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Abstract: In the framework of a standard overlapping generations model, it is shown that active
inflation forecast targeting reinforces mechanisms that lead to indeterminacy of the monetary
steady state and to countercyclical behavior of young-age consumption. The inflation forecast
targeting rule which minimizes the volatility of inflation can be active or passive, depending on
the characteristics of shocks and the risk aversion of households. Inflation forecast errors are always
greater under active inflation forecast targeting than under passive inflation forecast targeting or
strict money growth targeting. The monetary steady state is more likely to be indeterminate under
an active rule of inflation forecast targeting than under the corresponding backward-looking rule

(inflation targeting), but backward-looking rules can render the monetary steady state unstable.
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1 Introduction

In recent years many prominent central banks have adopted inflation targeting or inflation fore-
cast targeting as their preferred framework for the conduct of monetary policy. In a parallel
development in the academic literature, instrument rules with varying degrees of responsiveness
to inflation or inflation forecasts have been explored across a number of different models; see, e.g.,
Taylor [8] or Benhabib et al. [1]. Following this line of research, the present paper studies a stan-
dard overlapping generations model under the assumption that monetary policy is implemented

through an instrument rule of the form
1—7 .
Ing,—Inn=Ing— —— (In7; —Ing). (1)
gl

Here pi; and 7r; are the gross rate of nominal money growth and the expected gross rate of inflation,
respectively, from period t to period ¢t + 1, and n is the gross rate of population growth. The
target for the adjusted money growth is given by g and the elasticity of the money growth rate
with respect to deviations of inflation forecasts from target is —(1 — =)/, where 7 is a positive
parameter. The main goal of the paper is to study how the policy parameter v affects the stability
and determinacy of the monetary steady state in a deterministic version of the model and the
characteristics of business cycles in a stochastic setting. We also analyse the economy under an
alternative instrument rule, which is obtained from (1) by replacing the inflation forecast 7; by
actual past inflation 7;_;. We call (1) an inflation forecast targeting rule or a forward-looking rule,

and we refer to the modified version as an inflation targeting rule or a backward-looking rule.!

If v =1, then equation (1) requires the nominal money supply to grow at the constant gross rate
e = gn. In other words, v = 0 corresponds to a regime of strict money growth targeting, in
which the adjusted nominal money growth rate is fixed at g. For v € (0, 1), the nominal money
growth rate y; is proportional to the population growth rate n and decreasing with respect to the
inflation forecast 7r;. We therefore call a rule with v € (0,1) an active rule. The limiting case

~v = 0 describes a regime of strict inflation forecast targeting, in which the inflation forecast 7

IPart of the literature reserves the term ‘target variable’ to a variable occuring in a loss function of the central
bank. We adopt an alternative definition according to which the expression ‘targeting variable 2’ means ‘using a

feedback rule that depends directly on 2’. See Svensson [7] for a discussion of this terminology.



must coincide with g. If v > 1, then it is still the case that the money growth rate is proportional
to n, but now it increases with the inflation forecast. Note, however, that —(1 —7)/y < 1 holds
for all v > 1, such that the money growth rate reacts less than one-for-one to deviations of the

inflation forecast from target. Thus, we call a rule with v > 1 a passive rule.

We conduct our analysis in the framework of a standard overlapping generations model. The
determinacy and stability of the monetary steady state in this model have been thoroughly inves-
tigated by Grandmont [5] under the assumption of a constant money supply. The present paper
generalizes some of these results to an economy in which the central bank uses the rule (1) and
distributes newly created money in the form of lump-sum transfers to old agents. Furthermore, we
also consider a stochastic version of Grandmont’s model and study how the volatility of inflation

and the accuracy of inflation forecasts depends on 7.

In section 2 we formulate the model and show that by making the instrument rule more active
(i.e., by decreasing y towards 0) the set of economies for which the monetary steady state is in-
determinate unambiguously increases. Because of the well-known relation between indeterminacy
and the existence of periodic equilibria and sunspot equilibria, this shows that active inflation
forecast targeting renders the economy more susceptible to endogenous business cycles than strict
money growth targeting or passive inflation forecast targeting. The intuition for this result is quite
simple. Suppose that 7;, the forecast for inflation from period ¢ to period t + 1, is high. Under
active inflation forecast targeting, this implies that monetary policy will be tightened. Young
households in period ¢ therefore rationally expect to receive low transfers during their old age,
which increases their incentive to transfer wealth from period ¢ to period ¢ + 1. This obviously
increases their demand for money (the only store of value) while it reduces aggregate demand for
goods in period t. Consequently, the price level in period ¢ goes down and this helps to validate
the high expected inflation rate m;. We therefore conclude that active inflation forecast targeting
reinforces the mechanism which generates periodic equilibria in the overlapping generations model

in the first place, and which results from the interplay between income and substitution effects.

In section 3 we introduce exogenous stochastic shocks into the model. If the monetary steady state

2The terminology of active and passive rules is chosen in analogy to Leeper [6].



is a locally unique (determinate) equilibrium of the underlying deterministic model, then there
exists a unique stationary Markov equilibrium of the stochastic model close to the steady state.
We investigate how the properties of this equilibrium depend on the variance and autocorrelation
of the endowment shocks and on the policy parameter ~. It is shown that young-age consumption
is procyclical and less volatile than the stochastic endowment process whenever shocks are non-
negatively autocorrelated. If shocks are negatively autocorrelated and + is sufficiently small, on
the other hand, then young-age consumption may become countercyclical. The potential for
countercyclical young-age consumption already exists in the model with constant money growth,
but it is amplified by active inflation forecast targeting for reasons similar to those mentioned

above in connection with indeterminacy.

We then determine the standard deviation of inflation as a function of 4. This allows us to compute
the policy rule which minimizes the effect of exogenous shocks on the volatility of inflation. The
optimal policy rule may be active or passive, depending on the characteristics of the shocks and
the risk aversion of households. Active inflation forecast targeting minimizes the volatility of
inflation, if shocks are non-negatively autocorrelated and households are sufficiently risk averse in
either of their two periods of life. Our last result for the stochastic model deals with the accuracy
of inflation forecasts under inflation forecast targeting. Due to the rationality of expectations,
inflation forecasts are always unbiased. We show that the standard variation of inflation forecasts
normally increases with v, but that the standard variation of inflation forecast errors always
decreases with . The conclusion from the latter result is that inflation forecasts are less reliable
under an active policy than under a passive rule. In other words, the harder the central bank tries
to keep inflation forecasts at their target, the less accurate these forecasts become. This finding is
related to the those made by Woodford [9] and Bernanke and Woodford [4], who pointed out that
it is impossibile to extract accurate information about exogenous shocks from inflation forecasts

and, at the same time, to offset the effect of these shocks on the economy.

Section 4 studies again the deterministic model, but now under the instrument rule (1) with
the inflation forecast 7; replaced by the actual past inflation rate m;_;. We study this case be-

cause several authors have claimed that backward-looking instrument rules perform better than



forward-looking ones; see Benhabib et al. [2, 3] and references therein. We can confirm within our
framework that, by switching from an active forward-looking rule to the corresponding backward-
looking rule, the set of economies for which indeterminacy occurs is reduced. If we also allow
passive rules, however, this is not true. Furthermore, we find that the monetary steady state can
become unstable if an active backward-looking instrument rule is used. This is a consequence of
the fact that a backward-looking rule introduces a pre-determined variable into the equilibrium
dynamics, namely last period’s price level. If the monetary steady state is unstable in this sense,
then the economy cannot converge to the monetary steady state unless the pre-determined variable

has its steady state value.

The paper concludes with section 5, where we summarize our findings and discuss possible caveats

and extensions to our analysis.

