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Abstract

In this paper we consider GMM based estimation and inference for the panel AR(1) model
when the data are persistent and the time dimension of the panel is fixed. We find that
the nature of the weak instruments problem of the Arellano-Bond estimator depends on the
distributional properties of the initial observations. Subsequently, we derive local asymptotic
approximations to the finite sample distributions of the Arellano-Bond estimator and the
System estimator, respectively, under a variety of distributional assumptions about the initial
observations and discuss the implications of the results we obtain for doing inference. We

also propose two LM type panel unit root tests.

1 Introduction

In this paper we consider GMM based estimation and inference for the panel AR (1) model
Yit = pYir—1 + (L —p)pi+ e, i=1,...,Nand t = =S +1,...,T, when the autoregression
parameter p is close to or equal to one. Throughout the paper we assume that S > —1, the
first observations occur at t = 1, the time dimension of the panel, T, is fixed (and small)
and that the cross-section dimension of the panel, IV, is large. Among other things we derive
local asymptotic approximations to the finite sample distributions of some well-known linear
GMM estimators for this model under a variety of assumptions about the initial observations
and discuss the implications of the results we obtain for doing inference. We also propose

two LM type panel unit root tests.



Persistent data raise at least three issues in connection with GMM estimation of the
panel AR(1) model. First, some of the available moment conditions do not identify the unit
root. For instance, it is well known that the GMM estimator of Arellano and Bond (1991),
henceforth abbreviated as AB, breaks down when p = 1, because the instruments, which are
lagged levels of the data (y;s , s <t — 2), are no longer correlated with the first-differences
of the regressors (Ay;;—1): when p =1, E(y; sAyii—1) = E(yis€ir—1) = 0. However, moment
conditions such as E(Ay; s(vit — pyit—1)) = 0 with s < t — 1 still identify the unit root,
see Arellano and Bover (1995), henceforth abbreviated as Arbov. Below we will refer to
an estimator that only exploits such moment conditions as an Arbov estimator. Second,
most moment conditions are weak in some sense when p is close to unity. The finite-sample
distributions of the corresponding estimators may therefore differ substantially from the
first-order fixed-parameter asymptotic distributions. The second order bias approximation
for the AB estimator derived by Hahn et al. (2001) also becomes inaccurate when p is
close to unity. Third, the first-order derivatives with respect to p of some of the moment
conditions are discontinuous at p = 1: it is easily verified for ¢ > 2 that lim,y1 E(y;1Ayi.) =
—%Var(sz-yt) = —%0'2 when the data are covariance stationary, while E(y; 1Ay;;) = 0 when
p=1

In the paper it is shown that the weakness of the moment conditions implied by the panel
AR(1) model can manifest itself in different ways depending on the distributional properties
of the initial observations. In some cases the first-order derivatives of the moment conditions
with respect to p, i.e. the Jacobians, tend to zero when p approaches one. In other cases, the
moment, conditions are weak because the standard deviations of the first-order derivatives
of the underlying moment functions with respect to p explode when p approaches one.
In the first type of situation the ‘signal’ of the moment functions becomes weak, whereas
in the second type of situation the overwhelming ‘noise’ of the moment functions drowns
their signal when p approaches one (cf Han and Phillips, 2006). In both situations doing
a form of local asymptotics affords a better approximation to the finite sample distribution
of the corresponding GMM estimator than doing conventional first-order fixed-parameter
asymptotics.

When S is fixed (and small) and when p approaches one according to p = 1-AN~'/2 as N

grows large, where A > 0, both the means and the standard deviations of the cross-sectional



averages of the first-order derivatives of the AB moment functions with respect to p vanish at
a /N rate. Thus in this case we can obtain approximations to the finite sample distributions
of AB estimators by applying the local-to-zero asymptotics of Staiger and Stock (1997). On
the other hand, when the data are covariance stationary, the standard deviations of the first-
order derivatives of the AB moment functions with respect to p explode when p approaches
one, whereas their means tend to a nonzero constant due to the fact that Var(y;, — ;) =
02/(1 — p?). In this case we can obtain ‘local-to-unity’ asymptotic approximations to the
finite sample distributions of AB estimators by assuming that p approaches one according
top=1— AN "1 as N grows large, where again A\ > 0. Moreover, we show that in this case
the Arbov estimators and the two-step ‘optimal’ System estimator (cf Arellano and Bover,
1995) have non-normal distributions as well under local-to-unity asymptotics although they
are still consistent when 7" > 3.

In the paper we also derive for all d > 0 the local-to-nonidentification asymptotic dis-
tributions of the AB estimator under the assumption that both S and N grow large with
S/N¢ — ¢ > 0. We show that if p approaches one according to p = 1 — AN 9 as N grows
large, where A > 0 and 0 < g < 1, and if 0 < d < g, then E(y; sAyi;—1) = O(N9) and
[Var(y sAyi—1)]Y2 = O(Nz%), where s < t — 2. Thus the strength of both the signal and
the noise of the AB moment functions increases with d, that is with S. The value of g for
which the local-to-nonidentification asymptotic distributions of AB estimators are obtained
also increases with d from a value of 1/2 for d = 0 to a maximum value of 1 for d > 1.
The value of g is chosen in such a way that the means and the standard deviations of the
cross-sectional averages of the first-order derivatives of the AB moment functions with re-
spect to p either do not vanish or vanish at the same rate when p approaches one according
top=1—AN"9 as N grows large, where A\ > 0. When d > 1 and g = 1, both the Arbov
and the two-step ‘optimal’ System estimator have the same non-normal local asymptotic
distributions as under covariance stationarity when g = 1.

In the paper we also show that under local (-to-nonidentification) asymptotics (1) the
‘optimal’ AB estimators are biased downwards, (2) the estimators of the optimal weight
matrices for the Arbov estimator and the System estimator and their asymptotic standard
errors are no longer consistent when ¢ = 1 and the data are covariance stationary or d > 1,

(3) the vector of averages of the Arbov moment functions and the vector of their first-order



derivatives with respect to p are uncorrelated, (4) the two-step ‘optimal’ System estimator
can have a skewed distribution, and (5) the truly optimal Arbov and System estimators
have the same distribution, which is symmetric. The first result explains the downward
biases of the AB estimator reported in a Monte Carlo study contained in Bond and Blundell
(1998). The other results help to explain the findings of a Monte Carlo study contained
in Bond and Windmeijer (2002), namely that when the data are covariance stationary and
persistent Wald tests based on the two-step ‘optimal’ System estimator have incorrect size,
whereas LM tests which are based on System estimators that use a restricted estimator of the
weight matrix that is optimal under the null, have correct size. This paper therefore offers
a theoretical justification for using LM tests in the context of panel AR models. Finally the
paper proposes two LM-type panel unit root tests and studies their properties.

The paper is organised as follows. In section 2 we review GMM estimation of the panel
AR(1) model. In section 3 we derive local asymptotic approximations to the finite sample
distributions of the AB, Arbov and System estimators under various assumptions about the
initial conditions, i.e. under various asymptotic plans for S and N. Section 4 proposes two
LM-type panel unit root tests and investigates their properties both analytically and through
Monte Carlo experiments. Section 5 concludes. Proofs are given in the Appendix.

A few words on notation. We use the symbol 2 to signify convergence in distribution,
the symbol plim to signify convergence in probability, and the symbol 5 to signify con-
vergence in quadratic mean. To state multi-index asymptotic results we make use of the
following notation (see also Phillips and Moon, 1999, for definitions of the underlying con-
cepts): limg N oo, seq NV Zfil Xir = X, is equivalent to limpy o0 limg oo N1 Zfil Xt =
X, while N—1/2 Zfil Xt X, as (S, N — 00)4, signifies that N~1/2 Zfil X, converges
in distribution to X; sequentially by letting S pass to infinity first and letting N pass to
infinity subsequently. Sometimes we only write limy_,o N~} Zfil X,: = X, instead of
limg N—o0, seq NV -1 Zfil X, = X; when it is clear that S passes to infinity first, e.g. when
we have assumed covariance stationarity. Finally, plimy_.. s/n—c IV -1 Zf\;l Xy = X;is an
example of a so-called diagonal path probability limit. In this example both S and N pass
to infinity with S/N converging to some constant ¢. We also make use of indicator functions.
For instance, 1{d = 0} = 1 if d = 0 and 1{d = 0} = 0 if d # 0. Finally, the abbreviation
PDS denotes Positive Definite Symmetric.



2 The panel AR(1) model

Consider the panel AR(1) model with random effects:

Yit = PYit—1 T Vi, (1)
vy = 1; + &1, Where n, = (1 — p)p;, (2)

fori =1,..,N and t = =S + 1,...,T. The starting date of the {y;;}, ¢ = —S, need not
coincide with the date of the initial observations on y, ¢ = 1, that is, —S5 < 1; the number
of ‘individuals’, IV, is large while the number of observations on y per individual, T, is fixed.
Moreover —1 < p < 1. Note that the model can be rewritten as y; ; — p; = ,o(yi’t,l — 1) +eig-

The (T + S + 1)—vectors (y;—s ... Yir)'s @ = 1,...,N, are assumed to be i.i.d. ' The
composite error terms, the v;¢, satisfy the following standard assumptions (c¢f Ahn and

Schmidt, 1995): 2

E(Mz) = O and E(/J?) — O-/~2“ fOI‘ Z — 17 ._"N, (3)
E(Sz‘,t) = 0, E(Si,tni) =0, and (4)
E(eiyi—s) = 0, fori=1,..,Nandt=-S+1,..,T, (5)
and
E(gisei) =0, fori=1,..,Nand s #¢t, s,t =—-S+1,....T. (6)

For convenience we also assume that the idiosyncratic errors, the €; ;, are homoskedastic over
time:

E(ef,)=0% fori=1,.,Nandt=—-S+1,..,T. (7)

The initial conditions are given by y;_s = p; + (1 — p)& —s, for i = 1,..., N. Note that
when p = 1, the initial conditions are equal to the individual effects, the ;. Finally, we
assume that E(& ¢) < oo, E(uj) < 0o, E(e},) = ko* and E(e},) < oo, for i = 1,..., N and

t=—-S+1,...,T, where x is the kurtosis parameter.

I'We assume identical distributions across the individuals for convenience.
2Note that F(g;y;5) = 0 for all # and all s < ¢ and  E(eje;5) = 0 for all ¢ # s implies
E(Q,tm) =0 for all # > -S +2 but not E<5i,—S+177i) =0.



In the paper we consider various versions of the panel AR(1) model, which differ with re-
spect to the assumptions made about the initial observations. Among them are the following
two versions:

(CS) The {y;.} have reached Covariance Stationarity at ¢ = 1 when |p| < 1.

(FS) Fixed S: thus the {y;:} have not reached stationarity at ¢ = 1 when |p| < 1.

Ahn and Schmidt (1997) have shown that given assumptions (3)-(7), the {y;,} have reached
covariance stationarity at t = 1 if and only if the initial observations satisfy the following
assumptions:

Eyip —pi) = 0, El(yi1 — pi)ps] =0, and (8)

2

Var(yin — ) = 1%&, for [p| <landi=1,.., N. 9)

Note that the F'S model does not rule out that mean-stationarity, i.e. assumption (8), holds.

2.1 GMM estimators for the panel AR(1) model

Arellano and Bond (1991, AB) proposed an GMM estimator which exploits the following

m = (T — 1)(T — 2)/2 linear moment conditions:
Elyit—s(Ayis — pAyis—1)] =0for s=2,...,t —1land t =3,...,T, (10)

where Ay;; = y;r — ¥ir—1. These moment conditions are implied by assumptions (4)-(6).
Note that they do not identify the unit root because E(y;;—sAyii—1) = E(Yii—scit—1) = 0
when p = 1.

Arellano and Bover (1995) noted that if mean-stationarity, i.e. assumption (8), holds as

well, one can add 7' — 2 linear moment conditions to those in (10):
E[(yi,t — pyi,t—l)Ayi,t—l] =0fort= 3, ceey T. (11)

The latter moment conditions do identify the unit root because E(y;—1Ayit—1) =
E(yit—18i1-1) = 0® when p = 1.

A GMM estimator that exploits the moment conditions in both (10) and (11) is known
as a System (SYS) estimator.



The set of moment conditions in (10) and (11) is equivalent to a set that contains 7" — 2

Arellano-Bond and m Arellano-Bover type moment conditions:
Elyii(Ayis — pAyiz1)] =0for t =3,...,T, (12)

and

El(yit — pyit—1)Ay;s] =0for s =2,...,t —land t =3,...,T. (13)

A GMM estimator that only exploits the latter m moment conditions will be referred to as
an Arellano-Bover (Arbov) estimator.

Let y¢ = [yi1 .. vig] and let Z; = diag(y},...,y; 2) be a (T — 2) x m block-diagonal
matrix. Then we can write the set of AB moment conditions in (10) as F(Z!Av;) = 0 where
Av; = v; — v 1 = [Avis ... Av;7]. Under our assumptions, E(Av;Av})/o? = H, where
H = Hp 5 is a (T — 2) band-diagonal matrix with 2’s on the main diagonal, —1’s on the
first sub- and superdiagonal and zeros elsewhere. It follows that the AB GMM estimator
which uses Wy ap1 = (N7? Zfil Z!HZ;)™! as weight matrix is an optimal one-step GMM
estimator. This estimator is denoted as p4p;. An AB estimator with an arbitrary weight
matrix is simply denoted as psp.

There exist no feasible optimal one-step weight matrices for the Arbov and SYS estima-
tors, except when of = 0. Let Ay} = [Ay; s ... Ay, let Z] = yi1Ip_5, where Ip_; is an
(T — 2) identity matrix, let Z/T = diag(Ay?, ..., Ayl ) be a (T — 2) x m block-diagonal
matrix and let Z7 = diag(Z!, ZH) be a 2(T — 2) x(T — 2 + m) block-diagonal matrix.
When 0727 = 0, optimal one-step weight matrices for the Arbov and SYS estimators are given
by Wiarsowr = (NTESSN ZIZID " and Wy sys: = (NVSSN Z8' AZ5) 71 respectively,

where A is given by
Ao { H C }

C' Iy
where C' = Cr_y is a (T — 2) x (T — 2) matrix with ones on the main diagonal, —1’s on
the first subdiagonal and zeros elsewhere. Note that C' = E(v;Av})'/o?. The one-step GMM
estimators based on Wiy artev1 and Wiy sy g1 will be referred to as the Arbovl estimator and
the SYS1 estimator, respectively.

