior: when φ = 0 the prior

is imposed exactly and the data do not influence the estimates, while as φ → ∞ the

prior becomes loose and the posterior estimates approach the OLS estimates. Posterior

estimates can be easily obtained (via OLS) by implementing the prior in the form of

dummy variable observations. For details see Kadiyala and Karlsson (1997).

2.3 Bayesian Reduced Rank Regression (BRR)

The BVAR and RR described in the previous subsections apply respectively shrinkage

and rank reduction. Alternatively we could think of imposing both rank reduction and

shrinkage on the VAR.

Bayesian analysis of reduced rank regression has been introduced by Geweke (1996).

As for the reduced rank case, the M × N matrix of coefficients B is assumed to have

rank r, where r < N. This rank reduction assumption is equivalent to the parametric

specification

Y = XΨΦ+E (8)

with Ψ and Φ being respectively M × r and r ×N matrices. To identify these matrices

Geweke (1996) proposes the following normalization:

Φ = [Ir | Φ∗]. (9)

Given that normalization a proper prior is:

| Σ |−(N+v0+1) exp
∙
−1
2
trS0Σ

−1
¸
exp

∙
−τ

2

2
(trΦ∗0Φ∗ + trΨ0Ψ)

¸
, (10)

namely a product of an independent Wishart distribution for Σ with v0 degrees of free-

dom and matrix parameter S0, and independent N(0, τ−2) shrinkage priors for each

element of the coefficient matrices Φ∗ and Ψ. The conditional posterior distribution of
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Σ is:

Σ | (Φ∗,Ψ,X, Y ) ∼ IW [T + v0, S0 + (Y −XB)0(Y −XB)]. (11)

The conditional posterior distributions of the coefficients Φ∗,Ψ, are multivariate normals.

In particular, the conditional posterior distribution of Φ∗ is:

vec(Φ∗) | (Ψ,Σ,X, Y ) ∼ N [ΠΦ ∗ vec(Φ̂∗), ΠΦ], (12)

where:

Φ̂∗ = (Ψ0X 0XΨ)−1Ψ0X 0Y1Σ
12(Σ22)−1 − Σ12(Σ22)−1 (13)

+ (Ψ0X 0XΨ)−1Ψ0X 0Y2,

ΠΦ = [(Σ
22)−1 ⊗ (Ψ0X 0XΨ)−1 + τ2Ir(N−r)]

−1, (14)

and where Y = [Y1 | Y2] is a partitioning of Y its first r and last N − r columns and

where Σij denotes the partitioning of Σ−1 into its first r and last N−r rows and columns.
The conditional posterior distribution of Ψ is:

vec(Ψ) | (Φ,Σ,X, Y ) ∼ N [ΠΨ ∗ vec(Ψ̂), ΠΨ], (15)

where:

Ψ̂ = B̂[Φ+ +Φ0Σ̃21(Σ̃11)−1], (16)

ΠΨ = [Σ̃
11 ⊗X 0X + τ2IMr]

−1, (17)

and where B̂ is the OLS estimator, Φ+ is the generalized inverse of Φ, Φ0 is column-wise

orthogonal to Φ+, and where Σ̃ij denotes the partitioning of Σ̃−1 = ([Φ+ Φ0]0Σ[Φ+ Φ0])−1

into its first r and last N − r rows and columns.

Unconditional posterior distributions can be simulated by using a Gibbs sampling

algorithm which draws in turn from (12), (15), and (11). See Geweke (1996) for details.

2.4 Reduced Rank BVAR Posterior (RRP)

The BRR has the shortcoming of being computationally challenging when the assumed

rank is high, as the estimation of this model requires simulation involving inversion ofMr

-dimensional matrices. A computationally quicker way to impose both rank reduction

and shrinkage is simply to impose rank reduction on the posterior estimates of a BVAR.

The implementation of the method is straightforward. First, the system is estimated
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under the prior distribution described by equation (6), then a rank reduction is imposed

as follows. Let B̂ be the posterior mean of B and let B̂ = UΛV be its singular value

decomposition. Collecting the largest r singular values and associated vectors in the

matrices Λ∗ = diag(λ1, λ2, ..., λr), U
∗ = (u1, u2, ..., ur) and V ∗ = (v1, v2, ..., vr) a reduced

rank approximation (of rank r) of the posterior mean is given by:

B̂∗r = U∗Λ∗V ∗, (18)

which is our RRP estimator.

2.5 Multivariate Boosting (MB)

The Minnesota prior reduces the dimensionality of the system by setting (a priori) to

zero all but one coefficient in each equation. An alternative method to reach parsi-

mony by eliminating some regressors is boosting. Theorethical results for boosting ap-

plied to multivariate models have been developed by Bühlmann (2006), while its use for

macroeconomic forecasting has been recently advocated by Bai and Ng (2007) within a

univariate approach.

Boosting consists in a variable selection algorithm, a stepwise regression which starts

with the empty model and adds in each step the most significant covariate.

The boosting algorithm estimates f(Xt) = E(Yt | Xt) as a sum of m̄ estimated

learners: f̂(Xt) = f̂ (0)+Σm̄m=1ξĝ
(m).The algorithm is based on two ingredients. The first

ingredient is a loss function L(Yt, f(Xt)), and a natural choice is a quadratic function

(L2 Boosting) such as the sum of squared residuals. The second ingredient is a base

learner (i.e. a model to derive ĝ(m)), and a natural choice is least squares regression. Let

y(i), x(i), y(j), x(j) denote the i-th row vectors and j-th column vectors of Y, X . The

multivariate L2 Boosting algorithm with componentwise least squares base learner works

as follows:

• Step 1. Start with the empty model f̂ (0)j =Ȳj , j = 1, ..., N

• Step 2. For m = 1, ..., m̄

— a) Compute the "current" residuals r(i) = y(i) − f̂
(m−1)
i , i = 1, ..., T.

— b) Fit the base learner to r(i) and derive ĝ(m), i = 1, ..., T.

∗ Regress the "current" residuals r(i) on each regressor x(j), j = 1, ...,M,

obtaining b̂(ij)
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∗ For each regressor j and time i compute the loss function SSR(b̂(ij))

∗ Pick the regressor j∗ and the sample point i∗ which minimized the loss
function and set ĝ(m) = b̂(i∗j∗)xi∗

• Step 3. Update f̂ (m) = f̂ (m−1) + ξĝ(m), where ξ is a shrinkage parameter.

The loss function used in step 2 is:

L(B) =
1

2

TX
i=1

(r0(i) − x0(i)B)Γ
−1(r0(i) − x0(i)B)

0 (19)

with Γ−1 = I.

The base learner used in step 2 fits the linear least squares regression with one

selected covariate x(j) and one selected pseudo-response r0(i) so that the loss function in

(19) is reduced most:

ŝt̂ = argmin
1≤j≤M,1≤k≤N

{L(B);Bjk = β̂jk, Buv = 0 ∀ uv 6= jk}

Thus, the learner fits one selected element of the matrix B as follows:

β̂jk =

NX
v=1

r0vxjΓ
−1
vk

x0jxjΓ
−1
kk

, (20)

B̂ŝt̂ = β̂ŝt̂, B̂jk = 0 ∀ jk 6= ŝt̂. (21)

Corresponding to the parameter estimate there is a function estimate ĝc(·) defined as
follows: for x = (x1, ..., xp),

ĝc(x)=

(
β̂ŝt̂ for c = t̂,

0 otherwise,
c = 1, ..., N. (22)

The algorithm terminates when the specified final iteration m̄ is reached. Bühlmann

(2006) provides a proof that this procedure is able to consistently recover sparse high-

dimensional multivariate functions.

The use of the shrinkage parameter has been first suggested by Friedman (2001) and

is supported by some theoretical arguments (see Efron et al 2004, and Bühlmann and Yu

2005). The boosting algorithm depend on ξ but its choice is insensitive as long as is taken
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to be "small" (i.e. around 0.1). On the other hand, the number of boosting iterations m̄

is a much more crucial parameter. Indeed, m̄ is a pivotal quantity regulating the trade-

off between parsimony and fit: small values of m̄ yield very parsimonious specifications,

while as m̄ goes to infinity the algorithm approaches to a perfect fit. Finally, in our

application we slightly depart from the algorithm described by Bühlmann (2006), as we

always include the first lag of the dependent variable in the model.

2.6 Factor Models (SW)

Finally, a largely used method to overcome the curse of dimensionality problem arising in

forecasting with large dataset is using a factor model. In a factor model, the information

contained in the predictors Xt is summarized by a set of K factors:

Xt = ΓFt + ut (23)

where Ft is a K-dimensional multiple time series of factors and Γ a N × K matrix of

loadings.

The forecast for yt+1 given the predictors can be obtained trough a two-step pro-

cedure, in which in the first step the sample data {Xt}Tt=1 are used to estimate a time
series of factors{F̂t}Tt=1 via principal components, and then the forecasts are obtained by
projecting yi,t+1 onto F̂t and yi,t. Stock and Watson (2002a,b) develop theoretical results

for this two-step procedure and show that under a set of moment and rank conditions

that the MSE of the feasible forecast asymptotically approaches that of the optimal in-

feasible forecast for N and T approaching infinity, see Bai and Ng (2006) for additional

details. To produce multistep forecasts, one can either construct forecasts directly by

projecting yi,t+h onto the space spanned by the factors, or develop a vector time series

model for F̂t and use it to forecast, in turn, F̂t+h and yi,t+h. In this paper we use the

latter strategy for comparability with the other models.

3 Consistency

This section provides some theoretical results on the parameter estimates of the infinite

dimensional VAR and Reduced Rank VAR models we discussed in the previous section.

We make the following assumptions
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Assumption 1 (a) |λmax(A)| < 1 where

A =

⎛⎜⎜⎜⎜⎝
A1 ... ... Ap

I 0 ... 0

... ... ... ...

0 ... I 0

⎞⎟⎟⎟⎟⎠ (24)

and |λmax(.)| denotes the maximum eigenvalue of a matrix in absolute value.

(b) cmax(A) < ∞, rmax(A) < ∞ where cmax(.) and rmax() denote the maximum

column and row sum norm of a matrix.

(c) et is an i.i.d. (0,Σe) sequence with finite fourth moments and cmax(Σe) <∞. .

Denote the transpose of the i-th row of (A1, A2, ..., Ap) by Ai. .We then have the

following Theorem.

Theorem 1 As N and T diverge, and under assumption 1 ,
°°°Âi −Ai

°°°2 = op(T
−a) for

all i = 1, ...,N, and for all a < 1/2, as long as N = o
³
(T/ ln(T ))1/2

´
.

Proof. It is sufficient to prove that for each of the N equations of the VAR model,°°°Âi −Ai
°°°2 = op(T

−a) for all a < 1/2. (25)

To prove (25) we mirror the analysis of Theorems 4 and 5 of An et al. (1982). For

simplicity we consider Yule-Walker estimation of Âi which is asymptotically equivalent

to OLS estimation. Let γfpi and Γp denote the vector of covariances between yi,t and X
p
p,t

and the covariance matrix ofXp
p,t, respectively and γ̂

fp
i and Γ̂p their sample counterparts.

Then, by (25) of An et al. (1982)

Γp
³
Âi −Ai

´
= −

³
Γ̂p − Γp

´³
Âi −Ai

´
−
³
γ̂fpi − γfpi

´
−
³
Γ̂p − Γp

´
Ai (26)

Since each yi,t is part of a stationary VAR process by assumption 1(a), and, also taking

into account assumption 1(b)-(c), it follows that yi,t satisfies the assumptions of Theorem

5 of An et al. (1982). Define Ai = (Ai
1, ..., A

i
Np)

0and Âi = (Âi
1, ..., Â

i
Np)

0. Then, by

Theorem 5 of An et al. (1982), we have

°°°³Γ̂p − Γp´³Âi −Ai
´°°°2 = op(1)

NpX
j=1

³
Âi
j −Ai

j

´2
(27)
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°°°γ̂fpi − γfpi

°°°2 = op

³
(lnT/T )1/2

´
(28)

and °°°³Γ̂p − Γp´Ai
°°°2 = op

³
(lnT/T )1/2

´
(29)

Hence,

(1 + op(1))
°°°Âi −Ai

°°°2 = op

³
(lnT/T )1/2

´
(30)

which implies (25) and completes the proof of the theorem.

Note that the above analysis straightforwardly implies that a lag order, p = pT ,

that tends to infinity is acceptable. In this case, the above result holds as long as

NpT = o
³
(T/ ln(T ))1/2

´
. Next, we consider a reduced rank approximation to the VAR

model. To keep things general, we consider the case where a singular value decomposition

is used to decompose (A1, A2, ..., Ap) as OK where O and K0 are N × r and Np × r

matrices respectively, for some r < N . The sample counterpart of this decomposition is

given by (Â1, Â2, ..., Âp) = ÔK̂. Then, we have the following Theorem.

