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Abstract

Most work in the area of nonlinear econometric modelling is based
on a single equation and assumes exogeneity of the explanatory vari-
ables. Recently, work by Caner and Hansen (2003) and Psaradakis,
Sola, and Spagnolo (2004) has considered the possibility of estimating
nonlinear models by methods that take into account endogeneity but
provided no tests for exogeneity. This paper examines the problem of
testing for exogeneity in nonlinear threshold models. We suggest new
Hausman-type tests and discuss the use of the bootstrap to improve
the properties of asymptotic tests. The theoretical properties of the
tests are discussed and an extensive Monte Carlo study is undertaken.
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1 Introduction

Nonlinear models have been used extensively in recent years to investigate
macroeconomic phenomena. A number of classes of models have been pop-
ularised in the literature. Two of the main classes considered are thresh-
old models and smooth transition models. The main characteristic of both
classes is the non-constancy of the response of the dependent variables to the
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explanatory variables. This response which is, in linear regression models,
simply the coefficient of the explanatory variable, is allowed to vary depend-
ing on the occurrence of given trigger events. The main difference between
threshold models and smooth transition models is that the first class assumes
that coefficients change abruptly (discontinuously) with respect to the trigger
events whereas for smooth transition models the responses change gradually
(continuously).

Most work in the area of nonlinear econometric modelling is based on a
single equation and assumes exogeneity of the explanatory variables. How-
ever, just like in linear models, this assumption is mostly suspect in eco-
nomics. Explanatory variable endogeneity can cause at least as much trouble
in nonlinear models as in linear ones. However, endogeneity has not been
taken into account in most of the literature. Recently work by Caner and
Hansen (2003) and Psaradakis, Sola, and Spagnolo (2004) has considered the
possibility of estimating nonlinear models by methods that take into account
endogeneity. Hence, two-stage least squares and GMM estimators have ap-
peared in the literature. However, the crucial problem remains. Should one
use these estimators to alleviate bias in case of endogeneity or use standard
estimators which, although biased under endogeneity, are likely to be more
efficient if there is no endogeneity? Clearly this problem can be addressed
using Hausman type tests, which compare standard estimators with those
that account for endogeneity. This topic is addressed in this paper.

Unlike linear models where estimators such as OLS are known to be ef-
ficient under relatively mild conditions this is not necessarily the case for
nonlinear models. Hence, the standard results of Hausman (1978) cannot be
invoked automatically to derive asymptotic distributions for test statistics.
The problem can be alleviated using bootstrap methods. The problem is
then seen to be easily tackled. We thus propose new estimators which are
a mixture of standard and endogeneity robust ones where a Hausman type
test is used to decide which estimator to use for a given sample. It is seen,
via simulations, that the standard asymptotic theory of the Hausman test
appears not to be a good guide in small samples. On the other hand the
bootstrap appears much more useful. In this paper we focus on threshold
models which have been more extensively analysed in the case of endogeneity
by Caner and Hansen (2003). Of course, all methods are readily adapted for
any class of nonlinear models. We note that a specific way to test for en-
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dogeneity in Markov-Switching models has been recently suggested by Kim
(2004).

The paper is organised as follows: Section 2 discusses the model and the
problem addressed. Section 3 discusses the bootstrap in this context. Sec-
tion 4 provides Monte Carlo evidence in favour of the new methods. Finally,
Section 5 concludes.

2 The Model

The model we consider is that of Caner and Hansen (2003). In the simple
form analysed there the model is given by

yi = β′1ziIqi≤γ + β′2ziIqi>γ + εi (1)

and
zi = Π1xiIqi≤ρ + Π2xiIqi>ρ + ui (2)

where yi is a scalar variable, zi is an m × 1 vector of (possibly) endogenous
variables, xi is a p×1 vector of exogenous variables, qi is an exogenous scalar
variable controlling the regime switches, εi is an i.i.d. sequence with variance
σ2

ε , βj, j = 1, 2 are m × 1 vectors of parameters, Πj, j = 1, 2 are m × p
matrices of parameters, γ and ρ are threshold parameters and εt is a mar-
tingale difference sequence with respect to an information set timed at t− 1
containing the past of xi and zi. We also define β = (β′1, β

′
2)
′.