The optimal two-step System (SYS2) estimator is based on the weight matrix
W sysa(p) = (NI, 2880, 7 [Rv; 7)28)7, where Av = Ay, — p1Ay;1 and



v; = y; — p1Yyi—1 with py an initial consistent estimator for p. We define the optimal two-
step AB (AB2) and Arbov (Arbov2) estimators and their weight matrices analogously. The
W sysk matrices (k= 1,2) can be partitioned as

W syseii Wh,syski2

Wi.sysk =
’ Wi sysk2r Wh,sysk.22

where the Wy sy k.11 block corresponds to E(Z]'Av;) = 0.

Let d, = diag(0,...,0,1,...,1) be a diagonal matrix with ¢ zeros and T'— ¢t — 2 ones on
the diagonal and let d; be a matrix that comprises the last T"— ¢ — 2 columns of cz In
addition, let ZAB = [y, 1 I7_o ZP) = [Z] ZP], where ZP = [d1Ay; 5 doAy;s ... dp_3Ay; 73]
isa (T —2) x [m— (T —2)] matrix. Then we can rewrite the set of m AB moment conditions
in E(Z!Av;) =0 as BE(Z#*% Av;) = 0. Thus there exists a nonsingular constant matrix K48
such that Z! = KABZAB',

An alternative transformation that can be used for removing individual effects is the

Helmert transformation which amounts to taking forward orthogonal deviations. The Helmert

transformation of (v; 2 v}) is v; = (V;2...0;7—1)’, where v;; = (TT;frl)l/Q [vm — ﬁ ZZ:tH Vis| s
t=2,...,T—1. Note that v;; — ﬁ Zzzt 11 Vis is equal to a linear combination of first differ-
ences of the errors. An advantage of using the Helmert transformation rather than taking first
differences is that it preserves the orthogonality among the errors, i.e. if E(g;el) = 0?7 s,
then E(g;&}) = o%I1_3.

Applying the Helmert transformation to y;; = pys—1+ (1 — p)ps + €4, t = 2,..., T, yields

~ ~ - - ¢ \1/2 -
Yit = PYi, 141+ Eigy t = 2,..,T —1, where Yi—1t—-1 = (TZL) / [yi,tfl - ﬁ ZST:tl Yis|-
Note that all lagged values of y; ; are valid instruments for the t-th equation of the transformed

!/

i = y'~1, then the set of AB moment conditions in (10) is equivalent to the

system. If we let z
following set of moment conditions: E(z;;v;;) =0, t = 2,...,7 — 1. That is, there is a non-
singular matrix K such that Z!Av; = K* Z!v;, see Arellano and Bover (1995). An optimal
weight matrix for E(Z!;) = 0is [N™' 2N, (Z!Z;)]7!, which is a block-diagonal matrix with
typical diagonal block equal to [N=' S (z;,2/,)]"". Note that Z/HZ; = K" Z/Z,K"'. It
follows that the one-step AB GMM estimator can be rewritten as a weighted average of T'—2
2SLS estimators: fam = {05 (7711 2 (2120 2101} S0 0y 1 2 Zi20) 2030

where @ = [fyvlyt fyvNyt]/, g,17t,1 = [glﬁlytfl fyvNﬁLt,l]/ and Zt = [Zlﬂf ZNﬂg],.



3 Asymptotic properties of the estimators when the
data are persistent

Below we investigate the asymptotic properties of various AB, Arbov and System estima-
tors when p is close to unity under three different asymptotic schemes: S is finite (the FS
model), S, N — oo sequentially with S — oo first (the CS model), and finally SN — oo
simultaneously with S/N?¢ — ¢ > 0, where d > 0.

In the analysis the ratios Var(y;; — w;)/0o? play an important role. The panel AR(1)

model implies the following expression for Var(y;; — p;) when |p| < 1:
Var(yiy — ) = p* " War(y —g — i) + (1 = p*9)0? /(1 - p?). (14)

It is easily verified for any S and p > 0 that d[Var(y;1 — w:)]/dp > 0 and lim,; Var(y; 1 —
wi) = Var(y;—s — i) + (1 + S)o?. Moreover, limg_,o, Var(y;; — ;) = 02/(1 — p?). It follows
that when S is large and p tends to one, the ratio Var(y;1 — p;)/0? becomes large. Indeed,

limq limg_oo Viar(y;1 — p;) = oco. However, when S is finite lim,; Var(y;1 — pi) < oo.

3.1 Local-to-zero asymptotics for the fixed S case

In this subsection we assume that S is finite. Then lim,;; Var(y;; —p;) < oo fort =1,...,T.

Let E[mapsi(p)] = 0 with map s4(p) = vis(Ayir — pAyii—1) and s < ¢ — 2 represent an
arbitrary AB moment condition from (10). Then it is easily verified that E(dmap s./dp) =
pt (L= p)E[(yis — pi + 1) (Yis — 112)] and hence limpyy E(dmap,s./dp) = 0.

Consider now the simple first-stage regression Ay, = my; s + w;, with s < ¢ — 2,
which corresponds to an arbitrary AB moment condition. Let 7 = (D, yﬁs)*1 > i Yis AYii1.
Clearly, lim,y;plimy o 7 = 0. Moreover, if p=1— AN"12 7 = [E(y? )] " E(yi s Ayi—1) =
O(N~Y/2) and the first-stage F-statistic ' = 72N(3", y2,)/ > /(Ayii—1 — 7yis)? = Op(1).
Therefore, when p is close to unity, AB GMM estimators suffer from a standard weak instru-
ments problem (cf Staiger and Stock, 1997). Considering the multiple first-stage regressions

Ay 1 = 22;21 TkYik +wi, t = 3,..., T leads to the same conclusions because 7' is fixed. 34

3Instead one could consider the first-stage regressions corresponding to E(zii4) =0, ¢t =

2,.,T-1,ie. Yz 1 = 22;11 TrYik + @i t = 2,..,T - 1, but that would lead to the same



Staiger and Stock have argued that doing local-to-zero asymptotics may provide a bet-
ter approximation to the finite sample distribution of a GMM estimator that exploits weak
moment conditions than traditional first-order fixed parameter asymptotics. In the context
of the AB estimator for the FS version of the panel AR(1) model, doing local-to-zero as-
ymptotics requires choosing a parameter sequence for p such that the first stage regression

/2 when the sample size increases, i.e. 7 = O(N~/2).

parameter 7 tends to zero as N~
As we have seen above, in the FS version of the panel AR(1) model (where S is fixed),
p =1 — AN"Y2 implies that 7 = O(N~2). The local-to-zero approach recognizes that
for p=1—AN"Y2 plimy_ N ! Zfil Z!Ay; _1 = 0 and that for this parameter sequence
the mean of the vector N=Y/2 3N Z/Ay, | remains of the same order of magnitude as the
standard deviations of its elements when N grows large.

We note that the Arellano-Bover estimator does not suffer from a weak instruments

problem when S is fixed. > We have the following result:

Theorem 1 Let S be finite, let p = 1 — AN"V2 with A > 0, let 0., = E(y; 1) and let
02 = E(y?,). Let py be an initial v/N-consistent estimator for p, i.e. VN (p1 — p) LK £0.
Let Wy be an arbitrary sequence of PDS weight matrices with plimy_..oWx = W, where W
is PDS. Finally, let Wapy = limy_.oo[E(ZIHZ;)] ™! and Wagw = limy o [E(Z!Z;)] L.

~ d % . X1 0 5 5 2 -1
(a1) If T = 3, then pap—p — 3= with | ~ N ,0°0
2 2
Xo Moy —oy) -1 1

(a2) If T > 3, then N"V2° N Z1Av; & X5, N-V25N ZIAy 1 % Xy and pap — p >

conclusions.

4The bias of a 2SLS estimator that exploits E(yf_QAaZ-,t) = 0 is approximately equal to the
ratio of E(w;e;)/E(w?) and the expected value of a first-stage ‘F-statistic’, F; E(F) =1+ 1%/K,
where 72 = 7' Ely ?(y! %) |n/E(w?) is the so-called concentration parameter and K = ¢ -2
is the number of instruments. See e.g. Hahn and Hausman (2002). When p=1-AN05
limy oo B(wiAeit)/E(w?) = E(Ay;i—1A¢:1)/E[(Ayi—1)% = —1/2 and E(F) = O(1).

SConsider the simple ‘Arbov’ first-stage regression Yig—1 = TAYs + wi. Let 7 =

[Zi(Ayivs)Q]*l > i Yit—1Ay;5. Clearly, lim,iplimy_7 = 1 # 0. Moreover, the first stage F-
statistic F = 72N Y, (Ayi)?/ SuWar1 — 7y5)? = Op(N).

10



XéWX5/XéWX6 with X5 ~ N(O, 255), Xﬁ ~ N(,a6a266) and E(X5Xé) = 256 7é 0, where
fig = jig(N), Y55, L and Lgg are given in the proof: when T =3, X5 = X; and Xg = X.

b) If T > 3, then plimy_ooN"LSN ZHy, | = Xy = o2, NV2N gl 4 %
( ) f ) b ‘N —00 i=1 % yz, 1 8 ms i=1 % 7 7
Plimy oo (Parbor — p) = 0 and \/N(ﬁArbm, —p) A XéWXﬂXéWXg, where L, 1s an m—uvector
of ones and X7 ~ N(0,04I,,).

¢) plimy oWy a1 = Wagt is PDS and plimy_oo[N SN (Z/Z)] ' = Wapw is PDS.

, i=1 [
(d) plz’mN—woWN,A'rbovl = O-ZX ph’mN—woWN,A'rbon (ﬁl) = UzWA’r‘bon = O-_zfm-

(e) plimy oW sys1 = 02X plimy ..o Wi sys2(p1) = 0°Wayse = diag(o,?H ', 0 °I,).

(f) If T > 3, then N-1/2 Zf\il VAN A X, plimy_oo(psys — p) =0 and \/N(ﬁsyg —p) A
(XiWa1 Xg + XiWos X7) ) (XiWa2 X3), where Xg is a sub-vector of Xs.

(9) Asyvar(psys2) = Asyvar(parpov2) = 1/m.

(h) If T > 3, then pap1 is asymptotically biased downwards.
Proor

See appendix A.1.

Theorem 1 implies that if p = 1—AN~Y/2, 54 p; is inconsistent, i.e. pap1—p 4 wp, where
wapl = X;Wap1 X5/ X W1 Xe. Similarly, paps is inconsistent. Moreover, if p = 1—AN~/2,
then Wy lyp (Pap1) = wip iy E(ZLAY;, 1Ay, 1 Z:) — 2wap: i B(Z{Ay; 1 AviZ;) +
Wiy # 7" Wip,.

When T = 3, waps = X3 / X,. The distribution of the ratio of two, possibly correlated,
normal variables has been studied by Fieller (1932). This ratio does not have finite moments.

For A = 0, one obtains the asymptotic distribution of an AB GMM estimator for p = 1.
The local-to-zero asymptotic distribution of the AB GMM estimators also captures the fact
that this estimator is biased downwards when 7" > 3 and p is close to unity. The bias results
from the fact that the instruments are weak and the fact that E(X5X}) # 0.

When p = 1 — AN Y2, pgyg1 and pgyss are consistent despite the fact that Wy g
and Wsygs are PDS and therefore give some weight to the weak AB moment conditions.
The reason for these consistency results is that although plimy_. N ! Zfi 1 ZVAy; -1 =0,
plimy_ oo N 7! Zfil ZHMy; 1 = Xg # 0. However, when p = 1 — AN~1/2 exploiting the AB

moment conditions does not reduce the asymptotic variance of pgy g2, Asyvar(psyss).

11



3.2 Local-to-unity asymptotics for the covariance stationary case

We now assume that the CS version of the model applies, i.e. S — oo and the model
has reached stationarity at ¢ = 1 when |p| < 1. In the CS model lim,; Var(y;,)/o? =
limo [Var(ys, — pi) /0?40, /0% = limyy1[1/(1 = p?)] 4+ 02 /0® = oo for t = 1,..., T. Moreover,
B(=yi,sAyie-—1) = (1= p)p* 2 E[(Yis — pi + 1) (Yis — )] = 0*(1 = p)p'27*/(1 = p*) when
s < t—2. It follows that lim,y; E(dmaps:/dp) = 0*/2. Since E[(Ay;—1)%] = 202 /(1+p), we
also have lim 11 E(dm apovs1/dp) = limyg E(—y; sAyir—1) = —0?/2 when s >t — 2. On the
other hand, E(y; sAy;i—1)|p = 1) = E(yiscis—1) = 0 when s <t — 2, while E(y; s&;4-1) = 0°
when s > ¢ — 2. This implies that the E(y; sAy;—1) are discontinuous at p = 1.

Consider again the simple first-stage regression Ay; ;1 = 7y; s +w; (s < t—2), which cor-
responds to an arbitrary AB moment condition. Then we find again that lim i plimy_ . 7 =
limypp1pimy oo (32, 47s) ' D ¥isAyi—1 = 0. Moreover, if p = 1 — AN, the first-stage F-
statistic F' = F2N (5, 422)/ Su(Ayia 1~ Fpis)? = Opl1) and 7 = [B2)] " ElyssAgs 1) =
O(N~1). Note that if one would choose the parameter sequence p = 1 — AN~Y2, then
7= O(N~Y2) but F = O,(N/?). Therefore when the CS version of the model applies and
p is close to unity, the AB GMM estimator still suffers from some sort of weak instruments
problem (see also Blundell and Bond, 1998), albeit not from one of the Staiger-Stock type.
In this case the problem arises because lim,; £ (yzs) — 00, whereas lim11 E(y; sAyii—1) =
—0?/2 # 0. Considering the multiple first-stage regressions Ay;; 1 = 22;21 TkYik + w; for
t =3,...,T still leads to the same conclusion because T is fixed.