Theorem 2 As N and T diverge, and under assumption 1 , each element of O and K0

is op(T−a+2b)-consistent for O and K0, for all 0 < a < 1/2, and 0 < b < 1/4, 2b < a, as

long as N = o
¡
T b
¢
.

Proof. We define formally the functions gO(.) and gK(.) such that

vec(K̂0) = gK
³
vec(Â)

´
(31)

and

vec(Ô0) = gO
³
vec(Â)

´
(32)

where Â = (Â1, Â2, ..., Âp) and A = (A1, A2, ..., Ap). Therefore, gO(.) and gK(.) define

the singular value decomposition operator. By theorems 5.6 and 5.8 of Chatelin (1983)

gO(.) and gK(.) are bounded, continuous and differentiable and therefore admit a first

order Taylor expansion. Therefore,

vec(K̂0)− vec(K0) = ∂g0K
∂A

³
vec(Â)− vec(A)

´ ∂g0K
∂A + op(T

−a) (33)

and

vec(Ô0)− vec(O0) = ∂g0O
∂A

³
vec(Â)− vec(A)

´ ∂g0O
∂A + op(T

−a) (34)
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By theorem 1 every element of
³
vec(Â)− vec(A)

´
is op(T−a). The number of columns

of ∂g0K
∂A and ∂g0O

∂A are of the order N2. Thus, each element of vec(Ô0) − vec(O0) and
vec(K̂0)− vec(K0) is a linear combination of possibly all elements of

³
vec(Â)− vec(A)

´
.

It then follows that each element of vec(Ô0)−vec(O0) and vec(K̂0)−vec(K0) is op(T−a+2b)-
consistent.

4 Forecasting

4.1 Data

We analyze the overall performance of the models described in the previous Section in

forecasting 52 U.S. macroeconomic time series. The data are monthly observations going

from 1959:1 through 2003:12, and are taken from the dataset of Stock andWatson (2005).

The series have been chosen in order to represent the main categories of indicators

which are relevant for central banks in understanding and forecasting developments in

the macroeconomy, trying to be as parsimonious as possible given the computational

bounds posed by the estimation of the competing models. In particular, some of the

models at hand (RR) can not handle cases in which the time dimension is too short

with respect to the cross-sectional dimension (which would be the case given the rolling

scheme used for our forecasting exercise), while some others (BRR, MB) would become

too computationally intensive. To solve this trade off between economic relevance and

parsimony we have removed from the dataset of Stock and Watson (2005) those variables

containing roughly the same information of others, such as the disaggregated sectoral

data on industrial production and prices. These series contain information collinear to

that of their aggregated counterparts, therefore they are both less interesting to forecast,

and very likely to create problems of collinearity.

The time series under analysis represent the typical data-set of interest for central

banks, and can be grouped in three broad categories: series related to the real economy,

series related to money and prices, and series related to financial markets. Among the

first group we have variables series on real output, income, employment, consumption,

industrial production, inventories, sales. The second group comprises price indexes and

several monetary aggregates. The last group comprises interest rates on Treasury bills,

exchange rates, and stock indexes.

The series are transformed by taking logarithms and/or differencing so that the

transformed series are approximately stationary. Forecasting is performed using the

transformed data, then forecasts for the original variables are obtained integrating back.
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In general, growth rates are used for real quantity variables, first differences are used for

nominal interest rates, year on year growth rates for price series. For a detailed summary

of the series under analysis and the used transformations see Table 1.

4.2 Forecasting exercise

The forecasting exercise is performed in pseudo real time, using a rolling estimation

window of 10 years. The first estimation window is 1960:1 1969:12 (notice one year of

data was used in order to compute yearly growth rates for some variables), the first

forecast window is 1970:1-1970:12 and the last one 2003:1-2003:12. All variables are

standardized prior to estimation, and then mean and variance are re-attributed to the

forecasts accordingly.

The BIC criterion applied to the BVAR for the 52 variables selects one lag both with

the rolling samples and with the whole sample. However, this result may be driven by

the high number of parameters to be estimated. To control for this we also applied the

BIC to the more parsimonious reduced rank VAR, with rank set to 1, but the selected

lag length does not change. To evaluate whether there is any loss from such a short

dynamic specification, we also compared the results for the BVAR(1) with those from a

BVAR(13), the specification adopted by Banbura et al. (2007) and we found that the

gains from using a longer lag specification are minor, if any. Therefore, we have used a

one lag specification for all the models.

At each point in time we grid search over the relevant dimensions of the models at

hand: for the SW model we search over the number of factors K, for RR we search over

the assumed rank r, for BVAR the grid is over the tightness φ. For the MB we search

over the number of iterations m̄ and over the rescaling parameter ξ. For models in which

both shrinkage and rank reduction is used, we grid search contermporaneously on both

these dimensions.1 Then, at each point in time we optimize our forecasts by choosing

the model which minimized the forecast error for each variable and forecast horizon in

the previous 2 years (i.e. 24 periods).

We assess predictive accuracy in terms of Relative Mean Squared/Absolute Forecast

Error (RMSFE/RMAFE) against three different benchmarks. The first benchmark is a

simple autoregressive model, which turns out to be the more competitive and have been

used by Stock and Watson (2002) and Bai and Ng (2007). The second benchmark is a the

1For SW we use K = 1, 2, 3, 6 factors for RR we use rank r = 1, 2, 3, 6, 10, 25, 50, 52, for the BVAR we
use tightness φ = 2.0e−005, 0.0005, 0.002, 0.008, 0.018, 0.072, 0.2, 500, for MB we use m̄ = 2∗52∗1, 2∗52∗2
iterations and ξ = 0.05, 0.1, 0.2. For RRP we use φ = 2.0e − 005, 0.0005, 0.002, 0.008, 0.018, 0.072, 0.2,
500 and r = 1, 2, 3, 6, 10, 25, 50, 52, for BRR we use r = 1, 2, 3, 6, 10, 25, 50, 52 and τ = 5, 10, 100.
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baseline Minnesota prior of Doan et al. (1984) with standard RATS hyperparameters2,

which we include in order to have a specific reference to compare the shrinkage models.

Finally we use a random walk forecast (RW), which is used as benchmark by De Mol et

al (2006) and Banbura et al. (2007)3.

4.3 Results

In this section we present the results of our forecasting exercise. Results are displayed

in Table 2a/b (RMSFE and RMAFE vs AR(1)), Table 3a/b (RMSFE and RMAFE

vs BVAR0), Table 4a/b (RMSFE and RMAFE vs RW). Each table contains 12 panels

corresponding to different forecast horizons (1 to 12). The first line of each panel in the

tables reports results for the average RMSFE/RMAFE over all the 52 variables. The

remaining lines display the RMSFE/RMAFE for three key macroeconomic variables, i.e.

Industrial Production (IPS10), CPI Inflation (PUNEW), and the Federal Funds Rate

(FYFF). The best models for each horizon are highlighted in bold. Several conclusions

can be drawn by looking at the tables.

Let us first focus on the overall performance of the models, i.e. the average RMSFE

and RMAFE over all the variables.

For very short horizons (1 and 2 step-ahead) there are no models able to beat the

AR(1) benchmark. The AR(1) is overall a very competitive benchmark outperforming

the BVAR0 for any horizon shorter than 8 step-ahead. On the other side, for longer

horizons the BVAR0 is slightly better than the AR(1). Moreover, it is important to

stress that both the AR(1) and the BVAR0 benchmark largely outperform the third

one, i.e. random walk forecast.

Overall, among the six models at hand, the BRR is the best model for short horizons

(up to 7-month ahead), while RRP is the best one for long horizons (8 to 12 step-ahead).

In particular, at short horizons BRR produces gains in RMSFE and RMAFE up to 19%

(0.81) and 11% (0.89) respect to the AR(1), and up to 19% (0.81) and 12% (0.88) respect

to the BVAR0. At long horizons, RRP produces gains in RMSFE and RMAFE up to 25%

(0.75) and 17% (0.83) against the AR(1), and up to 22% (0.78) and 16% (0.84) against

the BVAR0. Also the BVAR and RR do a good job, but they are both systematically

outperformed by RRP and BRR. SW produces the best forecasts at 1-step ahead, but

its forecasting performance is quite poor for longer horizons, as well as that of MB.

2 In particular, we use the prior in (7) with φ = 0.2.
3More precisely Banbura et al. (2007) use the prior in (7) with φ = 0, which is virtually equivalent

to a random walk forecast.
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Let us now focus on the prediction of three key macroeconomic variables, i.e. Indus-

trial Production (IPS10), CPI Inflation (PUNEW), and the Federal Funds Rate (FYFF).

Results for these variables are displayed in the remaining lines of Tables 2a/b and 3a/b.

Importantly, for these selected variables some models beat the AR(1) also at the 1- and

2-step ahead horizon. In particular, at 1-step ahead, SW produces the best forecasts

for inflation (together with MB when RMAFE is considered) and the federal funds rate,

while BRR (together with MB when RMAFE is considered) produce the best forecast

of industrial production. At 2-step ahead BRR is the best models for forecasting each

of the three variables, with the exception of inflation when RMAFE is considered. For

intermediate horizons (3- to 7- step ahead) the best model is BRR for industrial pro-

duction and the federal funds rate, while RRP is the best model for inflation. For long

horizons the best model is still the RRP. All the gains are systematically larger than the

average, i.e. the gains obtained when forecasting all the variables.

To sum up, for very short horizons is difficult to beat an AR(1) benchmark, but

SW and BRR can do so for some variables. For intermediate and long horizons the

best models are respectively BRR and RRP. RR and the BVAR produce overall good

results, however they are below BRR and RRP and are unable to beat the AR(1) at

very short horizons. These results provide encouraging evidence that using shrinkage

and rank reduction is useful, and using them in combination rather than separately

improves substantially the accuracy of forecasts.

4.4 Robustness

To check the robustness of our results we have repeated the analysis using different

subsamples and performed a small Montecarlo simulation.

Tables 5a/b and 6a/b display results obtained using the evaluation sample 1985:1

2003:12, while tables 7a/b and 8a/b display results based on the evaluation sample

1995:1 2003:12. We do not report the results (are available upon request) against the

RW benchmark as it is systematically outperformed by the other two benchmarks.

For the evaluation sample 1985:1 2003:12, the emerging pattern is similar to that

obtained on the whole sample, namely RRP and BRR produce on average the best

forecasts, respectively for short and long horizons. The only interesting news is that

in this subsample MB has the best forecast accuracy for industrial production and the

federal funds rate at 1-step ahead.

Some more differences arise when using the evaluation sample, 1995:1 2003:12. Again,

we have the good performance of MB at 1-step ahead, which is now accompanied by
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a dramatic reduction in the accuracy of the SW model, which is no more able to bear

the AR(1). Moreover, the pattern for the long horizons changes slightly. In particular,

while RRP remains the best models when considering all the variables and for industrial

production, it is no more the best model for inflation and the federal funds rate, which

are now better forecasts respectively by the BVAR and BRR.

To shed more light about the robustness of our results we have also performed a

small Montecarlo experiment using bootstrapped data. We use a slight modification

of the bootstrapping algorithm described Politis and Romano (1994). In particular,

the bootstrapping is performed over the data once they have been differentiated to get

stationarity, while a bootstrapped version of the original data is obtained by adding an

initial condition and integrating out.

Results of this experiment based on 100 different bootstrapped samples are displayed

in Table 9a/b. Notice that MB and BRR are missing, as both these methods are simply

too computationally intensive to run such an exercise. Tables 9a/b show that at short

horizons SW performs better than the remaining models, but still does not beat an

AR(1) benchmark. For longer horizons RRP produces the best forecasts, followed by

the BVAR and RR, which confirms that the use of both shrinkage and rank reduction

produces additional gains respect to using the two methods separately.

5 Conclusions

In this paper, we have addressed the issue of forecasting a large set of variables using

multivariate models. In particular, we have proposed three alternative reduced rank

forecasting models and compared their predictive performance with the most promising

existing alternatives, namely, factor models, large scale Bayesian VARs, and multivariate

boosting.

Specifically, we focused on the classical reduced rank regression along the lines of

Camba-Mendez et al. (2003), on a two-step estimation procedure that applies, in turn,

shrinkage and reduced rank restrictions (RRP), and on a Bayesian VAR with rank re-

duction (BRR), extending to the large scale context a proposal of Geweke (1996).