2 Indeterminacy

The present section starts by developing the framework for our study of the properties of inflation
forecast targeting. Except for the description of monetary policy, this framework is essentially
identical to the one used by Grandmont [5] in his study of endogenous competitive business cy-

3 We then study how the sensitivity of the monetary policy rule with respect to inflation

cles.
forecasts affects the local uniqueness of monetary equilibria under perfect foresight. The lack
of local uniqueness, also referred to as indeterminacy, is closely related to the existence of peri-
odic equilibria and to the susceptibility of the economy to the influence of extrinsic uncertainty

(sunspots). The results of the present section have therefore immediate implications for the exis-

tence of deterministic business cycles and self-fulfilling beliefs.

We consider an economy populated by a sequence of overlapping generations of two-period lived
households (agents). Each generation consists of a continuum of identical households. The size of
the generation born in period ¢ is denoted by N;. We assume constant population growth at the

gross rate n > 0, that is, V;,; = nlV; for all . In both periods of their life, households are endowed

3For the most part of his paper, Grandmont [5] considers the case of a constant nominal money supply.



with positive quantities of a homogeneous consumption good that can neither be produced nor
stored.* Every young agent living in period ¢ is endowed with y; > 0 units of the good, whereas
every old agent is endowed with 1 unit of the good. The sequence (..., y,...) will either be
assumed to be constant (sections 2 and 4) or to be a stationary Markov process (section 3). In
either case it follows that the endowment patterns of all agents are ex ante identical and that there
is neither exogenous nor endogenous growth of per-capita endowments. As for the preferences, we
assume that all households have the common, additively separable utility function u(c;) + v(cs),
where c¢; and ¢y denote consumption in the first and second period of life, respectively. The
functions v and v are assumed to have standard smoothness and curvature properties, i.e., both
of these functions are twice continuously differentiable on the interval (0,+00), and they satisfy
u'(c) > 0, v'(c) >0, u”(c) <0, and v"(c) < 0 for all ¢ > 0. Moreover, lim. v (c) = +o00 and
lim, o v'(¢) = 400 are assumed to hold.

We denote by M; > 0 the nominal money supply in period ¢ and by u; > 0 the gross rate of money
growth from period ¢ to period t+ 1, that is, gy = M;11/M;. The central bank controls the money
supply by using the money growth rate p; as its instrument variable. Newly created money is
supplied to the economy in the form of lump-sum transfers to old agents.® All agents of a given
generation receive the same transfer. We denote by 7;,; the nominal lump-sum transfer paid out

in period ¢ + 1 to the old agents of generation t. Consequently, we have M;,; = M; + N7y 1.

We assume that the central bank uses the policy rule (1), which can also be written in the more

compact form
(pe/n)" 77 = g. (2)

The variable 7; denotes the inflation rate that is rationally expected to prevail between periods ¢
and t + 1. We shall therefore refer to 7; as the inflation forecast for period ¢. Since the rational
expectation of current inflation is neither exogenous nor pre-determined at the time when the
current growth rate of the money supply is set, the instrument rule (2) is an implicit rule in the

sense of Svensson [7].

4Although we present the model as an endowment economy, it is possible to interpret it also as a production

economy; see Grandmont [5, page 1000].
5The transfers can also be negative, in which case they are interpreted as lump-sum taxes.



Both policy parameters g and v are strictly positive numbers. We shall refer to g as the target
growth rate of the central bank and to v as the type of the policy rule. As explained in the
introduction, we say that the rule is active if v € (0,1) and that it is passive if 4 > 1. The special
cases 7 = 1 and v = 0 correspond to strict money growth targeting and strict inflation forecast
targeting, respectively. Throughout the paper we assume that the policy parameters g and v are
chosen once and for all, and that the central bank makes a credible commitment to follow the rule
determined by these parameters. Because of this commitment, deviations from the announced

policy are ruled out and the problem of dynamic inconsistency does not arise.

We conclude the description of the model by explaining the sequence of events in period t. At
the beginning of the period, the central bank makes transfers 7 to all old agents of generation
t — 1 and the endowments g, of young agents of generation ¢ are realized. Then, young households
of generation ¢ make their consumption/saving decision and the central bank chooses the money
growth rate p; according to (2). Finally, markets are cleared.

For the rest of this section we assume that the endowments are deterministic and constant, that is,
y, = y for all ¢, where 7 is a positive number. Because of this assumption, the model description
does not involve any form of intrinsic uncertainty and it is therefore feasible to make the assumption
of perfect foresight. In the present case, this means that the inflation forecast used by the central
bank, 7;, coincides with the actual inflation rate. Denoting by p; the price level that prevails in

period ¢, this condition can be written as
Tt = Pr+1/Dr- (3)

Under the above assumptions, the utility maximization problem of a household of generation ¢

can be written as

maximize {u(c1) + v(c2)}

subject to ¢ +m/p; < 7,
co <1+ (m+ 741)/Dis1,
c120,c>0,m=>0,

where m denotes the nominal money balance carried from period ¢ to period ¢+ 1. The first-order
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optimality condition for this problem is u'(¢;)/p; = v'(¢2)/pey1, market clearing in period ¢ implies
m = M;/N;, and our assumptions about population growth and transfers (spelled out above)
imply m + 741 = M1 /Ny = nM; 1 /Ny Taking all these conditions together and using the

budget constraints, we obtain the equilibrium condition

1 M, 1 M,
—u (y _ ) E—— (1 + 1 ) ) (4)
Dt Nipy Di+1 Nit1pia

In order to determine the equilibrium dynamics under the policy rule (2), we denote the per-capita

real money balances carried from period ¢ to t + 1 by x4, i.e., &y = M;/(Nyp;). It follows that

Tt _ n’pt+1 (5)

Ti4+1 HePe

Combining this with equations (2) and (3), we obtain x;/z,,1 = 7,(n/u;) = (7:/g)"/7, which can
be solved for 7; to yield 7t; = g (z¢/x+41)”. Finally, by combining this equation with (3) and (4)

we obtain the equilibrium dynamics
g3t (§ — 2) = 210 (1 4+ ney). (6)

One obvious solution to the difference equation (6) is z; = 0 for all ¢£. This is the non-monetary
steady state which exists under all parameter constellations. If the target growth rate g is suffi-
ciently low or the first-period endowment ¥ is sufficiently large, then there exists also a monetary

steady state. This is stated in a formal way in the following lemma.

Lemma 1 If gu/(y) > v'(1), then the only constant solution to equation (6) is the non-monetary
steady state x; = 0 for all t. If gu'(y) < v'(1), then there exists a unique monetary steady state
equilibrium. This equilibrium is given by x, = T for all t, where T is the unique value in the
interval (0,7) satisfying

gu' (§— ) = (1 4+ nx). (7)

Proor: If z; = x is a constant solution to equation (6), then it follows that either x = 0 or
gu' (g — x) = v'(1 4+ nz) must hold. The solution z; = 0 is the non-monetary steady state. The
function x — gu/(y — x) is strictly increasing on (0,7) whereas the function z +— v'(1 4+ nz) is

strictly decreasing on (0, ). Moreover, we have lim, ,; gu/(§ — ) = 400 > v'(1 4+ ny). Taking
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these two properties together, it follows that the equation gu'(y — ) = v'(1 + nx) has a positive
solution if and only if gu'(y) < v'(1). Moreover, if a positive solution exists it must be equal to

rT=2.4

A few remarks are in order with regard to the above lemma. First, in the monetary steady
state it holds that x; = z4y; = & and, therefore, equations (3) and (5) imply that the adjusted
money growth rate p;/n equals the inflation forecast ;. Because of (2), this implies that both
of these rates are equal to g. Second, note that both the condition ensuring the existence of a
monetary steady state and the value 7 itself are independent of the type of the policy rule v. The

corresponding consumption rates ¢; = § — & and ¢; = 1 + nZ are therefore also independent of ~.

For the remainder of the paper we assume that a monetary steady state exists. Because of lemma 1,

this assumption can be formulated as follows.
Assumption 1 It holds that gu'(y) < v'(1).