Consider now the simple first-stage regression y; ;1 = mAy; s+w; (s < t—1), which corre-
sponds to an arbitrary Arellano-Bover moment condition. Clearly, lim,;1plimy_ oo 7 = 1/2 %
0. Nonetheless, if p =1 — AN"!, the first-stage F-statistic F' = 72N > .(Ay;.5)?/ > (i1 —
7TAy; s)* = O,(1), even though m = O(1). The reason for this finding is that when S — oo,
E(y?, ;) oc 1/(1—p) and hence plimy ..o N2 3 (yis 1 —TAy; s)* = 02 /(2A) if p = 1-AN"L.
However, limy1 E(y; 1 1AYy;5) = 02/2 # 0.

Notwithstanding that the AB and the Arbov moment conditions are not weak in the
traditional sense of Staiger and Stock (in the sense that F' = O,(1) when m = O(N~Y/2)),
the finite sample distributions of the corresponding GMM estimators differ considerably from

their first-order fixed-parameter asymptotic distributions when p is close to one. See, for
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instance, the Monte Carlo evidence reported in Blundell and Bond, 1998. In particular, the
finite sample distributions are affected by exploding variances (and covariances) of (some of)
the cross-products of the instruments and the variables from the model when p approaches
one. For instance, in appendix A.1 we show that Var(y; 1Ay, ) o 1/(1—p), Var(y; 2Ay; 2) o
1/(1—p), Var(y;1Ae;3) o< 1/(1—p) and also Cov(y; 1A 3, yi 1AY;2) o< 1/(1—p), see lemma
9. We obtain local-to-unity approximations to the distributions of the estimators by choosing
a parameter sequence such that the variances of the cross-products of the instruments and
the regressors become O(1), that is by choosing p = 1 — AN"!. For T = 3, we have the

following local-to-unity asymptotic results for the AB and Arbov estimators:

Theorem 2 Let the CS model hold, let T =3 and let p =1 — AN~! with A\ > 0. Then

. X 2 -1
((I) ﬁAB - P i) %7 where ..1 ~ N _% A a% )
2 X, -1 1
~ ? ¢ 0 1 0
() VN Barton — p) = %2, where | " | ~ N |} , 1
X4 1 0 55

PRrRoOOF

See appendix A.2.

The local-to-unity asymptotic results of theorem 2 have been obtained under the assump-
tion of covariance stationarity. However, if we take A = 0 in the local-to-unity asymptotic
distribution of the AB estimator, we obtain its distribution for p = 1, despite the fact that
we need to condition on initial conditions in this case.

Note that the local parameter sequence that is used to derive the local-to-unity asymp-
totic distribution of the AB estimator is different from the one used in theorem 1. This
is related to the fact that under covariance stationarity the second moments of the initial
observations, which also appear in the local-to-zero distribution, are proportional to 1/(1—p).

We remark that the local-to-unity parameter sequences depend on N. Recently, Moon
and Phillips (2000) have also considered estimation of autoregressive roots near unity using
panel data. However, they considered consistent estimation procedures for the localizing

parameter ¢ < 0 in p = exp(c/T") assuming that T' grows large.
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Note that the set of m Arbov moment conditions in E(Z!"v;) = 0 can be restated as
E(ZIM[Av: vl)) = 0, where ZIT = diag(ZP, ZF) is a 2(T — 2) x m matrix with ZF =
diag(Ay; 2, ..., Ay; r—1). We have the following local-to-unity asymptotic results for 7" > 3 :

Theorem 3 Let the CS model hold, let T > 3 and let p =1 — AN with A\ > 0. Let p; be
an initial /N -consistent estimator for p, i.e. vV N(py — p) LK #£ 0. In addition, let KT be
the nonsingular constant matriz such that ZIV'[Av, v}) = K" Z1';. Finally, let Wy be an

arbitrary sequence of PDS weight matrices with plimy_..Wx = W, where W is PDS. Then

() NISN ZPAvw, S X, NN ZVAy o, & Xg, N V2N ZPAw L X,
NV ZP Ay 1 Koo, and pap — p > X§55d X5/ XS5 Xs with X5 = (X5 Xbp)' ~
N(0,%55), Xo = (X4 X&) ~ N(jig, Ses) and E(X5X}) = s # 0, where fig, Ys5, L6
and e are given in the proof, assuming that pap exploits E(ZAP'Av,) = 0 in lieu of
E(Z!Avy) =0, pup — p > XbWir Xe1/ X, Wii Xer; when T = 3, X5 = Xe1 = X1/VX and
XG = X};l = Xg/\/X, where Xl and Xg are defined in theorem 2.

(b) NN ZPv S Koy, NN ZFy 0 S X~ N(S5 ST, plimy—oe(Parbos —
p) = 0 and assuming that Pares exploits E(ZIM[Av) v}]) = 0 in liew of E(ZMv;) = 0,
VN Parvon — p) > XIW X/ KW X with X7 = (XL, X1,) ~ N(0,577), Sp7 = ot KK
Xg = (o Xél)’ and E(X7Xé) =35 =0; when T =3, X7 = X3 and Xs = X4, where X5 and
X4 are defined in theorem 2.

(c) plimy_oN2YN (ZF'Z]) = I, plimyo NN (ZF'ZP) = 0 and
plimy o NN (ZP'ZP) = o1

(d) plimy—ocWx artos = 021 and N~V ZH[Av; 0 (Ao, F)ZH 5 o' Wik, =
o KUK + (0 )20) K2 diag(Om—(r—2), Ir-2).

(e) pap1 is asymptotically biased downwards.

Proor
See appendix A.3.

Since Xg is Gaussian, part (b) of theorem 3 implies that when the data are covariance
stationary Arbov estimators have a non-normal local-to-unity asymptotic distribution. Fur-

thermore, the second result in theorem 3 part (d) implies that in this case the conventional
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estimator of the optimal weight matrix for the Arbov estimator is inconsistent under local-
to-unity asymptotics. As a consequence, the conventional asymptotic standard errors of
Arbov estimators are inconsistent as well under these asymptotics.

Note that X7 and XS are uncorrelated Gaussian vectors. Then it is easily seen that the
correct  asymptotic standard errors of Arbov  estimators are given by
E(X W0 W X/ (X;W Xg)?) and that the (truly) asymptotically optimal weight matrix
is proportional to 2;71. ¢ Moreover, although the Arbov estimator that uses Wy arpov2(01)
as weight matrix is still consistent when 7" > 3, its local-to-unity asymptotic distribution is
different from that of the truly optimal Arbov estimator. Finally, the local-to-unity asymp-
totic distributions of Arbov estimators are symmetric since X7 L Xg, ie Xqis independent
of Xg.

Under covariance stationarity and the parameter sequence p = 1 — AN !, the cross-
products of the instruments and the regressors in the AB estimator remain correlated with
the cross-products of the instruments and the dependent variables when N — oo, thereby
causing (explaining) the bias of this estimator. On the other hand, when 7" > 3 the Arbov
estimators are asymptotically unbiased under these local-to-unity asymptotics despite the
fact that the Arbov moment conditions are weak when the data are covariance stationary.

Note that the set of m 4T — 2 System moment conditions in E(Z'[Av} v}]') = 0 can be
rewritten as E(Z%[Av) v}]') = 0, where Z° = diag(Z{'P, ZF) is a 2(T — 2) x (m + T — 2)

matrix. We have the following results for the System estimator:

Theorem 4 Let the CS model hold, let T > 3 and let p = 1 — AN~! with X > 0. Let
pr be an initial \/N-consistent estimator for p, i.e. VN(p — p) 4K % 0. Let Wy
be an arbitrary sequence of PDS weight matrices with plimy_..Wyx = W, where W is
PDS. Let Weyg, = diag(Or_o, Ip,), where Op_o is a (T — 2) x (T — 2) null matriz. Let
Wy sys = [N vazl(ZiS’ZiS)]’l. Finally, let D = E[diag(e?, ...,el 1) 1Al /o?. Then

(a) plimy —eWn sys1 = 0 *Ways. and plimN—woWN,SYSlb = 0 2 Waysa.
(b) diag(N ‘Ip_o, N-V2L) SN Z8(Av, @) [Av, #)Z5diag(N 'Iy_o, N-V2I,) %

Wy so, with Wilg, = () H, WH-g = (Wsl*gfsz)lz —(35)KK!D, and W sy = Wanous:

SE(1/X,5 Xg) < E(XtWEmW X/ (X,W Xs)?) for any W.
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where Wi, is defined in theorem 3.

(¢) VN(psvsi — p) = XiSn Xo/XiS2] Xs, for k = 1,1b, and VN(psys2 — p) =
XhWSYSQXlO/X{lVT/SYSQXH with Xip = (X'él XQQ X’él)’ and X = 00 Xél)', where Y,
X; and Xz are defined in theorem 3. If T > 3, plimy_oo(Psysk — p) =0, for k=1,1b,2.
(d) Poys — p > (X4 Wi X1 + Xty Wiy Xa1)/ X[, W X1p with Xpo = (Xl 0 X4,), where X1,
XG]_ and Xgl are defined in theorem 3.

PROOF

See appendix A.4.

Theorem 4 implies that when the data are stationary, a System estimator which uses a
weight matrix estimator that has a PDS probability limit, is inconsistent under local-to-unity
asymptotics. Moreover, the conventional estimator for the optimal weight matrix for the Sys-
tem estimator, i.e. Wy sys2(p1), and the conventional asymptotic standard errors of System
estimators are inconsistent as well under such asymptotics.” Nevertheless, the System esti-
mators that use Wy sys1 and Wi sy s2(p1), respectively, as weight matrix are still consistent
under such asymptotics although the local-to-unity asymptotic distribution of the two-step
System estimator is different from that of the truly optimal System estimator. In particular,
the former distribution is asymmetric since E(X5,X4,) # 0. However, the truly optimal
System estimator has the same local-to-unity asymptotic distribution as the truly optimal
Arbov estimator, which is symmetric. Thus the local-to-unity asymptotic distribution of the
truly optimal System estimator is not affected by the AB moment conditions.

The theoretical results above suggest that Wald tests based on the usual two-step System
estimator will have incorrect size when the data are stationary and p is close to one due to
its asymmetric distribution. Bond and Windmeijer (2002) found in a Monte Carlo study
for covariance stationary data with p = 0.8, T'= 6 and N = 100 that the two-step System

"Kruiniger (2005) discusses simple estimators for the optimal weight matrices for the Arbov and
the System estimators that are consistent under both first-order fixed parameter asymptotics and
local asymptotics as well as under a large variety of asymptotic plans for S and N , including fixed
S, large N asymptotics, sequential asymptotics with (S, N — 00)s¢q, and diagonal path asymptotics
with (S, N — 0o, S/N¢ — ¢>0 where 0 <d < 1).
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estimator that uses Wy sy s2(p1) as weight matrix has indeed an asymmetric distribution and
that the corresponding Wald tests have incorrect size even when corrected standard errors
due to Windmeijer (2005) are used. On the other hand, LM tests which are based on System
estimators that use a restricted estimator of the weight matrix that is optimal under the null,
e.g. Wi sysa(p), had rejection frequencies very close to their nominal size. These findings are
in agreement with the above theory which implies that LM tests which are based on Arbov or
System estimators that use a restricted estimator of the weight matrix that is optimal under
the null, e.g. Wi arbov2(p) and Wi sy s2(p), respectively, have a standard normal asymptotic
distribution under the null both when first-order fixed parameter asymptotics and when

local-to-unity asymptotics are employed owing to the fact that X, 1 X8

3.3 Diagonal path local asymptotics

The results in section 3.2 are largely based on the fact that if p = 1 — AN !, then the
sequential limits limy o limg_oo[Var(yi; — w;)]/N = 02/2X > 0, for t = 1,2,...,T. Now
suppose that p =1 — AN ! and that N — oo, S — oo simultaneously with S/N — ¢ > 0,
where c is a constant, then limy_, g/n—c p*07) = exp(—2Ac) < 1, since lim, o (142/p)? =
exp(z). It follows that limy_.o0, s/n—ec[Var(yie — p:)]/N = 0*[1 — exp(—2Ac)]/2X > 0. This
result suggests that when S is of the same order of magnitude as N and the data are
persistent, then the AB and Arbov moment conditions are still weak. Moreover, in this
case one can still obtain approximations to the distributions of the AB, Arbov and SYS
estimators by using local asymptotics.

It turns out that we can derive diagonal path local asymptotic results for N, S — oo
with (S/N¢) — ¢ > 0 for any d > 0. Let g(\,c) = 1 — exp(—2X\c). For brevity we only state
the following diagonal path local asymptotic results for the AB and Arbov estimators and

T=3:

Theorem 5 Let T =3 and let p=1—AN"9 with A > 0 and 0 < g < 1. Let 0 < d < g

and let Agg = 3(1 —d) — (g — d). Moreover, let N — oo, S — oo simultaneously with

8Conditional on Xg, these LM test-statistics have a standard normal asymptotic distribution.
As the latter distribution does not depend on Xs, it follows that the unconditional asymptotic

distribution of these LM test-statistics is equal to the standard normal distribution as well.
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S/N —¢>0, S/NY —&>0 and S/N® — ¢ > 0. Finally, let G(\,é) = 2X\(S + 1) ifd = 0;
G\, ¢) =2X¢ if 0 <d < g; and G(\,¢) = q(\, ¢) if d =g. Then

(a) N2 (Gap — p) 5 N(0,20%02/(A2(0, — 02)2)) if Aga > 0 and d = 0,
N25(5ap — p) 5 N(0,4/(AG(A, &) if Agg > 0 and d > 0,

PAB <, p+ % if Aga =0 and d =0, where X1 and X5 are defined in theorem 1,

~

i X —= (0 2 —1

Pap % p+ %5, with Xl ~ N | -MR0O L] a0 mdao

, _

. A 0 2 -1

pan S p+ & with | |~ N 1 if Agg < 0,

X, 0 11

. X 0 1 0
(b) \/N(ﬁA'rbov - P) i) %a with A3 ~ N % )

‘ X, 2 q(),9)] 0 23

PROOF

See appendix A.5.