For this model Caner and Hansen (2003) define 2SLS and GMM estima-
tors that allow for the endogeneity of zi. More specifically, let ẑi be the fitted
value from the estimation of (2). Define

Y = (y1, . . . , yN)′

Zγ = (ẑ1I(q1 < γ), . . . , ẑNI(qN < γ))′

and
Z̃γ = (ẑ1I(q1 ≥ γ), . . . , ẑNI(qN ≥ γ))′

Let SN(γ) denote the sum of squared residual of a regression of Y on Zγ

and Z̃γ for given γ. Then, the threshold is estimated as the value of γ which
minimises SN(γ) and denoted γ̂. Then, assuming that γ is known and given

3



by γ̂ one can estimate the coefficients via 2SLS or GMM for the two sub-
samples implicitly defined by γ̂. The problem is thus reduced to a linear
estimation for the two subsamples. Caner and Hansen (2003) prove consis-
tency of the estimators and derive the asymptotic distribution of γ̂ under the
assumption of a ’small threshold’ asymptotic framework, i.e. assuming that
β1−β2 = β1N−β2N = o(1). It is also shown that the asymptotic distribution
of the estimates of β1 and β2 are

√
N -consistent and asymptotically normal.

Theoretical results that go beyond this point are not available. Disre-
garding the presence of endogeneity and estimating a threshold model such
as (1) by the standard method, which involves applying OLS for every point
on a threshold parameter grid, is likely to lead to inconsistency (both for co-
efficients and threshold parameter estimates), although the asymptotic bias
is not available in closed form and is likely to depend in complicated ways
on the true model parameters. On the other hand, it is not clear to what
extent estimation by IV methods introduces inefficiency in the estimation.
Nevertheless, it is clear that in either case use of an inappropriate estimation
will lead to suboptimal outcomes. It is obvious that a Hausman (1978) type
test can provide guidance on which estimator to use.

A formalisation of that idea is the topic of the paper. The null hypothesis
of the test is that

H0 : E(ziεi) = 0, ∀i (3)

The test statistic is of the form

S = (β̂ − β̃)′V̂ −1(β̂ − β̃) (4)

where β̂ is the IV-type estimator (such as the 2SLS or GMM estimator) and
β̃ is the OLS-type estimator. V is the variance of (β̂j − β̃) and V̂ denotes
its estimate. This statistic is asymptotically distributed as χ2

m. This result
follows easily from the asymptotic normality of both β̂ and β̃ under the null
hypothesis.

If β̂ is efficient (i.e. achieves the Cramer-Rao lower variance bound) then
by Hausman (1978) it is known that

V = V ar(β̃)− V ar(β̂) (5)
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and V̂ can be obtained by plugging in estimates of V ar(β̃) and V ar(β̂) in
the above expression. Asymptotically, estimation of the threshold is irrel-
evant for the estimation of the coefficients due to the superconsistency of
the threshold parameter estimate. As Caner and Hansen (2003) state, under
homoscedasticity, both 2SLS and GMM estimators are semi-parametrically
efficient. Hoewever, full parametric efficiency would require distributional
assumptions on εi. Further, this result is asymptotic. As Kapetanios (2000)
has shown the asymptotic irrelevance of the threshold parameter estima-
tion is not relevant in small samples where the adjective small applies even
to samples much larger that usually encountered in, say, macroeconomics.
Hence, using this estimate of V is likely to be misleading. For that reason
we address the estimation of V in the next section using the bootstrap. For
the purposes of this section we assume

Assumption 1 There exists a consistent estimate of V , denoted V̂ .

For simplicity we will concentrate on β̃ being the 2SLS estimator. Let cα

denote the critical value for the 100*(1-α)% significance level of the Hausman-
type test. In what follows α may be allowed to depend on the sample size
N . Then, we define a new estimator given by

β̂V
α = β̂IS>cα + β̃IS≤cα (6)

We assume assumptions 1 and 2 of Caner and Hansen (2003) and conditions
1-4 of Chan (1993). We also make the following assumptions

Assumption 2 If E(ziε) 6= 0 then plimN→∞β̃ = β∗ 6= β and plimN→∞γ̃ =
γ∗ for some constants β∗ and γ∗.

