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Abstract

This paper presents an invariance principle for highly nonstation-
ary long memory processes, defined as processes with long memory pa-
rameter lying in (1, 1.5). This principle provides the tools for showing
asymptotic validity of the bootstrap in the context of such processes.
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1 Introduction

In recent years the popularity of the bootstrap has increased dramatically
in econometrics and statistics. Decreases in computational costs and theo-
retical results showing that the bootstrap is valid under mild conditions and
may improve upon asymptotic approximations of small sample probability
distributions of various statistics have contributed to this popularity.

A parallel development in the econometric literature is the exploration of
highly persistent time series processes. Chief among these are random walk
processes. Another class of highly persistent processes that encompasses ran-
dom walks are long memory processes. Specific instances of these processes
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were introduced in the statistical literature by Granger and Joyeux (1980)
but were known in fields such as climatology and hydrology since the 1950’s.

Despite rapid developments in both the study of the bootstrap and long
memory processes, there is little theoretical work on applying the bootstrap
to long memory processes. Andrews and Liebeman (2002) presents results
which show that the bootstrap can provide improvements upon the asymp-
totic approximation to probability distributions of covariance parameter es-
timates for stationary long memory processes. Hidalgo (2003) suggests a new
bootstrap technique based on resampling in the frequency domain which is
valid for stationary long memory processes (see also Lazarova (2003)). This
work concentrates on stationary long memory processes. There is no work
to the best of the author’s knowledge that either suggests new bootstrap
procedures of deals with the validity of existing bootstrap procedures for
nonstationary long memory processes.

This paper aims to provide a new bootstrap procedure valid for a large
class of highly nonstationary long memory processes. The term ’highly non-
stationary’ is made exact by assuming that the long memory parameter d
lies in (1, 1.5). Our work is a simple extension of the work by Park (2002)
on an invariance principle for the sieve bootstrap for Brownian motions.
We extend that work to long memory processes. To achieve that we use
a strong approximation result for fractional Brownian motions provided by
Konstantopoulos and Sakhanenko (2003) extending earlier work by Sakha-
nenko (1980) used by Park (2002). Armed with this strong approximation
result we prove the validity of the following bootstrap procedure for long
memory processes. We estimate semiparametrically the long memory pa-
rameter of the process. Then, we apply the difference operator (1 − L)d to
the data to obtain a stationary process. We then use the sieve bootstrap to
resample from this stationary process. Finally, we cumulate the resampled
data using (1 − L)−d. The main technical issue with this rather intuitive
resampling procedure is the presence of an estimate of d rather than the true
d. We provide conditions under which estimating d does not matter for the
validity of the bootstrap.

The relevance of our results is clear. It enables valid inference through
the bootstrap for any statistic for highly nonstationary long memory pro-
cesses. The structure of the paper is as follows: Section 2 presents initial
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results. Section 3 presents the invariance principle. Section 4 concludes.
The Appendix contains the necessary proofs.

2 Basic Results

We consider the following general fractionally integrated model

(1− L)dyt = ud
t , 1 > d < 3/2, t = 1, . . . , T (1)

ud
t is an I(0) process. We define I(0) processes, following Davidson and De-

Jong (2000), to be processes whose partial sums converge weakly to Brownian
motion. We have the following model for ut

ud
t = π(L)εt, π(z) =

∞∑
i=1

πiεt−i (2)

The model for yt can be written as an infinite moving average in terms of ud
t

yt =
∞∑
i=0

ad
i u

d
t−i (3)

where ad
i = Γ(d+1)

Γ(i+1)Γ(d−i+1)
(−1)i. It can equivalently be written as an infinite

autoregression given by

yt =
∞∑
i=1

bd
i yt−i + ud

t (4)

where bd
i = − Γ(i−d)

Γ(i+1)Γ(−d)
. These results follow from the binomial expansion

for (1− L)d which is formally valid for any real d. As a matter of definition
the operator (1−L)−d, d > 0 applied to an I(0) process will be used to denote
cumulation of that process up to order d. More specifically, for 0 < d < 0.5
the process obtained by applying (1−L)−d to an I(0) process is well defined
and stationary. For 1 < d < 1.5, (1 − L)−d = (1 − L)−1(1 − L)−d+1 where
(1 − L)−1 is defined as a simple summation operator. This is a relatively
general model. The main restriction for this model is the form of the long
memory which is based on the binomial expansion of (1 − L)d. Denote an
estimate of d by d̂. Strictly speaking d̂ should be denoted as d̂T but for the
sake of notational brevity the subscript is dropped. We assume the following:
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Assumption 1 d̂− d = Op(T
−φ), φ > 0.