Note that Agg = 1(1+ d) — g and that Agy < 1/2. When the values of d and g are such
that Ayy = 0, p is weakly identified by the AB moment condition(s). When Ay > 0, p is
nearly weakly identified and when Ay < 0, p is nearly non-identified by the AB moment
condition(s).

When 0 < d <1and Ay = 0, there are two extreme cases: if d = 0, then one obtains the
local-to-nonidentification asymptotic distribution of p4p for g = 1/2. This case corresponds
to local-to-zero asymptotics, see theorem 1. On the other hand, if d = 1, then one obtains
the local-to-nonidentification asymptotic distribution of p4p for g = 1. When A,y = 0 and
the value of d increases from 0 to 1, both the signal, F(y;1Ay;2) = O(N%9), and the noise
of the AB moment, function, [Var(y;1Ay:2)]"/2 = O(Nz%), become stronger.

The diagonal path local (-to-nonidentification) asymptotic results of theorem 5 are very
similar to the sequential asymptotic results of theorem 2, which were obtained for ¢ = 1.
When d = 1 and Ayy = 0 (so that g = 1), (A, ¢) = ¢(X,¢) and the sequential local-to-

unity asymptotic distributions of pap and papes @s (S, N — 00)se, could be obtained from
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theorem 5 by letting ¢ — oo so that §(A,¢) = q(A\,¢) = ¢(\,¢) = 1. Indeed, when d > 1
the non-normal local (-to-nonidentification) asymptotic distributions of pap and paspey are
also obtained for g = 1 and they can be shown to be equal to the sequential local-to-unity
asymptotic distributions of pap and parsey as (S, N — 00)sq. On the other hand, the
first-order large N fixed S asymptotic distribution of pa.pe for p = 1 can be obtained from
theorem 5 by assuming that ¢ = 0, i.e. d < g <1, so that g(\,¢) = g(X, ¢) = 0. Finally, note
that 2428 > .

When 0 < d <1 (and A,y = 0) one can easily obtain diagonal path local(-to-nonidentifica-
tion) asymptotic counterparts of theorems 3 and 4 by adjusting some rates of convergence and
by adjusting the formulae for the presence of G(), ¢), q(\, ) and q(), ¢) :? in fact, the results
in theorems 3 and 4 remain valid under diagonal path local (-to-nonidentification) asymp-
totics, apart from the fact that Xs(= X;5) = X11/4(X,é)/X and Xg(= Xg) = X'Q\/W
when T = 3, where X; and X, are defined in theorem 5, Xg; ~ N(‘TTQL[2 —q(\, )], ‘74‘12()’\\’0) )
plim .o N-1-4 Z?;(ZZIIZ{) _ a0+ H{d=0}E(y; )

23
of some rates of convergence and the formulae for W;ﬁbm and W§)}52- When d > 1 and

1, and some straightforward adjustments

g = 1 the estimators of the optimal weight matrices for the Arbov estimator and the System
estimator and the asymptotic standard errors of these estimators are inconsistent, and the
local asymptotic distribution of the two-step ‘optimal’ System estimator is skewed.

To see that the above asymptotic results could be empirically relevant, consider the
following example: let p = 0.95, N = 100 and S = 10. Choose d = g = 1. Then \ = 5,
¢ =1/10, and ¢(\,c) = 1 — exp(—1) = 0.632, while 1 — p?1+5) = 0.676.

We now consider the diagonal path asymptotic distributions of the AB and Arbov esti-

mators for p=1:

Theorem 6 Let T =3 and let p = 1. In addition, let N — oo, S — oo simultaneously with
S/N% — &> 0 and S/N4 — ¢ > 0 where d > 0 and d = max(d, 1). Finally, let 1{d <1} =1
ifd<1andlet 1{d <1} =0 ifd > 1. Then

R i % X1 0 2 -1
(CL) PAB — P — X_lv where N ~ N )
; X, 0 -1 1

N[ —=

9Note that when d > 1, no adjustments are required.
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(b) N%‘I(ﬁArbw —p) 4 X yhere A ~ N

Proor
See appendix A.6.

The results in theorem 6 can easily be extended to 7" > 3 and to the System estimator.

One obtains the first-order large N fixed S asymptotic distributions of the estimators for
p =1 by taking ¢ = 0. However, in general c is unknown and could well be strictly positive
in which case the Arbov estimator has a non-normal asymptotic distribution for p = 1.

Observe that limy|o§(X,¢) = 0 and limy|o[g(A, ¢)/2A] = limyo{[1 — exp(—2Ac)]/2)\} =
limyo{2cexp(—2Ac)]/2} = c. From these observations and the results in theorems 5 and 6
we conclude that the diagonal path local asymptotic distributions of the Arbov and SYS
estimators are continuous at A = 0 (p = 1) provided that 0 < d < 1. A similar continuity

result holds for the AB estimator for any d > 0.

4 LM panel unit root tests

In this section we propose two LM-type panel unit root (UR) test statistics that are based on
an Arbov estimator and a System estimator which use a weight matrix that is optimal under
the null, and on restricted conventional estimators of their first-order fixed parameter asymp-
totic standard errors. The critical values for these LM tests can be taken from the standard
normal distribution irrespective of the assumptions made regarding the initial observations.

Let parbovz,r and pgyse,r be GMM estimators that use Wy arpor2(1) and Wiy sy s2(1)
as weight matrix, respectively. Let SE(Damovz,r) = (N7 Doy (¥h 1 ZH) Wi arbova(1)]
S (2 )} and SE(Dsvsar) = {NTELIAY . 4120 Wsysa(1)] x
Zﬁﬂzﬁ’(m;,l y;,l)']}—l/?. Then we have the following results:

Theorem 7 LetT > 3.

(a) If p=1 and if N — oo, S — oo simultaneously with S/N® — ¢ > 0 for some d > 0,
then (Passou,n = 1)/ SE(Pasmova,r) = N(0,1) and (Bsyso.n — 1)/SE(Psysa,n) = N(0,1).

(b) If p = 1 — AN"Y2 with A\ > 0 and if S — oo, N — oo sequentially, then
(Parbous,n=1)/ SE(Bartova, i) <> N(=3v/m, 1) and (Bsyso,n—1)/SE(Bsysa,r) = N(=3v/m, 1).
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(c)If p=1—AN"Y2 with X\ > 0 and if N — oo, S — oo simultaneously with S/N'/? —

c > 0 and S/N® — ¢ > 0 where d > 0, then (Damovz.r — 1)/SE(Parbova.R) 4,

N(=A(L = q(A0)/2)v/im. 1) and (psyso,r — 1)/SE(psysar) > N(=A(1 = q(A ¢)/2)y/im, 1).

PROOF

See appendix A.7. The results in theorem 7(c) corresponding to ¢ = 0 are also valid under
large N fixed S asymptotics. Madsen (2003) has derived some related local power results.
Note that the local power is the lowest when the data are covariance staionary or d > 1/2.
Any Arbov estimator can be used to construct an LM-type panel UR test but choosing
the optimal Arbov estimator paqpev2 r yields a test statistic with the highest local power
within this class of LM tests. In particular, in the proof of theorem 7 it is shown that the
weight matrix used by parbove, g is not only optimal under the null but also optimal under local

alternatives given by p = 1 - AN~/

with A > 0, irrespective of the asymptotic plan for S and
N. On the other hand, not every System estimator is suitable for the construction of an LM-
type panel UR test that has correct size for any value of d and nontrivial power against any
local alternative. However, the optimal System estimator pgys2 g is v/N-consistent under
both the null and local alternatives and yields an LM test that has correct size and the
same local power properties as the LM test which is based on the optimal Arbov estimator
PArbov2, R, irTespective of the asymptotic plan for S and N.

In the last decade various other panel UR tests have been proposed. For instance,
Breitung and Meyer (1994) proposed a test-statistic which is based on an OLS estima-
tor for p in a model for deviations from the initial observations. Harris and Tzavalis (1999)
discussed an LM-type panel UR test which is based on the bias-corrected LSDV estimator
for p. Finally, Kruiniger (2004) discussed a Wald-type panel UR test which is based on the

First Difference MLE for p in the covariance stationary panel AR(1)/UR model.

4.1 Monte Carlo results

In this section we compare the finite sample performance of our GMM based panel UR
tests with three other panel UR tests, namely the Wald test which is based on the FDMLE,
the LM test due to Harris and Tzavalis (1999) which is based on the bias corrected LSDV
estimator, and a Wald test which is based on the Fixed Effects MLE for r in the panel
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AR(1) model (cf Hsiao et al., 2002, and Kruiniger, 2001 and 2004).1° * 'We only consider
size-adjusted versions of the latter two tests. The implementation of the FEMLE based UR
test is further discussed in Kruiniger (2004).

In most simulation experiments the errors have been drawn from normal distributions:
gir ~ N(0,1) and p; ~ N(0,1). To assess how assumptions with respect to y;1 — i, i =
1,..., N, affect the power of the tests, we have conducted four different kinds of experiments:
in one set the initial observations are drawn from stationary distributions, i.e. (y;1—pi)|p: ~
N(0,1/(1—7?)), while in the other three sets the initial observations are non-stationary. The
three non-stationary cases considered are: (1) y;1—p; = 0; (2) (yi1—pi)| i ~ N(0,2/(1—r?));
and (3) (yi1 — 2u:)|ps ~ N(0,7%2/(1 — r?)). Note that in all situations E(y;; — y;—1) = 0 as
is the case under the null hypothesis. In both case (1) and case (2) the variance of y;; — p;
is different from the variance under stationarity, while in case (3) nonstationarity is due to
the fact that Efp;(y;1 — p:)] # 0. Case (1) corresponds to small S. We have also considered
experiments with o2 = 0, 02 = 100 or £;; ~ (x*(1) — 1)/v/2. Note that the size and the
power of test-statistics which only exploit data in differences are not affected by changes in
O’i. Finally, in the simulation experiments we have varied the dimensions of the panel data
sets as well: (N,T) = (100, 10), (100, 6), or (500, 6). All simulation results are based on 5,000
replications and the (nominal) level of the tests is either 2.5% or 5%.

Tables 1-7 report the simulation results on the empirical size and power of the panel
UR tests that were mentioned above. Tables 2, 5, 6 and 7 report results on power against
stationary alternatives, whereas tables 1, 3 and 4 report results on power against non-
stationary alternatives. In the tables ‘W’ denotes the Wald version of a test, ‘LM’ stands for

the LM version of a test, whilst ‘SA’ indicates that the test has been size adjusted. When

10Note that the FEMLE is derived under the imposed assumption that plimy_eo % Zfil (yi1 —
pi)? < oo and is different from the LSDV estimator.

"Bond et al. (2005) have also compared various panel unit root tests by calculating their
asymptotic local power and by conducting simulation experiments. The only GMM based test they
consider is a Wald test based on the ‘optimal’ System estimator. As expected this test has poor
size and power properties. They also find that the Breitung-Meyer test and the test based on the

FDMLE have very similar size and power properties.
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the (nominal) level of a test is 2.5% this is indicated by , otherwise the level of a test is 5%.
Inspection of the results in tables 1-7 leads to the following conclusions with respect to the

GMM based UR tests:

1. In most cases considered the GMM based tests have correct size. However non-

normality of the errors affects the size of the tests.

2. The power of the test based on the System estimator is greater than or equal to the
power of the test based on the Arbov estimator. However, in many cases the power of

both tests is roughly the same and equal to the power of the FDMLE.

3. When the variance of the y;; — p; is larger than the value implied by covariance
stationarity, the power of the test based on the System estimator is greater than the

power of the tests based on the Arbov estimator and the FDMLE.
4. The power of the GMM based tests decreases with an increase of the value of ai.

5. In the cases considered the GMM based tests have greater power than either the test
that is based on the LSDV estimator or the test that is based on the FEMLE.

5 Concluding remarks

In this paper we considered GMM based estimation and inference for the panel AR(1)
model when the data are persistent and the time dimension of the panel is fixed. We derived
local asymptotic approximations to the finite sample distributions of the AB, Arbov and
System estimators, respectively, under a variety of distributional assumptions about the
initial observations. Among other things we found that the nature of the weak instruments
problem of the Arellano-Bond estimator depends on the distributional properties of the
initial observations. Moreover, when p =1 — A/N and when either the data are covariance
stationary or both S and N grow large with S/N¢ — ¢ > 0 and d > 1, then both the Arbov
and the two-step ‘optimal’ System estimator have non-normal local asymptotic distributions,
and the estimators of the optimal weight matrices for the Arbov estimator and the System
estimator and their asymptotic standard errors are no longer consistent. We also argued
that in these cases one should use LM tests and not Wald tests. Two LM-type panel unit

root tests that we proposed were found to have good size and power properties.

23



T | N | test size, S=—1 |size, S=49 | p=095| p=09 | p=0.8

6 | 100 | ARBOV2-LM* 0.035 0.030 0.308 0.799 0.999
ARBOV2-LM 0.058 0.056 0.416 0.872 0.999
SYS2-LM“ 0.029 0.030 0.281 0.759 0.998
SYS2-LM 0.050 0.054 0.378 0.842 0.999
FDML-W 0.056 0.056 0.457 0.914 1.000
FEML-W-SA 0.049 0.049 0.138 0.182 0.290
LSDV-LM-SA 0.050 0.050 0.308 0.732 0.994

Table 1: power against “non-stationary” alternatives with y;; = p;.