As a result, we found that using shrinkage and rank reduction in combination rather

than separately improves substantially the accuracy of forecasts. In particular RRP and

BRR, produce fairly good forecasts, more accurate than those of competing methods

on average across several US macroeconomic variables, and they also perform well for

key variables, such as industrial production growth, inflation and the short term interest

rate. A small Montecarlo simulation confirmed these findings.
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Table 1:  Data Description 
 

Code Series Transformation
IPS10   INDUSTRIAL PRODUCTION INDEX -  TOTAL INDEX Monthly Growth Rate

PUNEW   CPI-U: ALL ITEMS (8First Difference-84=No Transf.00,SA) change in Yearly Growth Rate

a0m052 Personal income (AR, bil. chain First Difference000 $) Monthly Growth Rate

A0M051 Personal income less transfer payments (AR, bil. chain First Difference000 $) Monthly Growth Rate

A0M224_R Real Consumption (AC) A0mFirst DifferenceFirst Difference4/gmdc Monthly Growth Rate

A0M057 Manufacturing and trade sales (mil. Chain No Transf.996 $) Monthly Growth Rate

A0M059 Sales of retail stores (mil. Chain First Difference000 $) Monthly Growth Rate

PMP     NAPM PRODUCTION INDEX (PERCENT) No Transf.

A0m082 Capacity Utilization (Mfg) First Difference

LHEL    INDEX OF HELP-WANTED ADVERTISING IN NEWSPAPERS (No Transf.967=No Transf.00;SA) First Difference

LHELX   EMPLOYMENT: RATIO; HELP-WANTED ADS:NO. UNEMPLOYED CLF First Difference

LHEM    CIVILIAN LABOR FORCE: EMPLOYED, TOTAL (THOUS.,SA) Monthly Growth Rate

LHUR    UNEMPLOYMENT RATE: ALL WORKERS, No Transf.6 YEARS & OVER (%,SA) First Difference

CES002  EMPLOYEES ON NONFARM PAYROLLS - TOTAL PRIVATE Monthly Growth Rate

A0M048 Employee hours in nonag. establishments (AR, bil. hours) Monthly Growth Rate

PMI     PURCHASING MANAGERS' INDEX (SA) No Transf.

PMNO    NAPM NEW ORDERS INDEX (PERCENT) No Transf.

PMDEL   NAPM VENDOR DELIVERIES INDEX (PERCENT) No Transf.

PMNV    NAPM INVENTORIES INDEX (PERCENT) No Transf.

FM1     MONEY STOCK: MNo Transf.(CURR,TRAV.CKS,DEM DEP,OTHER CK'ABLE DEP)(BIL$,SA) change in Yearly Growth Rate

FM2     MONEY STOCK:MFirst Difference(MNo Transf.+O'NITE RPS,EURO$,G/P&B/D MMMFS&SAV&SMchange in Yearly Growth Rate

FM3     MONEY STOCK: M3(MFirst Difference+LG TIME DEP,TERM RP'S&INST ONLY MMMFS)(BIL$,SAchange in Yearly Growth Rate

FM2DQ   MONEY SUPPLY - MFirst Difference IN No Transf.996 DOLLARS (BCI) Monthly Growth Rate

FMFBA   MONETARY BASE, ADJ FOR RESERVE REQUIREMENT CHANGES(MIL$,SA) change in Yearly Growth Rate

FMRRA   DEPOSITORY INST RESERVES:TOTAL,ADJ FOR RESERVE REQ CHGS(MIL$,SA) change in Yearly Growth Rate

FMRNBA  DEPOSITORY INST RESERVES:NONBORROWED,ADJ RES REQ CHGS(MIL$,SA) change in Yearly Growth Rate

FCLNQ   COMMERCIAL & INDUSTRIAL LOANS OUSTANDING IN No Transf.996 DOLLARS (BCI) change in Yearly Growth Rate

FCLBMC  WKLY RP LG COM'L BANKS:NET CHANGE COM'L & INDUS LOANS(BIL$,SAAR) No Transf.

CCINRV  CONSUMER CREDIT OUTSTANDING - NONREVOLVING(GNo Transf.9) change in Yearly Growth Rate

A0M095 Ratio, consumer installment credit to personal income (pct.) First Difference

FSPCOM  S&P'S COMMON STOCK PRICE INDEX: COMPOSITE (No Transf.94No Transf.-43=No Transf.0) Monthly Growth Rate

FSPIN   S&P'S COMMON STOCK PRICE INDEX: INDUSTRIALS (No Transf.94No Transf.-43=No Transf.0)Monthly Growth Rate

FSDXP   S&P'S COMPOSITE COMMON STOCK: DIVIDEND YIELD (% PER ANNUM) First Difference

FSPXE   S&P'S COMPOSITE COMMON STOCK: PRICE-EARNINGS RATIO (%,NSA) Monthly Growth Rate

FYFF    INTEREST RATE: FEDERAL FUNDS (EFFECTIVE) (% PER ANNUM,NSA) First Difference

CP90 Cmmercial Paper Rate (AC) First Difference

FYGM3   INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,3-MO.(% PER ANN,NSA) First Difference

FYGM6   INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,6-MO.(% PER ANN,NSA) First Difference

FYGT1   INTEREST RATE: U.S.TREASURY CONST MATURITIES,No Transf.-YR.(% PER ANN,NSA) First Difference

FYGT5   INTEREST RATE: U.S.TREASURY CONST MATURITIES,Monthly Growth Rate-YR.(% PER ANN, First Difference

FYGT10  INTEREST RATE: U.S.TREASURY CONST MATURITIES,No Transf.0-YR.(% PER ANN,NSA) First Difference

FYAAAC  BOND YIELD: MOODY'S AAA CORPORATE (% PER ANNUM) First Difference

FYBAAC  BOND YIELD: MOODY'S BAA CORPORATE (% PER ANNUM) First Difference

EXRUS   UNITED STATES;EFFECTIVE EXCHANGE RATE(MERM)(INDEX NO.) Monthly Growth Rate

EXRSW   FOREIGN EXCHANGE RATE: SWITZERLAND (SWISS FRANC PER U.S.$) Monthly Growth Rate

EXRJAN  FOREIGN EXCHANGE RATE: JAPAN (YEN PER U.S.$) Monthly Growth Rate

EXRUK   FOREIGN EXCHANGE RATE: UNITED KINGDOM (CENTS PER POUND) Monthly Growth Rate

EXRCAN  FOREIGN EXCHANGE RATE: CANADA (CANADIAN $ PER U.S.$) Monthly Growth Rate

PWFSA   PRODUCER PRICE INDEX: FINISHED GOODS (8First Difference=No Transf.00,SA) change in Yearly Growth Rate

PWFCSA  PRODUCER PRICE INDEX:FINISHED CONSUMER GOODS (8First Difference=No Transf.00,SA) change in Yearly Growth Rate

PWIMSA  PRODUCER PRICE INDEX:INTERMED MAT.SUPPLIES & COMPONENTS(8First Difference=No Tchange in Yearly Growth Rate

PWCMSA  PRODUCER PRICE INDEX:CRUDE MATERIALS (8First Difference=No Transf.00,SA) change in Yearly Growth Rate



Table 2a: RMSFEs against AR(1) 

RR SW BVAR MB RRP BRR RR SW BVAR MB RRP BRR

Hor:1 Hor:7
Avg.RMSFE 1.40 1.07 1.28 1.45 1.30 1.20 Avg.RMSFE 0.92 1.17 0.84 1.02 0.82 0.81
IPS10 1.31 1.10 1.09 0.98 1.13 0.90 IPS10 0.89 1.12 0.73 1.01 0.70 0.66
PUNEW 1.19 0.94 1.26 1.00 1.25 1.15 PUNEW 0.66 0.84 0.64 0.98 0.61 0.64
FYFF 1.11 0.94 1.01 1.02 1.03 0.98 FYFF 1.01 1.07 0.89 0.98 0.83 0.80

Hor:2 Hor:8
Avg.RMSFE 1.21 1.05 1.11 1.26 1.14 1.02 Avg.RMSFE 0.88 1.20 0.82 1.01 0.79 0.81
IPS10 1.11 1.06 0.92 1.02 0.92 0.77 IPS10 0.85 1.13 0.71 1.01 0.67 0.67
PUNEW 0.96 0.86 1.01 0.99 0.95 0.94 PUNEW 0.63 0.83 0.62 0.98 0.59 0.62
FYFF 1.01 0.94 0.98 1.01 0.98 0.91 FYFF 0.95 1.07 0.86 0.99 0.80 0.80

Hor:3 Hor:9
Avg.RMSFE 1.12 1.06 1.02 1.14 1.04 0.93 Avg.RMSFE 0.87 1.22 0.81 1.01 0.78 0.80
IPS10 1.07 1.06 0.87 1.03 0.87 0.72 IPS10 0.83 1.13 0.70 1.01 0.66 0.68
PUNEW 0.83 0.84 0.84 0.97 0.80 0.80 PUNEW 0.61 0.82 0.61 0.99 0.58 0.61
FYFF 0.99 0.96 0.96 1.01 0.93 0.88 FYFF 0.91 1.07 0.82 0.99 0.77 0.79

Hor:4 Hor:10
Avg.RMSFE 1.05 1.09 0.96 1.08 0.97 0.89 Avg.RMSFE 0.85 1.24 0.79 1.00 0.76 0.80
IPS10 1.01 1.06 0.81 1.03 0.79 0.69 IPS10 0.79 1.13 0.68 1.01 0.64 0.68
PUNEW 0.75 0.86 0.76 0.97 0.72 0.74 PUNEW 0.61 0.82 0.62 0.99 0.58 0.60
FYFF 1.03 0.98 0.96 1.00 0.92 0.88 FYFF 0.90 1.08 0.80 0.99 0.75 0.78

Hor:5 Hor:11
Avg.RMSFE 1.00 1.11 0.92 1.05 0.91 0.85 Avg.RMSFE 0.84 1.27 0.79 1.00 0.75 0.80
IPS10 0.96 1.08 0.78 1.01 0.74 0.68 IPS10 0.78 1.13 0.68 1.01 0.63 0.68
PUNEW 0.71 0.84 0.71 0.97 0.67 0.70 PUNEW 0.60 0.83 0.62 0.99 0.58 0.60
FYFF 1.05 1.01 0.96 0.99 0.90 0.85 FYFF 0.90 1.09 0.81 0.99 0.75 0.78

Hor:6 Hor:12
Avg.RMSFE 0.95 1.14 0.87 1.03 0.86 0.83 Avg.RMSFE 0.85 1.31 0.80 0.99 0.77 0.81
IPS10 0.93 1.10 0.75 1.01 0.71 0.67 IPS10 0.78 1.15 0.68 1.01 0.64 0.69
PUNEW 0.68 0.83 0.67 0.97 0.63 0.67 PUNEW 0.61 0.87 0.63 0.98 0.61 0.61
FYFF 1.03 1.04 0.91 0.98 0.86 0.81 FYFF 0.92 1.11 0.83 0.99 0.76 0.80

RR is the Reduced Rank Regression, SW is the Factor Model, BVAR is a Bayesian VAR with Minnesota-type prior, MB is Multivariate Boosting, RRP is Reduced Rank 
Posterior, BRR is Bayesian Reduced Rank Regression. The forecasting exercise is performed using a rolling window of 10 years, so the first estimation window is 1960:1 
1969:12 and the first forecast window is 1970:1 1970:12, while the last estimation window is 1984:1 1993:12 and the last forecast window is 2003:1 2003:12. All variables 
are standardised prior to estimation, and then mean and variance are re-attributed to the forecasts accordingly. Best models are in bold. 