Since the left-hand side of (6) is a strictly increasing function of x; with domain [0, 7) and range
[0,4+00), one can solve (6) for z; as a function of z,, 1, say, z; = f(x441). The function f is usually
called the backward perfect foresight dynamics and it is known to be continuously differentiable
under our assumptions (see, e.g., Grandmont [5]). Of course, we have f(zZ) = z. The monetary
steady state z; = Z is called indeterminate if, for every n > 0, there exist infinitely many solutions
of the difference equation (6) satisfying |z; — Z| < n for all ¢. It is obvious that this is the case if
|f'(z)| > 1, whereas it is ruled out if |f'(Z)| < 1. Theorem 1 below characterizes the conditions
under which the monetary steady state is determinate or indeterminate, respectively. It will be
convenient to define A, = —u"(¢;)/v/(¢;) and A, = —v"(¢;)/v'(¢2). The numbers A, and A, are
positive and measure the degrees of absolute risk aversion of u and v, respectively, both evaluated

at the monetary steady state.® Furthermore, we define

1 = Z(nd, — A,)/2.

6Grandmont [5] discusses his results in terms of the degrees of relative risk aversion A& and Ay, respectively.

We find it easier to formulate our results in terms of the degrees of absolute risk aversion.



Theorem 1 Let assumption 1 be satisfied.

(a) If nA, — A, <0, then y; < 0 and the monetary steady state is determinate for all policy types
v > 0.

(b) If nA, — A, > 0, then it follows that v, > 0. In this case, the monetary steady state is

determinate for all policy types v € (71, +00) and it is indeterminate for all policy typesy € (0,71).

PROOF: Substituting z; = f(z,11) into (6), differentiating the resulting identity with respect to
74,1, and evaluating the result at z;,, = 7 one gets f'(Z) = B(y), where B(y) = (y —nzA,)/(y+
zA,). Tt is obvious that B(vy) < 1 holds for all v > 0. Thus, indeterminacy occurs if B(y) < —1
and determinacy occurs if B(y) > —1. Because of B'(y) = Z(4, +nA,)/(y+ZA,)* > 0 it follows
that B is a strictly increasing function. The borderline policy type between determinacy and
indeterminacy is therefore uniquely characterized by the equation B(vy) = —1. It is straightforward
to see that the solution of this equation is v = 7,. Determinacy occurs for policy types v > v
and indeterminacy occurs for policy types v < 71. If n4, — A, < 0, then it follows that +; < 0 so

that all feasible policy types give rise to determinacy. <

The above theorem demonstrates that the occurrence of indeterminacy depends on the type ~
of the policy rule and on the difference between the degrees of absolute risk aversion of old and
young agents, nA, — A,. Note that the latter is independent of 7. To understand this result
intuitively, it is instructive to recall why indeterminacy can occur in the model with constant
money growth, i.e., the model with v = 1. The crucial property of that model is that income effects
may dominate substitution effects, in which case first-period consumption becomes a decreasing
function of expected inflation. As shown by Grandmont [5, lemma 1.3], this is the case if old
agents are sufficiently risk averse. Suppose now that, for some reason, agents expect high inflation
from period t to t + 1, i.e., the inflation forecast 7; is large. If the income effect dominates
the substitution effect, this means that desired first-period consumption is relatively low and
households wish to transfer wealth from period ¢ to period ¢ + 1. The low aggregate demand for
goods in period t implies that the price level p; is also low. Analogously, if expected inflation
in period ¢t + 1, 711, is low, then p;.; will be high. Thus, an oscillating pattern of price levels

validates the beliefs about inflation. These oscillations will not die out if the risk aversion of old
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agents is large not only in absolute terms but also relative to the risk aversion of young agents; see
[5, equation (4.10)]. If the central bank uses strict money growth targeting, this is the end of the
story, but if active inflation forecast targeting is applied, there exists another effect acting in the
same direction. If the inflation forecast 7; is high, active inflation forecast targeting results in a
tight money supply in period ¢ 4+ 1. Households who are born in period ¢ will therefore rationally
expect to receive a low transfer in their old age. This reinforces their desire to transfer wealth
from period ¢ to t + 1 and, therefore, makes the expectations-driven oscillations more likely to
occur. Passive monetary policy, on the other hand, reduces the desire to transfer wealth from
young age to old age. Thus, in this case, indeterminacy and self-fulfilling expectations are less

likely to occur.

We illustrate theorem 1 by means of the simple, but important example in which the utility
functions exhibit constant relative risk aversion and the target growth rate g is equal to 1. More
specifically, suppose that the utility functions are given by u(c) = ¢ %/(1 — ) and v(c) =
¢t P/(1 — ), where o and 3 are positive numbers.” The economy is therefore fully described
by the environmental parameters n and ¢, the preference parameters o and 3, and the policy
parameter . We shall denote this economy by E(n,y,a,3,7). Assumption 1 is satisfied if and

only if § > 1. The equilibrium dynamics (6) for this economy can be written as

2 (§ — 2) ™ = g (1 +naen) ™7,

It is obvious from this equation that the equilibrium set of the economy E(n, 3, «, (3,) is identical
to the equilibrium set of the economy FE(n,y,d’, 3 ,v') where o/ = /v, ' = /7, and v = 1.
This shows that equilibrium phenomena that occur under strict money growth targeting (y = 1)
only for unrealistically high values of o or 3, occur under active inflation forecast targeting for
smaller values of a and (. It is well-known from Grandmont [5] that perfect foresight equilibria
can exhibit complicated dynamics (chaos) if v = 1 and 3 is sufficiently large. Our results imply
therefore that complicated dynamics can occur under active inflation forecast targeting for much

smaller and, hence, more realistic values of 3 than under strict money growth targeting.

"For a = 1 the expression for u(c) has to be replaced by In(c). Analogously, if 3 = 1, then v(c) = Inc.
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3 Volatility

In the present section we consider the model under the assumption that first-period endowments
form a stochastic process (..., ...). Households maximize the expected utility of life-time
consumption. Our main goal is to study under which type of policy rule the introduction of
intrinsic uncertainty in the form of endowment shocks generates the least volatile inflation rate.

We also analyse how the type of the policy rule affects the accuracy of inflation forecasts.

Let (...,y:,...) be a stochastic process with values y, € Y, where the set Y is called the state
space of the economy. Moreover, denote by F; the o-algebra generated by {y;|s < t}. Now recall
from the model formulation in section 2 that the uncertainty about the first-period endowment
y: is realized before households of generation ¢ make their consumption decisions and before the
central bank determines the money growth rate p;. This implies that households of generation ¢

solve the stochastic optimization problem
maximize  {u(c1) + Ei[v(e2)]}
subject to ¢ +m/p < Yy,
¢ < 1+ (m+ Te41)/Pes1,

61207022077”’207

where I, denotes the expectation conditional on information F;. Using the same steps that led

to equation (4), one can derive the equilibrium condition

1 M, 1 M,
—u (yt — ¢ ) =IF, l—v/ (1 + s )1 . (8)
Dt Nipy DPt+1 Nip1pep

Because the price level in period ¢+ 1 is not known at the time when the central bank determines

the money growth rate p;, the inflation forecast used in the policy rule (2) is assumed to be

= I, <@> . 9)

Dbt

As in section 2 we denote the per-capita real money balances by zy, i.e., xy = M;/(Nyp;). Obviously,
condition (5) remains to be true. Solving (2) for n/u, and substituting the result into (5), one

gets
«CEt — g—l/"y/ﬁ_t(l—"y)/’yptﬁ’l. (10)
T4 Pt

12



Taking conditional expectations on both sides of this equation and using (9) we obtain

#, = oo lEt (x;)r. (11)

Substituting this back into (10) and rearranging terms yields the following expression for the

py L 9% lE( ! )]1 (12)

V%3 Li41 Li41

Finally, by multiplying both sides of (8) by p; and using (12) we obtain the stochastic counterpart

actual inflation rate m:

to equation (6), namely

1

Ti41

9ol (e — ) = [Et ( )]H Ey [201v' (1 + naess)) .- (13)

Every stochastic process (..., xy, .. .) satisfying equation (13) is a rational expectations equilibrium
of the model. In the rest of this section, however, we restrict ourselves to stationary Markov

equilibria defined in the following way.