T | N | test size, S = —1 | size, §=49 | p=095|p=09 | p=0.78
10 | 100 | ARBOV2-LM* 0.030 0.029 0.261 0.663 0.987
ARBOV2-LM 0.059 0.054 0.370 0.756 0.993
SYS2-LM* 0.024 0.028 0.209 0.592 0.981
SYS2-LM 0.049 0.047 0.306 0.700 0.989
6 | 100 | ARBOV2-LM* 0.035 0.030 0.145 0.339 0.844
ARBOV2-LM 0.058 0.056 0.217 0.459 0.901
SYS2-LM“ 0.029 0.030 0.139 0.341 0.856
SYS2-LM 0.050 0.054 0.209 0.453 0.916
FDML-W 0.056 0.056 0.200 0.466 0.925
FEML-W-SA 0.049 0.049 0.118 0.162 0.319
LSDV-LM-SA 0.050 0.050 0.153 0.327 0.812
6 | 500 | ARBOV2-LM* 0.029 0.029 0.446 0.939 1.000
ARBOV2-LM 0.055 0.053 0.553 0.968 1.000
SYS2-LM* 0.027 0.028 0.446 0.958 1.000
SYS2-LM 0.050 0.052 0.567 0.979 1.000

Table 2: power against stationary alternatives.

T | N | test size, S=—1 |size, S=49 | p=095| p=09 | p=0.8

6 | 100 | ARBOV2-LM* 0.035 0.030 0.096 0.138 0.359
ARBOV2-LM 0.058 0.056 0.157 0.217 0.473
SYS2-LM* 0.029 0.030 0.089 0.189 0.609
SYS2-LM 0.050 0.054 0.151 0.278 0.721
FDML-W 0.056 0.056 0.068 0.116 0.351
FEML-W-SA 0.049 0.049 0.098 0.170 0.396
LSDV-LM-SA 0.050 0.050 0.060 0.101 0.378

Table 3: power against “non-stationary” alternatives with (y;1 — p;)|ps ~ N(0,2/(1 — p?)).

24



T | N | test size, S=—1 |size, S=49 | p=095| p=09 | p=0.8

6 | 100 | ARBOV2-LM* 0.035 0.030 0.138 0.351 0.799
ARBOV2-LM 0.058 0.056 0.216 0.459 0.870
SYS2-LM* 0.029 0.030 0.133 0.355 0.826
SYS2-LM 0.050 0.054 0.205 0.461 0.893
FDML-W 0.056 0.056 0.205 0.474 0.927
FEML-W-SA 0.049 0.049 0.118 0.166 0.325
LSDV-LM-SA 0.050 0.050 0.143 0.335 0.811

Table 4: power against “non-stationary” alternatives with (y;1—2u;)|pi ~ N(0, p?/(1— p?))

and p; ~ N(0,1).

T | N | test size, S=—1 |size, S=49 | p=0.95| p=09 | p=0.8

6 | 100 | ARBOV2-LM* 0.035 0.030 0.155 0.355 0.846
ARBOV2-LM 0.058 0.056 0.228 0.470 0.906
SYS2-LM¢ 0.029 0.030 0.143 0.370 0.881
SYS2-LM 0.050 0.054 0.215 0.477 0.930

Table 5: power against stationary alternatives, * = 1 and o, = 0.

T | N | test size, S = —1 |size, S=49 | p=0.95 | p=09 | p=0.8

6 | 100 | ARBOV2-LM* 0.035 0.030 0.085 0.161 0.376
ARBOV2-LM 0.058 0.056 0.138 0.236 0.459
SYS2-LM¢ 0.029 0.030 0.077 0.147 0.351
SYS2-LM 0.050 0.054 0.127 0.215 0.435

Table 6: power against stationary alternatives, 0 = 1 and o7 = 100.

T | N | test size, S =—1 |size, S=49 | p=095| p=09 | p=0.8

6 | 100 | ARBOV2-LM* 0.052 0.047 0.163 0.311 0.619
ARBOV2-LM 0.100 0.091 0.256 0.420 0.732
SYS2-LM* 0.036 0.039 0.141 0.328 0.743
SYS2-LM 0.070 0.075 0.228 0.447 0.831

Table 7: power against stationary alternatives with (y;; — ;)| ~ [x2(1) — 1]/2/2
and p; ~ N(0,1).
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A Proofs of the results

A.1 Proof of theorem 1

~ NN g 1Ays NN yi10e3
Part al): When T = 3 = ISl ohl s — + i=1-to—t2 - Note that
) » PAB N-1 ZlNzlyi,lAyi,Z P N_lzﬁil Yi,1AY; 2

E(yinAyiolyin, pi) = (p — Dyin(yin — ), Var(yiiAyialyia, i) = Var(yiagielyia, w) =
o*y?y, E(yiiAeiz) = 0, Var(y1Ae;3) = 20207 and Cov(y;1Ae; 3, 4i1Ayi2) = —0°02.

Let us define X; = N~1/2 Z,fil Yi1Ae;3 and Xy = N7V/2 val Y;1Ay; 2. Then we obtain
for the parameter sequence p = 1 — AN~Y/2 that X; -5 N(0,20202) and Xy -5 N(—A(02 —

v v
Ouy), 0°02). Moreover, it is easily verified that Cov(X1, Xp) = —o?07.
It follows that pAB—>p—|— , where |:X2:| NN{( A(%y—()’f/) >,(r ay( 1 )]

Part a2): Similar to part al). For instance, let X5, = N7!/2 ZZ LYikQei; and Xg, =
N7Y2ST g wAyiir with k < 1—2. Note that E(y; xAyii—1) = (p— 1) Elyin(yii—2 — 1)) =
(p—1)p" "> " E[(yik — pti + 1) (Y. — 1)) Moreover, let 52, = 024 (k—1)o?. Then it is easily

X i [ X 0 - 2 -1
seen that for p = 1 — AN~1/2, PSP N ( 3 ) L0252 < ) ,
g [ Xop Xe.p H6,p vE\ -1 1

where figp = A(0uy — 02). Finally, let s < ¢ — 2. Then the (p, g)-th elements of Y55 =
Var(Xs) = E(X; X’) 266 = Var(Xg), and Y56 = Cov(X;5, Xg) = E(X5X}) are given by,
respectively:
001)()25773,5(5,(]) = limpn_ecCov(y; xAci g, Yi s Aciy) = UMy oo B (y; kYi s A 1A 1), Where
Umpy oo B (i kYi s Aci i Agiy) = 202(02 + 0?[—1 + min(k, s)]) if [ = ¢,
Ny oo B (yi ki s AciiAesy) = —02 (07 + 0°[—1 4 min(k, s)]) if [l —t| = 1, and
By oo B (i kY s A1 Agiy) = 03f |1 — ¢ > 1;
C’ov)(X67p,X67q) = limy_0cCov (Y kAYii-1, Yi s AYiz—1) = UMy oo B (Vi kYi s€i1—1€i-1), Where
WMy oo B (Ys k¥i,s€i—-1814-1) = 02(02 + 0*[=1 + min(k, s)]) if | = ¢, and
BN oo E(Yi ki s€i1—18i0-1) = 0 if |l —¢| > 0; and
C’ov()v(&p,X&q) = limy_0cCov (Y kA1, Yi s AYir—1) = BN oo E(Yi kYis€it—10; 1), where
WMy oo B (Y p¥i,s€ip—1085) = 0*(02 + 0?[—1 +min(k,s)]) if [ =t — 1,
UMy oo B (s ki s€ip—1065) = —02 (02 + 0*[—1 + min(k, s)]) if [ = ¢, and
By oo E(Yi ki s€it—10¢i;) =01if I # ¢t — 1 and [ # ¢.
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Recall that Z] = KABZAP where ZAP = [Z] ZP]. The above results imply that

NN ZUAw ] 4 [ X5 0 s o H —C'
[Nwzjvzlzmy“ T X "V Mo -2 )7 o 1 )]

NWR2SN ZP A ] 4 [ Xss
~1/25x"N oDia, - X ~
N2y 27 Ay 4 62

N 0 o diag(Hr 3, Hr 4, ..., Hy) —diag(Cr 3, Cr 4, ..., C1)'
—)\O'QL ’ —d’iag(Cng, CT,4, ceey Cl) I '

Moreover, they imply that 255712 = Cov(Xs51,X53) = 0, and also that 256712 = 256721 =
Y6612 = 0. Finally note that X5 = KAP(X., XL,) and Xg = KAB(X}, X4,

Part b): When S is fixed, paqor does not suffer from a weak instruments problem. Let
et = [ei2 ... €iy]. When p =1, v; = &5, Ayt = ¢t and Z}! = diag(e?,...,el ). It follows that
for p=1—AN"Y2 N-1/2 Zfil ZHN; 4, N(0,0%I,), N7! Zfil ZHy; 1 ™% 5%, and hence
plimy_oo Nt Zfil ZIy; 1 = %1,,. The local-to-unity asymptotic distribution of passe is

equal to the first-order fixed-parameter asymptotic distribution of paypey for p = 1.

Part c): It is easy to verify that the sequences of sample averages in ¢), d) and e) converge
in probability to the corresponding population means for p = 1. Therefore we will only
prove the claims made with respect to those limits. We first show that limy_ . E(Z/HZ;) is
PDS. Recall that Z, = KAZZAP' where K4P is a nonsingular constant matrix and Z# =
[indr—2 diAyip d2Ayis ... dp_sAy;p_o]. We have limy_oo E(ZAP HZAP) = diag(o2Hr—s,
o?Hyp_3, 0*Hp_y, ..., 02Hy) is PDS since H; is PDS for all ¢+ < T — 2. It follows that
limy oo BE(Z/HZ;) =limy_o KABE(ZAP'HZAB)KAP is PDS. Similarly, limy .o E(Z/Z;) is

PDS since llmN_on(ZZAB/ZZAB) = diag(aSIT_g, O'2IT_3, O'QIT_4, ceey 0'211) is PDS.

Parts d) and e): When p = 1, v; = &;, E[(Av] v}) (A} v))] = 0%A, Ayt = ¢! and Z7 =

diag(yiIr—s, diag(e?,....c] 1)). It follows that limy .. E(Z'AZY) = diag(o2H, 0*1y,),

which is PDS, plimy_cWnamorr = 02X pimy oWy arbor2(p1) = o %I, and
).

phimy oo Wh,sys1 = 02X plimy_.sc Wi sy s2(p1) = diag(o,?H ', 021,

Part f): These results follow from parts a) and b), that is, from plimy .., N2 SN ZF Ay,
= plimy_,oo N7* ZZ]\LI ZI'(e]1) = 0, while plimy_s N7 Zf;l ZHy, 1 = 0%, = Xg #£0,
and from the fact that N=Y2 3N zH0, 4 Xpand N=V2 SN ZiA0, = N-1/2 3N KABy

d v : : :
[Z] ZP] Av; = X5, where K4P is a constant and nonsingular matrix.
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Part g): From parts b), d) and ¢) we have Xg = 021p, Var(Xs) = Wiggs s = Winhows =
o1, and Wsysa12 = Weysaz = 0. It follows that Asyvar(psyss) = (XsWsyso20Xs) ™' =
(XiW arbor2 Xs) ™1 = Asyvar (Papovz) = 1/m.

Part h): Recall that pap1 = {3, [0 1,1 Z(Z12) 245 1010} 205 W1 2024 20) 7
Z{ys). Since ZZ 21@, 1t— 12 Z{Z)~ 1Zﬁt] = (Z;’\;l Ayg,flzi)[Zizl(ZéHZi)] fo\il ZiAv;
and ZtT 21@' w122 Z)” YZy 144 = (fo\il Ayé,AZi)[ZﬁNZ{HZi)]_l Zi\;l ZiAy; q, it

follows from parts a) and c) that the numerator and denominator of p4p; — p converge in

distribution.

We now show that limy .. E[Y |, Z(Z{Z;)"  Z{vy] < 0 for t = 2,...,T — 1. Note that
By oo BE[Y 1, 1 Zd(Zi2) 7 20) = iy B{ i B0 12 Z{Z0) T 2idig]} =
limpy 0 Zf\;[ (2 (Z{Ze) " 210) % E(i-1,6-1810)]-

Now, B(fi1eiB) = (75) B |0t — 75 o pe) G — 75 D s)| =
(r47) B [~ S e g T TR phel] = —o® (z2m) (7))

[Zs:t—i—l > kT 141 P } It follows that Timy co E(yi,-10-1800) = limpn B(Yi1018i0) =
—10?. We also have limy ..o E(X1, 20,(Z{Z) " 2i4) = Eltp(Ii1)] =t — 1 > 0.
We conclude that Umy o >1_o E(V.1 41 Z4(Z12:) " Z}7;) < 0.