Table 2b: RMAFEs against AR(1)  

RR SW BVAR MB RRP BRR RR SW BVAR MB RRP BRR

Hor:1 Hor:7
Avg.RMAFE 1.20 1.04 1.14 1.14 1.15 1.09 Avg.RMAFE 0.95 1.06 0.90 1.01 0.89 0.89
IPS10 1.16 1.04 1.05 0.99 1.05 0.99 IPS10 0.99 1.08 0.89 1.01 0.86 0.83
PUNEW 1.12 1.00 1.08 1.00 1.09 1.06 PUNEW 0.81 0.93 0.78 0.99 0.76 0.78
FYFF 1.17 1.00 1.06 1.03 1.09 1.06 FYFF 0.92 0.95 0.90 0.99 0.86 0.85

Hor:2 Hor:8
Avg.RMAFE 1.11 1.02 1.06 1.09 1.07 1.01 Avg.RMAFE 0.93 1.07 0.89 1.01 0.87 0.88
IPS10 1.09 1.01 0.97 0.99 0.97 0.89 IPS10 0.96 1.07 0.86 1.01 0.83 0.81
PUNEW 0.97 0.94 0.97 0.98 0.94 0.93 PUNEW 0.80 0.92 0.78 0.99 0.76 0.78
FYFF 1.07 0.99 0.99 1.03 1.01 0.96 FYFF 0.92 0.97 0.89 1.00 0.86 0.86

Hor:3 Hor:9
Avg.RMAFE 1.06 1.03 1.01 1.06 1.02 0.96 Avg.RMAFE 0.92 1.08 0.88 1.00 0.85 0.88
IPS10 1.10 1.04 0.97 1.01 0.97 0.89 IPS10 0.93 1.07 0.84 1.01 0.81 0.81
PUNEW 0.92 0.93 0.90 0.98 0.87 0.87 PUNEW 0.80 0.92 0.77 1.00 0.75 0.77
FYFF 1.02 0.95 0.97 1.03 0.96 0.92 FYFF 0.92 0.96 0.88 1.01 0.84 0.85

Hor:4 Hor:10
Avg.RMAFE 1.03 1.03 0.98 1.04 0.98 0.94 Avg.RMAFE 0.90 1.08 0.86 1.00 0.83 0.87
IPS10 1.07 1.05 0.96 1.01 0.94 0.87 IPS10 0.90 1.07 0.81 1.01 0.79 0.80
PUNEW 0.87 0.95 0.88 0.98 0.84 0.85 PUNEW 0.80 0.92 0.78 1.00 0.75 0.77
FYFF 1.00 0.93 0.95 1.02 0.92 0.89 FYFF 0.91 0.96 0.87 1.01 0.82 0.84

Hor:5 Hor:11
Avg.RMAFE 1.00 1.04 0.95 1.03 0.95 0.92 Avg.RMAFE 0.90 1.10 0.86 1.00 0.83 0.87
IPS10 1.04 1.06 0.94 1.01 0.90 0.86 IPS10 0.89 1.06 0.81 1.01 0.78 0.81
PUNEW 0.85 0.93 0.84 0.99 0.81 0.83 PUNEW 0.79 0.94 0.78 0.99 0.75 0.77
FYFF 0.99 0.95 0.94 1.01 0.90 0.88 FYFF 0.92 0.96 0.87 1.01 0.82 0.84

Hor:6 Hor:12
Avg.RMAFE 0.97 1.05 0.92 1.02 0.91 0.90 Avg.RMAFE 0.91 1.12 0.87 1.00 0.85 0.88
IPS10 1.03 1.07 0.91 1.01 0.88 0.84 IPS10 0.87 1.06 0.81 1.01 0.78 0.80
PUNEW 0.83 0.93 0.80 0.98 0.78 0.80 PUNEW 0.80 0.97 0.79 0.99 0.77 0.78
FYFF 0.95 0.94 0.92 1.00 0.88 0.86 FYFF 0.92 0.97 0.88 1.01 0.84 0.85

RR is the Reduced Rank Regression, SW is the Factor Model, BVAR is a Bayesian VAR with Minnesota-type prior, MB is Multivariate Boosting, RRP is Reduced Rank 
Posterior, BRR is Bayesian Reduced Rank Regression. The forecasting exercise is performed using a rolling window of 10 years, so the first estimation window is 1960:1 
1969:12 and the first forecast window is 1970:1 1970:12, while the last estimation window is 1992:1 2002:12 and the last forecast window is 2003:1 2003:12. All variables 
are standardised prior to estimation, and then mean and variance are re-attributed to the forecasts accordingly. Best models are in bold. 



Table 3a: RMSFEs against BVAR0 

RR SW BVAR MB RRP BRR RR SW BVAR MB RRP BRR

Hor:1 Hor:7
Avg.RMSFE 1.04 0.80 0.95 1.08 0.97 0.90 Avg.RMSFE 0.91 1.16 0.84 1.01 0.82 0.81
IPS10 1.12 0.94 0.93 0.84 0.96 0.76 IPS10 1.04 1.31 0.86 1.18 0.81 0.77
PUNEW 0.82 0.65 0.87 0.69 0.87 0.79 PUNEW 0.78 1.00 0.76 1.16 0.73 0.77
FYFF 1.05 0.90 0.96 0.97 0.98 0.93 FYFF 0.94 1.00 0.83 0.92 0.77 0.74

Hor:2 Hor:8
Avg.RMSFE 1.00 0.87 0.92 1.04 0.94 0.84 Avg.RMSFE 0.89 1.21 0.83 1.02 0.80 0.81
IPS10 1.03 0.99 0.86 0.95 0.85 0.72 IPS10 1.03 1.36 0.86 1.22 0.81 0.81
PUNEW 0.79 0.71 0.83 0.81 0.78 0.77 PUNEW 0.77 1.02 0.76 1.21 0.73 0.77
FYFF 1.05 0.98 1.01 1.04 1.01 0.94 FYFF 0.90 1.01 0.81 0.94 0.76 0.75

Hor:3 Hor:9
Avg.RMSFE 0.98 0.93 0.90 1.00 0.92 0.82 Avg.RMSFE 0.88 1.25 0.82 1.02 0.79 0.82
IPS10 1.04 1.03 0.84 1.00 0.84 0.70 IPS10 1.02 1.40 0.87 1.26 0.82 0.84
PUNEW 0.79 0.79 0.79 0.92 0.75 0.75 PUNEW 0.78 1.05 0.78 1.26 0.74 0.77
FYFF 1.02 0.99 0.99 1.04 0.96 0.91 FYFF 0.87 1.02 0.78 0.94 0.73 0.75

Hor:4 Hor:10
Avg.RMSFE 0.96 0.99 0.87 0.99 0.88 0.81 Avg.RMSFE 0.88 1.29 0.82 1.04 0.78 0.82
IPS10 1.04 1.10 0.84 1.06 0.81 0.72 IPS10 1.02 1.45 0.88 1.31 0.82 0.87
PUNEW 0.76 0.87 0.77 0.99 0.73 0.75 PUNEW 0.79 1.06 0.80 1.28 0.75 0.78
FYFF 0.99 0.95 0.93 0.97 0.89 0.85 FYFF 0.87 1.04 0.77 0.95 0.72 0.75

Hor:5 Hor:11
Avg.RMSFE 0.94 1.05 0.87 1.00 0.86 0.81 Avg.RMSFE 0.88 1.33 0.83 1.04 0.79 0.84
IPS10 1.03 1.16 0.84 1.09 0.79 0.73 IPS10 1.03 1.50 0.90 1.34 0.84 0.90
PUNEW 0.78 0.93 0.78 1.07 0.73 0.76 PUNEW 0.79 1.10 0.82 1.30 0.77 0.79
FYFF 0.98 0.94 0.89 0.92 0.84 0.80 FYFF 0.86 1.05 0.78 0.95 0.72 0.75

Hor:6 Hor:12
Avg.RMSFE 0.92 1.11 0.85 1.01 0.84 0.81 Avg.RMSFE 0.89 1.38 0.84 1.04 0.81 0.85
IPS10 1.05 1.24 0.84 1.13 0.80 0.75 IPS10 1.04 1.53 0.91 1.35 0.85 0.93
PUNEW 0.77 0.95 0.76 1.11 0.72 0.77 PUNEW 0.80 1.15 0.83 1.29 0.80 0.80
FYFF 0.96 0.97 0.85 0.91 0.80 0.75 FYFF 0.87 1.05 0.79 0.94 0.71 0.75

 
RR is the Reduced Rank Regression, SW is the Factor Model, BVAR is a Bayesian VAR with Minnesota-type prior, MB is Multivariate Boosting, RRP is Reduced Rank 
Posterior, BRR is Bayesian Reduced Rank Regression. The forecasting exercise is performed using a rolling window of 10 years, so the first estimation window is 1960:1 
1969:12 and the first forecast window is 1970:1 1970:12, while the last estimation window is 1992:1 2002:12 and the last forecast window is 2003:1 2003:12. All variables 
are standardised prior to estimation, and then mean and variance are re-attributed to the forecasts accordingly. Best models are in bold. 
 



Table 3b: RMAFEs against BVAR0 

RR SW BVAR MB RRP BRR RR SW BVAR MB RRP BRR

Hor:1 Hor:7
Avg.RMAFE 0.99 0.86 0.94 0.94 0.96 0.90 Avg.RMAFE 0.93 1.05 0.89 1.00 0.88 0.88
IPS10 1.03 0.92 0.92 0.88 0.93 0.88 IPS10 0.99 1.08 0.89 1.01 0.86 0.83
PUNEW 0.94 0.84 0.90 0.84 0.92 0.89 PUNEW 0.88 1.00 0.84 1.06 0.81 0.84
FYFF 0.98 0.84 0.89 0.86 0.91 0.88 FYFF 0.93 0.97 0.91 1.01 0.87 0.86

Hor:2 Hor:8
Avg.RMAFE 0.98 0.90 0.93 0.96 0.95 0.89 Avg.RMAFE 0.92 1.06 0.88 1.00 0.86 0.88
IPS10 1.02 0.94 0.90 0.92 0.90 0.83 IPS10 0.99 1.11 0.89 1.05 0.86 0.84
PUNEW 0.90 0.87 0.89 0.91 0.87 0.86 PUNEW 0.87 1.00 0.84 1.08 0.82 0.84
FYFF 1.00 0.92 0.93 0.96 0.94 0.89 FYFF 0.92 0.97 0.89 1.00 0.86 0.86

Hor:3 Hor:9
Avg.RMAFE 0.97 0.94 0.92 0.97 0.93 0.88 Avg.RMAFE 0.92 1.08 0.88 1.00 0.85 0.88
IPS10 1.02 0.96 0.90 0.94 0.89 0.83 IPS10 0.99 1.13 0.89 1.07 0.86 0.86
PUNEW 0.89 0.90 0.87 0.94 0.83 0.83 PUNEW 0.87 1.01 0.84 1.09 0.82 0.85
FYFF 0.99 0.92 0.94 0.99 0.93 0.89 FYFF 0.91 0.95 0.87 1.00 0.84 0.85

Hor:4 Hor:10
Avg.RMAFE 0.96 0.97 0.92 0.97 0.92 0.88 Avg.RMAFE 0.91 1.09 0.87 1.01 0.84 0.88
IPS10 1.00 0.98 0.90 0.95 0.88 0.82 IPS10 0.99 1.18 0.90 1.12 0.87 0.88
PUNEW 0.86 0.94 0.86 0.97 0.83 0.84 PUNEW 0.87 1.01 0.85 1.09 0.81 0.84
FYFF 0.99 0.92 0.94 1.00 0.91 0.87 FYFF 0.90 0.95 0.85 1.00 0.81 0.83

Hor:5 Hor:11
Avg.RMAFE 0.95 0.99 0.91 0.98 0.90 0.88 Avg.RMAFE 0.91 1.11 0.87 1.01 0.84 0.89
IPS10 1.01 1.03 0.91 0.98 0.87 0.83 IPS10 1.00 1.20 0.92 1.14 0.89 0.91
PUNEW 0.87 0.95 0.86 1.00 0.82 0.85 PUNEW 0.87 1.03 0.86 1.09 0.83 0.85
FYFF 0.97 0.93 0.93 0.99 0.88 0.86 FYFF 0.91 0.95 0.86 1.00 0.81 0.83

Hor:6 Hor:12
Avg.RMAFE 0.94 1.02 0.90 1.00 0.89 0.88 Avg.RMAFE 0.92 1.13 0.89 1.01 0.86 0.89
IPS10 1.01 1.05 0.89 1.00 0.86 0.83 IPS10 1.01 1.22 0.94 1.16 0.91 0.93
PUNEW 0.87 0.97 0.84 1.03 0.82 0.84 PUNEW 0.87 1.05 0.86 1.08 0.84 0.85
FYFF 0.95 0.94 0.92 1.00 0.88 0.86 FYFF 0.91 0.95 0.87 0.99 0.82 0.84

 
RR is the Reduced Rank Regression, SW is the Factor Model, BVAR is a Bayesian VAR with Minnesota-type prior, MB is Multivariate Boosting, RRP is Reduced Rank 
Posterior, BRR is Bayesian Reduced Rank Regression. The forecasting exercise is performed using a rolling window of 10 years, so the first estimation window is 1960:1 
1969:12 and the first forecast window is 1970:1 1970:12, while the last estimation window is 1992:1 2002:12 and the last forecast window is 2003:1 2003:12. All variables 
are standardised prior to estimation, and then mean and variance are re-attributed to the forecasts accordingly. Best models are in bold. 
 