It is easy to see that under assumption 2 if one estimates the model by OLS
for γ = γ∗ then β̃ − β∗ = Op(N

−1/2).

Assumption 3 limN→∞ αN = ∞ and limN→∞ ln αN/N = 0, where αN ≡ α

Assumption 2 is essentially the cause of the problem we address. It is rea-
sonable to assume it, in the absence of a closed form expression for the
asymptotic bias, as otherwise the problem of inconsistency of β̃ does not
arise. Also define the asymptotic mean square error of an estimator β̂ as

MSE(β̂) = limN→∞E(T (β̂ − β)′(β̂ − β)) (7)

Then, we have the following theorem
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Theorem 1 Under assumptions 1-2 of Caner and Hansen (2003), condi-
tions 1-4 of Chan (1993) and assumptions 1-3 above, βV

α attains the semi-
parametrically efficient MSE bound both in the case of endogeneity and no
endogeneity.

Proof

To prove the theorem we need to show that βV
α attains the same MSE

as β̂ under the alternative and β̃ under the null. In other words we need to
show that

limN→∞Pr(IS>cα = 1) = 1 (8)

under the alternative and

limN→∞Pr(IS>cα = 1) = 0 (9)

under the null hypothesis. To show (8) we note that under assumption 2
(β̂ − β̃) = Op(1). Further, by assumption 1, and assumption 2 (convergence

in probability of β̃ to some constant) V̂ = Op(N
−1) implying that S = Op(N).

Since we have introduced dependence of α and hence cα on N , we require
cαN

/N → 0 for (8) to hold. For this we mirror the analysis of Hosoya (1989).
We have that

αN ≤
∫ ∞

cαN

c(x|m)dx ≤ exp(−cαN
/d)

for some d > 0, where c(x|m) is the pdf of a χ2
m. Thus,

−log(αN)

N
≥ cαN

/Nd

So if the second part of assumption 3 holds then cαN
/N → 0 holds and (8)

holds. To show (9), we note that under the null, S = Op(1). Hence by the
first part of assumption 3, (9) holds.

Q.E.D.

A similar estimator can, of course, be defined for the threshold parameter,
which we consider in the Monte Carlo experiments. However, in this case the
extent of the inefficiency arising out of using IV methods in the case of no
endogeneity is less clear. Monte Carlo simulations will be used in Section 4
to investigate this issue.
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3 The Bootstrap

As we have seen in the last section, a new estimator for β can be obtained
as long as Assumption 1 is satisfied. In other words we need a consistent
variance estimator. The asymptotic analysis of Hausman (1978) requires full
parametric efficiency, which may not be achievable via the standard estima-
tors in nonlinear models in a number of cases such as, e.g., heteroscedasticity.
An alternative estimator maybe provided by the bootstrap. There are a num-
ber of issues that need to be addressed. The first issue concerns the validity
of the bootstrap for threshold models. The bootstrap relies on parametri-
cally or non-parametrically resampling from the available data. The standard
bootstrap procedure is in general able to provide an estimate of the exact dis-
tribution of an estimator and hence of the variance of the estimator. Under
mild assumptions this estimator is consistent. Further, under the assumption
of asymptotic pivotalness (independence of the asymptotic distribution from
nuisance parameters) the bootstrap estimator may converge more quickly to
the true distribution compared to the asymptotic approximation. However,
in the case of the standard estimator of the threshold parameter, the asymp-
totic distribution is not asymptotically pivotal. Further, it is not even clear
whether the standard bootstrap estimator is consistent in this case, as Coak-
ley and Fuertes (2002) claim.