To complete the proof of the asymptotic biasedness of psp, we write the numerator of

Pap — p, ie. S(OON, §i7,17t,1z§7t)(Z{Zt)_l(zi]il Zi1€it)], as the sum of two terms:

T-1 N 1 T—-1-t 1 T—-1 T—-1-s
{ [Zzé’t(ztlzt)lzﬂm) (‘ S ")” .

t=2 i=1 k=0 s=t+1 k=0
T—-1
+{ [V 1122, 2,) " ZE— (16)
t=2
T—1-t — —1-
ZZ;t(ZQZt)ilzi,t(T_t_i_l ( et Ty Z Z )]}
i=1 k=0 s=t+1 k=0

The first term, (15), converges in probability to limy ..o r o B[ w1221 2y) 7 Z1E).
Since the numerator of pap — p, Zt L7 121(Z{Z,)" ' Z{2,, converges in distribution to a
random variable with mean limy_q 331, ElY 1 12(Z{Z,) "' Z{g,], the second term, (16),
converges in distribution to a random variable with mean zero. For convenience we will

assume that the &; ;s are symmetrically distributed around zero. Doing so does not entail a
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loss of generality since imposing this assumption does not affect the asymptotic distribution
of pap. Noting that the second term does not involve higher powers of ¢;, (higher than
one) and using that the €} ;s are symmetrically distributed around zero, it follows that the
second term is symmetrically distributed around zero and also asymptotically uncorrelated
with the denominator of pap — p, 31y [V V122 Z,) " Zyy-14-1]. We conclude that the
expectation of the second term divided by the denominator converges to zero as N — oc.
The ratio of the first term and the denominator converges to a negative constant divided by

a positive random variable and gives rise to the negative bias of pap. O

Lemma 8 Let {yzt} be a stationary process and let w;y = y; 1 — -

o2 o2 — 02k 2
Then B(uy 18uiy) = 55, El(Au)?) =22, B(ul) = fobditso?,
o) 2[k(1—p2
El(Au;y)t) = PG e b0l gt 4 SURgt g oot Blugy 1 (Auge)?] =
—0)[k(1—02 2 % 9
~grtas " iy ond i ) - o' + 2pot

Proof of lemma 8: Note that u;; = pu; ;1 +¢;; and Au;y = (p— 1)u; 41 + £;4. Moreover
{u;,} is a stationary process. Then verification of the first two claims is straightforward. The

other claims are proved as follows:

E(u?t) E(p uzt 1t 6p2u12,t—1512,t + 5ﬁt) = P4E(Uit) 4+ S0 ot

(1-p?)
B(ufy) = %5 + it Al é{;‘;ﬁlﬁf/’,’i)a‘*,
E[(Auzt)]= El(p—1)"uiy 1 +6(p—1)%u, 1€zt+€§‘t]=(1’€{ﬂ*;§%(1f;$6p2]a4+ Lot t kot
Bluiy1(Aui)¥] = El(p— 1)*uly | +3(p — D2, 2] = —<1*(q>£;<)g;fj§)6p2]a4— ot and
E[u,t 1(Auzt)]:E[(P 1)%u zt 1+uzt 15”]—% ot. O

Lemma 9 Let {y;;} be a stationary process. Then

2

2
E(yi1Ayiz) = —1 E(yi2Ay;2) = gt

Var(yiiQeis) = W’ Var((eis + (1 — p)p) Ayi] = w,
Var(yiabyiz) = SEERER" + ity + ~ e

Var(y; 2Ay;0) = 02((11(;)—2/)(21);;6/;2) ot + (1+p§?1 =+ r(1+p)?—1— Gp((lliz)):—Q(Uu/U )(1+p) ot
Cov(y;10¢;: 3, Yi 1AY;2) = —W7 and

Cov|(giz + (1 — p) i) Ay, Yi 2AYi 0] = 20—2?2(;—_/)).
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Proof of lemma 9: Noting that vy;; = u;; + p;, application of lemma 8 yields

E(yiaAyis) = El(uin + pa) Auip] = =25,

E(yi2Ayiz2) = ElyiiAyis + (Au;2)*] = %,
ar(yz 1A€¢73) = E[(yi71A€i73)2] = E[((U%l + ,LLi)A€¢73)2] = 12;‘42 + 20‘2
[ )

2 o 1 2
Varl(ess + (1= ) Agial = El((2i + (1 — phps) Auig)?] = 22040000

2
Var(yi1Ay;2) = El(ui1Au; s + pidu; o + 1+p)2] = BE[(u;1Au;g)* — (ﬁ’:)Q + ‘;:; + (1+p)2] -
(5(1—p?)+652)0* 0?[202(14p)—0?)

sttt ey T
Var(y2Ayia) = El(wiiAug + (Augz)? + pilugz — ?2;,)2] =

2 _ 20200 +ou(1-p?)]
T Q+p)(1-p)

E[(Uz 1Au; 2)2 (Aui 2)4 (,UiAui,Q) (1+p)2 +2u; 1(Auz 2) 1+p (Uz 1Au; 2) 1+p(AUz 2) | =
(r(1=p*)+6p%) 4 (1=p)[~(1=p*)+6p%] 4 (1 P) ol 20%07 ot 2(1-p)[r(1—p*)+6p%] 4
e e M i e e e s Nl TR T e T )
6 g4y 4ot PP(k(1—p?)+6p?) 4+ 4 R(4p)? 1 -6p(L+p) +2(o3 /o) (1+p) 4
e (1+ﬂ)2 (1+p)2 — (1+p)%(1+p%) (1+ﬂ)(1 p) (1+p)? ’

COU(yi,lA&,?” yi,lAyz‘,Q) = COU(Uz‘,lA&‘,?nUz‘,1AUz‘,2) + COU(MA&',& ;uiAui,Q) =
E(u Ae; 3Au; o) + 02 E(Ae; 3Au0) = —E(uf g7 5) — 0% E(el,) = —w, and

(1-p)(1+p)
Covl(ers + (1 — p)p) iz, i Ayao) = E[(1— p) (i p)?) = 2256022

A.2 Proof of theorem 2

~ - Ae ~ NSV (ei3+(1—p)ps) Ay, 2
When T = 3 - iavales o0 — DAY
’ pAB p + N-1 szl Yi, 1Ay1 2 pATbOU p + N-1 Zz 1 Y, QAyz 2

Let us define X; = N ! Zfil Yi1Aegi3, Xo = N1 Zfil Yi1Ayio, X3 = N~1/2 ZZ (eig +
(1— p)pi)Ayiz and Xy = N 1ST 4 5Ay; 5.

Let the CS model hold. Then using the results in lemma 9 we obtain as N — oo for the
parameter sequence p = 1 — AN~ that X; -5 N(0,0%/)), X5 5 N(—02/2,04/(2))), X3 -
N(0,0%), and X, -5 N(02/2,04/(2X)). It is also easily verified that limy_.. Cov(X1, Xs) =
—o1/(2)) and limy_o, Cov(X3, X4) = 0. It follows that

X 0 2 -1
PAB—>p+—Where{X;]NN{—%\/X(l),%<_l 1)],and

~ d X X, 1 (0 1 0
\/N(pArbov—p)ﬁX— Where{X4:|NN|:§(1>7(O il O
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Lemma 10 Let {y;,} be a stationary process, let u;y = y;y — s, let I, p, and q be positive

integers, and let kg = |E(] Eit )/o| < oc.
Then (a) limpTl(l—p)pE(ui ) < 00, (b)limy (1—p)P }E(uf’fl)‘ < 00, (¢) limy E[(Au;y)P] =
P, (d) limyy1 (1 — p)? | Elu; P (Aug ) ]| < oo, (e) limyi(1 — p)P ‘E[ung(Auit)qH < o0,

(f)hmpnl— P Blel juif (A )| < o0, and (g) limyp (1= p)? | Blel juisH (Aug)7]] < oc.

Z

Proof of lemma 10: Note that {u;} is a stationary process, u;; = pu; ;1 +¢;; and Au;; =
(p — Duig—1 + &ip. Moreover, E(u,) = El(puir—1 + €i1)"] = E[>_h_o B(p, k) (pui—1)P ek, ],
where B(p, k) = [k!(p — k)!|71p!
We prove (a) and (b) together. The proof proceeds by induction:
First consider p = 0 : E(u),) = 1 and E(u;;) = 0 and hence lim,y; E(u;) < oo and
limyyy |E(uf,)| < oo.
Now let p > 0 and suppose that lim; (1 — p)?E (u;] 1) < 0o and limy (1 p) | E( Qq“)} < 00
for ¢ < p — 1. Note that limy1(1 — p)~H(1 — p) = lim, (37, pF)~! = 1/(2p) and
lim1 (1 — p?*1)7H(1 — p) = 1/(2p + 1). It follows that limy1(1 — p)PE(u) = limy (1 —
pP)H (L — p)PB(2p,2) Eufy )B(e3,) = 0 (2p) 7 B(2p, 2) x limypi (1 — )P B(ugf) %) < oo,
It also follows that lim,1(1 — p)? [E(uif™)] < limyp (1 — p®7H) 711 — )pB(2p +1,2) x
B ) Be2) + lmyp(l — p# )71 = pPBEp + 1,3)E(uf ®)|EE)|
(2p + 1)7'B(2p + 1,2) x limyp (1 — p)P~t |[E(w )| + |rs|o®(2p + 1) IB(2p + 1,3) x
lim1 (1 — p)P L E(uf} ?) < oc.

The proofs of (C) o (g) are now straightforward:

(©): Tanyy E[(Aump] — timpy B[((p — gy s + m)p] = Bl(e] = rpo”

(d): limpy1 (1 — p)P | Eu;? (Aug)?)| = limyp (1 — p)? | E[uife? ]| < oo,

(e): limpy1(1—p)? |E| 2p+1(Au2t )| = limypy (1—p)? | E| 2p+1(B(q,1)(p—1)u“71€3;1+53t)]\
< o0, (f): limy(1—p)? |E] Zku2p(Auzt )| = limy1 (1—p)? | Ele kufg 1,]] < o0, and finally
(8): limppa(1—p)? | Blel cu* (Aas )] = limypy (1—p)? | Blel M (Blg, 1)(p — Duiggrcly '+

Zt)” <oo0. O
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A.3 Proof of theorem 3

Part a): The proof of the first two results is similar to the proof of the first part of
theorem 2:

For p = 1 = AN"! limy oo E(yi1Ayig—1) = lmyooe p' *E(yi1Ayip) = —30° and
limpy oo N War(y;1Av;,) = limy oo N E[(yi14A8:4)%] = limy oo N 1E[(yi1Ac:3)?] =
My oo 20°N 1 E(y7)) = limy oo 20°N ' E(uf,) = o /A,

Note that Var(y;1Ay;—1) = E[(u;1Au; -1 +uiAui,t_1+%pt*3)Q], Uit = pU;—1+€;, and
Au;y = (p — Duge—1 + eiy. Then it is easily seen that for p = 1 — AN!
Hmy oo NV ar(yinAyig—1) = imy oo N Ef(us1 At —1)?] = limy oo N ' E{[(p—1)ui, +
Ui1€i4-1)°} = limy oo N 'E[(ui18:4-1)%] = 0*/2); that if s < ¢t —1and p = 1 — AN !
limy oo N 2Cov(Yi 1AYi 5, Yi 1 AYit 1) = limy_ oo N’lE(uilAumAui’t,l) =
Ny oo NP E (U A s A gp1) = limy oo N7 E{ug  [(p—1)us—1+&5][(p—1) (pus—1+¢5)]} =
0; imy o N Co0(ys 1 AV, i1 A1) = Umy_oo NT'E(yF Agi i Auiy 1) = —o/2X and
finally that limy_oc N7 'Cov(y; 1 Avy, Yi1 Ayis) = Iy oo N7 E(yF | Agi jAugy) = 0 /2.

Thus for p = 1 — AN limy_oo NTE(Z]' Av; AvjZ]) = limy oo 0* N7 E(y7 ) H =
(0*/20)H, limy_.oo NT'E(Z]' Ays 1 Ay; 1 Z]) = limy oo 02 N7 E(y7))] = (0*/2)\)] and
my oo NT'E(Z] Ays 1 AviZ]) = — limy_o 0? NTIE(y7)C = —(0%/2X)C' and hence

N7, 71 A, A Xs1 ~ N 0 (Z) H -
N_l szil ZiI/Ayi,fl XGl —%O'QL 7 A2A -C i .

Note that ¥s611 = F(X5X4,) = —(6%/20)C" # 0. Moreover, when T = 3, X5; = X;/VA
and Xg = Xo / VA, where X; and X, are defined in theorem 2.

Consider now the scaled sums N~ V23N ZP'Ap; and N-V2S°N ZP'Ay; . For
p = 1 — AN"! we obtain limy_ .., NY2E(ZP'Ay; 1) = limy_oo NY2E(ZP'Au; 1) =
limy oo NYV2E{ZP'[(p — Vu; o + &5, 1]} = 0. In addition, limy .., E(ZP'Av;AviZP) =
my oo 02 E(ZP'HZP), limy_oo E(ZP' Ay 1Ay, 1 ZP) = limy_oo?E(ZP'ZP) and
lmy oo B(ZP' Ay 1AV ZP) = —limy_ 0o 0?E(ZP'CZP). Hence for p = 1 — AN!
{ N-1/2 Zfil ZP' A, } a { 852 } N

N~12 Zfil ZP' Nyi, 4 Xe2

N 0 0_4 diag(HT_g, HT—47 ceey Hl) —diag(C’T_g, CT_4, ceey Cl)l
0 ’ —diag(C’T_g, CT_4, ceey Cl) I ’

Note that 256,22 = E(X52Xé2) = —04diag(C’T_3, CT_4, ceey Cl)l ?é 0.
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Next consider the off-diagonal blocks 5355712, 266,12, 5356712 and 256,21. Since
limy oo BE(ZAv;AV,ZP) = limy oo 0c?E(ZVHZP) = limy o o?HE(y;1ZP) =
limy oo 02 HE(y;1[d1Ay; 2 dopAyia ... dr_zp’ *Ay;s]) = limy oo —%OAH[dl dy ... dp_s],
we have Ys510 = E(X51XL,) = limy_o o?N"V2E(ZVHZP) = 0. Similarly, Ye12 =
E(Xq1Xly) = limy_oo?N"V2E(ZI'ZP) = 0, Y5610 = BE(X51Xly) = —limy_o0? X
NY2E(ZIC'ZP) = 0, and 5601 = E(X52X},) = — limy oo 02 N-V2E(ZP'C' Z]) = 0.
Recall that Z! = KABZAP' where ZAP = [Z] ZP] and rank(K“P) = m. There-
fore pap1 is equal to an GMM estimator that exploits E(ZAP’Av;) = 0 and uses the
weight matrix (N2 SN ZAP'H ZAB)~1. Consider the local-to-unity limiting behaviour of
this weight matrix. Since imy_o N~ *Var(y;) < 0o, imy_o N 'Var(y;1Ay;) < co and
My a0 Var([Ayi]?) < oo, it is easily seen that for p = 1-AN"' o2N 2N (ZI'HZ]) %
Ss511 and 02N 32N (ZI'H ZP) % 0. Moreover 02N~ S°N (ZP'HZP) ™% Y55 95. There-
fore plimy oo 02N 2SN (ZVHZ!) = Y511, plimy e 0> N2 SN (ZPPHZP) = Y5509
and plimy ., 02N 323N (ZVHZP) = 3551, = 0. Furthermore Y55 is PDS. It follows
from the above results that pag; — p 4 Xéig;fg / X’éf}g;f(ﬁ. Assuming that pap exploits
E(ZAP Avy) = 0, it also follows that pup — p — X4, Wiy Xs1/ X4, Wi Xe1.