Table 4a: RMSFEs against RW 

RR SW BVAR MB RRP BRR RR SW BVAR MB RRP BRR

Hor:1 Hor:7
Avg.RMSFE 1.03 0.79 0.94 1.18 0.96 0.91 Avg.RMSFE 0.32 0.39 0.30 0.38 0.29 0.29
IPS10 0.99 0.83 0.82 0.74 0.85 0.68 IPS10 0.36 0.46 0.30 0.42 0.29 0.27
PUNEW 0.79 0.63 0.84 0.66 0.83 0.76 PUNEW 0.25 0.31 0.24 0.37 0.23 0.24
FYFF 1.04 0.89 0.95 0.96 0.97 0.92 FYFF 0.40 0.42 0.35 0.39 0.33 0.32

Hor:2 Hor:8
Avg.RMSFE 0.73 0.62 0.67 0.87 0.68 0.63 Avg.RMSFE 0.29 0.38 0.27 0.35 0.26 0.27
IPS10 0.73 0.70 0.61 0.67 0.60 0.51 IPS10 0.33 0.44 0.28 0.39 0.26 0.26
PUNEW 0.56 0.50 0.58 0.57 0.55 0.54 PUNEW 0.22 0.29 0.22 0.35 0.21 0.22
FYFF 0.83 0.78 0.81 0.82 0.80 0.75 FYFF 0.34 0.38 0.30 0.35 0.28 0.28

Hor:3 Hor:9
Avg.RMSFE 0.59 0.54 0.53 0.67 0.54 0.50 Avg.RMSFE 0.27 0.36 0.25 0.33 0.24 0.25
IPS10 0.64 0.63 0.52 0.62 0.52 0.43 IPS10 0.30 0.41 0.26 0.37 0.24 0.25
PUNEW 0.42 0.42 0.42 0.49 0.40 0.40 PUNEW 0.21 0.29 0.21 0.34 0.20 0.21
FYFF 0.72 0.69 0.69 0.73 0.67 0.63 FYFF 0.29 0.35 0.26 0.32 0.25 0.25

Hor:4 Hor:10
Avg.RMSFE 0.49 0.48 0.44 0.56 0.45 0.42 Avg.RMSFE 0.25 0.35 0.23 0.31 0.22 0.24
IPS10 0.55 0.58 0.44 0.56 0.43 0.38 IPS10 0.28 0.40 0.24 0.36 0.22 0.24
PUNEW 0.34 0.39 0.35 0.45 0.33 0.34 PUNEW 0.21 0.28 0.21 0.33 0.20 0.20
FYFF 0.64 0.61 0.60 0.63 0.58 0.55 FYFF 0.27 0.33 0.24 0.30 0.23 0.24

Hor:5 Hor:11
Avg.RMSFE 0.42 0.45 0.38 0.48 0.38 0.36 Avg.RMSFE 0.23 0.34 0.22 0.29 0.21 0.22
IPS10 0.47 0.53 0.38 0.49 0.36 0.33 IPS10 0.26 0.38 0.23 0.34 0.21 0.23
PUNEW 0.30 0.36 0.30 0.41 0.28 0.30 PUNEW 0.20 0.28 0.21 0.33 0.19 0.20
FYFF 0.56 0.53 0.51 0.52 0.48 0.45 FYFF 0.26 0.31 0.23 0.28 0.21 0.22

Hor:6 Hor:12
Avg.RMSFE 0.36 0.42 0.33 0.43 0.33 0.32 Avg.RMSFE 0.22 0.33 0.21 0.27 0.21 0.22
IPS10 0.42 0.49 0.34 0.45 0.32 0.30 IPS10 0.25 0.36 0.22 0.32 0.20 0.22
PUNEW 0.27 0.33 0.26 0.38 0.25 0.27 PUNEW 0.19 0.27 0.19 0.30 0.18 0.18
FYFF 0.47 0.47 0.41 0.44 0.39 0.37 FYFF 0.25 0.30 0.23 0.27 0.21 0.22

 
RR is the Reduced Rank Regression, SW is the Factor Model, BVAR is a Bayesian VAR with Minnesota-type prior, MB is Multivariate Boosting, RRP is Reduced Rank 
Posterior, BRR is Bayesian Reduced Rank Regression. The forecasting exercise is performed using a rolling window of 10 years, so the first estimation window is 1960:1 
1969:12 and the first forecast window is 1970:1 1970:12, while the last estimation window is 1992:1 2002:12 and the last forecast window is 2003:1 2003:12. All variables 
are standardised prior to estimation, and then mean and variance are re-attributed to the forecasts accordingly. Best models are in bold. 
 



Table 4b: RMAFEs against RW 

RR SW BVAR MB RRP BRR RR SW BVAR MB RRP BRR

Hor:1 Hor:7
Avg.RMAFE 1.01 0.87 0.95 0.98 0.97 0.92 Avg.RMAFE 0.55 0.62 0.53 0.60 0.52 0.52
IPS10 1.01 0.90 0.91 0.86 0.91 0.86 IPS10 0.61 0.67 0.55 0.63 0.53 0.51
PUNEW 0.94 0.84 0.90 0.84 0.92 0.89 PUNEW 0.51 0.58 0.49 0.62 0.47 0.49
FYFF 1.08 0.92 0.97 0.94 1.00 0.97 FYFF 0.60 0.63 0.59 0.65 0.56 0.56

Hor:2 Hor:8
Avg.RMAFE 0.83 0.77 0.80 0.84 0.81 0.76 Avg.RMAFE 0.53 0.60 0.50 0.58 0.49 0.50
IPS10 0.87 0.80 0.77 0.79 0.77 0.71 IPS10 0.58 0.65 0.52 0.62 0.51 0.50
PUNEW 0.76 0.74 0.76 0.77 0.74 0.73 PUNEW 0.49 0.56 0.47 0.60 0.46 0.47
FYFF 0.95 0.87 0.87 0.91 0.89 0.85 FYFF 0.57 0.60 0.56 0.62 0.53 0.53

Hor:3 Hor:9
Avg.RMAFE 0.75 0.72 0.71 0.77 0.72 0.68 Avg.RMAFE 0.50 0.59 0.48 0.56 0.47 0.48
IPS10 0.81 0.76 0.71 0.74 0.71 0.65 IPS10 0.56 0.64 0.50 0.61 0.49 0.49
PUNEW 0.66 0.67 0.65 0.70 0.62 0.62 PUNEW 0.48 0.55 0.46 0.60 0.45 0.47
FYFF 0.84 0.78 0.80 0.85 0.79 0.76 FYFF 0.55 0.58 0.53 0.60 0.50 0.51

Hor:4 Hor:10
Avg.RMAFE 0.68 0.68 0.65 0.71 0.65 0.63 Avg.RMAFE 0.49 0.58 0.46 0.55 0.45 0.47
IPS10 0.74 0.73 0.67 0.70 0.65 0.61 IPS10 0.54 0.64 0.49 0.60 0.47 0.48
PUNEW 0.60 0.66 0.60 0.68 0.58 0.59 PUNEW 0.47 0.55 0.46 0.59 0.44 0.46
FYFF 0.78 0.72 0.74 0.79 0.71 0.69 FYFF 0.53 0.56 0.51 0.59 0.48 0.49

Hor:5 Hor:11
Avg.RMAFE 0.63 0.65 0.60 0.67 0.60 0.59 Avg.RMAFE 0.47 0.57 0.45 0.53 0.44 0.46
IPS10 0.69 0.70 0.62 0.67 0.60 0.57 IPS10 0.52 0.62 0.48 0.59 0.46 0.47
PUNEW 0.57 0.62 0.56 0.66 0.54 0.55 PUNEW 0.46 0.55 0.45 0.58 0.44 0.45
FYFF 0.72 0.69 0.69 0.73 0.66 0.64 FYFF 0.53 0.55 0.50 0.58 0.47 0.48

Hor:6 Hor:12
Avg.RMAFE 0.59 0.63 0.56 0.63 0.56 0.55 Avg.RMAFE 0.46 0.56 0.44 0.51 0.43 0.45
IPS10 0.66 0.69 0.58 0.65 0.56 0.54 IPS10 0.51 0.61 0.47 0.58 0.45 0.47
PUNEW 0.53 0.60 0.52 0.64 0.50 0.52 PUNEW 0.44 0.53 0.44 0.55 0.43 0.43
FYFF 0.66 0.65 0.64 0.69 0.61 0.60 FYFF 0.52 0.54 0.50 0.57 0.47 0.48

 
RR is the Reduced Rank Regression, SW is the Factor Model, BVAR is a Bayesian VAR with Minnesota-type prior, MB is Multivariate Boosting, RRP is Reduced Rank 
Posterior, BRR is Bayesian Reduced Rank Regression. The forecasting exercise is performed using a rolling window of 10 years, so the first estimation window is 1960:1 
1969:12 and the first forecast window is 1970:1 1970:12, while the last estimation window is 1992:1 2002:12 and the last forecast window is 2003:1 2003:12. All variables 
are standardised prior to estimation, and then mean and variance are re-attributed to the forecasts accordingly. Best models are in bold. 



Table 5a: RMSFEs against AR(1), Evaluation sample 1985:2003 

RR SW BVAR MB RRP BRR RR SW BVAR MB RRP BRR

Hor:1 Hor:7
Avg.RMSFE 1.43 1.04 1.29 1.28 1.36 1.17 Avg.RMSFE 0.99 1.24 0.90 1.01 0.88 0.86
IPS10 1.09 1.03 1.17 0.83 1.23 1.00 IPS10 1.06 1.15 0.88 0.97 0.79 0.87
PUNEW 1.24 0.95 0.97 1.03 1.12 0.98 PUNEW 1.05 1.29 0.81 1.01 0.78 0.76
FYFF 1.68 1.26 1.40 0.97 1.38 1.02 FYFF 0.81 0.91 0.66 1.04 0.63 0.63

Hor:2 Hor:8
Avg.RMSFE 1.27 1.04 1.16 1.17 1.21 1.02 Avg.RMSFE 0.97 1.29 0.89 1.01 0.86 0.86
IPS10 1.03 1.03 0.91 0.87 0.96 0.85 IPS10 1.03 1.14 0.89 0.98 0.78 0.87
PUNEW 1.13 0.94 1.03 1.03 1.03 0.97 PUNEW 1.04 1.34 0.80 1.02 0.78 0.76
FYFF 1.29 1.16 1.12 1.02 1.03 0.76 FYFF 0.80 0.90 0.66 1.04 0.62 0.63

Hor:3 Hor:9
Avg.RMSFE 1.17 1.08 1.07 1.10 1.09 0.95 Avg.RMSFE 0.96 1.34 0.89 1.00 0.85 0.86
IPS10 1.00 1.06 0.91 0.92 0.92 0.84 IPS10 1.02 1.15 0.89 0.98 0.79 0.87
PUNEW 1.11 1.03 0.97 1.03 0.94 0.88 PUNEW 1.03 1.38 0.79 1.02 0.77 0.76
FYFF 1.05 1.03 0.94 1.04 0.82 0.64 FYFF 0.79 0.88 0.66 1.03 0.62 0.63

Hor:4 Hor:10
Avg.RMSFE 1.10 1.11 1.01 1.06 1.01 0.91 Avg.RMSFE 0.95 1.37 0.87 1.00 0.84 0.85
IPS10 1.00 1.11 0.86 0.94 0.82 0.84 IPS10 1.03 1.15 0.90 0.98 0.80 0.89
PUNEW 1.06 1.11 0.90 1.01 0.86 0.83 PUNEW 1.06 1.47 0.80 1.02 0.76 0.77
FYFF 0.96 0.96 0.81 1.05 0.71 0.62 FYFF 0.78 0.88 0.66 1.03 0.63 0.65

Hor:5 Hor:11
Avg.RMSFE 1.05 1.16 0.96 1.04 0.95 0.88 Avg.RMSFE 0.95 1.43 0.87 1.00 0.83 0.86
IPS10 1.01 1.11 0.86 0.96 0.77 0.85 IPS10 1.04 1.14 0.91 0.98 0.82 0.89
PUNEW 1.05 1.17 0.88 1.00 0.82 0.81 PUNEW 1.08 1.57 0.82 1.02 0.78 0.79
FYFF 0.90 0.94 0.73 1.05 0.67 0.63 FYFF 0.78 0.87 0.66 1.02 0.64 0.66

Hor:6 Hor:12
Avg.RMSFE 1.01 1.21 0.93 1.02 0.91 0.87 Avg.RMSFE 0.96 1.48 0.88 0.99 0.85 0.87
IPS10 1.05 1.14 0.85 0.97 0.77 0.86 IPS10 1.04 1.14 0.92 0.99 0.83 0.91
PUNEW 1.04 1.23 0.84 0.99 0.80 0.78 PUNEW 1.08 1.70 0.82 0.99 0.78 0.79
FYFF 0.84 0.92 0.69 1.05 0.65 0.63 FYFF 0.77 0.87 0.67 1.02 0.65 0.69

 
RR is the Reduced Rank Regression, SW is the Factor Model, BVAR is a Bayesian VAR with Minnesota-type prior, MB is Multivariate Boosting, RRP is Reduced Rank 
Posterior, BRR is Bayesian Reduced Rank Regression. The forecasting exercise is performed using a rolling window of 10 years, so the first estimation window is 1974:1 
1984:12 and the first forecast window is 1985:1 1985:12, while the last estimation window is 1992:1 2002:12 and the last forecast window is 2003:1 2003:12. All variables 
are standardised prior to estimation, and then mean and variance are re-attributed to the forecasts accordingly. Best models are in bold. 
 