Definition 1 A stochastic process (..., z,...) is called a stationary Markov equilibrium, if it

satisfies (13) and if there exists a function X : Y + IR such that x; = X(y;) holds for all t.

The restriction to stationary Markov equilibria has two facets. First, stationarity rules out time-
dependence. In the deterministic framework of the previous section, a stationary equilibrium
would have to be a steady state.® Second, the Markov property implies that real money balances
in period t, z;, depend only on the current state of the economy, y;. In particular, x; must not
depend directly on any past realizations of the state nor can it depend on extrinsic uncertainty
(sunspots).

To make the following analysis as transparent as possible, we make two further simplifying as-
sumptions. First, we assume that the endowment process is a two-state Markov chain. More
specifically, we assume that the state space of the economy is given by Y = {Yy, Y}, where Yy

and Y7, are real numbers satisfying Yz > Y7, > 0, and that the transition probabilities are given

8The deterministic framework of section 2 is a special case of the stochastic model discussed here, which is

obtained when y; = 7 holds with probability 1 for all ¢.
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by P(y1 = Yo |y = Yy) = pp and P(yey1 = Yu |y = Y1) = pu, where pg > 0, pr, > 0, and
pu + pr < 2. From this assumption it follows that (..., ...) is an ergodic Markov chain and

that the unconditional probabilities of the economy being in a given state are

P(y =Yn) = pu/(pu + pr) and IP(y, =YL) = pr/(pr + pL)- (14)

Second, we want to rule out that the stochastic perturbation of the model changes the long-
run average endowment of the economy. To this end we assume that the unconditional mean of

(..., Yt ...) is equal to §. Denoting the unconditonal standard deviation of the process by o, it

Yo =y+ov\pr/pg and Y, =y —o\/pu/prL- (15)

It is easy to verify that, under these assumptions, the first-order autocorrelation coefficient of

follows that

the endowment process (..., ...) is given by 1 — py — pr. For later reference we denote this

coefficient by p and note that p € (—1, 1) holds.

The limiting case 0 = 0 corresponds to the deterministic economy considered in section 2. Our
goal in the present section is to see how the monetary steady state (i.e., a stationary Markov
equilibrium in the case o = 0) is transformed as o increases, that is, as intrinsic uncertainty in the
form of endowment shocks becomes stronger. To make this analysis meaningful we must of course
assume that the monetary steady state exists for the deterministic model and that it is locally
unique (determinate). Otherwise it would be impossible to carry out a local comparative dynamics
analysis. From lemma 1 we know that the monetary steady state exists if assumption 1 is satisfied,
and from theorem 1 we know that the monetary steady state is a locally unique equilibrium if

~v > ~y;. For easier reference we formulate the latter condition as a separate assumption.

Assumption 2 It holds that v > v, where v, = Z(nA, — A,)/2.

Our focus on intrinsic uncertainty justifies to rule out any influence of extrinsic uncertainty. As
mentioned above, this is achieved by our restriction to Markov equilibria. The following lemma
shows that, for sufficiently small o, there exists a unique stationary Markov equilibrium close to

the monetary steady state T of the deterministic model.
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Lemma 2 Let assumptions 1 and 2 be satisfied.

(a) There ezist positive numbers & and 1 and a function X :' Y x [0,5) — IR such that for all
o € 10,a) the following is true. The stochastic process (...,xy,...) defined by xy = X (yi, ) is the
unique stationary Markov equilibrium satisfying |x, — x| < n for all t.

(b) The function X is continuously differentiable with respect to o and satisfies®

X(YHa G) =T+ GK(’Y) \ PL/PH + O(GQ)a

(16)
X(Yi,0) =z — oK(y)y/pu/pr + O(0?),
where
K(v) =24, /[y(1 = p) + 2(Au + pnA,)]. (17)

(c) The function K : (v1,+00) +— IR defined in (17) is strictly decreasing and and has strictly

positive values. Moreover, lim,_, ., K(v) = 0.

PROOF: Suppose that (...,z;,...) is a stationary Markov equilibrium. By the definition of such
an equilibrium, there must exist numbers Xy and X such that for all ¢t and all ¢ € {H, L} it
holds that z; = X; whenever y; = Y;. Because of (15), the equilibrium condition (13) is equivalent
to

- 1=y
g X (5+o, 25 — Xy ) = [ PL 4 'O—L} (1= p) X' (1 +nX4) + pL X0/ (1 +nX1)],
PH Xu Xr

1—py]'"
gX 7 <g g PE XL) _ {p_H n "H] o Xav'(1+nXy) + (1 — py) X' (1 +nX1)].
pL X X

(18)
Existence of a stationary Markov equilibrium is therefore equivalent to the existence of a solution
(Xu, X) of system (18). The results stated in parts (a) and (b) of the lemma can now be derived
by a straightforward application of the implicit function theorem to system (18). First note that,
for o = 0, system (18) has the solution Xy = X = z, where Z is defined by (7). Substituting
Xy = X(Yy,0) and X, = X(Y,,0) into (18), differentiating the two equations with respect to

9Here and in the remainder of this section, the notation O(c?) indicates terms of second or higher order with

respect to o.
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o, evaluating at o = 0, and dividing by v'(1 + nz)z?"~! yields

(v +2A) X' (Yi,0) — ZAu/pr/pa = (v — nZA,) [(1 = pr) X' (Y, 0) + pr X' (Y2, 0)], (19)
(’7 + jAU) YL7 \/ H/IOL - - HIA [pHX/(YH7O) + (1 - pH)X/(YLv 0)] )

where X'(y, o) is the derivative of X (y, o) with respect to . Condition (19) is a system of two
linear equations for X’'(Yy,0) and X'(Y7,0). The determinant of this system is

A =z(A, +nA,)[y(1 - p) + Z(A, + pnA,)].

Because of assumption 2 and —1 < p < 1 it follows that

This shows that A is non-zero. The implicit function theorem can therefore be applied, which
proves part (a) of the lemma. The fact that y(1—p)+z(A,+pnA,) > 0 also proves statement (c) of
the lemma. Finally, system (19) has a unique solution which is given by X'(Yy,0) = K (y)m
and X'(Y7,,0) = —K (v)m This proves statement (b) of the lemma. <

Equipped with the results in lemma 2 we can now study how the parameter v affects the way in
which exogenous stochastic shocks influence endogenous variables. To get started let us discuss
a few immediate consequences of lemma 2. First, because K(vy) > 0, we can see from (15)
and (16) that (...,z...) and (...,y;,...) are procyclical processes (at least as long as o is
sufficiently small). Second, from equation (16) and the transition probabilities of the process
(...,xy,...), it follows that the unconditional mean of z; is Z + O(c?) and that the unconditional
standard deviation of x; is 0 K () + O(c?). The result about the mean is of course a consequence
of the assumption that the stochastic perturbation does not change the unconditional mean of
endowments. The result about the standard deviation, on the other hand, is non-trivial and shows
that the first-order effect of o on the volatility of x; becomes greater as the policy becomes more
active and that it vanishes as 7 approaches +o0o. In other words, by expanding and contracting
the money supply one-for-one with inflation forecasts, the central bank can completely eliminate

the first-order effect of exogenous shocks.
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Because there is neither storage nor production, aggregate consumption in any given period equals
the aggregate endowment. The volatility of aggregate consumption is therefore independent of
the type of the policy. Per-capita consumption of old households in period ¢ is given by 1 + nx;.
Together with the above observations, this implies trivially that, for sufficiently small o, old-age
consumption is procyclical and that its unconditional standard deviation is given by onK () +
O(c?). Thus, the first-order effect of o on the volatility of per-capita consumption of old agents
is decreasing with respect to . As for per-capita consumption of young households, the situation
is more complicated as shown in the following theorem. We denote by C;(y,o) the per-capita

consumption of young households conditional on the state y € {Yy, Y.}

Theorem 2 Let assumptions 1 and 2 be satisfied. The following results hold in the stationary
Markov equilibrium characterized in lemma 2.