Assumption 2 (a) εt are i.i.d. random variables such that E(εt) = 0,
E(ε2

t ) = σ2, E|εt|r < ∞ for r = max(4, 2+φ
2φ

)

(b) π(z) 6= 0 for all |z| ≤ 1, and
∑∞

k=0 |k|s|πk| < ∞ for some s ≥ 1

We comment on the above assumptions: Assumption 1 is general and
does not specify a particular estimator of the parameter d. It assumes con-
sistency and some rate of convergence for the estimator. Note that most
of the literature has concentrated on the properties of estimators of d when
d lies in (−0.5, 0.5). However, if we assume that d lies in (1, 1.5) then by
simply differencing the data we obtain an I(d∗) process for which estimation
of d∗ = d − 1 has all the desirable properties which readily translate to d.
However, Assumption 1 is not as general as it may appear at first. For ex-
ample, it does not allow for estimators whose rate of convergence depends on
d. This could introduce problems in the bootstrap similar in nature to those
discussed in Inoue and Kilian (2003) which we wish to avoid by undertaking a
simpler analysis1. So, the estimator for d ∈ (1.25, 1.50) suggested by Robin-
son (1994) would not satisfy Assumption 1. Of course, we can always restrict
our analysis to an interval for d in which assumption 1 holds for a particular
estimator. In the case of the semiparametric estimator by Robinson (1994)
this would be (1, 1.25). Note that a possible estimator for d may be based
on a regression such as (19), in the following section, which would be jointly
estimated with d in a similar way that ARFIMA(p, d, 0) models with finite
lag order are estimated. A conditional sum of squares estimator such as that
proposed by Chung and Baillie (1993) can be straightforwardly applied. As
estimation of ARFIMA(p, d, 0) yield, in general, T−1/2 consistent estimates
of d, it is likely that such an estimator would satisfy assumption 1. Nev-
ertheless a rigorous proof of this result is beyond the scope of this paper.
Assumption 2 is a standard assumption for I(0) time series. The only note-
worthy feature is the requirement that E|εt|r < ∞ for r = max(4, 2+φ

2φ
). This

introduces a tradeoff between the rate of convergence of d̂ and the existence
of higher moments of ε.

1Note, however, that Inoue and Kilian (2003) clearly indicate that a rate of convergence
that depends on d is not necessarily a cause for bootstrap invalidity.
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We define xd
t = (1 − L)−d+1εt. Hence xd

t is I(d − 1). We also define
zd

t = (1− L)−d+1ud
t . Define the normalised sum

WT,d(u) =
1

T d−1/2

[Tu]∑
i=1

xd
t ≡

1

T d−1/2
(1− L)−dεt, 0 ≤ u ≤ 1 (5)

Define also Wd(r) as fractional Brownian motion. A representation for
this process is given by

1

Γ(d)U
1/2
d

(∫ ξ

0

(ξ − s)d−1dB(s) +

∫ 0

−∞

[
(ξ − s)d−1 − (−s)d−1

]
dB(s)

)
(6)

where

Ud =
1

Γ(d)2

(
1

2d− 1
+

∫ ∞

0

[
(1 + τ)d−1τ d−1

]2
dτ

)
(7)

σ2
T ∼ σ2

uUdT
2d−1 and B(u) is a standard Brownian motion for d ≥ 1/2.

