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Abstract

In this paper we consider GMM based estimation and inference for the panel AR(1) model

when the data are persistent and the time dimension of the panel is fixed. We find that

the nature of the weak instruments problem of the Arellano-Bond estimator depends on the

distributional properties of the initial observations. Subsequently, we derive local asymptotic

approximations to the finite sample distributions of the Arellano-Bond estimator and the

System estimator, respectively, under a variety of distributional assumptions about the initial

observations and discuss the implications of the results we obtain for doing inference. We

also propose two LM type panel unit root tests.

1 Introduction

In this paper we consider GMM based estimation and inference for the panel AR(1) model

yi,t = ρyi,t−1 + (1 − ρ)µi + εi,t, i = 1, ..., N and t = −S + 1, ..., T , when the autoregression

parameter ρ is close to or equal to one. Throughout the paper we assume that S ≥ −1, the

first observations occur at t = 1, the time dimension of the panel, T, is fixed (and small)

and that the cross-section dimension of the panel, N, is large. Among other things we derive

local asymptotic approximations to the finite sample distributions of some well-known linear

GMM estimators for this model under a variety of assumptions about the initial observations

and discuss the implications of the results we obtain for doing inference. We also propose

two LM type panel unit root tests.
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Persistent data raise at least three issues in connection with GMM estimation of the

panel AR(1) model. First, some of the available moment conditions do not identify the unit

root. For instance, it is well known that the GMM estimator of Arellano and Bond (1991),

henceforth abbreviated as AB, breaks down when ρ = 1, because the instruments, which are

lagged levels of the data (yi,s , s ≤ t− 2), are no longer correlated with the first-differences

of the regressors (∆yi,t−1): when ρ = 1, E(yi,s∆yi,t−1) = E(yi,sεi,t−1) = 0. However, moment

conditions such as E(∆yi,s(yi,t − ρyi,t−1)) = 0 with s ≤ t − 1 still identify the unit root,

see Arellano and Bover (1995), henceforth abbreviated as Arbov. Below we will refer to

an estimator that only exploits such moment conditions as an Arbov estimator. Second,

most moment conditions are weak in some sense when ρ is close to unity. The finite-sample

distributions of the corresponding estimators may therefore differ substantially from the

first-order fixed-parameter asymptotic distributions. The second order bias approximation

for the AB estimator derived by Hahn et al. (2001) also becomes inaccurate when ρ is

close to unity. Third, the first-order derivatives with respect to ρ of some of the moment

conditions are discontinuous at ρ = 1: it is easily verified for t ≥ 2 that limρ↑1E(yi,1∆yi,t) =

−1
2
V ar(εi,t) ≡ −1

2
σ2 when the data are covariance stationary, while E(yi,1∆yi,t) = 0 when

ρ = 1.

In the paper it is shown that the weakness of the moment conditions implied by the panel

AR(1) model can manifest itself in different ways depending on the distributional properties

of the initial observations. In some cases the first-order derivatives of the moment conditions

with respect to ρ, i.e. the Jacobians, tend to zero when ρ approaches one. In other cases, the

moment conditions are weak because the standard deviations of the first-order derivatives

of the underlying moment functions with respect to ρ explode when ρ approaches one.

In the first type of situation the ‘signal’ of the moment functions becomes weak, whereas

in the second type of situation the overwhelming ‘noise’ of the moment functions drowns

their signal when ρ approaches one (cf Han and Phillips, 2006). In both situations doing

a form of local asymptotics affords a better approximation to the finite sample distribution

of the corresponding GMM estimator than doing conventional first-order fixed-parameter

asymptotics.

When S is fixed (and small) and when ρ approaches one according to ρ = 1−λN−1/2 asN

grows large, where λ > 0, both the means and the standard deviations of the cross-sectional
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averages of the first-order derivatives of the AB moment functions with respect to ρ vanish at

a
√
N rate. Thus in this case we can obtain approximations to the finite sample distributions

of AB estimators by applying the local-to-zero asymptotics of Staiger and Stock (1997). On

the other hand, when the data are covariance stationary, the standard deviations of the first-

order derivatives of the AB moment functions with respect to ρ explode when ρ approaches

one, whereas their means tend to a nonzero constant due to the fact that V ar(yi,t − µi) =

σ2/(1 − ρ2). In this case we can obtain ‘local-to-unity’ asymptotic approximations to the

finite sample distributions of AB estimators by assuming that ρ approaches one according

to ρ = 1− λN−1 as N grows large, where again λ > 0. Moreover, we show that in this case

the Arbov estimators and the two-step ‘optimal’ System estimator (cf Arellano and Bover,

1995) have non-normal distributions as well under local-to-unity asymptotics although they

are still consistent when T > 3.

In the paper we also derive for all d ≥ 0 the local-to-nonidentification asymptotic dis-

tributions of the AB estimator under the assumption that both S and N grow large with

S/Nd → c > 0. We show that if ρ approaches one according to ρ = 1 − λN−g as N grows

large, where λ > 0 and 0 < g ≤ 1, and if 0 ≤ d ≤ g, then E(yi,s∆yi,t−1) = O(Nd−g) and

[V ar(yi,s∆yi,t−1)]
1/2 = O(N

1

2
d), where s ≤ t − 2. Thus the strength of both the signal and

the noise of the AB moment functions increases with d, that is with S. The value of g for

which the local-to-nonidentification asymptotic distributions of AB estimators are obtained

also increases with d from a value of 1/2 for d = 0 to a maximum value of 1 for d ≥ 1.

The value of g is chosen in such a way that the means and the standard deviations of the

cross-sectional averages of the first-order derivatives of the AB moment functions with re-

spect to ρ either do not vanish or vanish at the same rate when ρ approaches one according

to ρ = 1 − λN−g as N grows large, where λ > 0. When d ≥ 1 and g = 1, both the Arbov

and the two-step ‘optimal’ System estimator have the same non-normal local asymptotic

distributions as under covariance stationarity when g = 1.