(a) Per-capita consumption of young households satisfies

C\(Yu,0) =4 — T+ o[l = K(Y)\/pr/pu + O(c?),
C1\(Yr,0) =9 — 7 — o[l = K(y)\/pu/pr + O(0?),

and the unconditional standard deviation of Cy(y:, o) is equal to o]l — K(v)| + O(c?).

(b) If p > min{0, (A, — nA,)/(A, + nA,)}, then it follows that K(v) < 1 for all v > max{0,7v,}.
For sufficiently small o, per-capita consumption of young households is procyclical and less volatile
than endowments.

(c) If p < min{0, (A, —nA,)/(A,+nA,)} and vy is sufficiently close to max{0,v,}, then it follows
that K(y) > 1. In this case, per-capita consumption of young households is countercyclical when

o 1s sufficiently small.

Proor: (a) From the budget constraints it follows that consumption by young agents in state
y € {Yy,Yr} is given by y — X(y,0). Part (a) of the theorem follows immediately from this
observation and from (15) and (16).

(b) First note that K (y;) < 1holds if and only if p > (A,—nA,)/(A,+nA,). Thus, if A,—nA, < 0,
then the assumption p > min{0, (A, — nA,)/(A, + nA,)} implies K(v;) < 1. Because K is a

17



strictly decreasing function, we have K () < 1 for all ¥ > 7. On the other hand, if A, —nA, > 0,
then p > min{0, (4,—nA,)/(A,+nA,)} implies p > 0 and therefore K (0) = A, /(A,+pnA,) < 1.
Again, because K is strictly decreasing we obtain K () < 1 for all v > 0. We have therefore shown
that K(v) < 1 holds for all v > max{0,7;}. The remaining statements in part (b) are now a

simple consequence of the results in part (a).

(c) Using the same arguments as in the proof of part (b), one can easily see that K (max{0,v,}) > 1
holds whenever p < min{0, (4, —nA,)/(A, +nA,)}. By continuity, it follows that K () > 1 for
all v sufficiently close to max{0,v;}. Together with the results from part (a) this implies that

C1(yt, 0) is countercyclical for those 7. <

The above theorem identifies three determinants of the cyclical properties of young-age consump-
tion: the autocorrelation coefficient of shocks, p, the type of the policy, v, and the expression
(A, —nA,)/(A, +nA,). In order to understand the intuition of the theorem let us first consider
the case where A, —nA, > 0. In this case, theorem 2(b) deals with non-negatively autocorrelated
shocks while theorem 2(c) covers the case of negatively autocorrelated shocks. If p > 0 and if
young agents observe a high realization of their first-period endowment, they rationally believe
that the total endowment of the economy during their second period of life is likely to be high.
Thus, they expect a relatively low price level in their second period of life and there is no strong
incentive for them to transfer much wealth from their youth into old age. This, in turn, im-
plies that they consume at a high rate during their young age or, in other words, that young-age

consumption is procyclical.

Now assume p < 0 and consider again a young household who receives a high endowment. Because
shocks are negatively autocorrelated, the household knows that the aggregate endowment of the
economy during its old age is likely to be low and, hence, the price level during old age is likely
to be high. Thus, in order to smooth the life-time consumption stream, the household has to
carry high real money balances from young age to old age. According to theorem 2(c), this
precautionary saving motive leads to countercyclical young-age consumption if « is sufficiently
low. To understand why ~ has to be small, we argue as follows. If p < 0 and young households in

period ¢ receive a high endowment, then, as shown before, the price level in period ¢+ 1 is expected
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to be high. In addition, the low aggregate demand in period ¢ implies a relatively low price level
in period t. Consequently, expected inflation in period ¢, 7, is relatively high. Under active
inflation forecast targeting this triggers tight monetary policy and young agents in period ¢ expect
to receive low transfers in period ¢ + 1. This obviously reinforces their desire to hold high real
money balances and to consume little during young age. Consequently, young-age consumption

is more likely to be countercyclical.

Finally, let us consider the case where A, — nA, < 0. The difference to the previously discussed
case A, —nA, > 0 is that young-age consumption is now procyclical even for (mildly) negative
values of p. This is the case simply because for A, — nA, < 0 we have v; > 0 and, hence,
assumption 2 rules out those policy types which are most conducive to countercyclical young-age

consumption, i.e., the types corresponding to small values of ~.

We now move on to analyze the statistical properties of inflation. These properties are summarized

in the following theorem.

Theorem 3 Let assumptions 1 and 2 be satisfied. The following results hold in the stationary
Markov equilibrium characterized in lemma 2. The unconditional mean of m is given by g+ O(c?)

and the unconditional standard deviation of m; is

UgK(v)\/2(1 —p)— (1=p)*(1—~?)

+ O(c?). (20)

X

PRrROOF: Fix any o € [0,5). As in the proof of lemma 2 we write Xy and X, instead of X (Yy,0)
and X (Y7, o), respectively. From (12) one can see that actual inflation in period ¢, 7, is a function
of x4, x¢y1, and IFy(1/x411). In a stationary Markov equilibrium it must be the case that both x;
and IF;(1/zyy1) are functions of the state y; and that z;,; is a function of y,,1. It follows that
in such an equilibrium 7; is a function of y; and y;,1. It is therefore convenient to define the
augmented state variable z; = (Y, 4+1). From the properties imposed on (..., y,...) it follows

immediately that (..., z,...) is a Markov chain with the four states (Yy,Yy), (Yu, Y1), (Y, Yn),
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and (Yz,Y7). The matrix of transition probabilities between these states is given by

1—pL PL 0 0

0 0 pg 1—pu

l—prL pr O 0

0 0 pu 1—pu
and the unconditional probabilities of the states are
P(z = (Yu, Yu)) = pu(1 — pr)/(pu + pr),

P(z = (Yg,YL)) = IP(z = (YL, Yn)) = pupL/(pu + pr), (21)

IP(z = (Y1,Y1)) = (1 = pu)pr/(pu + pr)-

For every (Zu.]) < {(Hu H)u (H7 L)7 (L7 H)7 (L7L)} we define T(i,5) = E(Trt|zt = (K,Y})) Using
(12) it is straightforward to derive

X\t
T(H,H) :g<1—PL+PL—H> )

Xr
Xy X\t
THL) = J~— (1 —pr+ pL—) :
_ Xy (1 n Xr )7_1
T(L,H) = QXH PH T PH X, )
X\t
=qg(1-— — i
m™LL) =9 < pPH + PHXH>
Using (21) and (22), the unconditional mean of 7; is seen to be
Xg\” XL>'Y
1-— — 1-— — ) 23
P lpﬂ( pL+pLXL> +pL( pH+pHXH (23)
From lemma 2 we have
Xy _ X(Yu,o0) (7@ 2
X, " X(o) ‘toz TO0)
X X(Y; K
L _ ( Lua-) -1 (?)Q +O( 2)’
XH X(YH, O') xT



where @) = \/ pu/pL + \/ pr/pr. Substituting these first-order approximations into (23) it follows
that the unconditional mean of inflation is equal to g + O(¢?). Similarly, by substituting the

first-order approximations into (22) one can derive

gpr(l —7)K(7)Q

T =9—0 - + O(0?),
S LI —pe(l ; NEMQ 0(0?)
S Sl —pu(l ; NEMQ 0(c?),
mupy = g+ 222LZNEDO 0