Finally define

VT,d(u) =
1

T d−1/2

[Tu]∑
i=1

zd
t ≡

1

T d−1/2
(1− L)−dut (8)

Then,

WT,d(u)
d→ Wd(u) (9)

For a proof of this see, e.g., Davidson and DeJong (2000). Lemma 6 shows
that from this we also get via the Beveridge Nelson decomposition

VT,d(u)
d→ Vd(u) ≡ σπ(1)Wd(u) (10)

To construct our bootstrap invariance principle we need a stronger re-
sult than convergence in distribution. Firstly, we note that from the Sko-
rohod representation theorem we have that there exists a probability space
(Ω,F , P ) supporting a process WT,d(u)′ and Wd(u) such that WT,d(u)′ and
WT,d(u) have the same distribution and

WT,d(u)′ a.s.→ Wd(u) (11)
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However, we have a stronger result that is needed for what follows. In par-
ticular, by Corrolary 4 of Konstantopoulos and Sakhanenko (2003), we have
that

sup
u
|WT,d(u)−Wd(u)| = oa.s(T

1/r−1/2) + Oa.s.(T
max{β,γ}−d+1−1/2(log T )1/2),

(12)
where the constants β ≤ 1/2 + d − 1 and γ ≥ 0 depend on the behaviour
of the constants ai of the MA representation of (1 − L)yt. In particular for
the case of long memory of the form we consider, i.e. based on the binomial
expansion of (1− L)d we have

sup
u
|WT,d(u)−Wd(u)| = oa.s(T

1/r−1/2) + Oa.s.(T
−d+1(log T )1/2), (13)

Note that this is a worse approximation than the best possible rates implied
by (12). From this it follows

P

(
sup

u
|WT,d(u)−Wd(u)|

)
= o(1) (14)

3 The Bootstrap Procedure

The bootstrap algorithm we suggest consists of the following operations:

• Estimate d using any estimator that satisfies Assumption 1. Denote
the estimate by d̂.

• Difference yt d̂ times. Denote the resulting series by ud̂
t .

• Fit a sieve AR(pT ) model on this process. Denote the residual of

this operation by ε̂d̂
t,pT

and a bootstrap resample from
{

ε̂d̂
t,pT

}T

t=1
by

{
εd̂∗
t

}T

t=1
.

• Finally, cumulate the bootstrap sample denoted ud̂∗
t = α̂d̂(L)εd̂∗

t d̂ times.

α̂d̂(L) denotes the estimated parameters from the sieve regression where
the last operation of the above algorithm is equivalent (apart from the
normalisation) to constructing the partial sums
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V ∗
T,d̂

(r) =
1

T d−1/2
(1− L)−d̂ud̂∗

t (15)

Define also

W ∗
T,d̂

(r) =
1

T d−1/2
(1− L)−d̂εd̂∗

t (16)

Before we discuss in detail the structure of the sieve bootstrap we make
a comment on bootstrap formalisation. Once a realisation of the process
{εt}T

t=1 has occured, it constitutes a population for the bootstrap. Formally,
this realisation defines a probability space denoted (Ω∗,F∗, P ∗) in which

the random sequences
{

εd̂∗
t

}T

t=1
are defined. In this probability space the

estimate of d as a function of T is simply a sequence of constants and is not
stochastic. Expectations defined in this probability space will be denoted as
E∗() to distinguish them from expectations defined in the probability space
on which {εt}T

t=1 is defined. The same will hold for convergence in probability

and distribution as well as order in probability which will be denoted by
p∗→,

d∗→, Op∗() and op∗() respectively.
We now discuss estimation of the sieve. We consider the following long

autoregression to approximate (2)

ud
t = α1u

d
t−1 + α2u

d
t−2 + ... + αpu

d
t−pT

+ εd
t,pT

(17)

Estimation of this would give residuals denoted ε̂d
t,pT

. Also define the following

ud
t = αpT ,1u

d
t−1 + αpT ,2u

d
t−2 + ... + αpT ,pT

ud
t−pT

+ ed
t,pT

(18)

where the coefficients αpT ,j, j = 1, ..., pT are defined so that ed
t,pT

is uncorre-

lated with ud
t−j, j = 1, ..., pT . This will be used in the Appendix. Given ud̂

t

we fit the model

ud̂
t = α1u

d̂
t−1 + α2u

d̂
t−2 + ... + αpu

d̂
t−pT

+ εd̂
t,pT

(19)

Estimation of this gives parameter estimates denoted α̂pT ,j, j = 1, ..., pT .