In the paper we also show that under local (-to-nonidentification) asymptotics (1) the

‘optimal’ AB estimators are biased downwards, (2) the estimators of the optimal weight

matrices for the Arbov estimator and the System estimator and their asymptotic standard

errors are no longer consistent when g = 1 and the data are covariance stationary or d ≥ 1,

(3) the vector of averages of the Arbov moment functions and the vector of their first-order
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derivatives with respect to ρ are uncorrelated, (4) the two-step ‘optimal’ System estimator

can have a skewed distribution, and (5) the truly optimal Arbov and System estimators

have the same distribution, which is symmetric. The first result explains the downward

biases of the AB estimator reported in a Monte Carlo study contained in Bond and Blundell

(1998). The other results help to explain the findings of a Monte Carlo study contained

in Bond and Windmeijer (2002), namely that when the data are covariance stationary and

persistent Wald tests based on the two-step ‘optimal’ System estimator have incorrect size,

whereas LM tests which are based on System estimators that use a restricted estimator of the

weight matrix that is optimal under the null, have correct size. This paper therefore offers

a theoretical justification for using LM tests in the context of panel AR models. Finally the

paper proposes two LM-type panel unit root tests and studies their properties.

The paper is organised as follows. In section 2 we review GMM estimation of the panel

AR(1) model. In section 3 we derive local asymptotic approximations to the finite sample

distributions of the AB, Arbov and System estimators under various assumptions about the

initial conditions, i.e. under various asymptotic plans for S and N. Section 4 proposes two

LM-type panel unit root tests and investigates their properties both analytically and through

Monte Carlo experiments. Section 5 concludes. Proofs are given in the Appendix.

A few words on notation. We use the symbol
d→ to signify convergence in distribution,

the symbol plim to signify convergence in probability, and the symbol
q.m.→ to signify con-

vergence in quadratic mean. To state multi-index asymptotic results we make use of the

following notation (see also Phillips and Moon, 1999, for definitions of the underlying con-

cepts): limS,N→∞, seqN
−1

∑N
i=1Xi,t = Xt is equivalent to limN→∞ limS→∞N−1

∑N
i=1Xi,t =

Xt while N−1/2
∑N

i=1Xi,t
d→ Xt as (S,N → ∞)seq signifies that N−1/2

∑N
i=1Xi,t converges

in distribution to Xt sequentially by letting S pass to infinity first and letting N pass to

infinity subsequently. Sometimes we only write limN→∞N−1
∑N

i=1Xi,t = Xt instead of

limS,N→∞, seqN
−1

∑N
i=1Xi,t = Xt when it is clear that S passes to infinity first, e.g. when

we have assumed covariance stationarity. Finally, plimN→∞, S/N→cN
−1

∑N
i=1Xi,t = Xt is an

example of a so-called diagonal path probability limit. In this example both S and N pass

to infinity with S/N converging to some constant c. We also make use of indicator functions.

For instance, 1{d = 0} = 1 if d = 0 and 1{d = 0} = 0 if d �= 0. Finally, the abbreviation

PDS denotes Positive Definite Symmetric.
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2 The panel AR(1) model

Consider the panel AR(1) model with random effects:

yi,t = ρyi,t−1 + vi,t, (1)

vi,t = ηi + εi,t, where ηi = (1− ρ)µi, (2)

for i = 1, ..., N and t = −S + 1, ..., T. The starting date of the {yi,t}, t = −S, need not

coincide with the date of the initial observations on y, t = 1, that is, −S ≤ 1; the number

of ‘individuals’, N, is large while the number of observations on y per individual, T, is fixed.

Moreover −1 < ρ ≤ 1. Note that the model can be rewritten as yi,t−µi = ρ(yi,t−1−µi)+εi,t.

The (T + S + 1)−vectors (yi,−S ... yi,T )
′, i = 1, ..., N , are assumed to be i.i.d. 1 The

composite error terms, the vi,t, satisfy the following standard assumptions (cf Ahn and

Schmidt, 1995): 2

E(µi) = 0 and E(µ2i ) = σ2
µ, for i = 1, ..., N, (3)

E(εi,t) = 0, E(εi,tηi) = 0, and (4)

E(εi,tyi,−S) = 0, for i = 1, ..., N and t = −S + 1, ..., T, (5)

and

E(εi,sεi,t) = 0, for i = 1, ..., N and s �= t, s, t = −S + 1, ..., T. (6)

For convenience we also assume that the idiosyncratic errors, the εi,t, are homoskedastic over

time:

E(ε2i,t) = σ2, for i = 1, ..., N and t = −S + 1, ..., T. (7)

The initial conditions are given by yi,−S = µi + (1 − ρ)ξi,−S, for i = 1, ..., N. Note that

when ρ = 1, the initial conditions are equal to the individual effects, the µi. Finally, we

assume that E(ξ8i,−S) < ∞, E(µ4i ) < ∞, E(ε4i,t) = κσ4 and E(ε8i,t) < ∞, for i = 1, ..., N and

t = −S + 1, ..., T, where κ is the kurtosis parameter.

1We assume identical distributions across the individuals for convenience.
2Note that E(εi,tyi,s) = 0 for all t and all s < t and E(εi,tεi,s) = 0 for all t �= s implies

E(εi,tηi) = 0 for all t ≥ -S + 2 but not E(εi,−S+1ηi) = 0.
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In the paper we consider various versions of the panel AR(1) model, which differ with re-

spect to the assumptions made about the initial observations. Among them are the following

two versions:

(CS) The {yi,t} have reached Covariance Stationarity at t = 1 when |ρ| < 1.

(FS) Fixed S: thus the {yi,t} have not reached stationarity at t = 1 when |ρ| < 1.

Ahn and Schmidt (1997) have shown that given assumptions (3)-(7), the {yi,t} have reached

covariance stationarity at t = 1 if and only if the initial observations satisfy the following

assumptions:

E(yi,1 − µi) = 0, E[(yi,1 − µi)µi] = 0, and (8)

V ar(yi,1 − µi) =
σ2

1− ρ2
, for |ρ| < 1 and i = 1, ..., N. (9)

Note that the FS model does not rule out that mean-stationarity, i.e. assumption (8), holds.

2.1 GMM estimators for the panel AR(1) model

Arellano and Bond (1991, AB) proposed an GMM estimator which exploits the following

m = (T − 1)(T − 2)/2 linear moment conditions:

E[yi,t−s(∆yi,t − ρ∆yi,t−1)] = 0 for s = 2, ..., t− 1 and t = 3, ..., T, (10)

where ∆yi,t = yi,t − yi,t−1. These moment conditions are implied by assumptions (4)-(6).

Note that they do not identify the unit root because E(yi,t−s∆yi,t−1) = E(yi,t−sεi,t−1) = 0

when ρ = 1.