To explain in detail why consistency is in doubt, we denote the distri-
bution of the threshold parameter estimate, γ̂N , obtained by minimising the
conditional sum of squares, by LN(γ̂, FN) where FN denotes the joint distri-
bution function of the sample ((y1, z

′
1)
′, . . . , (yN , z′N)′)′. We denote a generic

parameter of LN(γ̂, FN) by θN(γ̂, FN). For example, θN could be the variance
of r̂T or the 95% quantile of its distribution. The crucial regularity condi-
tion for consistency of the standard bootstrap approach is the continuity of
the mapping FN → θN (see e.g. Beran and Ducharme (1991)). To appreci-
ate the difficulty of showing this for the threshold models we note that the
asymptotic distribution of N(γ̂N − γ) is given by that of the lower bound,
M−, of a random interval where a functional of two independent compound
Poisson processes is minimised almost surely. This continuity condition is
not necessary for consistency of the bootstrap but most theorems available
on this subject assume it. In this context we note the work of Inoue and
Kilian (2003) where it is shown that for an unrelated problem (unit root
inference) continuity of that form is not needed for bootstrap validity. Nev-
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ertheless, all the above relate to the threshold parameter estimate. However,
our test statistic S depends only on the coefficient estimates. These satisfy
the continuity assumption since their limit distribution is normal. Hence,
the bootstrap may or may not be valid for full inference on threshold models
but it clearly is valid for bootstrapping S.

Incidentally, the question of bootstrap validity in threshold models can be
addressed using alternative bootstrap approaches. Thus, whereas the stan-
dard bootstrap where inference is based on resampling samples of size N
maybe invalid, using subsampling can provide valid inference. Subsampling
is essentially carrying out the bootstrap but resampling smaller samples to
carry out inference. More specifically, rather that resampling samples of
size N , samples of size B where B → ∞, but B/N → 0 are resampled.
Subsampling has been suggested and discussed by, among other, Politis and
Romano (1994a) and Bickel, Gotze, and van Zwet (1997). Unlike the conti-
nuity assumption needed for the standard bootstrap, the only assumptions
needed for subsampling validity are the existence of a limit distribution for
the statistic of interest and, in the case of nonparametric resampling, strong
mixing for the process being resampled. We will examine the performance
of parametric subsampling in our context in the next section.

Another important issue is the mode of resampling so that the null hy-
pothesis is imposed of the bootstrap samples. This is not as important when
only the variance is bootstraped as in our case but is crucial when the whole
distribution is bootstrapped and used to carry out the test as an alternative
to retaining the asymptotic χ2

m approximation. In that case, not imposing
the null distribution on the bootstrap samples will lead to an inconsistent
test. To see this note that if the null hypothesis is not imposed then en-
dogeneity will prevail in the bootstrap samples. Hence, the bootstrap test
statistics will tend to infinity asymptotically rather than be Op(1). Note that

it is the fact that (β̂j − β̃) = Op(1) that makes S tend to infinity as both

under the null and under the alternative V ar(β̂j − β̃) = O(N−1). Hence,
imposing the null is crucial for bootstrapping the whole distribution but less
crucial for bootstrapping the variance only. To investigate this further we
examine in detail a number of possible bootstrap implementations.

The first step in the bootstrap implementation is the resampling of zi, xi
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and qi. As we do not assume any parametric model for these, we need to use
the nonparametric bootstrap. Depending on the presence of temporal de-
pendence in these variables, one may want to use the block bootstrap or the
stationary bootstrap of Politis and Romano (1994b). In that case the block
size needs to be determined. If subsampling, is undertaken, then one needs
to choose the subsample size too. Note that if one wishes to assume a para-
metric model for zi is terms of xi then a parametric bootstrap may be used.
In the case of the nonparametric bootstrap it is important that one resam-
ples rows (or blocks) from the matrix W = ((z′1, x

′
1, q1)

′, . . . , (z′N , x′N , qn)′)′

rather than resample independently xi, zi and qi. This is so as to retain the
contemporaneous dependence between these variables. However, this stage
is relatively straightforward.