Residuals are denoted ε̂d̂
t,pT

. We estimate (19) by Yule-Walker, and resample
from the residuals. Ordinary least squares could be used instead with mini-
mal changes in the proofs of our results. We make the following assumption
concerning the choice of the lag order

Assumption 3 pT →∞ and pT = o(T φ/2)
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This assumption is not restrictive and we again see a tradeoff between the
lag order and the rate of convergence of d̂. We do not place a lower bound
on the rate of growth of pT . A data dependent procedure for selecting pT

could be used, such as e.g. Akaike’s information criterion or the Bayesian
information criterion. Ng and Perron (1995) show that under a similar setup
these criteria lead to pT = Op(ln T ). The following theorems form the core

of our results and establish validity of the bootstrap. They are proven in the
Appendix.

Theorem 4 W ∗
T,d̂

d∗→ Wd in probability

Theorem 5 V ∗
T,d̂

d∗→ Vd in probability

To clarify the notation above the convergence W ∗
T,d̂

d∗→ Wd occurs in the

probability space (Ω∗,F∗, P ∗). However, the sieve estimation as well as esti-
mation of d occurs in the probability space (Ω,F , P ) where {εt}T

t=1 is defined.
Results for these stochastic quantities are of the ‘in probability’ nature, hence
the ‘in probability’ characterisation in the theorems.

4 Conclusion

This paper has provided a bootstrap invariance principle for a sieve bootstrap
applied to highly nonstationary long memory processes. Our basic approach
is intuitive. We estimate the long memory parameter, d, of the sample and
then translate the process to the I(0) space where a standard sieve boot-
strap is applied prior to cumulating the data to obtain a bootstrap resample
of the long memory process. The main technical difficulty of our work lies in
the fact that d is estimated rather than known. In the latter case our work
would follow straightforwardly from the work of Park (2002) who provide the
rudiments of the analysis of the I(0) stationary sieve bootstrap and the work
of Konstantopoulos and Sakhanenko (2003) who provide a strong approxi-
mation result for fractional Brownian motion. For the case of estimated d
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we see that there are two tradeoffs between the rate of convergence of d̂ and
(i) the existence of higher moments of the innovations of the I(0) stationary
linear process driving the long memory process and (ii) the lag order of the
sieve bootstrap.

We conjecture that a strong approximation result should hold for frac-
tional Brownian motion with Hurst coefficient H < 1/2 where H = d− 1/2.
Such a result would enable the straightforward extension of our results to all
nonstationary long memory processes (0.5 < d < 1.5). This is clearly a topic
for future research.

Appendix

Proof of Theorem 4

We can obtain the result

W ∗
T,d

d→ Wd (20)

where W ∗
T,d(r) = 1

T d−1/2 (1− L)−dεd̂∗
t from

P

(
sup

r
W ∗

T,d(r)−Wd

)
= o(1) (21)

This follows from Corrolary 4 of Konstantopoulos and Sakhanenko (2003)

if E∗
∣∣∣εd̂∗

t

∣∣∣
r

< ∞ for some r > 2. But Lemma 7 provides this result. Then we

need

sup
∣∣∣W ∗

T,d̂
−W ∗

T,d

∣∣∣ = op(1) (22)

But, by Lemma 10 this holds and the theorem is proven.

Proof of Theorem 5

By Lemma 11

1

T d−1/2
(1− L)−dud̂∗

t
d→ Vd (23)
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But by Lemma 10

sup
t

∣∣∣∣V ∗
T,d̂
− 1

T d−1/2
(1− L)−dud̂∗

t

∣∣∣∣ = op(1) (24)

Hence the result is proven.