X

Using these equations together with JE(m;) = g + O(¢?) and (21) it is straightforward to verify

that the unconditional standard deviation of m; is given by (20). <

The first result of the above theorem, namely that the unconditional mean of inflation is equal to
g+ O(0?), is not very surprising, because both the money growth target and the inflation forecast
target are equal to g. It can be shown that the second and higher-order terms in the expression
g+ O(0?) are unambiguously positive, that is, that the unconditional mean of inflation is strictly
greater than g for all ¢ > 0 and all v > 0. However, since this finding is merely a consequence
of the non-linearity involved in measuring average inflation, which has nothing to do with the
specific details of our model, we prove and discuss it in the appendix.!'® The second result from
theorem 3, however, is more interesting. We know from lemma 2 that K(v) is decreasing with
respect to v. The square root in equation (20), however, is a strictly increasing function of ~.
There exist therefore two opposing effects of the policy type v on the way in which exogenous
shocks influence the volatility of inflation. The following theorem determines which type of policy

minimizes this influence. To state the theorem, let us define
7= (14 p)/[3(Au + prd,)).

Theorem 4 Let assumptions 1 and 2 be satisfied.

(a) If A, + pnA, > 0, then it follows that v* > 0 and the first-order term in (20) is minimized at

v ="

10The exact expression for the unconditional mean of inflation is stated in equation (23) in the proof of theorem 3.
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(b) If Ay, + pnA, < 0, then it follows that the first-order term in (20) is strictly decreasing with

respect to 7.

Proor: Using (17) it follows that the first-order term in (20) is proportional to

2= (-p0-9?)

(1 = p) + z(Ay + pnA,)’

H(v)

where the factor of proportionality is positive and independent of «v. Minimizing the first-order
term in (20) with respect to «y is therefore equivalent to minimizing H(vy). It is straightforward to

verify that
(1—p) [1+p—E(A, + pnd,)|

_ _ 2 N
V(1= p) + 2(Au + pnd,)| 2= (1= p)(1—7?)
If A,+pnA, <0, then it follows that H'(y) < 0 for all v > 0 which proves part (b) of the theorem.

H'(y) = —

On the other hand, if A, + pnA, > 0, then v* > 0 and H'(v) is negative for all v € (0,v*) and

positive for all v € (y*,+00). Thus, in this case H(v) attains its minimum at v = v* > 0.<

Theorem 4 determines the type of the policy rule which minimizes the first-order effect of o on the
volatility of inflation. If A, 4+ pnA, > 0, then there exists a unique optimal type of rule, namely
v =% If A, + pnA, < 0, however, there is no optimal type because the first-order effect of
shocks on the volatility of inflation is globally decreasing with respect to v. We shall henceforth
refer to the case A, + pnA, > 0 as the normal case. Note that normality holds whenever p > 0 or
nA, — A, < 0. The latter condition has been identified in Theorem 1 as the one which renders
the monetary steady state determinate under all policy rules. It is interesting to note that the
optimal type «v* is always strictly decreasing with respect to the degree of absolute risk aversion of
young households, A, and that it is strictly decreasing with respect to the degree of absolute risk
aversion of old households, A,, if and only if p > 0. Thus, if shocks are positively autocorrelated,
then active inflation forecast targeting is optimal provided that households are sufficiently risk

averse in at least one of their two periods of life.

We conclude this section by calculating the first-order effects of o on the volatility of inflation

forecasts and on the average size of forecast errors. The inflation forecast error made in period ¢
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is ¢, = 71, — m. From (11) and (12) we obtain

1\ 1 1
Ti41 Tt41 Tt+1

The statistical properties of ; and 7; can now be derived.

Theorem 5 Let assumptions 1 and 2 be satisfied. The following results hold in the stationary
Markov equilibrium characterized in lemma 2.

(a) The unconditional mean of &, is equal to 0 and the unconditional standard variation of &, is

IV _;QK(V) +0(0?). (24)

(b) The unconditional mean of 7 is equal to g + O(c?) and the unconditional standard variation

of Ty is
9= p)yK(y)

X

+O(0?). (25)

If Ay+pnA, > 0, then the first-order term in (25) is strictly increasing with respect to vy, otherwise

it 1s decreasing with respect to .

PROOF: (a) Using arguments analogous to those used in the proof of theorem 3 and defining

i) = (e |z = (Y;,Y])) one can derive

x x\7 ! K
EmH) = 9pPL (i— 1) (1—PL+,0L—H> 20M+0(02),

Xy, X
x g\t 1—p)K
x 7L 1-— K
TH TH X
X €T 71 K
E(L,L) = —9PHu (1 - —L> (1 —pu+ pH—L> = PR 7(7)62 + O(0?).
TH TH X

Together with (21) it is now straighforward to show that the unconditional mean of forecast errors

is 0 and that the unconditional standard deviation of ¢, is given by (24).

(b) From (11) it follows that the inflation forecast in state Y; is equal to

X\
g\L=ritriz )
J
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where {i,j} = {H, L}. Together with the state probabilities (14) this shows that the unconditional
mean of 7; coincides with the unconditional mean of inflation as given by (23). Using the first-
order approximations to Xy /X and X /Xy derived in the proof of theorem 3 it is furthermore
easy to verify that the unconditional standard deviation of 7; is given by (25). The first-order

term in (25) is proportional to vK (). We have

This proves immediately the last part of statement (b) of the theorem. <

The unconditional mean of inflation forecast errors ¢, is equal to 0. This is of course a consequence
of the rationality of expectations. Similarly, the unconditional mean of the inflation forecasts 7;
is equal to the unconditional mean of inflation itself. The non-trivial parts of theorem 5 regard

the unconditional standard deviations of inflation forecasts and forecast errors.

Theorem 5(a) shows that the first-order effect of o on the volatility of forecast errors is proportional
to K () which, according to lemma 2, is a strictly decreasing function of . Furthermore, this
first-order effect converges to 0 as v approaches +oo. It follows that inflation forecast errors are
high (in the sense of high variance) if the central bank applies active inflation forecast targeting
whereas they are low for passive policy rules. In other words, the harder the central bank tries to
keep inflation forecasts at target, the less reliable these forecasts become. This finding is closely
related to results derived by Woodford [9] and Bernanke and Woodford [4] and follows essentially
from the fact that the information content of inflation forecasts is reduced by the central bank’s
efforts to meet the inflation forecast target.

As for the volatility of inflation forecasts, the situation is not so clear cut. In the normal case
A, + pnA, > 0, theorem 5(b) shows that the first-order effect of & on the volatility of inflation
forecasts is increasing with respect to «. Thus, as one would expect, active policy rules lead to
smaller variances of inflation forecasts. In the abnormal case A, +pnA, < 0, however, the opposite

is the case.

24



4 Inflation targeting

So far we have assumed that the policy rule prescribes the money growth rate during period ¢
as a function of the inflation forecast for that period. It is often argued that backward-looking
monetary policy rules tend to avoid the possible indeterminacy of equilibrium, see, e.g., Benhabib

et al. [2, 3]. In the present section, we therefore consider equilibria under the rule

(/) m= =g, (26)

where m;_1 = py/pi_1 is actual inflation during period ¢t — 1. Because actual past inflation is used
as an argument of this rule (instead of a forecast of current inflation) we refer to the rule as
one of inflation targeting. An important difference between the forward-looking rule (2) and the
backward-looking rule (26) is that, according to the latter, the money growth rate from period ¢ to
period ¢ + 1 depends on the past price level p; 1, which is pre-determined when the money growth
rate is set. As we shall see below, the existence of this pre-determined variable may render the
equilibrium dynamics under the instrument rule (26) unstable. If this is the case, the monetary

steady state cannot be reached from a generically chosen initial price level.