Then, one needs to resample parametrically yi given the bootstrap sample
W ∗ = ((z

′∗
1 , x

′∗
1 , q∗1)

′, . . . , (z
′∗
N , x

′∗
N , q∗n)′)′ where stars denote a generic bootstrap

sample. To parametrically resample yi one can either use the parameter es-
timates obtained via 2SLS or via OLS. Since the test is constructed under
the null hypothesis, the best choice is to use the more efficient OLS esti-
mates and the OLS residuals for resampling εi. Care needs to be applied
in the resampling of εi. Under the alternative E(ziεi) 6= 0. But for the
bootstrap sample we must impose E∗(z∗i ε

∗
i ) = 0, where E∗ denotes bootstrap

expectation which is conditional on the sample realisation. We suggest two
alternatives for that. Denote the OLS residual by ε̃i. The first alternative
regresses ε̃i on zi and resamples from the residual of that regression, denoted
ε̃z
i . ε̃z

i is normalised to have variance σ̂2
ε . By construction then E∗(z∗i ε

∗
i ) = 0.

The second alternative is to use the wild bootstrap. This involves construct-
ing the bootstrap error terms as ε∗i = ηiε̃i, where ηi is an i.i.d. zero mean
sequence independent of all other variables whose variance is unity. Again
E∗(z∗i ε

∗
i ) = E∗(z∗i ε̃iη

∗
i ) = 0. Thus, the null hypothesis is imposed on the

bootstrap sample. By the (i) consistency of the parameter estimates both
of the OLS and 2SLS estimators proved, under the null by Chan (1993) and
Caner and Hansen (2003), (ii) the fact that, via the nonparametric bootstrap
the joint distributions of W ∗ = ((z

′∗
1 , x

′∗
1 , q∗1)

′, . . . , (z
′∗
N , x

′∗
N , q∗n)′)′ are the same

as those of W = ((z
′
1, x

′
1, q1)

′, . . . , (z
′
N , x

′
N , qn)′)′ it follows that the bootstrap

samples satisfy assumptions 1-2 of Caner and Hansen (2003), if zi follow a
linear or threshold model, and conditions 1-4 of Chan (1993). The valid-
ity of the wild bootstrap approach then easily follows since asymptotically
S∗ ∼ χ2

m. This is summarised in the theorem below.
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Theorem 2 The wild bootstrap approach is asymptotically valid since S∗
d→

χ2
m.

Similar results for the other bootstrap implementations can be obtained.

4 Monte Carlo

In this section we carry out a detailed Monte Carlo simulation of the new
methods. We use the following model

yi = ziIqi≤0 + 2ziIqi>0 + εi (10)

and

zi =

p∑
i=1

xiIqi≤0 +

p∑
i=1

2xiIqi>0 + ui (11)

where p = 1, 2. We introduce endogeneity by specifying E(εiui) = σεu and
setting σεu = 0, 0.5, 0.95. Throughout, εi, ui ∼ N(0, 1). We set N = 100, 200.
xi, qi ∼ i.i.d.N(0, 1).

The IV estimator used is 2SLS. Under the data generation process con-
sidered it is as efficient as GMM. Both for 2SLS and OLS estimation the
threshold parameter grid is made up of 20 equally spaced points between the
10% and 90% quantiles. To minimise computational cost we assume that
γ = ρ and impose that restriction in estimation.

We try out the plain 2SLS and OLS estimators denoted in the tables,
as before, by β̂ and β̃. We also try out β̂V̂ h

0.05 where V̂ h is the estimated
asymptotic variance covariance matrix as discussed in Hausman (1978). As
it appears from the notation we use a significance level of 95%.

We now discuss the bootstrap implementation in detail. We consider
5 different bootstrap implementations. The first is the standard paramet-
ric bootstrap where the null hypothesis is imposed by regressing the OLS
residuals on zi. The bootstrap variance estimator, denoted V̂ z, from this
bootstrap is used to construct S. The second implementation uses the wild
bootstrap to get the variance, denoted by V̂ w. The third implementation
uses a fully nonparametric bootstrap which resamples nonparametrically yi
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as well as xi, zi and qi. This is not a block bootstrap as the data are i.i.d. Ob-
viously this bootstrap does not impose the null hypothesis on the bootstrap
samples. This variance estimate is denoted V̂ n. The fourth implementation
uses subsampling where the subsample size is set to 80% of the sample size.
The variance obtained is denoted by V̂ s. Finally, we consider a bootstrap
test which bootstraps the whole distribution of S rather that only the vari-
ance. This estimator is denoted β̂b

0.05. The wild bootstrap is used for that.
Other bootstrap implementations were tried but had minimal power indi-
cating that only the wild bootstrap can adequately impose the null on the
bootstrap samples. For all experiments we used 99 bootstrap replications
and 1000 Monte Carlo replications.