Arellano and Bover (1995) noted that if mean-stationarity, i.e. assumption (8), holds as

well, one can add T − 2 linear moment conditions to those in (10):

E[(yi,t − ρyi,t−1)∆yi,t−1] = 0 for t = 3, ..., T. (11)

The latter moment conditions do identify the unit root because E(yi,t−1∆yi,t−1) =

E(yi,t−1εi,t−1) = σ2 when ρ = 1.

A GMM estimator that exploits the moment conditions in both (10) and (11) is known

as a System (SYS) estimator.
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The set of moment conditions in (10) and (11) is equivalent to a set that contains T − 2

Arellano-Bond and m Arellano-Bover type moment conditions:

E[yi,1(∆yi,t − ρ∆yi,t−1)] = 0 for t = 3, ..., T, (12)

and

E[(yi,t − ρyi,t−1)∆yi,s] = 0 for s = 2, ..., t− 1 and t = 3, ..., T. (13)

A GMM estimator that only exploits the latter m moment conditions will be referred to as

an Arellano-Bover (Arbov) estimator.

Let yti = [yi,1 ... yi,t] and let Zi = diag(y1i , ..., y
T−2
i ) be a (T − 2) × m block-diagonal

matrix. Then we can write the set of AB moment conditions in (10) as E(Z ′
i∆vi) = 0 where

∆vi = vi − vi,−1 = [∆vi,3 ... ∆vi,T ]
′. Under our assumptions, E(∆vi∆v′i)/σ

2 = H, where

H = HT−2 is a (T − 2) band-diagonal matrix with 2’s on the main diagonal, −1’s on the

first sub- and superdiagonal and zeros elsewhere. It follows that the AB GMM estimator

which uses WN,AB1 = (N−1
∑N

i=1Z
′
iHZi)

−1 as weight matrix is an optimal one-step GMM

estimator. This estimator is denoted as ρ̂AB1. An AB estimator with an arbitrary weight

matrix is simply denoted as ρ̂AB.

There exist no feasible optimal one-step weight matrices for the Arbov and SYS estima-

tors, except when σ2
η = 0. Let ∆yti = [∆yi,2 ... ∆yi,t], let ZI

i = yi,1IT−2, where IT−2 is an

(T − 2) identity matrix, let ZII
i = diag(∆y2i , ...,∆yT−1i ) be a (T − 2) × m block-diagonal

matrix and let ZS
i = diag(ZI

i , Z
II
i ) be a 2(T − 2) ×(T − 2 + m) block-diagonal matrix.

When σ2
η = 0, optimal one-step weight matrices for the Arbov and SYS estimators are given

by WN,Arbov1 = (N−1
∑N

i=1Z
II′
i ZII

i )−1 and WN,SY S1 = (N−1
∑N

i=1Z
S′
i AZS

i )
−1, respectively,

where A is given by

A =

[
H C
C ′ IT−2

]
,

where C = CT−2 is a (T − 2) × (T − 2) matrix with ones on the main diagonal, −1’s on

the first subdiagonal and zeros elsewhere. Note that C = E(vi∆v′i)
′/σ2. The one-step GMM

estimators based on WN,Arbov1 and WN,SY S1 will be referred to as the Arbov1 estimator and

the SYS1 estimator, respectively.

The optimal two-step System (SYS2) estimator is based on the weight matrix

WN,SY S2(ρ̂1) = (N−1
∑N

i=1Z
S′
i [∆̂v

′

i v̂′i]
′

[∆̂v
′

i v̂′i]Z
S
i )

−1, where ∆̂vi = ∆yi − ρ̂1∆yi,−1 and
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v̂i = yi − ρ̂1yi,−1 with ρ̂1 an initial consistent estimator for ρ. We define the optimal two-

step AB (AB2) and Arbov (Arbov2) estimators and their weight matrices analogously. The

WN,SY Sk matrices (k = 1, 2) can be partitioned as

WN,SY Sk =

[
WN,SY Sk,11 WN,SY Sk,12

WN,SY Sk,21 WN,SY Sk,22

]
,

where the WN,SY Sk,11 block corresponds to E(ZI′
i ∆vi) = 0.

Let d̃t = diag(0, ..., 0, 1, ..., 1) be a diagonal matrix with t zeros and T − t − 2 ones on

the diagonal and let dt be a matrix that comprises the last T − t − 2 columns of d̃t. In

addition, let ZAB
i = [yi,1IT−2 ZD

i ] = [ZI
i ZD

i ], where ZD
i = [d1∆yi,2 d2∆yi,3 ... dT−3∆yi,T−2]

is a (T −2)× [m− (T −2)] matrix. Then we can rewrite the set of m AB moment conditions

in E(Z ′
i∆vi) = 0 as E(ZAB′

i ∆vi) = 0. Thus there exists a nonsingular constant matrix KAB

such that Z ′
i = KABZAB′

i .

An alternative transformation that can be used for removing individual effects is the

Helmert transformation which amounts to taking forward orthogonal deviations. The Helmert

transformation of (vi,2 v
′
i)
′ is ṽi = (ṽi,2...ṽi,T−1)

′, where ṽi,t =
(

T−t
T−t+1

)1/2 [
vi,t − 1

T−t

∑T
s=t+1 vi,s

]
,

t = 2, ..., T −1. Note that vi,t− 1
T−t

∑T
s=t+1 vi,s is equal to a linear combination of first differ-

ences of the errors. An advantage of using the Helmert transformation rather than taking first

differences is that it preserves the orthogonality among the errors, i.e. if E(εiε
′
i) = σ2IT−2,

then E(ε̃iε̃
′
i) = σ2IT−3.

Applying the Helmert transformation to yi,t = ρyi,t−1+(1− ρ)µi+ εi,t, t = 2, ..., T, yields

ỹi,t = ρỹi,−1,t−1 + ε̃i,t, t = 2, ..., T − 1, where ỹi,−1,t−1 =
(

T−t
T−t+1

)1/2 [
yi,t−1 − 1

T−t

∑T−1
s=t yi,s

]
.