Lemmas

Lemma 6 VT,d
d→ Vd ≡ σπ(1)Wd

Proof. By using the Beveridge Nelson decomposition (cf.Theorem 3.3 of
Park (2002)) we write

ut = π(1)εt + (ũt−1 − ũt) (25)

where ũt =
∑∞

k=0 π̃kεt−k, and π̃k =
∑∞

i=k+1 πi. Under assumption 1 we have
that

∑∞
k=0 |π̃k| < ∞ as shown by Phillips and Solo (1992). This further

implies that the process has absolutely summable autocovariances by, say,
(3.3.19) of Hamilton (1994). Hence we need to show that

1

T d−1/2
(1−L)−d(ũt−1−ũt) =

1

T d−1/2
(1−L)−d+1ũ0− 1

T d−1/2
(1−L)−d+1ũ[Tr] = op(1)

(26)
But this follows if we show that

max
t

1

T d−1/2
z̃d

t =
1

T d−1/2
(1− L)−d+1ũ[Tr] (27)

is op(1). This readily follows by (20) of Phillips and Solo (1992) if E[(z̃d
t )

2] <
∞. But

∑∞
i=0(a

d−1
i )2 < ∞ by stationarity of a I(d−1) process with d < 3/2.

Hence, by Lemma 1 of Wright (1995) E[(z̃d
t )

2] < ∞ and the result is proven.

Lemma 7 E∗
∣∣∣εd̂∗

t

∣∣∣
r

< ∞ for some r > 2

Proof. We wish to show that
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1

T

T∑
t=1

∣∣∣∣ε̂d̂
t,pT

− 1

T

∑
ε̂d̂
t,pT

∣∣∣∣
r

p→ 0 (28)

Write

1

T

T∑
t=1

∣∣∣∣ε̂d̂
t,pT

− 1

T

∑
ε̂d̂
t,pT

∣∣∣∣
r

< c(AT + BT + 2CT + DT + ET ) (29)

where

AT =
1

T

T∑
t=1

|εt|r (30)

BT =
1

T

T∑
t=1

∣∣εd
pT ,t − εt

∣∣r (31)

CT =
1

T

T∑
t=1

∣∣ε̂d
pT ,t − εd

pT ,t

∣∣r (32)

DT =

∣∣∣∣∣
1

T

T∑
t=1

ε̂d
pT ,t

∣∣∣∣∣ (33)

ET =
1

T

T∑
t=1

∣∣∣ε̂d̂
pT ,t − εd

pT ,t

∣∣∣
r

(34)

where We need to show that BT , CT , ET are op(1) and AT , DT are Op(1). All
these results apart from that for ET are shown to be true in Lemma 3.2 of
Park (2002). ET is op(1) by Lemma 8

Lemma 8 1
T

∑T
t=1

∣∣∣ε̂d̂
p,t − εd

p,t

∣∣∣
r

= op(1)

Proof.

ε̂d̂
p,t − εd

p,t = ud̂
t −

pT∑

k=1

α̂pT ,ku
d̂
t−k − ud

t +

pT∑

k=1

αku
d
t−k = (35)
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ud̂
t −

pT∑

k=1

α̂pT ,ku
d̂
t−k +

pT∑

k=1

α̂pT ,ku
d
t−k −

pT∑

k=1

α̂pT ,ku
d
t−k − ud

t + (36)

pT∑

k=1

αku
d
t−k −

pT∑

k=1

αpT ,ku
d
t−k +

pT∑

k=1

αpT ,ku
d
t−k (37)

So

1

T

T∑
t=1

∣∣∣ε̂d̂
p,t − εd

p,t

∣∣∣
r

≤ c

(
1

T

T∑
t=1

∣∣∣ud̂
t − ud

t

∣∣∣
r

+
1

T

T∑
t=1

∣∣∣∣∣
pT∑

k=1

(α̂pT ,k − αpT ,k) ud
t−k

∣∣∣∣∣

r)
+

(38)

c

(
1

T

T∑
t=1

∣∣∣∣∣
pT∑

k=1

α̂pT ,k(u
d̂
t−k − ud

t−k)