To evaluate the performance of the estimators we report the rejection
probabilities of the Hausman type test. These are reported in boldface font
in all tables. For the coefficients we report the bias and RMSE in the first
and second of the relevant columns for each estimator. For the threshold
parameter we report the 5%, 50% and 95% quantiles of its empirical distri-
bution in the three relevant columns in the tables. Results are presented in
tables 1-8.

Results make very interesting reading. A first interesting point is that the
threshold parameter estimate does not seem to be adversely influenced by en-
dogeneity. Of course, this conclusion needs to be qualified by the specificity
of the Monte Carlo design. Nevertheless, the coefficients are substantially
influenced as expected leading to the tentative conclusion that endogeneity
may not be more problematic for nonlinear models than for linear ones.

The asymptotic version of the S test performs badly. It underrejects very
substantially, as it never rejects under the null hypothesis. Of course, this
has the beneficial byproduct of very good performance of the estimator under
the null since then the estimator is equivalent to the OLS estimator. The
downside is of course low power and bad performance under the alternative
hypothesis.

Moving to the bootstrap tests we see that the best performer by far is
the one using the wild bootstrap variance estimator. This test is correctly
sized and has very good power. Even for 100 observations the power is at
least 95%. The wild bootstrap works well even when the whole bootstrap
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distribution is being used, even though its power is considerably less than
that of the wild bootstrap variance test. The second best bootstrap variance
test is based on V z. The nonparametric bootstrap comes next and the worst
performer is the subsample bootstrap which has quite low power. Overall,
all the bootstrap tests work better that the asymptotic test.

5 Conclusion

Endogeneity of the explanatory variables is an issue that has received little
attention in the analysis of nonlinear econometric models. Recently work
by Caner and Hansen (2003) and Psaradakis, Sola, and Spagnolo (2004)
have looked at ways of estimating nonlinear models under the presence of
endogeneity. However, the question of how to determine the presence of en-
dogeneity is open. This paper addresses this issue.

We propose a Hausman-type test to test for endogeneity. The asymptotic
analysis of Hausman (1978) provides a solution to the construction of the test
but only under the prohibitively restrictive assumption of having an efficient
estimator for the parameters under the null hypothesis. In most nonlinear
models such an assumption may be difficult to satisfy. Furthermore, asymp-
totic analysis is less likely to be of relevance in small samples for nonlinear
model than for linear ones.

This paper therefore proposes bootstrap based tests to solve the problem.
Monte Carlo analysis clearly shows the importance of imposing the null hy-
pothesis of no endogeneity in the bootstrap samples for the construction of
a test with desirable properties. It turns out that imposing exogeneity is not
straightforward. We propose a version of the wild bootstrap which seems to
perform very well under all circumstances considered.

Threshold models have been used as a vehicle for the analysis for the
simple reason that via the work of Caner and Hansen (2003) they have been
analysed in the context of endogeneity. But the techniques discussed here
are straightforwardly applicable to many alternative nonlinear models. More
generally, the use of the wild bootstrap to impose exogeneity in the bootstrap
samples is of more general interest in the context of bootstrap testing of
exogeneity.
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r -0.099 -0.011 0.068 -0.091 -0.013 0.059
β1 0.004 1.110 * 0.004 0.587 *

200 0.5 β2 -0.010 0.298 * -0.007 0.155 *
r -0.157 -0.012 0.080 -0.099 -0.015 0.063
β1 0.027 1.469 * 0.008 0.559 *

0.95 β2 -0.019 0.449 * -0.009 0.150 *
r -0.427 -0.022 0.103 -0.128 -0.014 0.066
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Table 3: β̃V h