Note that all lagged values of yi,t are valid instruments for the t-th equation of the transformed

system. If we let z′i,t = yt−1i , then the set of AB moment conditions in (10) is equivalent to the

following set of moment conditions: E(zi,tṽi,t) = 0, t = 2, ..., T − 1. That is, there is a non-

singular matrix KH such that Z ′
i∆vi = KHZ ′

iṽi, see Arellano and Bover (1995). An optimal

weight matrix for E(Z ′
iṽi) = 0 is [N−1

∑N
i=1(Z

′
iZi)]

−1, which is a block-diagonal matrix with

typical diagonal block equal to [N−1
∑N

i=1(zi,tz
′
i,t)]

−1. Note that Z ′
iHZi = KHZ ′

iZiK
H′. It

follows that the one-step AB GMM estimator can be rewritten as a weighted average of T−2

2SLS estimators: ρ̂AB1 = {∑T−1
t=2 [ỹ

′
−1,t−1Zt(Z

′
tZt)

−1Z ′
tỹ−1,t−1]}−1

∑T−1
t=2 [ỹ

′
−1,t−1Zt(Z

′
tZt)

−1Z ′
tỹt]

where ỹt = [ỹ1,t ... ỹN,t]
′, ỹ−1,t−1 = [ỹ1,−1,t−1 ... ỹN,−1,t−1]

′ and Zt = [z1,t ... zN,t]
′.
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3 Asymptotic properties of the estimators when the

data are persistent

Below we investigate the asymptotic properties of various AB, Arbov and System estima-

tors when ρ is close to unity under three different asymptotic schemes: S is finite (the FS

model), S,N → ∞ sequentially with S → ∞ first (the CS model), and finally S,N → ∞
simultaneously with S/Nd → ĉ > 0, where d ≥ 0.

In the analysis the ratios V ar(yi,t − µi)/σ
2 play an important role. The panel AR(1)

model implies the following expression for V ar(yi,1 − µi) when |ρ| < 1 :

V ar(yi,1 − µi) = ρ2(1+S)V ar(yi,−S − µi) + (1− ρ2(1+S))σ2/(1− ρ2). (14)

It is easily verified for any S and ρ > 0 that d[V ar(yi,1−µi)]/dρ > 0 and limρ↑1 V ar(yi,1−
µi) = V ar(yi,−S −µi)+ (1+S)σ2. Moreover, limS→∞ V ar(yi,1−µi) = σ2/(1− ρ2). It follows

that when S is large and ρ tends to one, the ratio V ar(yi,1 − µi)/σ
2 becomes large. Indeed,

limρ↑1 limS→∞ V ar(yi,1 − µi) = ∞. However, when S is finite limρ↑1 V ar(yi,1 − µi) < ∞.

3.1 Local-to-zero asymptotics for the fixed S case

In this subsection we assume that S is finite. Then limρ↑1 V ar(yi,t−µi) < ∞ for t = 1, ..., T.

Let E[mAB,s,t(ρ)] = 0 with mAB,s,t(ρ) = yi,s(∆yi,t − ρ∆yi,t−1) and s ≤ t− 2 represent an

arbitrary AB moment condition from (10). Then it is easily verified that E(dmAB,s,t/dρ) =

ρt−2−s(1− ρ)E[(yi,s − µi + µi)(yi,s − µi)] and hence limρ↑1E(dmAB,s,t/dρ) = 0.

Consider now the simple first-stage regression ∆yi,t−1 = πyi,s + ωi, with s ≤ t − 2,

which corresponds to an arbitrary AB moment condition. Let π̂ = (
∑

i y
2
i,s)

−1
∑

i yi,s∆yi,t−1.

Clearly, limρ↑1plimN→∞ π̂ = 0. Moreover, if ρ = 1− λN−1/2, π = [E(y2i,s)]
−1E(yi,s∆yi,t−1) =

O(N−1/2) and the first-stage F-statistic F = π̂2N(
∑

i y
2
i,s)/

∑
i(∆yi,t−1 − π̂yi,s)

2 = Op(1).

Therefore, when ρ is close to unity, AB GMM estimators suffer from a standard weak instru-

ments problem (cf Staiger and Stock, 1997). Considering the multiple first-stage regressions

∆yi,t−1 =
∑t−2

k=1 πkyi,k + ωi, t = 3, ..., T leads to the same conclusions because T is fixed. 3 4

3Instead one could consider the first-stage regressions corresponding to  E(z i,tε̃i,t) = 0, t =

2, ..., T - 1, i.e. ỹi,t−1 =
∑t−1

k=1 π̃kyi,k + ω̃i, t = 2, ..., T - 1, but that would lead to the same
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Staiger and Stock have argued that doing local-to-zero asymptotics may provide a bet-

ter approximation to the finite sample distribution of a GMM estimator that exploits weak

moment conditions than traditional first-order fixed parameter asymptotics. In the context

of the AB estimator for the FS version of the panel AR(1) model, doing local-to-zero as-

ymptotics requires choosing a parameter sequence for ρ such that the first stage regression

parameter π tends to zero as N−1/2 when the sample size increases, i.e. π = O(N−1/2).

As we have seen above, in the FS version of the panel AR(1) model (where S is fixed),

ρ = 1 − λN−1/2 implies that π = O(N−1/2). The local-to-zero approach recognizes that

for ρ = 1− λN−1/2, plimN→∞N−1
∑N

i=1Z
′
i∆yi,−1 = 0 and that for this parameter sequence

the mean of the vector N−1/2
∑N

i=1Z
′
i∆yi,−1 remains of the same order of magnitude as the

standard deviations of its elements when N grows large.

We note that the Arellano-Bover estimator does not suffer from a weak instruments

problem when S is fixed. 5 We have the following result:

Theorem 1 Let S be finite, let ρ = 1 − λN−1/2 with λ ≥ 0, let σµy = E(yi,1µi) and let

σ2
y = E(y2i,1). Let ρ̂1 be an initial

√
N-consistent estimator for ρ, i.e.

√
N(ρ̂1 − ρ)

d→ K �= 0.

Let WN be an arbitrary sequence of PDS weight matrices with plimN→∞WN = W, where W

is PDS. Finally, let WAB1 = limN→∞[E(Z ′
iHZi)]

−1 and WAB1b = limN→∞[E(Z ′
iZi)]

−1.

(a1) If T = 3, then ρ̂AB−ρ
d→ X̌1

X̌2

with

⎡⎣ X̌1

X̌2

⎤⎦ ∼ N

⎡⎣⎛⎝ 0

λ(σµy − σ2
y)

⎞⎠ , σ2σ2
y

⎛⎝ 2 −1

−1 1

⎞⎠⎤⎦ .