∣∣∣∣∣

r

+
1

T

T∑
t=1

∣∣∣∣∣
pT∑

k=1

(αpT ,k − αk)u
d
t−k

∣∣∣∣∣

r)
(39)

We have that the first term of the RHS of 38 is op(1) by (4.17) of Wright
(1995). The second term is dominated by

max
1≤k≤p

|α̂pT ,k−αpT ,k|r pT

T

(
T−1∑
t=1

∣∣ud
t

∣∣r +

1−pT∑
t=−1

∣∣ud
t

∣∣r
)

= Op

( pT

T φ
× pT

T
× T

)
= op(1)

(40)
The above equality follows by Lemma 9. The fourth term of (39) is op(1) by

E

∣∣∣∣∣
pT∑

k=1

(αpT ,k − αk)u
d
t−k

∣∣∣∣∣

r

≤ E|ud
t |r

(
pT∑

k=1

|αpT ,k − αk|
)r

= o(p−rs
T ) (41)

The third term can be written as

1

T

T∑
t=1

∣∣∣∣∣(d̂− d)

pT∑

k=1

α̂pT ,k

t−k∑
j=1

āju
d
t−k−j

∣∣∣∣∣

r

(42)

by (4.18) of Wright (1995) where we have dropped a term in (d̂− d)2 which
is dominated by the above term in probability. Also āj ∼ j−1 as j → ∞.
Now for r = 2+φ

2φ
.
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1

T

T∑
t=1

∣∣∣∣∣(d̂− d)

pT∑

k=1

α̂pT ,k

t−k∑
j=1

āju
d
t−k−j

∣∣∣∣∣

2+φ
2φ

≤ (43)

(d̂− d)
2+φ
2φ max

k,j

[
(α̂pT ,kāj)

2+φ
2φ

] 1

T

T∑
t=1

pT∑

k=1

t−k∑
j=1

|ud
t−k−j|

2+φ
2φ = (44)

Op(T
−1−φ/2)Op(max(α̂pT ,kāj))Op(pT T ) (45)

But maxk,j

[
(α̂pT ,kāj)

2+φ
2φ

]
= Op(1) by Lemma 9 and maxk,j

[
(αpT ,kāj)

2+φ
2φ

]
=

Op(1). Also Op(ptT ) = op(T
1+φ/2). So, overall the above term is op(1). Hence

the result is proven.

Lemma 9 α̂pT ,k−αpT ,k = Op(T
−φ) and max1≤k≤p |α̂pT ,k−αpT ,k| = op(T

−φ/2).

Proof. We consider estimation of the long autoregression by Yule-Walker.
If the regressors were ud

t the result follows immediately by Hannan and Kava-
lieris (1983). Combining this with Theorem 1 of Wright (1995) which shows
that

1

T

T−k∑
t=1

ud̂
t u

d̂
t+k −

1

T

T−k∑
t=1

ud
t u

d
t+k = Op(T

−φ) (46)

gives the first part of the Lemma. The second part readily follows if we note
that

max
1≤k≤pT

|α̂pT ,k − αpT ,k| ≤
pT∑

k=1

|α̂pT ,k − αpT ,k| (47)

Lemma 10 maxt
1

T d−1/2 |(1 − L)−d̂ut − (1 − L)−dut| = op∗(1) where ut is an
I(0) process defined in the bootstrap probability space (Ω∗,F∗, P ∗)

Proof.

(1−L)−d̂ut−(1−L)−dut = (1−L)−d
(
(1− L)(d−d̂) − 1

)
ut = (1−L)−d(d−d̂)vt

(48)
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where vt =
∑∞

j=1 ājut−j by (4.18) of Wright (1995) where ut = 0, t ≤ 0. Note

that āj ∼ j−1 as j →∞ and hence
∑∞

j=1 ā2
j < ∞. Define

vT
t =

∞∑
j=1

āj

ln T
ut−j =

∞∑
j=1

āT
j ut−j (49)

Since
∑∞

j=1

∣∣āT
j

∣∣ < ∞ this is a process with absolutely summable autocovari-
ances ∀T . By the Marcinkiewicz-Zygmund inequality