Finally, it is easily seen that if T = 3, then Xs= X5 = Xl/\/X and Xg = Xg, = Xg/\/X,

where Xl and Xg are defined in theorem 2.

Part b): The proof of the first two results is similar to the proof of the last part of
theorem 2 and the proof of part a) of this theorem:

Stationarity implies that for p = 1= AN limy o F(y;,:AYir) = limy oo E(yiaAyia) =
02/2 and limy oo N"War(y; 1 Ayir) = imy_co N"'Var(y;2Ay;2) = o*/(2X). Moreover, if
s < t, then for p =1 —AN"! limy oo N7 E(y; s AYi sitAyi 1) = Impy oo N7PE (0 sAu 5 X
Wi Aty y) = Bmpy oo N7EE (5o Aty sty g1 AU ¢) = limpy oo NTUE (g 51 At st 51 At 511)
= limy—oo NTUE{uf, 1[(p — Dus—1 + &) [(p — 1) (ptts—1 + £5)]} = 0.

Thus for p = 1 — AN ! limy_o E(ZMvZE) = limy_o oc?E(ZVZE) = o1,
My oo N E(ZFys 1y; 1 ZF) = (0/20)] and limy_o N-YV2E(ZEy _iZE) = 0

N2zl 1 a [ Xn 0 sy (2N 0
and hence N’lzﬁlgf’yi,_l — X ~ N %O_QL , (55) 0 I .

Note that Y7g.20 = E(X71X4,) = 0. Since limy_, N*1/2E(ZiD’Aviyz’-,_1ZiL) = 0, we also have
5378712 =F (X52Xé1) = 0. We conclude that Y75 = 0. Furthermore it is easily verified that
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Sor = Var(Xy) = limy_o KT E(ZH 0 2T K1 = o' KT KT

It follows in a straightforward manner from the above results that plimy .o (Parpor — p) =
0 and VN (Parsos — p) — XLW X7/ XIW X with Xy = (XL, X2,)' ~ N(0,%7) and Xz = (0'
X4)'

Finally, it is easily seen that if T'= 3, then X} = Xg and XS = X'4, where Xg and X4 are
defined in theorem 2.

Part ¢): Since limy_ N*QVar(yzl) < o0, limy_o N 'WVar(y.1Ay;;) < oo and

q.m.

limy e Var([Ayi]?) < oo, it is easily seen that for p = 1 — AN"Y, N2V (zI'zl) &
limy o N 'E(ZI'Z]) = &SI, N3N (ZF'ZP) ™ limy oo N"V2E(ZI'ZP) = 0 and
NN (2P zP) “ limy oo E(ZP'ZP) = 0*1. The results are obtained by noting that

convergence in quadratic mean implies convergence in probability.

Part d): Since limy_ . Var([Ay;)?) < oo Vt, it is easily seen that for p = 1 — AN !
NISN (Z17 21T " limpy o E(ZIT'Z1T) = 01 and hence plimy ., N1 SN (711" Z1T) =
o?l.

To establish the second claim of part d), note that v; = y; — p1y;i—1 = v; + (p — P1)¥i—1
and Av; = Ay; — p1Ay; 1 = Avi + (p — p1) Ays 1.

Lemma 10 implies that limpy . E(Au)® < 00, imy_o N Euf (Augy)®] < oo,
limy oo N*2E[uﬁs(Aui7t)4] < 00, limy oo E[(Au;)?t] < oo, limy oo |Efuss(Au)?]| < oo
and limy_oo N Efu? ,(Au;)?] < 0o Vs, t. It follows from the first result, our model assump-
tions and the Cauchy-Schwarz (CS) inequality that limy . Var([v; sAy;]?) < oo Vs, t and
hence NSOV ZIVAwl o) [Av) 0] ZH 5% limy oo KTTE(ZM 0 ZI) KT = o' KK
Similarly it follows that N~2 3N (ZFy, _1yi _ZF) % limy_ee N 'E(ZFyi 1y, ZF) =
(0*/20)1, N 230 (2P Ay 1 Ag;_, ZP) ™50 and N2 300 (2 yi 1 Ag; 1 ZP') 500,

Lemma 10 and our model assumptions also imply that limy e |E[v; g s(Aus)?]| < oo
and limy_o N~ E[v7,u? (Augy)*] < oo VE, s,t. Tt follows from these results, our model as-
sumptions and the CS inequality that N3/2YN (ZF vl 1 27) e,
NORYY (ZPuAgZP) 0, NORYY (2P iAgZP) T 0 and
N2 (2P Ay, AUZP) o,

We conclude from the above results that N=* S°% Z{I’[&)z oAl [5\1); W ZH L AR Iy
(0*/2M)K2diag(Om—(r-2), IT_2).

34



Part e): The proof is very similar to part h) of the proof of theorem 1 apart from the

first paragraph: Again recall that pup; = {ZtT:_Ql [ 10120 Z{Z) 2y —10-1]} X
tT:_Ql[gl—l,t—1Zt(Zt/Zt)71Zt/§t]- Since Zth_zl[gl—l,t—1Zt(Zt/Zt)7lzﬁt] = (sz\il Ayé,—lziAB)x
oL (ZAP HZAP) S ZA Av and v W1 2 Z{20) " 211 =

(L Ays L ZAB) SN (ZAPHZAP) VSN, Z2P Ay, 1, it follows from part a) above that
1~ P N 1~ 1~ d o1&l
tT:21 V14120 Z020) " Zyge) — X355 X5 and ZtT:zl V141 20 Z20) 7 2y —1,0-1] = X§255 Xs.
The rest of the proof is the same as part h) of the proof of theorem 1. [

A.4 Proof of theorem 4

C’ I o
Let My = N 'SN (Z'HZD), My = My, = NN (ZFCZ) and My =
N-'SN (Z17ZIT). From parts a) and d) of the proof of theorem 3, we have plimy o, N~ x

Part a): WN7SY,S’1 _ (Nfl Zfil ZZSIAZZS)il where ZZS = dzag(ZZI, ZZII) and A = |: H C :| .

Mll = 0'72255,11 = (%)H and pth_m MQQ = O'QI. Moreover, since th_m E(yi,lAyi,t) =
—0?/2 and limy_o N 'Var(y;1Ay;:) = o*/2\, we have limy o }E(ZZ-I’CZZ-H)‘ < oo and
plimpy oo N~Y2M;5 = plimy o, N~Y2M}, = 0.

Mll M12 }1 B |: Mll M12

Note that WN7sy51 = { My, My, = Mt 22

} , Where

MY = N~Y( My /N — MigMyp! Moy /N, M2 = — MY MMyt MP = — My My MY
and M?2 = My,' + My,' My MY My Myt
The first claim follows now straightforwardly by Slutsky’s theorem. The proof of the

second claim is very similar.

Part b): Note that Z¥[Av, 3] = (Z!'Av,) (ZI[Av, 7).
From part d) of theorem 3 we have N=2 S ZZH,[E’U: 17;]'[&); V2L WL
Lemma 10, our model assumptions and the Cauchy-Schwarz inequality imply that
imy oo NT'E[(Avig)?uf,] < oo and limy_o N72E[(Avis)tui,] < oo Vs,t, and
hence N=2 3N (ZI'Av; Av,Z1) 5 limy oo N™1E(ZY Av;Av} ZT). In part a) of the proof of
theorem 3 we showed that limy ..o N7 E(Z Av,AviZL) = limy o 02 NYE(ZVHZY) =
(g—f\)H It then follows along the lines of part d) of the proof of theorem 3 that

plimy_,oo N2 fo\il(z{/&)i&)fiz{) = (g_:l\)H
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Similar arguments show that plimy . N2 (K ZMyAviZ]) = 0 and
plimpy_oo N 2 val(KHZ{I'yi,_lAvl’-ZiI) = plimpy_,o N2 Zfil(yleHZ{I’LAv,ﬁ) = g—iKU X
Eldiag(<?, ....eT")1Ael) = SKMD. Note that KT1ZI'5; = ZIM[Av, #. It follows that
N2 YN (21 Av, #)Av,Z]) & —ZKKID.

Noting that Wj.g, = i, Waee = (Wig,) = sx/KCK' D, and Ws2 = Winhouss We
conclude that diag(N~ 1IT_2,N V2L, SN 1ZSI[AU iz] (A, 0] Z8diag(N~'Iy_g, N“V21,,)
5 o Wysa
Part, ¢): From part a) of theorem 3 we have N"L SN zI/Ap, 4 X5 NI Z1Ay; %
X1, NTV2SN 700, & Xy, and N=V2 SN 20 Ay, 1 Ko, with X5 = (X2, XLy ~
N(0,%55) and Xo = (X§; X&) ~ N(fis, Ses)-

From part b) of theorem 3 we have N~1/23°N 7, < X~ N(0,%772), and

NN, ZEy 15 Xy~ N(54 ST).

Recall that Z/V[Av) o] = K"z, Let K5 = diag(Ip_s, K'). It follows that
7S [ A vl] = ((ZV Av,) (ZZ-H’[AW )Y = KSZ2' [ Avl vl

Consider now KSWN}SY&KS’ = NN KSZSAZSKS and KSW]QEYSMKS’ =
NISN KSZ87ZSKS. From part a) we obtain plimy .o N23N (ZFHZE) =
(Z)H, plimy_o NVSN (KU ZIVZIKIY) = Q2KURET = 5725, and
plimy oo N=3/25°N (ZI'CZIK!") = 0. We also have plimy .. N2 (ZI'Z]) = (£)1.

We conclude from the above results that plimy .. (psyst —p) = 0 and VN N(psyst—p) A
RS % XU K for k= 1, 1b,

It immediately follows from part b) and the above results that plimy_ .. (psysz — p) =
0 and V' N(psysz — p) LN X{ WeyseX10/ Xj, Wsys2 X1 with Xy = (X% XL, X%,) and
X1 = (00 X4,

Part d): From the results mentioned in part ¢) above we conclude pgys— p <, (X4 Wiy X5 +
X} Wa1 X51)/ X, W X1y with Xpp = (X4, 0 X4,). O

Lemma 11 Let g, d, ¢ and A be constants such that 0 < ¢ < 1,0 < d < g, 0< ¢ < o0,
and 0 < X < co. Furthermore, let p=1—AN79. Then limy_.o, g/ya_e N974(1 — p?1+9)) =
G(A, ¢) < oo, where (A, ¢) =2A(S+1) if d =0; g\, ¢) =2X¢ if 0 < d < g; and §(\, ¢) =
q(r.¢) ifd=g.
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Proof of lemma 11: Note that (1 — p>+5)) /(1 — p) = (14 p't5) 325_, p* and recall that
lim, (1 + z/p)P = exp(z) and q(A,¢) = 1 — exp(—2Ac). There are three cases: d = 0,
0<d<g,and d =g.

First assume that d = 0. Then S = ¢ is fixed and limy_«, s/ya_e N9 4(1 — p*1T9)) =

By oo, 5= A(1 — p20H8)) /(1 = p) = limy oo, 5me A(1 4 p'5) S35 pF = 2X0(S +1).

Next assume that 0 < d < g. Then we have limy_ g/nieS ! S opb =1,
because 1 > limy_,o g/nae S~ " S b > limy o s/niep® = 1. It follows that
limy e, s/n3vdme N9 4(1 — pPIH) = limy e, s/Nime AN 1 — pPUN /(1 = p) =
iy oo, /v M1+ pH5)eS— 1 Y0 pb = 2)é.

Finally assume that d = g. Then we have limy_ o gnae N9 %1 — p*T9)) =

WMy oo, s/n9—e(1 — p?F9)) =1 — exp(—2A¢) = g(A,¢) < co. O

A.5 Proof of theorem 5

Note that lim,; Var(y; —s—p;) = 0. Then we obtain for the parameter sequence p = 1-AN"9
that limy_e s/nime N Var(yin — ps) = limy o gname 0> N-4U1 — p?1T9) /(1 = p?) =
My oo, 5/5de 02 NI4(1 — p*1T9)) /(2X) = 0%G(, ¢)/(2)) by lemma 11.

Let 025 = E(y;_g) and let the indicator function 1{d = 0} = 1 if d = 0 and let
{d = 0} = 0if d # 0. Then it follows that limy_ . g/nae N Var(yi1Ayiz) =
Hmy oo, s/nvame N WVar(yineiz) = o*(0?q(X,¢)/(2N) + 1{d = 0}o2g). Furthermore, if
0 <d < g, we have limy_, g/nd_z N9 E(y;1Ayi0) = —limpy o S/Nd—sé AN Var(y;, —
wi) = —o2q(A, ¢)/2. Finally, if d = 0, we obtain by using arguments similar to those in the
proof of theorem 1 that limy_. g/nvec N9 E(y;1Ayi2) = Moy, — 02). Note that when
d=0, 02 =0%G(X,¢)/(2N) + 02

i yialeis (ei3+(1=p)pi) Ayi 2
SN i1 Ayio SN YioAyio )

Let us define X, = N3OSN 0 Ay Xy = N V25N (g5 + (1 — p)ps) Ayis
and Xy, = N ! Zfil i 2Ay; 2. Moreover, let Xy = N—3(1+d) Zfil Yi1Ay; o if Ayy < 0 and
Xy = N4 N 0 Ayig if Agg > 0.