(a2) If T ≥ 3, then N−1/2
∑N

i=1Z
′
i∆vi

d→ X̌5, N
−1/2

∑N
i=1Z

′
i∆yi,−1

d→ X̌6 and ρ̂AB − ρ
d→

conclusions.
4The bias of a 2SLS estimator that exploits  E(yt−2i ∆εi,t) = 0 is approximately equal to the

ratio of E(ωiεi)/E(ω2
i ) and the expected value of a first-stage ‘F-statistic’, F̄ ; E(F̄ ) ≈ 1 + τ2/K,

where τ2 = π′E[yt−2i (yt−2i )′]π/E(ω2
i ) is the so-called concentration parameter and K = t - 2

is the number of instruments. See e.g. Hahn and Hausman (2002). When  ρ = 1 − λN−0.5,

limN→∞E(ωi∆εi,t)/E(ω
2
i ) = E(∆yi,t−1∆εi,t)/E[(∆yi,t−1)

2] = −1/2 and E(F) = O(1).
5Consider the simple ‘Arbov’ first-stage regression y i,t−1 = π∆yi,s + ωi. Let π̂ =

[
∑

i(∆yi,s)
2]−1

∑
i yi,t−1∆yi,s. Clearly, limr↑1plimN→∞ π̂ = 1 �= 0. Moreover, the first stage F-

statistic F = π̂2N
∑

i(∆yi,s)
2/
∑

i(yi,t−1 − π̂∆yi,s)2 = Op(N).
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X̌ ′
6WX̌5/X̌

′
6WX̌6 with X̌5 ∼ N(0, Σ̌55), X̌6 ∼ N(µ̌6, Σ̌66) and E(X̌5X̌

′
6) = Σ̌56 �= 0, where

µ̌6 = µ̌6(λ), Σ̌55, Σ̌56 and Σ̌66 are given in the proof; when T = 3, X̌5 = X̌1 and X̌6 = X̌2.

(b) If T ≥ 3, then plimN→∞N−1
∑N

i=1Z
II′
i yi,−1 = X̌8 = σ2ιm, N

−1/2
∑N

i=1Z
II′
i vi

d→ X̌7,

plimN→∞(ρ̂Arbov−ρ) = 0 and
√
N(ρ̂Arbov−ρ)

d→ X̌ ′
8WX̌7/X̌

′
8WX̌8, where ιm is an m−vector

of ones and X̌7 ∼ N(0, σ4Im).

(c) plimN→∞WN,AB1 = WAB1 is PDS and plimN→∞[N−1
∑N

i=1(Z
′
iZi)]

−1 = WAB1b is PDS.

(d) plimN→∞WN,Arbov1 = σ2× plimN→∞WN,Arbov2(ρ̂1) = σ2WArbov2 ≡ σ−2Im.

(e) plimN→∞WN,SY S1 = σ2× plimN→∞WN,SY S2(ρ̂1) = σ2WSY S2 ≡ diag(σ−2y H−1, σ−2Im).

(f) If T ≥ 3, then N−1/2
∑N

i=1Z
I′
i ∆vi

d→ X̌9, plimN→∞(ρ̂SY S − ρ) = 0 and
√
N(ρ̂SY S − ρ)

d→
(X̌ ′

8W21X̌9 + X̌ ′
8W22X̌7)/(X̌

′
8W22X̌8), where X̌9 is a sub-vector of X̌5.

(g) Asyvar(ρ̂SY S2) = Asyvar(ρ̂Arbov2) = 1/m.

(h) If T > 3, then ρ̂AB1 is asymptotically biased downwards.

Proof

See appendix A.1.

Theorem 1 implies that if ρ = 1−λN−1/2, ρ̂AB1 is inconsistent, i.e. ρ̂AB1−ρ
d→ ωAB1 where

ωAB1 = X̌ ′
6WAB1X̌5/X̌

′
6WAB1X̌6. Similarly, ρ̂AB2 is inconsistent. Moreover, if ρ = 1−λN−1/2,

then W−1
N,AB2(ρ̂AB1)

d→ ω2
AB1 limρ↑1E(Z ′

i∆yi,−1∆y′i,−1Zi) − 2ωAB1 limρ↑1E(Z ′
i∆yi,−1∆v′iZi) +

σ2W−1
AB1 �= σ2W−1

AB1.

When T = 3, ωAB1 = X̌1/X̌2. The distribution of the ratio of two, possibly correlated,

normal variables has been studied by Fieller (1932). This ratio does not have finite moments.

For λ = 0, one obtains the asymptotic distribution of an AB GMM estimator for ρ = 1.

The local-to-zero asymptotic distribution of the AB GMM estimators also captures the fact

that this estimator is biased downwards when T > 3 and ρ is close to unity. The bias results

from the fact that the instruments are weak and the fact that E(X̌5X̌
′
6) �= 0.

When ρ = 1 − λN−1/2, ρ̂SY S1 and ρ̂SY S2 are consistent despite the fact that WSY S1

and WSY S2 are PDS and therefore give some weight to the weak AB moment conditions.

The reason for these consistency results is that although plimN→∞N−1
∑N

i=1Z
I′
i ∆yi,−1 = 0,

plimN→∞N−1
∑N

i=1Z
II′
i yi,−1 = X̌8 �= 0. However, when ρ = 1 − λN−1/2 exploiting the AB

moment conditions does not reduce the asymptotic variance of ρ̂SY S2, Asyvar(ρ̂SY S2).
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3.2 Local-to-unity asymptotics for the covariance stationary case

We now assume that the CS version of the model applies, i.e. S → ∞ and the model

has reached stationarity at t = 1 when |ρ| < 1. In the CS model limρ↑1 V ar(yi,t)/σ
2 =

limρ↑1[V ar(yi,t−µi)/σ
2+σ2

µ/σ
2] = limρ↑1[1/(1−ρ2)]+σ2

µ/σ
2 = ∞ for t = 1, ..., T. Moreover,

E(−yi,s∆yi,t−1) = (1− ρ)ρt−2−sE[(yi,s − µi + µi)(yi,s − µi)] = σ2(1− ρ)ρt−2−s/(1− ρ2) when

s ≤ t−2. It follows that limρ↑1E(dmAB,s,t/dρ) = σ2/2. Since E[(∆yi,t−1)
2] = 2σ2/(1+ρ), we

also have limρ↑1E(dmArbov,s,t/dρ) = limρ↑1E(−yi,s∆yi,t−1) = −σ2/2 when s > t− 2. On the

other hand, E(yi,s∆yi,t−1)|ρ = 1) = E(yi,sεi,t−1) = 0 when s ≤ t− 2, while E(yi,sεi,t−1) = σ2

when s > t− 2. This implies that the E(yi,s∆yi,t−1) are discontinuous at ρ = 1.