Table 5b: RMAFEs against AR(1), Evaluation sample 1985:2003 

RR SW BVAR MB RRP BRR RR SW BVAR MB RRP BRR

Hor:1 Hor:7
Avg.RMAFE 1.19 1.01 1.13 1.11 1.17 1.08 Avg.RMAFE 0.99 1.09 0.94 1.01 0.92 0.92
IPS10 1.05 0.97 1.02 0.92 1.04 1.00 IPS10 1.05 1.06 0.93 0.99 0.88 0.92
PUNEW 1.14 0.97 0.97 0.99 1.08 1.01 PUNEW 0.99 1.12 0.86 0.99 0.86 0.85
FYFF 1.25 1.04 1.15 0.99 1.17 1.02 FYFF 0.92 0.90 0.83 1.01 0.81 0.79

Hor:2 Hor:8
Avg.RMAFE 1.12 1.01 1.07 1.07 1.09 1.01 Avg.RMAFE 0.98 1.11 0.93 1.01 0.91 0.92
IPS10 1.02 0.97 0.90 0.94 0.92 0.90 IPS10 1.02 1.06 0.93 0.99 0.88 0.91
PUNEW 1.05 0.97 0.98 0.97 0.98 0.96 PUNEW 0.99 1.15 0.87 1.00 0.87 0.87
FYFF 1.16 1.01 1.01 1.02 1.03 0.85 FYFF 0.92 0.91 0.83 1.01 0.81 0.80

Hor:3 Hor:9
Avg.RMAFE 1.07 1.02 1.02 1.05 1.03 0.97 Avg.RMAFE 0.97 1.12 0.92 1.00 0.89 0.92
IPS10 1.02 0.99 0.90 0.97 0.93 0.91 IPS10 1.03 1.07 0.93 0.99 0.88 0.91
PUNEW 1.05 1.02 0.95 0.97 0.93 0.91 PUNEW 1.00 1.16 0.87 1.00 0.86 0.87
FYFF 1.05 0.96 0.94 1.03 0.93 0.81 FYFF 0.91 0.90 0.82 1.00 0.80 0.79

Hor:4 Hor:10
Avg.RMAFE 1.04 1.03 0.99 1.04 0.99 0.95 Avg.RMAFE 0.96 1.14 0.91 1.00 0.88 0.91
IPS10 1.01 1.01 0.89 0.98 0.88 0.90 IPS10 1.02 1.06 0.92 0.99 0.88 0.90
PUNEW 1.02 1.09 0.94 1.00 0.91 0.90 PUNEW 1.01 1.17 0.87 1.00 0.85 0.86
FYFF 1.00 0.91 0.88 1.01 0.86 0.78 FYFF 0.90 0.90 0.82 1.01 0.80 0.79

Hor:5 Hor:11
Avg.RMAFE 1.02 1.06 0.97 1.02 0.97 0.94 Avg.RMAFE 0.96 1.16 0.91 1.00 0.88 0.91
IPS10 1.00 1.01 0.90 0.98 0.87 0.91 IPS10 1.03 1.04 0.92 0.99 0.89 0.91
PUNEW 1.00 1.08 0.92 0.99 0.90 0.89 PUNEW 1.00 1.20 0.86 1.00 0.85 0.87
FYFF 0.97 0.93 0.84 1.01 0.82 0.78 FYFF 0.90 0.90 0.82 1.00 0.80 0.79

Hor:6 Hor:12
Avg.RMAFE 1.00 1.08 0.95 1.01 0.94 0.93 Avg.RMAFE 0.97 1.18 0.92 1.00 0.90 0.92
IPS10 1.04 1.06 0.91 0.99 0.87 0.92 IPS10 1.01 1.03 0.91 0.99 0.89 0.91
PUNEW 0.98 1.10 0.88 0.98 0.88 0.85 PUNEW 1.01 1.25 0.87 1.00 0.86 0.88
FYFF 0.94 0.91 0.83 1.01 0.82 0.78 FYFF 0.90 0.91 0.83 1.00 0.82 0.81

RR is the Reduced Rank Regression, SW is the Factor Model, BVAR is a Bayesian VAR with Minnesota-type prior, MB is Multivariate Boosting, RRP is Reduced Rank 
Posterior, BRR is Bayesian Reduced Rank Regression. The forecasting exercise is performed using a rolling window of 10 years, so the first estimation window is 1974:1 
1984:12 and the first forecast window is 1985:1 1985:12, while the last estimation window is 1992:1 2002:12 and the last forecast window is 2003:1 2003:12. All variables 
are standardised prior to estimation, and then mean and variance are re-attributed to the forecasts accordingly. Best models are in bold. 
 



Table 6a: RMSFEs against BVAR0, Evaluation sample 1985:2003 

RR SW BVAR MB RRP BRR RR SW BVAR MB RRP BRR

Hor:1 Hor:7
Avg.RMSFE 0.99 0.72 0.89 0.88 0.94 0.81 Avg.RMSFE 0.90 1.13 0.82 0.92 0.80 0.78
IPS10 0.83 0.78 0.89 0.63 0.93 0.76 IPS10 0.98 1.07 0.82 0.90 0.73 0.81
PUNEW 0.97 0.74 0.76 0.81 0.88 0.77 PUNEW 0.79 0.98 0.61 0.76 0.59 0.57
FYFF 0.80 0.60 0.66 0.46 0.65 0.48 FYFF 0.99 1.11 0.81 1.27 0.76 0.77

Hor:2 Hor:8
Avg.RMSFE 0.97 0.80 0.89 0.89 0.92 0.78 Avg.RMSFE 0.89 1.18 0.81 0.92 0.78 0.78
IPS10 0.96 0.95 0.84 0.81 0.89 0.79 IPS10 0.98 1.09 0.85 0.93 0.74 0.83
PUNEW 0.87 0.72 0.79 0.79 0.79 0.74 PUNEW 0.79 1.02 0.61 0.77 0.59 0.58
FYFF 0.86 0.78 0.75 0.68 0.69 0.51 FYFF 1.00 1.12 0.82 1.29 0.77 0.79

Hor:3 Hor:9
Avg.RMSFE 0.96 0.88 0.87 0.90 0.89 0.77 Avg.RMSFE 0.88 1.22 0.81 0.92 0.78 0.78
IPS10 0.93 1.00 0.85 0.86 0.86 0.78 IPS10 0.98 1.10 0.85 0.94 0.76 0.84
PUNEW 0.86 0.80 0.75 0.80 0.73 0.68 PUNEW 0.79 1.06 0.61 0.78 0.59 0.58
FYFF 0.99 0.97 0.89 0.99 0.78 0.60 FYFF 0.96 1.08 0.80 1.26 0.75 0.77

Hor:4 Hor:10
Avg.RMSFE 0.95 0.95 0.86 0.91 0.86 0.78 Avg.RMSFE 0.87 1.26 0.80 0.92 0.77 0.78
IPS10 0.93 1.04 0.80 0.88 0.76 0.78 IPS10 0.99 1.11 0.87 0.95 0.77 0.85
PUNEW 0.84 0.88 0.71 0.80 0.68 0.66 PUNEW 0.80 1.11 0.61 0.77 0.58 0.58
FYFF 1.09 1.09 0.92 1.19 0.81 0.71 FYFF 0.94 1.06 0.80 1.24 0.76 0.78

Hor:5 Hor:11
Avg.RMSFE 0.93 1.03 0.85 0.92 0.84 0.78 Avg.RMSFE 0.87 1.32 0.80 0.92 0.77 0.79
IPS10 0.95 1.04 0.81 0.90 0.73 0.79 IPS10 1.00 1.09 0.88 0.95 0.78 0.86
PUNEW 0.81 0.90 0.67 0.77 0.63 0.62 PUNEW 0.81 1.18 0.61 0.76 0.58 0.59
FYFF 1.04 1.08 0.85 1.21 0.77 0.73 FYFF 0.94 1.06 0.81 1.24 0.78 0.80

Hor:6 Hor:12
Avg.RMSFE 0.91 1.09 0.84 0.92 0.82 0.78 Avg.RMSFE 0.88 1.36 0.81 0.91 0.78 0.80
IPS10 0.98 1.07 0.80 0.90 0.72 0.81 IPS10 0.99 1.09 0.87 0.94 0.79 0.86
PUNEW 0.79 0.94 0.64 0.76 0.61 0.59 PUNEW 0.81 1.28 0.62 0.74 0.59 0.59
FYFF 0.98 1.07 0.81 1.22 0.75 0.73 FYFF 0.93 1.04 0.81 1.22 0.78 0.82

 
RR is the Reduced Rank Regression, SW is the Factor Model, BVAR is a Bayesian VAR with Minnesota-type prior, MB is Multivariate Boosting, RRP is Reduced Rank 
Posterior, BRR is Bayesian Reduced Rank Regression. The forecasting exercise is performed using a rolling window of 10 years, so the first estimation window is 1974:1 
1984:12 and the first forecast window is 1985:1 1985:12, while the last estimation window is 1992:1 2002:12 and the last forecast window is 2003:1 2003:12. All variables 
are standardised prior to estimation, and then mean and variance are re-attributed to the forecasts accordingly. Best models are in bold. 
 



Table 6b: RMAFEs against BVAR0, Evaluation sample 1985:2003 

RR SW BVAR MB RRP BRR RR SW BVAR MB RRP BRR

Hor:1 Hor:7
Avg.RMAFE 0.97 0.83 0.92 0.90 0.95 0.88 Avg.RMAFE 0.94 1.04 0.89 0.96 0.87 0.87
IPS10 0.93 0.86 0.90 0.81 0.92 0.89 IPS10 0.98 1.00 0.87 0.92 0.82 0.86
PUNEW 0.98 0.83 0.83 0.85 0.93 0.87 PUNEW 0.88 0.99 0.76 0.88 0.76 0.75
FYFF 0.87 0.72 0.80 0.68 0.81 0.71 FYFF 0.96 0.94 0.86 1.05 0.84 0.82

Hor:2 Hor:8
Avg.RMAFE 0.97 0.88 0.93 0.93 0.95 0.88 Avg.RMAFE 0.93 1.05 0.88 0.95 0.86 0.87
IPS10 1.01 0.95 0.88 0.92 0.91 0.89 IPS10 0.98 1.01 0.88 0.94 0.83 0.87
PUNEW 0.93 0.87 0.87 0.86 0.87 0.86 PUNEW 0.87 1.01 0.77 0.88 0.77 0.76
FYFF 0.95 0.83 0.83 0.84 0.84 0.70 FYFF 0.97 0.95 0.87 1.06 0.84 0.83

Hor:3 Hor:9
Avg.RMAFE 0.97 0.92 0.92 0.95 0.93 0.87 Avg.RMAFE 0.92 1.06 0.87 0.95 0.84 0.87
IPS10 1.01 0.98 0.89 0.96 0.92 0.90 IPS10 0.98 1.02 0.88 0.94 0.84 0.86
PUNEW 0.93 0.90 0.85 0.86 0.82 0.80 PUNEW 0.87 1.02 0.76 0.88 0.75 0.76
FYFF 1.00 0.91 0.90 0.98 0.88 0.77 FYFF 0.95 0.94 0.86 1.05 0.84 0.82

Hor:4 Hor:10
Avg.RMAFE 0.96 0.95 0.91 0.95 0.91 0.88 Avg.RMAFE 0.91 1.08 0.86 0.95 0.83 0.87
IPS10 0.98 0.99 0.87 0.96 0.85 0.87 IPS10 0.98 1.02 0.89 0.96 0.85 0.87
PUNEW 0.90 0.96 0.83 0.88 0.81 0.79 PUNEW 0.88 1.02 0.76 0.88 0.74 0.75
FYFF 1.03 0.94 0.90 1.05 0.88 0.80 FYFF 0.93 0.94 0.85 1.05 0.83 0.82

Hor:5 Hor:11
Avg.RMAFE 0.95 0.99 0.91 0.95 0.90 0.87 Avg.RMAFE 0.92 1.10 0.86 0.95 0.84 0.87
IPS10 0.99 1.00 0.89 0.97 0.86 0.90 IPS10 0.99 1.01 0.89 0.96 0.86 0.88
PUNEW 0.88 0.95 0.81 0.87 0.79 0.78 PUNEW 0.87 1.05 0.76 0.87 0.75 0.76
FYFF 0.99 0.95 0.85 1.03 0.83 0.79 FYFF 0.93 0.93 0.85 1.04 0.83 0.82

Hor:6 Hor:12
Avg.RMAFE 0.94 1.01 0.89 0.95 0.89 0.87 Avg.RMAFE 0.92 1.12 0.88 0.95 0.85 0.88
IPS10 0.99 1.01 0.87 0.94 0.83 0.87 IPS10 0.99 1.01 0.90 0.98 0.87 0.89
PUNEW 0.87 0.97 0.78 0.87 0.78 0.76 PUNEW 0.88 1.09 0.76 0.87 0.75 0.77
FYFF 0.96 0.93 0.85 1.03 0.83 0.80 FYFF 0.92 0.93 0.85 1.03 0.84 0.84

 
RR is the Reduced Rank Regression, SW is the Factor Model, BVAR is a Bayesian VAR with Minnesota-type prior, MB is Multivariate Boosting, RRP is Reduced Rank 
Posterior, BRR is Bayesian Reduced Rank Regression. The forecasting exercise is performed using a rolling window of 10 years, so the first estimation window is 1974:1 
1984:12 and the first forecast window is 1985:1 1985:12, while the last estimation window is 1992:1 2002:12 and the last forecast window is 2003:1 2003:12. All variables 
are standardised prior to estimation, and then mean and variance are re-attributed to the forecasts accordingly. Best models are in bold. 
 