As in section 2, we assume that first-period endowments are constant, i.e., y; = y for all £. To
determine the equilibrium dynamics for the model under the backward-looking monetary policy

rule (26), we note that conditions (4) and (5) remain valid. Combining (26) with (5), we obtain

Y 5 Y Y
- e .
Dt n Li41 Li41

Furthermore, condition (4) can be written as m, = v'(1+nzy1)/u/(§ — x;). Substituting the latter

equation as well as its lagged version into (27), one gets

u'(§ — ) T4 u(§ — 24—

Under assumption 1 there exists a unique monetary steady state, i.e., a unique constant solution
of equation (28). This is formally stated in the following lemma, the proof of which is analogous

to that of lemma 1 and therefore omitted.
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Lemma 3 Let assumption 1 be satisfied. There exists a unique monetary steady state equilibrium.

This equilibrium is given by x; = T for all t, where T is the unique value in the interval (0,7)

satisfying (7).

The main goal of the present section is to characterize the determinacy and stability properties of
the monetary steady state. Note that the equilibrium dynamics (28) are described by a second-
order difference equation. Since there is one pre-determined variable in period ¢ (the past price
pr1 or, equivalently, the past per-capita real money balance z; 1), there are three generic cases
to distinguish. First, if all eigenvalues of the linearization of (28) are unstable (absolute value
greater than 1), then the monetary steady state is locally unique (determinate) but unstable.
Instability means that, if the central bank starts using the policy rule (26) in period ¢, then
the monetary steady state will not be reached unless the past real money balance x; ; coincides
with the steady state value Z. Second, if one eigenvalue of the linearization of (28) is stable
(absolute value smaller than 1) whereas the other one is unstable, then the monetary steady state
is determinate and stable. This means that starting from any past value x; ; close to z, there
exists a unique equilibrium that remains close to  and converges to the monetary steady state.
In particular, if x;_; = Z, then the monetary steady state is a locally unique equilibrium. Finally,
if both eigenvalues of the linearization of (28) are stable, then, from any initial value z;_; close to
Z, there exist infinitely many equilibria that converge to the monetary steady state. In particular,
if x;_1 = T there exist infinitely many equilibria close to, but different from the monetary steady
state. The monetary steady state is therefore indeterminate. The following theorem characterizes

the occurrence of these three generic cases. It will be useful to define
z(nA, — A,)
V2= 5= T :
2[z(nA, — Ay) — 1]

Theorem 6 Consider the policy rule (26) and let assumption 1 be satisfied. Furthermore, assume
nzA, # 1.

(a) If nA, — A, < 0, then it holds that vo € (0,1/2). Furthermore, the monetary steady state is
determinate and stable if v > o and it is determinate and unstable if v < 7s.

(b) If 0 < nA, — A, < 1/z, then the monetary steady state is determinate and stable for all policy

types v > 0.
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(c) If nA, — A, > 1/Z, then it holds that ~y, > 1/2. Furthermore, the monetary steady state is

determinate and stable if v < o and it is indeterminate if v > 7s.

ProoOF: We start by linearizing equation (28) around the monetary steady state . Defining

dz; = x; — Z, the linearized equation is
y(1 —nzA,)dzq — [y(1+Z2A,) + (1 —y)nzA)dz, — (1 — v)zA,dz,_y = 0.

If nA, # 1/, then the characteristic polynomial of this second-order linear difference equation is

given by P(\) = A? 4 a) + b, where the real numbers a and b are given by

. v(1+4+zA,) + (1 —v)nzA, and b= (1—v)zA,

y(nzA, — 1) y(nzA, — 1)

Figure 1 depicts the (a,b)-parameter space. This space is partitioned into 5 areas which are
separated by the loci {(a,b) | 1+a+b =0}, {(a,b)|1—a+b =0}, and {(a,b) | —2 < a < 2,b=1}.
The 5 areas are denoted by Ct, CZ, C1, C%, and Cs. Define Cy = CLUCZ and C; = Cl UC?. Tt
is well-known that the characteristic equation P(A) = 0 has ¢ roots with absolute value smaller

than 1 provided that (a,b) € C;.

‘Insert figure 1 approximately here. ‘

We have - ~
_ Z(Ay+nA,)
l+a+b= v(na_cflv—l)
and - - - -
| —atbhe 2y[z(nA, — Ay) — 1] — z(nA, — A,)

(a) Tt is easy to see that nA, — A, < 0 implies that v, € (0,1/2). Furthermore, if 4 > 73, then
we have sgn(1 + a + b) = —sgn(l —a +b) = sgn(nzAd, —1). f 1+a+b<0<1—a-+b, then
(a,b) € C], whereas if 1 —a+b < 0 <1+ a+ b, then (a,b) € C?. Thus, in both cases there is
exactly one stable eigenvalue and the monetary steady state is determinate and stable.

Now assume v < ¥ and nZA, —1 < 0. In this case it holds that 1+a+b < 0 and 1—a+b < 0 such

that (a,b) € C2. Thus, if v < 75 and nZA, — 1 < 0, then there are two unstable eigenvalues. On
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the other hand, if v < 75 and nZA, —1 > 0, then it holds that 14+a+b > 0and 1 —a+b > 0 such
that (a,b) € C}UCy. To decide whether (a,b) € C} or (a,b) € Cy, we have to check whether b > 1
or b < 1. Under the present assumptions nA, — A, < 0 and nzA, — 1 > 0, it is straightforward
to verify that vy < ZA,/[Z(nA, + A,) — 1] holds and that the condition b > 1 is equivalent to
v < zA,/|Z(nA, + A,) — 1]. Thus, if ¥ < 2, then it must be the case that b > 1 and therefore
(a,b) € C}. This implies that for nzA, —1 > 0 and v < 7, there are also two unstable eigenvalues.
Thus, if nA, — A, < 0 and 7 < v,, the monetary steady state is determinate and unstable.

(b) If 0 < nA, — A, < 1/z, then sgn(l + a + b) = —sgn(1 — a + b) = sgn(nzA, — 1) holds for all
v > 0. As in the first part of the proof of statement (a) one can see that this implies that the

monetary steady state is determinate and stable.

(c) It is easy to see that nA4, — A, > 1/Z implies nZA4, — 1 > 0 and 4, > 1/2. Furthermore, if
v < 72, then we have 1+ a+b > 0 and 1 — a + b < 0. This shows that (a,b) € C} which implies

that the monetary steady state is determinate and stable.

On the other hand, if v > 7, then we have 1 +a+ 0 > 0 and 1 — a + b > 0. This shows that
(a,b) € C} U Cy. To decide whether (a,b) € C} or (a,b) € Cy, we have to check whether b > 1 or
b < 1. Under the present assumption nA, — A, > 1/7, it is straightforward to verify that ~, >
zA,/|Z(nA,+A,)—1] holds and that the condition b < 1 is equivalent to v > z A, /[Z(nA,+A,)—1].
Thus, if v > 9, then it must be the case that b < 1 and therefore (a,b) € Cy. This implies that,

for nZA, —1 > 1/ and 7 > 7,, the monetary steady state is indeterminate. <

Let us compare the results of theorems 1 and 6. We illustrate this comparison by means of
figure 2. On the horizontal axis we draw nA, — A, and on the vertical axis we draw . The
upward sloping line AA represents ;. The two hyperbolas BB and C'C together represent .
Theorem 1 states that, under the forward-looking rule, all policy types above the line AA lead to
determinacy, whereas all policy types below AA lead to indeterminacy. Theorem 6 states that,
for the backward-looking rule, all policy types below BB lead to determinacy and instability, all
policy types above C'C lead to indeterminacy, and all policy types between BB and C'C' lead to

determinacy and stability.