Consider again the simple first-stage regression ∆yi,t−1 = πyi,s+ωi (s ≤ t−2), which cor-

responds to an arbitrary AB moment condition. Then we find again that limρ↑1plimN→∞ π̂ =

limρ↑1plimN→∞(
∑

i y
2
i,s)

−1
∑

i yi,s∆yi,t−1 = 0. Moreover, if ρ = 1 − λN−1, the first-stage F-

statistic F = π̂2N(
∑

i y
2
i,s)/

∑
i(∆yi,t−1− π̂yi,s)

2 = Op(1) and π = [E(y2i,s)]
−1E(yi,s∆yi,t−1) =

O(N−1). Note that if one would choose the parameter sequence ρ = 1 − λN−1/2, then

π = O(N−1/2) but F = Op(N
1/2). Therefore when the CS version of the model applies and

ρ is close to unity, the AB GMM estimator still suffers from some sort of weak instruments

problem (see also Blundell and Bond, 1998), albeit not from one of the Staiger-Stock type.

In this case the problem arises because limρ↑1E(y2i,s) → ∞, whereas limρ↑1E(yi,s∆yi,t−1) =

−σ2/2 �= 0. Considering the multiple first-stage regressions ∆yi,t−1 =
∑t−2

k=1 πkyi,k + ωi for

t = 3, ..., T still leads to the same conclusion because T is fixed.

Consider now the simple first-stage regression yi,t−1 = π∆yi,s+ωi (s ≤ t−1), which corre-

sponds to an arbitrary Arellano-Bover moment condition. Clearly, limρ↑1plimN→∞ π̂ = 1/2 �=
0. Nonetheless, if ρ = 1− λN−1, the first-stage F-statistic F = π̂2N

∑
i(∆yi,s)

2/
∑

i(yi,t−1 −
π̂∆yi,s)

2 = Op(1), even though π = O(1). The reason for this finding is that when S → ∞,

E(y2i,t−1) ∝ 1/(1−ρ) and hence plimN→∞N−2
∑

i(yi,t−1−π̂∆yi,s)
2 = σ2/(2λ) if ρ = 1−λN−1.

However, limρ↑1E(yi,t−1∆yi,s) = σ2/2 �= 0.

Notwithstanding that the AB and the Arbov moment conditions are not weak in the

traditional sense of Staiger and Stock (in the sense that F = Op(1) when π = O(N−1/2) ),

the finite sample distributions of the corresponding GMM estimators differ considerably from

their first-order fixed-parameter asymptotic distributions when ρ is close to one. See, for
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instance, the Monte Carlo evidence reported in Blundell and Bond, 1998. In particular, the

finite sample distributions are affected by exploding variances (and covariances) of (some of)

the cross-products of the instruments and the variables from the model when ρ approaches

one. For instance, in appendix A.1 we show that V ar(yi,1∆yi,2) ∝ 1/(1−ρ), V ar(yi,2∆yi,2) ∝

1/(1−ρ), V ar(yi,1∆εi,3) ∝ 1/(1−ρ) and also Cov(yi,1∆εi,3, yi,1∆yi,2) ∝ 1/(1−ρ), see lemma

9. We obtain local-to-unity approximations to the distributions of the estimators by choosing

a parameter sequence such that the variances of the cross-products of the instruments and

the regressors become O(1), that is by choosing ρ = 1 − λN−1. For T = 3, we have the

following local-to-unity asymptotic results for the AB and Arbov estimators:

Theorem 2 Let the CS model hold, let T = 3 and let ρ = 1− λN−1 with λ > 0. Then

(a) ρ̂AB − ρ
d→ X̃1

X̃2

, where

⎡⎣ X̃1

X̃2

⎤⎦ ∼ N

⎡⎣−1
2

√
λ

⎛⎝ 0

1

⎞⎠ , 1
2

⎛⎝ 2 −1

−1 1

⎞⎠⎤⎦ ,

(b)
√
N(ρ̂Arbov − ρ)

d→ X̃3

X̃4

, where

⎡⎣ X̃3

X̃4

⎤⎦ ∼ N

⎡⎣1
2

⎛⎝ 0

1

⎞⎠ ,

⎛⎝ 1 0

0 1
2λ

⎞⎠⎤⎦ .

Proof

See appendix A.2.

The local-to-unity asymptotic results of theorem 2 have been obtained under the assump-

tion of covariance stationarity. However, if we take λ = 0 in the local-to-unity asymptotic

distribution of the AB estimator, we obtain its distribution for ρ = 1, despite the fact that

we need to condition on initial conditions in this case.

Note that the local parameter sequence that is used to derive the local-to-unity asymp-

totic distribution of the AB estimator is different from the one used in theorem 1. This

is related to the fact that under covariance stationarity the second moments of the initial

observations, which also appear in the local-to-zero distribution, are proportional to 1/(1−ρ).

We remark that the local-to-unity parameter sequences depend on N . Recently, Moon

and Phillips (2000) have also considered estimation of autoregressive roots near unity using

panel data. However, they considered consistent estimation procedures for the localizing

parameter c < 0 in ρ = exp(c/T ) assuming that T grows large.
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Note that the set of m Arbov moment conditions in E(ZII′
i vi) = 0 can be restated as

E(Z̃II′
i [∆v′i v′i]

′) = 0, where Z̃II
i = diag(ZD

i , Z
L
i ) is a 2(T − 2) × m matrix with ZL

i =

diag(∆yi,2, ...,∆yi,T−1). We have the following local-to-unity asymptotic results for T > 3 :

Theorem 3 Let the CS model hold, let T > 3 and let ρ = 1− λN−1 with λ > 0. Let ρ̂1 be

an initial
√
N -consistent estimator for ρ, i.e.