Table 7a: RMSFEs against AR(1), Evaluation sample 1995:2003 

RR SW BVAR MB RRP BRR RR SW BVAR MB RRP BRR

Hor:1 Hor:7
Avg.RMSFE 1.46 1.15 1.26 1.19 1.37 1.15 Avg.RMSFE 0.94 1.31 0.87 1.01 0.87 0.85
IPS10 1.37 1.21 1.25 0.87 1.42 1.05 IPS10 0.90 1.24 0.78 0.97 0.66 0.82
PUNEW 1.17 1.04 0.92 0.91 1.10 0.93 PUNEW 0.72 1.15 0.67 0.98 0.74 0.67
FYFF 1.30 2.07 0.70 1.11 0.90 0.76 FYFF 0.81 1.26 0.55 1.06 0.53 0.48

Hor:2 Hor:8
Avg.RMSFE 1.23 1.17 1.11 1.11 1.19 1.00 Avg.RMSFE 0.92 1.34 0.87 1.00 0.85 0.85
IPS10 1.15 1.20 0.91 0.88 1.02 0.83 IPS10 0.89 1.23 0.80 0.97 0.68 0.83
PUNEW 1.06 0.96 1.04 0.94 1.11 0.94 PUNEW 0.72 1.15 0.68 0.98 0.76 0.69
FYFF 1.13 1.80 0.66 1.13 0.69 0.56 FYFF 0.82 1.24 0.58 1.05 0.56 0.51

Hor:3 Hor:9
Avg.RMSFE 1.11 1.18 1.02 1.07 1.07 0.92 Avg.RMSFE 0.92 1.37 0.88 1.00 0.85 0.85
IPS10 0.98 1.20 0.85 0.91 0.84 0.80 IPS10 0.90 1.22 0.82 0.98 0.70 0.83
PUNEW 0.90 1.05 0.87 0.96 0.92 0.77 PUNEW 0.74 1.11 0.73 0.98 0.80 0.72
FYFF 0.91 1.54 0.49 1.11 0.50 0.40 FYFF 0.83 1.22 0.61 1.04 0.59 0.54

Hor:4 Hor:10
Avg.RMSFE 1.05 1.20 0.96 1.05 0.97 0.88 Avg.RMSFE 0.91 1.39 0.87 0.99 0.84 0.86
IPS10 0.90 1.21 0.74 0.93 0.71 0.78 IPS10 0.91 1.21 0.84 0.98 0.71 0.85
PUNEW 0.85 1.11 0.76 0.96 0.79 0.73 PUNEW 0.78 1.15 0.73 0.99 0.80 0.73
FYFF 0.81 1.40 0.47 1.09 0.47 0.39 FYFF 0.83 1.19 0.64 1.03 0.62 0.58

Hor:5 Hor:11
Avg.RMSFE 0.99 1.24 0.92 1.03 0.92 0.86 Avg.RMSFE 0.92 1.41 0.88 0.99 0.85 0.87
IPS10 0.85 1.22 0.74 0.95 0.63 0.77 IPS10 0.93 1.20 0.85 0.98 0.74 0.87
PUNEW 0.84 1.08 0.78 0.97 0.81 0.77 PUNEW 0.81 1.15 0.73 1.00 0.80 0.76
FYFF 0.81 1.32 0.50 1.08 0.49 0.42 FYFF 0.83 1.16 0.66 1.02 0.64 0.61

Hor:6 Hor:12
Avg.RMSFE 0.95 1.28 0.89 1.02 0.89 0.85 Avg.RMSFE 0.93 1.45 0.89 0.99 0.87 0.88
IPS10 0.88 1.23 0.74 0.96 0.63 0.79 IPS10 0.94 1.20 0.87 0.98 0.76 0.88
PUNEW 0.78 1.09 0.75 0.98 0.80 0.73 PUNEW 0.83 1.16 0.75 0.99 0.82 0.78
FYFF 0.80 1.28 0.53 1.07 0.51 0.45 FYFF 0.84 1.15 0.68 1.01 0.67 0.65

 
RR is the Reduced Rank Regression, SW is the Factor Model, BVAR is a Bayesian VAR with Minnesota-type prior, MB is Multivariate Boosting, RRP is Reduced Rank 
Posterior, BRR is Bayesian Reduced Rank Regression. The forecasting exercise is performed using a rolling window of 10 years, so the first estimation window is 1984:1 
1994:12 and the first forecast window is 1995:1 1995:12, while the last estimation window is 1992:1 2002:12 and the last forecast window is 2003:1 2003:12. All variables 
are standardised prior to estimation, and then mean and variance are re-attributed to the forecasts accordingly. Best models are in bold. 
 



Table 7b: RMAFEs against AR(1), Evaluation sample 1995:2003 

RR SW BVAR MB RRP BRR RR SW BVAR MB RRP BRR

Hor:1 Hor:7
Avg.RMAFE 1.20 1.06 1.12 1.08 1.17 1.08 Avg.RMAFE 0.96 1.11 0.93 1.00 0.92 0.91
IPS10 1.15 1.03 1.06 0.93 1.14 1.02 IPS10 0.95 1.05 0.87 0.98 0.82 0.88
PUNEW 1.10 1.02 0.96 0.95 1.07 0.97 PUNEW 0.81 1.02 0.80 0.98 0.84 0.80
FYFF 1.34 1.31 0.97 1.08 1.09 1.02 FYFF 0.92 1.05 0.78 1.02 0.76 0.69

Hor:2 Hor:8
Avg.RMAFE 1.10 1.06 1.05 1.05 1.09 1.00 Avg.RMAFE 0.95 1.11 0.92 1.00 0.91 0.92
IPS10 1.12 1.03 0.96 0.94 1.03 0.91 IPS10 0.94 1.05 0.88 0.98 0.82 0.87
PUNEW 1.01 0.98 1.03 0.97 1.05 0.98 PUNEW 0.82 1.02 0.82 0.99 0.86 0.83
FYFF 1.17 1.28 0.88 1.10 0.93 0.80 FYFF 0.94 1.05 0.80 1.01 0.78 0.71

Hor:3 Hor:9
Avg.RMAFE 1.05 1.06 1.00 1.04 1.02 0.95 Avg.RMAFE 0.95 1.13 0.92 1.00 0.89 0.92
IPS10 1.03 0.98 0.93 0.95 0.94 0.89 IPS10 0.94 1.03 0.88 0.99 0.83 0.85
PUNEW 0.93 1.00 0.89 0.97 0.89 0.85 PUNEW 0.85 1.00 0.84 0.99 0.87 0.86
FYFF 1.00 1.11 0.73 1.07 0.76 0.65 FYFF 0.94 1.05 0.81 1.00 0.80 0.73

Hor:4 Hor:10
Avg.RMAFE 1.01 1.08 0.97 1.02 0.97 0.93 Avg.RMAFE 0.94 1.13 0.91 1.00 0.88 0.91
IPS10 0.95 1.00 0.86 0.97 0.85 0.87 IPS10 0.93 1.03 0.87 0.99 0.82 0.86
PUNEW 0.89 1.06 0.84 0.97 0.86 0.84 PUNEW 0.85 1.00 0.84 0.99 0.86 0.85
FYFF 0.92 1.05 0.71 1.04 0.71 0.62 FYFF 0.94 1.05 0.82 1.00 0.81 0.75

Hor:5 Hor:11
Avg.RMAFE 0.99 1.09 0.96 1.01 0.96 0.92 Avg.RMAFE 0.95 1.14 0.92 1.00 0.89 0.92
IPS10 0.91 1.01 0.85 0.97 0.80 0.87 IPS10 0.94 1.03 0.87 0.99 0.82 0.86
PUNEW 0.89 1.03 0.90 0.99 0.91 0.90 PUNEW 0.85 1.00 0.82 0.99 0.85 0.86
FYFF 0.91 1.05 0.73 1.03 0.71 0.65 FYFF 0.96 1.06 0.84 1.00 0.82 0.78

Hor:6 Hor:12
Avg.RMAFE 0.97 1.10 0.94 1.01 0.93 0.91 Avg.RMAFE 0.96 1.16 0.93 1.00 0.91 0.93
IPS10 0.93 1.03 0.83 0.98 0.78 0.85 IPS10 0.94 1.02 0.88 0.99 0.84 0.86
PUNEW 0.82 1.02 0.84 0.98 0.87 0.84 PUNEW 0.85 1.01 0.83 1.00 0.86 0.87
FYFF 0.91 1.05 0.77 1.02 0.75 0.66 FYFF 0.98 1.06 0.87 1.00 0.85 0.82

 
RR is the Reduced Rank Regression, SW is the Factor Model, BVAR is a Bayesian VAR with Minnesota-type prior, MB is Multivariate Boosting, RRP is Reduced Rank 
Posterior, BRR is Bayesian Reduced Rank Regression. The forecasting exercise is performed using a rolling window of 10 years, so the first estimation window is 1984:1 
1994:12 and the first forecast window is 1995:1 1995:12, while the last estimation window is 1992:1 2002:12 and the last forecast window is 2003:1 2003:12. All variables 
are standardised prior to estimation, and then mean and variance are re-attributed to the forecasts accordingly. Best models are in bold. 
 



Table 8a: RMSFEs against BVAR0, Evaluation sample 1995:2003 

RR SW BVAR MB RRP BRR RR SW BVAR MB RRP BRR

Hor:1 Hor:7
Avg.RMSFE 1.02 0.80 0.88 0.83 0.95 0.80 Avg.RMSFE 0.92 1.28 0.86 0.99 0.85 0.83
IPS10 0.95 0.84 0.87 0.60 0.99 0.73 IPS10 1.12 1.55 0.97 1.21 0.83 1.03
PUNEW 1.07 0.95 0.85 0.84 1.01 0.85 PUNEW 0.88 1.40 0.82 1.19 0.90 0.82
FYFF 1.22 1.96 0.66 1.05 0.84 0.72 FYFF 1.17 1.83 0.79 1.55 0.77 0.70

Hor:2 Hor:8
Avg.RMSFE 0.96 0.91 0.87 0.87 0.94 0.78 Avg.RMSFE 0.90 1.32 0.85 0.99 0.84 0.84
IPS10 1.19 1.25 0.94 0.91 1.06 0.86 IPS10 1.13 1.55 1.01 1.23 0.86 1.05
PUNEW 0.88 0.80 0.87 0.79 0.93 0.78 PUNEW 0.89 1.42 0.84 1.21 0.93 0.85
FYFF 1.21 1.95 0.71 1.22 0.75 0.60 FYFF 1.17 1.78 0.83 1.51 0.80 0.73

Hor:3 Hor:9
Avg.RMSFE 0.97 1.03 0.89 0.93 0.94 0.80 Avg.RMSFE 0.90 1.34 0.85 0.97 0.83 0.83
IPS10 1.15 1.42 1.00 1.07 0.99 0.94 IPS10 1.11 1.52 1.01 1.21 0.86 1.04
PUNEW 0.84 0.97 0.80 0.89 0.85 0.71 PUNEW 0.88 1.33 0.87 1.17 0.96 0.86
FYFF 1.29 2.17 0.68 1.57 0.70 0.56 FYFF 1.17 1.71 0.86 1.46 0.83 0.76

Hor:4 Hor:10
Avg.RMSFE 0.97 1.12 0.89 0.97 0.90 0.82 Avg.RMSFE 0.89 1.37 0.85 0.98 0.83 0.84
IPS10 1.15 1.54 0.94 1.19 0.90 0.99 IPS10 1.09 1.46 1.01 1.18 0.86 1.03
PUNEW 0.85 1.11 0.76 0.97 0.80 0.73 PUNEW 0.92 1.35 0.87 1.17 0.94 0.86
FYFF 1.29 2.23 0.75 1.75 0.75 0.62 FYFF 1.14 1.64 0.88 1.42 0.85 0.80

Hor:5 Hor:11
Avg.RMSFE 0.94 1.18 0.88 0.98 0.88 0.82 Avg.RMSFE 0.90 1.38 0.86 0.97 0.83 0.85
IPS10 1.12 1.61 0.97 1.25 0.83 1.02 IPS10 1.11 1.43 1.02 1.17 0.88 1.03
PUNEW 0.86 1.11 0.80 1.00 0.84 0.79 PUNEW 0.94 1.34 0.85 1.16 0.93 0.88
FYFF 1.22 2.01 0.76 1.64 0.74 0.64 FYFF 1.13 1.58 0.89 1.38 0.87 0.83

Hor:6 Hor:12
Avg.RMSFE 0.92 1.24 0.86 0.98 0.86 0.82 Avg.RMSFE 0.90 1.40 0.87 0.96 0.84 0.85
IPS10 1.17 1.63 0.98 1.27 0.84 1.05 IPS10 1.09 1.38 1.01 1.14 0.88 1.02
PUNEW 0.87 1.21 0.84 1.09 0.89 0.82 PUNEW 0.95 1.34 0.86 1.15 0.95 0.90
FYFF 1.17 1.88 0.78 1.58 0.76 0.66 FYFF 1.11 1.51 0.90 1.34 0.88 0.86

RR is the Reduced Rank Regression, SW is the Factor Model, BVAR is a Bayesian VAR with Minnesota-type prior, MB is Multivariate Boosting, RRP is Reduced Rank 
Posterior, BRR is Bayesian Reduced Rank Regression. The forecasting exercise is performed using a rolling window of 10 years, so the first estimation window is 1984:1 
1994:12 and the first forecast window is 1995:1 1995:12, while the last estimation window is 1992:1 2002:12 and the last forecast window is 2003:1 2003:12. All variables 
are standardised prior to estimation, and then mean and variance are re-attributed to the forecasts accordingly. Best models are in bold. 
 