E∗|vT
t |r ≤ c

( ∞∑
j=1

(
āT

j

)2

)r/2

E∗|ut|r < ∞ (50)

for some constant c. Define

v̄T
t =

∞∑
j=1

ad
j

T d−1/2
vT

t−j =
∞∑

j=1

aT,d
j vT

t−j (51)

where again vT
t = 0, t ≤ 0. We have that

∑∞
j=1

(
aT,d

j

)2

< ∞ ∀T by the order

of magnitude of the variance of an I(d) process 1 < d < 1.5. By a further
application of the Marcinkiewicz-Zygmund inequality we have that

E∗|v̄T
t |r ≤ c

( ∞∑
j=1

(
aT,d

j

)2
)r/2

E∗|vT
t |r < ∞ (52)

Now we have

P ∗
(
max

t

∣∣∣ln T (d̂− d)v̄T
t

∣∣∣ > δ
)
≤

∑
t

P ∗
(∣∣∣ln T (d̂− d)v̄T

t

∣∣∣ > δ
)

= (53)

TP ∗
(∣∣v̄T

t

∣∣ > δ/(ln T (d̂− d))
)

<
1

δr
T (ln T )r (d̂− d)rE∗|v̄T

t |r (54)

For r > 1
φ

the above term is op∗(1) and hence the result is proven. Note that

we are allowed to move (d̂−d) on the RHS of the inequality in the probability
above because for the probability space supporting the bootstrap probability
measure P ∗ the term (d̂ − d) is not stochastic but a sequence of constants
implicitly depending on T .

Lemma 11 1
T d−1/2 (1− L)−dud̂∗

t
d∗→ Vd ≡ σπ(1)Wd
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Proof. Retracing the steps of Lemma 6 we have using the Beveridge
Nelson decomposition

ũd̂∗
t =

1

α̂(1)

pT∑

k=1

(
pT∑

i=k

α̂pT ,i

)
ud̂∗

t−k+1 (55)

Then, we need to show

1

T d−1/2
(1−L)−d(ũd̂∗

t−1−ũd̂∗
t ) =

1

T d−1/2
(1−L)−d+1ũd̂∗

0 −
1

T d−1/2
(1−L)−d+1ũd̂∗

[Tr] = op(1)

(56)
This follows if we show

max
t

1

T d−1/2
z̃d̂∗

t ≡ 1

T d−1/2
(1− L)−d+1ũd̂∗

[Tr] = op(1) (57)

Now,

P ∗
(

max
t

∣∣∣∣
1

T d−1/2
z̃d̂∗

t

∣∣∣∣ > δ

)
≤

∑
t

P ∗
(∣∣∣∣

1

T d−1/2
z̃d̂∗

t

∣∣∣∣ > δ

)
= (58)

TP ∗
(∣∣∣∣

1

T d−1/2
z̃d̂∗

t

∣∣∣∣ > δ

)
<

1

δ2
T

(
T 1/2−d

)2
E∗

∣∣∣z̃d̂∗
t

∣∣∣
2

(59)

which will be op(1) if E∗
∣∣∣ũd̂∗

t

∣∣∣
2

< ∞ since d− 1 < 0.5. But by (55) we have,

by Minkowski’s inequality

E∗
∣∣∣ũd̂∗

t

∣∣∣
r

≤
(

1

|α̂(1)|
pT∑

k=1

(
pT∑

i=k

|α̂pT ,i|
))r

E∗
∣∣∣u∗d̂t

∣∣∣
r

, r > 2 (60)

So we need to prove that E∗
∣∣∣ud̂∗

t

∣∣∣
2

< ∞. But by the Marcinkiewicz-

Zygmund inequality we have that

E∗|ud̂∗
t |r ≤ c

( ∞∑
j=1

(α̂pT ,i)
2

)r/2

E∗|εd̂∗
t |r (61)
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where we set α̂pT ,i = 0 for pT < i By consistency of α̂pT ,k from Lemma 9

∑∞
j=1 (α̂pT ,i)

2 ≤ ∞ and the result is proven.
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