√
N(ρ̂1 − ρ)

d→ K �= 0. In addition, let KII be

the nonsingular constant matrix such that Z̃II′
i [∆v′i v

′
i]
′ = KIIZII′

i vi. Finally, let WN be an

arbitrary sequence of PDS weight matrices with plimN→∞WN = W, where W is PDS. Then

(a) N−1
∑N

i=1Z
I′
i ∆vi

d→ X̃51, N−1
∑N

i=1Z
I′
i ∆yi,−1

d→ X̃61, N−1/2
∑N

i=1Z
D′
i ∆vi

d→ X̃52,

N−1/2
∑N

i=1Z
D′
i ∆yi,−1

d→ X̃62, and ρ̂AB1− ρ
d→ X̃ ′

6Σ̃
−1
55 X̃5/X̃

′
6Σ̃

−1
55 X̃6 with X̃5 = (X̃ ′

51 X̃
′
52)

′ ∼
N(0, Σ̃55), X̃6 = (X̃ ′

61 X̃ ′
62)

′ ∼ N(µ̃6, Σ̃66) and E(X̃5X̃
′
6) = Σ̃56 �= 0, where µ̃6, Σ̃55, Σ̃56

and Σ̃66 are given in the proof; assuming that ρ̂AB exploits E(ZAB′
i ∆vi) = 0 in lieu of

E(Z ′
i∆vi) = 0, ρ̂AB − ρ

d→ X̃ ′
61W11X̃51/X̃

′
61W11X̃61; when T = 3, X̃5 = X̃51 = X̃1/

√
λ and

X̃6 = X̃61 = X̃2/
√
λ, where X̃1 and X̃2 are defined in theorem 2.

(b) N−1/2
∑N

i=1Z
L′
i vi

d→ X̃71, N
−1

∑N
i=1Z

L′
i yi,−1

d→ X̃81 ∼ N(σ
2ι
2
, σ

4

2λ
I), plimN→∞(ρ̂Arbov −

ρ) = 0 and assuming that ρ̂Arbov exploits E(Z̃II′
i [∆v′i v′i]

′) = 0 in lieu of E(ZII′
i vi) = 0,

√
N(ρ̂Arbov − ρ)

d→ X̃ ′
8WX̃7/X̃

′
8WX̃8 with X̃7 = (X̃ ′

52 X̃ ′
71)

′ ∼ N(0, Σ̃77), Σ̃77 = σ4KIIKII′,

X̃8 = (0′ X̃ ′
81)

′ and E(X̃7X̃
′
8) = Σ̃78 = 0; when T = 3, X̃7 = X̃3 and X̃8 = X̃4, where X̃3 and

X̃4 are defined in theorem 2.

(c) plimN→∞N−2
∑N

i=1(Z
I′
i Z

I
i ) = σ2

2λ
I, plimN→∞N−3/2

∑N
i=1(Z

I′
i Z

D
i ) = 0 and

plimN→∞N−1
∑N

i=1(Z
D′
i ZD

i ) = σ2I.

(d) plimN→∞WN,Arbov1 = σ−2I and N−1
∑N

i=1 Z̃
II′
i [∆̂v

′

i v̂′i]
′

[∆̂v
′

i v̂′i]Z̃
II
i

d→ σ4W̃−1
Arbov2 ≡

σ4KIIKII′ + (σ4/2λ)K2diag(Om−(T−2), IT−2).

(e) ρ̂AB1 is asymptotically biased downwards.

Proof

See appendix A.3.

Since X̃8 is Gaussian, part (b) of theorem 3 implies that when the data are covariance

stationary Arbov estimators have a non-normal local-to-unity asymptotic distribution. Fur-

thermore, the second result in theorem 3 part (d) implies that in this case the conventional
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estimator of the optimal weight matrix for the Arbov estimator is inconsistent under local-

to-unity asymptotics. As a consequence, the conventional asymptotic standard errors of

Arbov estimators are inconsistent as well under these asymptotics.

Note that X̃7 and X̃8 are uncorrelated Gaussian vectors. Then it is easily seen that the

correct asymptotic standard errors of Arbov estimators are given by

E(X̃ ′
8W Σ̃77WX̃8/(X̃

′
8WX̃8)

2) and that the (truly) asymptotically optimal weight matrix

is proportional to Σ̃−1
77 .

6 Moreover, although the Arbov estimator that uses WN,Arbov2(ρ̂1)

as weight matrix is still consistent when T > 3, its local-to-unity asymptotic distribution is

different from that of the truly optimal Arbov estimator. Finally, the local-to-unity asymp-

totic distributions of Arbov estimators are symmetric since X̃7 ⊥ X̃8, i.e. X̃7 is independent

of X̃8.

Under covariance stationarity and the parameter sequence ρ = 1 − λN−1, the cross-

products of the instruments and the regressors in the AB estimator remain correlated with

the cross-products of the instruments and the dependent variables when N → ∞, thereby

causing (explaining) the bias of this estimator. On the other hand, when T > 3 the Arbov

estimators are asymptotically unbiased under these local-to-unity asymptotics despite the

fact that the Arbov moment conditions are weak when the data are covariance stationary.

Note that the set of m+ T − 2 System moment conditions in E(ZS′
i [∆v′i v

′
i]

′

) = 0 can be

rewritten as E(Z̃S′
i [∆v′i v

′
i]

′

) = 0, where Z̃S
i = diag(ZAB

i , ZL
i ) is a 2(T − 2) × (m + T − 2)

matrix. We have the following results for the System estimator:

Theorem 4 Let the CS model hold, let T ≥ 3 and let ρ = 1 − λN−1 with λ > 0. Let

ρ̂1 be an initial
√
N -consistent estimator for ρ, i.e.

√
N(ρ̂1 − ρ)

d→ K �= 0. Let WN

be an arbitrary sequence of PDS weight matrices with plimN→∞WN = W, where W is

PDS. Let W̃SY S∗ = diag(OT−2, Im), where OT−2 is a (T − 2) × (T − 2) null matrix. Let

WN,SY S1b = [N−1
∑N

i=1(Z
S′
i ZS

i )]
−1. Finally, let D = E[diag(ε2i , ..., ε

T−1
i )′ι∆ε′i]/σ

2. Then

(a) plimN→∞WN,SY S1 = σ−2W̃SY S∗ and plimN→∞WN,SY S1b = σ−2W̃SY S∗.