Recall that ¢(\, ¢) = 0 if ¢ = 0. Then using results similar to those in lemma 9 we obtain
as N, S — oo with S/N — ¢ >0, S/N9 — ¢ >0 and S/N? — ¢ > 0, where 0 < g < 1 and
0 < d < g, for the parameter sequence p = 1 — AN~9 that X; -% N(0,202(02G(N, ¢)/(2)) +

N
When T'= 3, pap =p + and Parboy = p + 2iml
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1{d = 0}o2)), X5 5 N(0,0%) and X, > N(c2(1 — q(\,©)/2), oq(), )/(2))). In addition,
we obtain that

Xo % N(A (0 — 02), 02(024(X, )/ (20) + 02)) if Agg = 0 and d = 0,

Xy 5 N(=024(),8)/2,0%(X, &)/ (2))) if Agg =0 and d > 0,

Xy 5 N(0,02(02G(,¢)/(2X) + 1{d = 0}02)) if Ayq <0,

Xo 5 N0y — 02) if Agg > 0 and d = 0, and

Xy 5 —0%G(A,6)/2 if Ayg >0 and d > 0,
and we obtain that limy_,.. g/ni_: Cov(X1, Xo) = —0?(a?q(X,¢)/(20) + 1{d = 0}o?y) if
Agg <0, limy_,o, gynae Cov( X1, Xo) = 0if Agg > 0, and limy o g/na—.c Cov(X3, Xy) = 0.

Finally note that if Ay =0 and d = 0, then g = 1/2. This case corresponds to local-to-

zero asymptotics, see theorem 1. Parts a) and b) of theorem 5 follow now straightforwardly

from the above results. [

A.6 Proof of theorem 6

N N
Zi:l yi,lAgi,3 Zi:l €i,34,2
N N .
Zi:l Yi,1€4,2 Zi:l Yi,2€4,2

Let us define X; = N 2MHDSY g Aeis Xy = N 2O ey Xy =
N-1/2 Z,fil gi3€i2 and X, = N—30+d) Zfil Yiagip. Let 0°g = E(y? ) + 0° Finally,
let the indicator function 1{d = 0} = 1 if d = 0 and let 1{d = 0} = 0 if d # 0.
Then it is easily seen that as N,S — oo with S/N¢ — ¢ > 0 and S/Nd_ —c >0
where d > 0 and d = max(d, 1), one obtains that X; -5 N(0,2(¢o? + 1{d = 0}o24)0?),
X; % N(O, (é0 + 1{d = 0}024)0?), X3 > N(0,0%) and X4 > N(1{d < 1}0?,co?). In
addition, one obtains that imy ., g/nie Cov(X1, X)) = —(éo? + 1{d = 0}o%g)o? and

When T'=3and p=1, pap =p+ and Parpoy = p +

limy o, g/na—e Cov(X3, X4) = 0. Parts a) and b) of theorem 6 follow now straightforwardly

from the above results. [

A.7 Proof of theorem 7

Part a): Recall that Z!T = diag(ZP, Z') and that Z° = diag(Z/P, ZF), where Z/P =
(Z] ZP]. Also recall that K™ Z"v; = ZI[Av} v/] and from the proof of theorem 4 that
KSZS'[Avl vl = Z%[Av, )], when K® = diag(Iy_y, K'7). Similarly, we have

KUz, = ZIM Ay, g ) and KSZ Ayl yl ) = Z Ayl vl 4]

38



Note that when p = 1, v, = &;4, Ayiy = 44, Ayt = &t and Z! = diag(e?, ...,el 7). Now
let 02 3 = E(y; _g) + 0. Furthermore, let the indicator function 1{d = 0} = 1 if d = 0 and
let 1{d = 0} = 0 if d # 0. Similarly let 1{d <1} =1ifd < 1 and let 1{d < 1} = 0if d > 1.
Then as N, S — oo with S/N% — ¢ > 0 and S/N? — ¢ > 0 where d > 0 and d = max(d, 1),
we obtain that

N=2W) SN 70 A 2 Xy ~ N(0, (602 + 1{d = 0}0? 4)2H),

N2 SN ZIAy, 2 X ~ N(0, (é02 + 1{d = 0}024)o2]),

N2V 7D Aw; 4 Xsy ~ N(0,0%(Hp_s, Hy_y, .., H1)),

N2V 72D Ay L Xy ~ N(0,0M),

N2zl 4 X0~ N(0,0%),

N=z(+) S 7Ly, 4 X1 ~ N(1{d < 1}o%, coI),

limy oo, g/Ndoe Cov(N-2(1+d) Zfil ZEy; 4, N712 Zfil ZP'Av;) =0, and

limy o, g/ndse Cov(N-2(1+d) Zfil ZEy; o, N712 Zfil ZFv;) = 0.

Let X7 = (XZ, X.,)" and Xg = (0’ X},)’. From the above results we have Cov(X7, Xg) =
E(X;X}) =0 and X; L Xs.

Note that Wy arpov2(1) = (NN ZM 0} ZI) 1 and Wy gyse(1) = (NN 75 x
[Avj o) [Avj 0] ZF) 7. Consider now KWty (DK™ and KWy sy 6,(1) K. Recall
that o* KT KT = 7. Then it is easy to verify that

plimy oo, g/nae N~ SN ZUAvAvjZ! = (¢é0? + 1{d = 0}o? g)o H,

plimy oo, synie N VSN KT Z 0 ZH KT = $q7, and

plimy 0 s/vae N2+ SN K 710Nl Z] = 0.

We conclude from the above results that plimy_.e g/nie(Parsovz,rg — 1) = 0 and
N%d(ﬁArbosz -1 <, X35 X, /X551 X, Furthermore, we can conclude that
plimy o, s/nac(Psyszr — 1) = 0 and N34 (Gsyson — 1) > X407 X7/ X80 Xs.

Note that SE(ammzy) = N7 X (0o Z K (KW Wy arera(1) (KT
SV KT 28 1 and that SE(svssn) = [NSV(Ay Ly o ) 25K x
(K)  Wnsysa(D(KS) X5, (K528, gl )2,

It follows from the above results that [SE(Bursovs,r)] 2/ N? <, X4>-1Xs and hence
(Parbov2,r — 1)/ SE(Parbov2,R) <, (X551 Xe) V2 X5 X, Since Xy L Xg, (X457 Xg) ™12
Xéf];71X7|X8 ~ N(0,1) and therefore (parpove,r — 1)/ SE(Parbov2, k) 4, N(0,1). Similarly we
obtain that [SE(psyss r)]2/N? % X151 Xs and (Psysor — 1)/SE(Psvsar) — N(0,1).
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Part b): We first consider the weight matrix and some other fourth order moments.
Note that p = 1 — AN"Y2. Let u;, = yiy — pi Vt. Then limg n oo, seq B[(Auiy)®] < oo,
limg N oo, seq E[(Auig)?] = 02 and provided s # ¢, limgy oo, seq B(Au;sAu;y) = 0.
It follows from these results, our model assumptions and the Cauchy-Schwarz inequal-
ity that limgy_eo, seq B(ZIT00[Z1T) = o' and limg y_eo, seq Var([vi sAyis]?) < oo Vs, t.
Consequently we obtain that N~'S°N ZMuwiZIT 5 64T as (S,N — 00)sq and
hence plimgy oo, seg N 2SN, ZH0/ZIT = o1, Similar arguments show that
Pl N oo seq N 2SN ZI Ay Ay, ZET = 0, plimgn e, seg N 230N ZF
(Ay; — Ay; 1) (Ays — Ay; 1)’ Z] = plimg y oo, seg N2 Zfil ZVAvAvZ] = (g—i)H, and
plimg o0, seq N-o 2111 Z{'(Ays — Ayi 1) Ay ZIT = plimg n oo, seq N3 Zi]il(ZiDAUi X
viZI) = 0.

Next we consider second moments. By lemma 9 we have that limg n_,e0, seq £ (21 Au;¢) =
0?/2 Vt, while lemma 10 yields limg y—co, seg N ' E(u7 (Au;;)?) = 0 Vt. It follows that
Nt Zfil ZHy: 0™ (0%/2)1as (S, N — 00) e and hence plimg y o0, seq N+ Zfil Zmy,
= Xy = (02/2)¢. Similarly, we obtain that plimg x 0, seg N ! Zfil ZVAy; 1 = —(0%/2)0.

The above results imply that both plimg y e, seg[SE (Parbovz,)] 2/N = XiXs/ot =
(1/2)%m and plimg y—so. seq| SE(Psysa.r)] 2/N = X, Xs /ot

Since N34 SN ZIAv; & Xgy ~ N(0, (%) H) and N-/2 SN 7100, & X7~ N(0,0%1)
as (S, N — 00)s¢q, we also obtain that (Darbeve.r — p)/SE(Darbova.R) A 0*2()?&@)?8)*1/2)?;;)?7
and (Dsysa.nr — p)/SE(Psysonr) — 02X, Xs) V2XI X7 as (S, N — 00) seq-

Note that X; L Xg. Therefore o~2(X4Xs) Y2X,X7|Xs ~ N(0,1). We conclude that
(Parbove, g — 1)/ SE(Parbov2,R) < N(—=(N\/2)y/m,1) and (psys2r — 1)/SE(psysz,r) <
N(=(A/2)y/m,1).

Part c¢): We first consider the weight matrix and some other fourth order moments.
Note that p = 1 — AN"Y2 and d > 0. Let w,; = wi; — p Vt. Then
Mmoo, g/nvae B[(Auig)®] < 0o, limy e, s/nae E[(Augy)?] = o* and provided s # t,
limy oo, g/na—e B(Au; sAu; ) = 0. It follows from these results, our model assumptions and
the Cauchy-Schwarz inequality that limy_. snaeE(Z7vw[Zl) = o¢* and
iy oo, 53z Var([visAy]?) < 0o Vs, t. Consequently we obtain that N=1 "N (Z/T'v;x

q.m. . _ N . .
v;Z}') =" ¢*I and hence plimy_,o g/nae N7t 0 ZH 0w Z]T = o*1. Similar arguments
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show that plimy_,. g/yae N ! SN ZI Ay Ayl ZT = ot

Since limg y_oo, seg N~ E(e7jui ((Auiy)*?) < oo Vk,s,t and VI, > 0 by lemma 10,
we  have a  fortiori  limy_ e g/nine N Var([y,1Ayig?) < oo and
Hmy oo, s/nvime N Var([y;1Avig]?) < oo ¥Vt when d > 0. Moreover, when d = 0, we have
Hmy oo, s/nie Var([yi1 Ayig)?) < co and  lmpy_e s/nioe Var([yi1Avi]?%) <
oo Vt. It follows that plimy ., gyee N~ SN ZI(Ay; — Ay, 1) (Ayi — Ays 1) ZE =
plimy oo g/yae N DS ZIAwAvZ] = (02q(N,¢)/(2)) +1{d = 0}02¢)0*H, and
plimy .o, s5/nd e N—(+39) Zfil Z{/(Ayi - Ayi,—l)Ayz{Zz‘II = plimy ., s/nie N=(+3d
SN (ZF(Av)viZIT) = 0, where d = min(d, 1/2), 1{d = 0} = 1 if d = 0 and 1{d = 0} = 0
i d £ 0, 0% = B(y?_g) and A, 6)/(20) = linyne syvie N41 — 2A9)/(1 — ) (cf
G(A,¢)/(2)) in the proof of theorem 5). Note that ¢(\,¢)/(2)) = S+1ifd = 0; g\, ¢)/(2\) =
cif 0 <d < 1/2; @A\ e)/(2)) = q(\, ¢)/(2N) if d = 1/2; and g(\, ¢)/(2N\) = 1/(2)) if d > 1/2.

Next we consider second moments. When 0 < d < 1/2, we have limy_, o g/na_e E((1 —
p)uty) = limy_ o g/nac02(1 — p*379))/2 = 0 by part (b) of lemma 11. When d = 0,
we obtain limy ., g/nie E((1 — p)ui;) = 0 as well. Finally, when d > 1/2, we have
lmy oo, g/nae E((1— P)U?,l) = limy o s/n1/2e, 5/Nd—0 (1 — p*1+9) /2 = 0%q(A, ¢) /2,

Recall that if ¢ = 0, then g(\,¢) = 0. Then it is easily verified that for d > 0
WMy oo, gyname B(uinAugy) = 0% + lmy_eo gnvime B(ui1Auy) = 0> +
WMy oo, 5/51/2e, synd—e E((p—1)u7 1) = 0°—0q(A, ¢) /2. Moreover, since limg y o0, seq N~ X
E(u?,(Au;z)?*) = 0 by lemma 10, we have a fortiori imy o g/nime N7 E(uf (Auig)?) = 0
when d > 0. It follows that N=1S°N ZMy o % 62(1 — ¢(\,¢)/2)t and hence
phimy o0 g/nie N7t SN ZHy 1 = Xs = 02(1 — q(\, ¢)/2)e. Similarly, we obtain that
PiM o0 g/nd—z N-(+39) SN ZIAy; 1 =0 when d > 0.

Finally, note that N~ 349 SV zIA¢ 4 X0~ N(0, (02(N,¢)/(2)) + 1{d = 0}o2 §)x
o2H) and N~V2S°N 71, 4 X, ~ N(0,0%I) as N, S — oo with S/NY2 — ¢ > 0 and
S/N¢ — ¢ > 0, where d > 0.

The above results imply that plimy .qo s/nd—e[SE(Pamez,r)]2/N = X Xs/o* = (1 —
(A ¢)/2)?m and plimy ., s/nae[SE(Psysa,r)]"2/N = Xt Xs/o*. Moreover, as N, S — oo
with S/NY/2 — ¢ > 0 and S/N? — ¢ > 0, where d > 0, (Parbovz.r — P)/SE(Parbov2.R) 4,
o~ XyXs) V2 X, X7 and (Bsyso,r — p)/SE(Bsyso,r) = 0-2(XsXs) 12X X,

Note that X; L Xg Therefore 0~ 2(X;Xs) V2 X, X7|Xs ~ N(0,1). We conclude that
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(Parbov2,r—1)/ SE(Darbov2,R) L N(=x(1—q(A, ¢)/2)y/m, 1) and (Psys2,r—1)/SE(psysa,r) <
N(=A(1 = g(\,¢)/2)/m1). O
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