0.05

N σεu No. of instruments
1 2

β1 0.000 1.098 * 0.005 0.797 *
0 β2 0.000 0.432 0.000 -0.004 0.241 0.000

r -0.176 -0.000 0.122 -0.146 -0.003 0.107
β1 0.236 7.108 * 0.167 3.504 *

100 0.5 β2 0.093 1.382 0.022 0.054 0.531 0.002
r -0.202 0.000 0.132 -0.149 -0.005 0.111
β1 0.361 19.311 * 0.306 10.554 *

0.95 β2 0.125 3.662 0.215 0.096 1.293 0.029
r -0.591 -0.008 0.150 -0.191 -0.006 0.104
β1 0.000 0.616 * 0.003 0.379 *

0 β2 -0.004 0.218 0.000 -0.003 0.123 0.000
r -0.096 -0.011 0.067 -0.091 -0.013 0.059
β1 0.242 6.925 * 0.172 3.349 *

200 0.5 β2 0.086 1.094 0.052 0.052 0.396 0.003
r -0.114 -0.011 0.075 -0.094 -0.013 0.065
β1 0.097 5.644 * 0.263 9.114 *

0.95 β2 0.011 1.056 0.809 0.077 0.968 0.168
r -0.427 -0.024 0.072 -0.116 -0.014 0.061
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Table 4: β̃V z

0.05

N σεu No. of instruments
1 2

β1 0.001 1.205 * 0.004 0.842 *
0 β2 -0.000 0.446 0.032 -0.004 0.248 0.034

r -0.176 -0.000 0.122 -0.146 -0.003 0.107
β1 0.080 4.277 * 0.018 1.428 *

100 0.5 β2 0.020 0.785 0.673 -0.000 0.330 0.889
r -0.235 -0.004 0.131 -0.155 -0.007 0.111
β1 0.102 6.126 * 0.023 1.579 *

0.95 β2 0.002 1.283 0.859 -0.007 0.339 0.970
r -0.569 -0.016 0.159 -0.230 -0.011 0.104
β1 -0.000 0.675 * 0.003 0.408 *

0 β2 -0.004 0.230 0.038 -0.003 0.129 0.042
r -0.100 -0.011 0.068 -0.091 -0.013 0.059
β1 0.009 1.271 * 0.004 0.591 *

200 0.5 β2 -0.009 0.314 0.980 -0.007 0.155 0.998
r -0.157 -0.012 0.077 -0.099 -0.015 0.063
β1 0.032 1.823 * 0.008 0.559 *

0.95 β2 -0.015 0.497 0.980 -0.009 0.150 1.000
r -0.427 -0.023 0.091 -0.128 -0.014 0.066
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Table 3: β̃V w

0.05

N σεu No. of instruments
1 2

β1 -0.000 1.306 * 0.003 0.863 *
0 β2 -0.000 0.448 0.047 -0.004 0.248 0.049

r -0.176 -0.000 0.121 -0.146 -0.003 0.107
β1 0.003 2.741 * 0.002 1.160 *

100 0.5 β2 -0.008 0.646 0.942 -0.004 0.312 0.977
r -0.271 -0.005 0.134 -0.157 -0.007 0.111
β1 0.050 3.195 * 0.012 1.221 *

0.95 β2 -0.021 0.934 0.996 -0.010 0.328 1.000
r -0.592 -0.010 0.282 -0.231 -0.011 0.107
β1 -0.000 0.687 * 0.002 0.416 *

0 β2 -0.005 0.229 0.042 -0.004 0.131 0.069
r -0.100 -0.011 0.068 -0.091 -0.013 0.059
β1 0.004 1.114 * 0.004 0.589 *

200 0.5 β2 -0.010 0.297 0.999 -0.007 0.155 0.999
r -0.157 -0.012 0.080 -0.099 -0.015 0.063
β1 0.027 1.469 * 0.008 0.559 *

0.95 β2 -0.019 0.449 1.000 -0.009 0.150 1.000
r -0.427 -0.022 0.103 -0.128 -0.014 0.066
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Table 6: β̃V n