Table 8b: RMAFEs against BVAR0 Evaluation sample 1995:2003 

RR SW BVAR MB RRP BRR RR SW BVAR MB RRP BRR

Hor:1 Hor:7
Avg.RMAFE 0.99 0.88 0.93 0.89 0.97 0.89 Avg.RMAFE 0.95 1.09 0.92 0.99 0.91 0.90
IPS10 0.96 0.86 0.88 0.77 0.94 0.85 IPS10 1.06 1.18 0.98 1.10 0.91 0.99
PUNEW 1.04 0.97 0.91 0.90 1.02 0.92 PUNEW 0.90 1.14 0.90 1.10 0.93 0.89
FYFF 1.09 1.06 0.78 0.88 0.88 0.82 FYFF 1.02 1.16 0.86 1.13 0.84 0.77

Hor:2 Hor:8
Avg.RMAFE 0.98 0.94 0.93 0.93 0.97 0.88 Avg.RMAFE 0.95 1.10 0.92 1.00 0.90 0.91
IPS10 1.10 1.01 0.94 0.92 1.00 0.89 IPS10 1.08 1.20 1.01 1.13 0.95 0.99
PUNEW 0.93 0.91 0.95 0.89 0.96 0.90 PUNEW 0.91 1.12 0.90 1.09 0.95 0.91
FYFF 1.08 1.17 0.81 1.01 0.86 0.73 FYFF 1.03 1.15 0.88 1.11 0.86 0.79

Hor:3 Hor:9
Avg.RMAFE 0.99 0.99 0.94 0.97 0.96 0.89 Avg.RMAFE 0.94 1.12 0.91 0.99 0.89 0.91
IPS10 1.10 1.05 0.99 1.01 1.01 0.95 IPS10 1.08 1.19 1.01 1.13 0.95 0.98
PUNEW 0.94 1.02 0.90 0.98 0.90 0.86 PUNEW 0.92 1.08 0.90 1.07 0.94 0.92
FYFF 1.09 1.21 0.80 1.16 0.83 0.70 FYFF 1.04 1.16 0.90 1.11 0.88 0.81

Hor:4 Hor:10
Avg.RMAFE 0.98 1.04 0.94 0.99 0.94 0.90 Avg.RMAFE 0.94 1.13 0.91 1.00 0.88 0.91
IPS10 1.07 1.13 0.97 1.09 0.96 0.98 IPS10 1.07 1.20 1.01 1.14 0.95 0.99
PUNEW 0.91 1.10 0.87 1.00 0.89 0.86 PUNEW 0.93 1.08 0.91 1.07 0.93 0.92
FYFF 1.10 1.26 0.86 1.25 0.86 0.74 FYFF 1.02 1.14 0.90 1.09 0.89 0.82

Hor:5 Hor:11
Avg.RMAFE 0.97 1.05 0.93 0.98 0.93 0.90 Avg.RMAFE 0.94 1.13 0.91 0.99 0.88 0.92
IPS10 1.08 1.21 1.01 1.16 0.95 1.03 IPS10 1.09 1.19 1.01 1.15 0.96 1.00
PUNEW 0.88 1.03 0.90 0.98 0.91 0.89 PUNEW 0.93 1.10 0.90 1.09 0.93 0.94
FYFF 1.04 1.21 0.84 1.18 0.81 0.74 FYFF 1.01 1.12 0.89 1.06 0.88 0.83

Hor:6 Hor:12
Avg.RMAFE 0.95 1.08 0.92 0.99 0.91 0.90 Avg.RMAFE 0.94 1.14 0.92 0.98 0.90 0.92
IPS10 1.11 1.23 1.00 1.17 0.93 1.02 IPS10 1.09 1.18 1.01 1.14 0.97 1.00
PUNEW 0.87 1.08 0.89 1.04 0.92 0.89 PUNEW 0.93 1.10 0.90 1.08 0.94 0.94
FYFF 1.01 1.17 0.85 1.13 0.83 0.74 FYFF 1.00 1.10 0.89 1.03 0.88 0.85

 
RR is the Reduced Rank Regression, SW is the Factor Model, BVAR is a Bayesian VAR with Minnesota-type prior, MB is Multivariate Boosting, RRP is Reduced Rank 
Posterior, BRR is Bayesian Reduced Rank Regression. The forecasting exercise is performed using a rolling window of 10 years, so the first estimation window is 1984:1 
1994:12 and the first forecast window is 1995:1 1995:12, while the last estimation window is 1992:1 2002:12 and the last forecast window is 2003:1 2003:12. All variables 
are standardised prior to estimation, and then mean and variance are re-attributed to the forecasts accordingly. Best models are in bold. 



     Table 9a: Montecarlo Simulation, RMSFE 

RR SW BVAR RRP RR SW BVAR RRP

Hor:1 Hor:7
Avg.RMSFE 1.23 1.04 1.19 1.25 Avg.RMSFE 1.04 1.17 1.02 0.95
IPS10 1.26 1.07 1.20 1.24 IPS10 1.03 1.06 1.02 0.90
PUNEW 1.28 1.06 1.20 1.23 PUNEW 1.03 1.07 1.00 0.85
FYFF 1.11 1.02 1.07 1.07 FYFF 1.03 1.06 1.01 0.96

Hor:2 Hor:8
Avg.RMSFE 1.16 1.08 1.14 1.16 Avg.RMSFE 1.03 1.18 1.01 0.93
IPS10 1.17 1.08 1.13 1.12 IPS10 1.02 1.05 1.01 0.89
PUNEW 1.17 1.07 1.13 1.08 PUNEW 1.01 1.07 0.99 0.83
FYFF 1.07 1.02 1.04 1.01 FYFF 1.02 1.07 1.00 0.95

Hor:3 Hor:9
Avg.RMSFE 1.13 1.10 1.11 1.09 Avg.RMSFE 1.03 1.20 1.00 0.92
IPS10 1.13 1.08 1.10 1.05 IPS10 1.01 1.05 1.00 0.88
PUNEW 1.12 1.07 1.09 1.00 PUNEW 1.00 1.07 0.98 0.83
FYFF 1.06 1.03 1.03 0.99 FYFF 1.01 1.07 0.99 0.92

Hor:4 Hor:10
Avg.RMSFE 1.10 1.12 1.08 1.05 Avg.RMSFE 1.02 1.21 1.00 0.91
IPS10 1.09 1.07 1.07 0.99 IPS10 1.00 1.05 0.99 0.86
PUNEW 1.09 1.08 1.06 0.94 PUNEW 1.00 1.07 0.97 0.82
FYFF 1.05 1.04 1.03 0.99 FYFF 1.00 1.08 0.99 0.90

Hor:5 Hor:11
Avg.RMSFE 1.08 1.14 1.06 1.01 Avg.RMSFE 1.03 1.22 0.99 0.90
IPS10 1.07 1.06 1.05 0.95 IPS10 0.99 1.05 0.99 0.86
PUNEW 1.06 1.07 1.03 0.90 PUNEW 0.99 1.07 0.97 0.82
FYFF 1.04 1.05 1.02 0.99 FYFF 1.00 1.08 0.98 0.89

Hor:6 Hor:12
Avg.RMSFE 1.06 1.15 1.04 0.97 Avg.RMSFE 1.04 1.23 0.99 0.91
IPS10 1.05 1.06 1.03 0.92 IPS10 0.99 1.05 0.99 0.86
PUNEW 1.04 1.07 1.01 0.87 PUNEW 0.99 1.07 0.97 0.83
FYFF 1.03 1.05 1.02 0.97 FYFF 1.00 1.09 0.98 0.90

 
RR is the Reduced Rank Regression, SW is the Factor Model, BVAR is a Bayesian VAR with Minnesota-type prior, MB is 
Multivariate Boosting, RRP is Reduced Rank Posterior. The forecasting exercise is performed using bootstrapped data on a rolling 
window of 10 years, so the first estimation window is 1984:1 1994:12 and the first forecast window is 1995:1 1995:12, while the last 
estimation window is 1992:1 2002:12 and the last forecast window is 2003:1 2003:12. All variables are standardised prior to 
estimation, and then mean and variance are re-attributed to the forecasts accordingly. Best models are in bold. 



     Table 9b: Montecarlo Simulation , RMAFE 

RR SW BVAR RRP RR SW BVAR RRP

Hor:1 Hor:7
Avg.RMAFE 1.13 1.03 1.10 1.14 Avg.RMAFE 1.01 1.08 1.00 0.96
IPS10 1.14 1.04 1.10 1.12 IPS10 1.01 1.03 1.00 0.95
PUNEW 1.14 1.04 1.10 1.13 PUNEW 1.01 1.04 0.99 0.91
FYFF 1.13 1.04 1.08 1.10 FYFF 1.01 1.04 0.99 0.96

Hor:2 Hor:8
Avg.RMAFE 1.09 1.05 1.07 1.09 Avg.RMAFE 1.01 1.08 0.99 0.95
IPS10 1.10 1.05 1.07 1.08 IPS10 1.00 1.03 0.99 0.94
PUNEW 1.08 1.04 1.06 1.04 PUNEW 1.00 1.04 0.98 0.90
FYFF 1.08 1.04 1.05 1.04 FYFF 1.00 1.04 0.99 0.94

Hor:3 Hor:9
Avg.RMAFE 1.07 1.06 1.05 1.05 Avg.RMAFE 1.00 1.09 0.99 0.94
IPS10 1.08 1.05 1.05 1.05 IPS10 0.99 1.02 0.98 0.92
PUNEW 1.06 1.05 1.04 1.00 PUNEW 0.99 1.04 0.97 0.89
FYFF 1.06 1.04 1.03 1.01 FYFF 1.00 1.04 0.98 0.93

Hor:4 Hor:10
Avg.RMAFE 1.05 1.07 1.04 1.02 Avg.RMAFE 0.99 1.09 0.98 0.93
IPS10 1.05 1.04 1.04 1.02 IPS10 0.99 1.02 0.97 0.91
PUNEW 1.05 1.05 1.02 0.97 PUNEW 0.99 1.04 0.96 0.89
FYFF 1.04 1.04 1.02 1.00 FYFF 0.99 1.04 0.97 0.92

Hor:5 Hor:11
Avg.RMAFE 1.04 1.07 1.02 1.00 Avg.RMAFE 0.99 1.09 0.97 0.92
IPS10 1.04 1.04 1.02 0.99 IPS10 0.98 1.02 0.97 0.90
PUNEW 1.03 1.05 1.01 0.94 PUNEW 0.98 1.04 0.96 0.89
FYFF 1.03 1.04 1.01 0.99 FYFF 0.99 1.04 0.97 0.91

Hor:6 Hor:12
Avg.RMAFE 1.02 1.08 1.01 0.98 Avg.RMAFE 0.99 1.10 0.98 0.93
IPS10 1.02 1.03 1.00 0.97 IPS10 0.98 1.02 0.97 0.90
PUNEW 1.02 1.04 1.00 0.92 PUNEW 0.99 1.04 0.96 0.90
FYFF 1.02 1.04 1.00 0.97 FYFF 0.99 1.04 0.97 0.91

 
RR is the Reduced Rank Regression, SW is the Factor Model, BVAR is a Bayesian VAR with Minnesota-type prior, MB is 
Multivariate Boosting, RRP is Reduced Rank Posterior. The forecasting exercise is performed using bootstrapped data on a rolling 
window of 10 years, so the first estimation window is 1984:1 1994:12 and the first forecast window is 1995:1 1995:12, while the last 
estimation window is 1992:1 2002:12 and the last forecast window is 2003:1 2003:12. All variables are standardised prior to 
estimation, and then mean and variance are re-attributed to the forecasts accordingly. Best models are in bold. 
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