Insert figure 2 approximately here.
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Figure 2 highlights the following interesting observation. Whereas in the case of the forward-
looking rule (2) high values of v are conducive to determinacy and low values of 7 generate
indeterminacy, the opposite is true under the backward-looking rule (26). As a matter of fact, as
shown by theorem 6 and figure 2, decreasing v in the case of a backward-looking rule reduces the

number of stable eigenvalues and renders the monetary steady state determinate or even unstable.

One can also use theorems 1 and 6 to check whether it is true that forward-loooking policy rules
lead to indeterminacy of the monetary steady state for a larger set of parameters than backward-
looking rules. If we allow for all policy types v > 0, then the answer to this question is ambiguous.
As can be seen from figure 2, there exist forward-looking rules that lead to determinacy while
the corresponding backward-looking rules lead to indeterminacy (for example, all points above
both AA and CC in figure 2). Conversely, there are also backward-looking rules that lead to
determinacy while the corresponding forward-looking rules lead to indeterminacy (for example,
all points below both AA and CC in figure 2). However, if we restrict ourselves to active policy
types v € (0,1], then one can see from figure 2 that the range of parameter values for which
indeterminacy occurs under the backward-looking rule is a proper subset of the range of parameter
values for which indeterminacy occurs under the forward-looking rule. Thus, assuming v < 1, the
application of backward-looking instrument rules makes indeterminacy less likely to occur in the
present model. This is in line with the consensus view that has emerged from the study of

alternative models; see the references given at the beginning of this section.

To conclude this section, consider the model with the backward-looking instrument rule (26) and
stochastic endowments (..., yy,...). The equilibrium condition (8), which obviously remains valid

in this setting, can be written as

(29)

u'(y — ay) = IE, [—v’(l T nmtﬂ)] .

Tt

Condition (27), which must also hold, implies that for all v # 1 the inflation rate in period ¢
depends in a non-trivial way on the inflation rate from the previous period. This introduces
memory into the model and thereby rules out that the price level in period ¢ depends only on the
current shock, as it was the case in the model studied in section 3. Consequently, the definition

of stationary Markov equilibria (definition 1) has to be amended in order for such equilibria to

29



exist in the present model. More specifically, it seems to be reasonable to call a pair of stochastic
process (...,xt,...) and (..., m,...) a stationary Markov equilibrium if conditions (27) and (29)
are satsified and if there exists a function X : Y x IR + IR such that z; = X (y;, m_1) holds for
all t. Analyzing stationary Markov equilibria in this sense is much more complicated than the
corresponding analysis for the model with the forward-looking instrument rule (2) and is therefore

left for future research.

5 Concluding remarks

The purpose of the present paper was to study the business cycle effects of monetary policy
rules in the standard overlapping generations model used by Grandmont [5]. We have focused
on inflation forecast targeting rules, which prescribe the money growth rate as a function of the
rational forecast of current inflation, but we have also briefly looked at an inflation targeting rule,

in which the money growth rate depends on the actual past inflation rate.

Our main findings are that active inflation forecast targeting reinforces those mechanisms that
lead to indeterminacy of equilibrium and to countercyclical behavior of young-age consumption.
Although active inflation forecast targeting normally reduces the volatility of inflation forecasts,
it does not necessarily reduce the volatility of inflation itself. Active inflation forecast targeting
minimizes the volatility of inflation if shocks are non-negatively autocorrelated and if agents are
sufficiently risk averse in at least one of their two periods of life. We have also shown that
inflation forecast errors are always higher under active inflation forecast targeting than under
passive inflation forecast targeting or strict money growth targeting. This is a consequence of the
fact that the central bank’s efforts to stabilize inflation forecasts reduces the information content
of these forecasts, an observation already exploited in the papers by Woodford [9] and Bernanke
and Woodford [4]. Finally, we have investigated whether a backward-looking instrument rule
(inflation targeting) can avoid the problem of indeterminacy, as often claimed in the literature.
This is indeed the case in the overlapping generations model for active rules but not for passive

ones. We have also found that the application of an active backward-looking rule can make the
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monetary steady state unstable.

There are several restrictions of our analysis that we want to point out. First and foremost, the
model we have used is a very stylised one and it does not include many features that figure promi-
nently in other studies of monetary policy rules. In particular, the present model does not include
any form of imperfect competition or nominal rigidity. We have deliberately chosen this simple
framework in order to emphasize the way in which monetary policy rules can reinforce some of the
mechanisms that are known to generate endogenous business cycles in such an idealized world.
Second, we have restricted ourselves to the equilibrium dynamics locally around the monetary
steady state. We are aware that a local analysis of this kind is not sufficient to fully evaluate the
properties of monetary policy rules, but we think that it is a necessary and important first step
towards a full understanding of the equilibrium dynamics under various rules. A global analysis
would be particularly important for the case in which the monetary steady state is unstable; see
theorem 6(a). We leave a more complete investigation of the global dynamics for another paper.
Finally, we have focussed entirely on equilibria under rational expectations (perfect foresight) and
have not considered any learning dynamics. It is well known (see, e.g., Grandmont [5]) that the
stability properties of equilibria are usually reversed if one considers learning dynamics instead
of rational expectations equilibria. Since the literature still has not come to a unanimous view
on the question of which of the two approaches (learning or rational expectations) is the more
relevant one, we feel that our restriction to one of them is justified. We do, however, caution the
reader that the assumption of rational expectations is an important one for our analysis and that

it should be born in mind when the results of the present paper are interpreted.

Appendix

In this appendix we show that the unconditional mean of inflation in the stationary Markov
equilibria characterized by lemma 2 is strictly greater than g. The result is formally stated in the

following lemma.

Lemma 4 The expression in (23) is strictly greater than g for all o € (0,5) and all v > 0.

31



PROOF: Define

PH PL PH !
h1(§)=m(1—pL+pL§)v+m (1—PH+?>

Obviously, the lemma is proven if we can show that h;(£) > 1 holds for all positive numbers £

satisfying £ # 1. We have h;(1) = 1 and

Vpup
ny(§) = ﬁ@(f; PH; PL)

where

3
It is therefore sufficient to prove that hs(&; py,pr) > 0 for all £ > 1 and ho(&; py,pr) < 0 for

. _ -1 1 PH b
ha(&; pr, pr) = (1 — pL + pré) = 1 —py+— :

all £ € (0,1). Let us start by asuming v < 1 and £ > 1. In this case it is easy to see that
ho(&; pu, pr) is non-increasing with respect to py and pr. Therefore, ho(&; pr, pr) > ho(§;1,1) =
(€27 — 1)/&+1 > 0, whereby the last inequality follows from v > 0 and £ > 1. Now assume
v > 1and £ > 1. In this case ho(&; py, pr) is strictly increasing with respect to py and py.
Therefore, ho(&; pr,pr) > hao(€;0,0) = 1 — 1/£% > 0, whereby the last inequality follows from
¢ > 1. Analogous arguments can be applied in the case & € (0,1). This completes the proof of

the lemma. <

The above result is essentially a consequence of the non-linearity that is involved in the measure-
ment of average inflation and has nothing to do with the specific details of our model. To see
why, consider the following example. Suppose that the price level p; jumps randomly between
two values, say, Py and P, with Py > Pp. Assume furthermore that the distribution of p; is
stationary, that is, there is no long-run trend in the price level. In this case, the inflation rate m;
takes values in the set {Py /P, P,/ Py,1} and, on average, the price level must switch from Py
to P as many times as it switches from P, to Py. The long-run average inflation is therefore a
weighted average of the form w(Py/Pr) +w(Pr/Py)+ (1 — 2w), where w € (0,1/2). Tt is easy to
see that any such average is greater than 1. Lemma 4 is a generalization of this example to the

more general setting of our model.
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Figure 1: The (a, b)-parameter space.
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Figure 2: Comparison of forward-looking and backward-looking rules.
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