0.05

N σεu No. of instruments
1 2

β1 0.000 1.143 * 0.004 0.839 *
0 β2 -0.000 0.435 0.020 -0.004 0.246 0.040

r -0.176 -0.000 0.122 -0.146 -0.003 0.107
β1 0.093 4.396 * 0.024 1.546 *

100 0.5 β2 0.025 0.887 0.622 0.002 0.340 0.845
r -0.231 -0.004 0.124 -0.155 -0.007 0.111
β1 0.110 6.362 * 0.026 1.636 *

0.95 β2 0.005 1.277 0.845 -0.006 0.340 0.963
r -0.554 -0.015 0.160 -0.222 -0.011 0.104
β1 -0.001 0.685 * 0.003 0.408 *

0 β2 -0.005 0.223 0.033 -0.004 0.128 0.039
r -0.100 -0.011 0.068 -0.091 -0.013 0.059
β1 0.010 1.333 * 0.005 0.593 *

200 0.5 β2 -0.008 0.316 0.976 -0.007 0.156 0.996
r -0.157 -0.012 0.077 -0.099 -0.015 0.063
β1 0.037 2.047 * 0.008 0.559 *

0.95 β2 -0.014 0.525 0.972 -0.009 0.150 1.000
r -0.427 -0.023 0.090 -0.128 -0.014 0.066
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Table 7: β̃V s

0.05

N σεu No. of instruments
1 2

β1 0.001 1.129 * 0.004 0.806 *
0 β2 0.000 0.435 0.007 -0.004 0.242 0.016

r -0.176 -0.000 0.122 -0.146 -0.003 0.107
β1 0.125 5.009 * 0.038 1.780 *

100 0.5 β2 0.039 0.925 0.491 0.006 0.352 0.759
r -0.223 -0.003 0.128 -0.153 -0.007 0.111
β1 0.132 7.253 * 0.031 1.891 *

0.95 β2 0.014 1.458 0.802 -0.005 0.359 0.951
r -0.554 -0.015 0.159 -0.230 -0.011 0.104
β1 -0.000 0.637 * 0.003 0.398 *

0 β2 -0.005 0.222 0.013 -0.003 0.126 0.021
r -0.100 -0.011 0.067 -0.091 -0.013 0.059
β1 0.017 1.538 * 0.005 0.604 *

200 0.5 β2 -0.006 0.335 0.951 -0.007 0.155 0.995
r -0.157 -0.012 0.077 -0.099 -0.015 0.063
β1 0.038 2.082 * 0.009 0.565 *

0.95 β2 -0.014 0.532 0.969 -0.009 0.150 0.999
r -0.427 -0.023 0.088 -0.128 -0.014 0.066
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Table 8: β̃b
0.05

N σεu No. of instruments
1 2

β1 -0.001 1.374 * 0.003 0.872 *
0 β2 0.000 0.438 0.034 -0.004 0.244 0.043

r -0.176 -0.000 0.122 -0.146 -0.003 0.107
β1 0.036 3.707 * 0.018 1.483 *

100 0.5 β2 0.015 0.856 0.733 0.004 0.348 0.827
r -0.269 -0.005 0.133 -0.155 -0.008 0.111
β1 0.053 3.458 * 0.012 1.236 *

0.95 β2 -0.017 0.998 0.966 -0.009 0.329 0.996
r -0.592 -0.014 0.196 -0.231 -0.011 0.106
β1 -0.001 0.691 * 0.003 0.428 *

0 β2 -0.004 0.220 0.034 -0.003 0.125 0.037
r -0.100 -0.011 0.067 -0.091 -0.013 0.059
β1 0.006 1.205 * 0.004 0.596 *

200 0.5 β2 -0.008 0.314 0.976 -0.007 0.155 0.995
r -0.157 -0.012 0.078 -0.099 -0.015 0.063
β1 0.027 1.469 * 0.008 0.559 *

0.95 β2 -0.018 0.461 0.995 -0.009 0.150 1.000
r -0.427 -0.023 0.099 -0.128 -0.014 0.066
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