(b) diag(N−1IT−2, N
−1/2Im)

∑N
i=1 Z̃

S′
i [∆̂v

′

i v̂′i]
′

[∆̂v
′

i v̂′i]Z̃
S
i diag(N

−1IT−2, N
−1/2Im)

d→
σ4W̃−1

SY S2, with W̃ 11
SY S2 ≡ ( 1

2λ
)H, W̃ 21

SY S2 = (W̃ 12
SY S2)

′ ≡ −( 1
2λ
)KKIID, and W̃ 22

SY S2 ≡ W̃−1
Arbov2,

6E(1/X̃ ′
8Σ̃

−1
77 X̃8) ≤ E(X̃ ′

8W Σ̃77WX̃8/(X̃ ′
8WX̃8)2) for any W.
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where W̃−1
Arbov2 is defined in theorem 3.

(c)
√
N(ρ̂SY Sk − ρ)

d→ X̃ ′
8Σ̃

−1
77 X̃7/X̃

′
8Σ̃

−1
77 X̃8, for k = 1, 1b, and

√
N(ρ̂SY S2 − ρ)

d→
X̃ ′

11W̃SY S2X̃10/X̃
′
11W̃SY S2X̃11 with X̃10 = (X̃ ′

51 X̃ ′
52 X̃ ′

71)
′ and X̃11 = (0 0 X̃ ′

81)
′, where Σ̃77,

X̃7 and X̃8 are defined in theorem 3. If T > 3, plimN→∞(ρ̂SY Sk − ρ) = 0, for k = 1, 1b, 2.

(d) ρ̂SY S − ρ
d→ (X̃ ′

61W11X̃51 + X̃ ′
81W31X̃51)/X̃

′
12WX̃12 with X̃12 = (X̃ ′

61 0 X̃ ′
81)

′, where X̃51,

X̃61 and X̃81 are defined in theorem 3.

Proof

See appendix A.4.

Theorem 4 implies that when the data are stationary, a System estimator which uses a

weight matrix estimator that has a PDS probability limit, is inconsistent under local-to-unity

asymptotics. Moreover, the conventional estimator for the optimal weight matrix for the Sys-

tem estimator, i.e. WN,SY S2(ρ̂1), and the conventional asymptotic standard errors of System

estimators are inconsistent as well under such asymptotics.7 Nevertheless, the System esti-

mators that use WN,SY S1 and WN,SY S2(ρ̂1), respectively, as weight matrix are still consistent

under such asymptotics although the local-to-unity asymptotic distribution of the two-step

System estimator is different from that of the truly optimal System estimator. In particular,

the former distribution is asymmetric since E(X̃51X̃
′
81) �= 0. However, the truly optimal

System estimator has the same local-to-unity asymptotic distribution as the truly optimal

Arbov estimator, which is symmetric. Thus the local-to-unity asymptotic distribution of the

truly optimal System estimator is not affected by the AB moment conditions.

The theoretical results above suggest that Wald tests based on the usual two-step System

estimator will have incorrect size when the data are stationary and ρ is close to one due to

its asymmetric distribution. Bond and Windmeijer (2002) found in a Monte Carlo study

for covariance stationary data with ρ = 0.8, T = 6 and N = 100 that the two-step System

7Kruiniger (2005) discusses simple estimators for the optimal weight matrices for the Arbov and

the System estimators that are consistent under both first-order fixed parameter asymptotics and

local asymptotics as well as under a large variety of asymptotic plans for S and N , including fixed

S, large N asymptotics, sequential asymptotics with (S,N →∞)seq, and diagonal path asymptotics

with (S,N →∞, S/Nd → ĉ > 0 where 0  ≤ d  ≤ 1).
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estimator that uses WN,SY S2(ρ̂1) as weight matrix has indeed an asymmetric distribution and

that the corresponding Wald tests have incorrect size even when corrected standard errors

due to Windmeijer (2005) are used. On the other hand, LM tests which are based on System

estimators that use a restricted estimator of the weight matrix that is optimal under the null,

e.g. WN,SY S2(ρ), had rejection frequencies very close to their nominal size. These findings are

in agreement with the above theory which implies that LM tests which are based on Arbov or

System estimators that use a restricted estimator of the weight matrix that is optimal under

the null, e.g. WN,Arbov2(ρ) and WN,SY S2(ρ), respectively, have a standard normal asymptotic

distribution under the null both when first-order fixed parameter asymptotics and when

local-to-unity asymptotics are employed owing to the fact that X̃7 ⊥ X̃8.
8

3.3 Diagonal path local asymptotics

The results in section 3.2 are largely based on the fact that if ρ = 1 − λN−1, then the

sequential limits limN→∞ limS→∞[V ar(yi,t − µi)]/N = σ2/2λ > 0, for t = 1, 2, ..., T . Now

suppose that ρ = 1− λN−1 and that N → ∞, S → ∞ simultaneously with S/N → c > 0,

where c is a constant, then limN→∞, S/N→c ρ
2(1+S) = exp(−2λc) < 1, since limp→∞(1+x/p)p =

exp(x). It follows that limN→∞, S/N→c[V ar(yi,t − µi)]/N = σ2[1− exp(−2λc)]/2λ > 0. This

result suggests that when S is of the same order of magnitude as N and the data are

persistent, then the AB and Arbov moment conditions are still weak. Moreover, in this

case one can still obtain approximations to the distributions of the AB, Arbov and SYS

estimators by using local asymptotics.

It turns out that we can derive diagonal path local asymptotic results for N, S → ∞
with (S/Nd) → ĉ > 0 for any d ≥ 0. Let q(λ, c) = 1− exp(−2λc). For brevity we only state

the following diagonal path local asymptotic results for the AB and Arbov estimators and

T = 3:

Theorem 5 Let T = 3 and let ρ = 1 − λN−g with λ > 0 and 0 < g ≤ 1. Let 0 ≤ d ≤ g

and let ∆gd = 1
2
(1 − d) − (g − d). Moreover, let N → ∞, S → ∞ simultaneously with

8Conditional on X̃8, these LM test-statistics have a standard normal asymptotic distribution.

As the latter distribution does not depend on X̃8, it follows that the unconditional asymptotic

distribution of these LM test-statistics is equal to the standard normal distribution as well.
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S/N → c ≥ 0, S/N g → c̄ ≥ 0 and S/Nd → ĉ > 0. Finally, let q̂(λ, ĉ) = 2λ(S + 1) if d = 0;

q̂(λ, ĉ) = 2λĉ if 0 < d < g; and q̂(λ, ĉ) = q(λ, ĉ) if d = g. Then

(a) N∆gd(ρ̂AB − ρ)
d→ N(0, 2σ2σ2

y/(λ
2(σµy − σ2

y)
2)) if ∆gd > 0 and d = 0,

N∆gd(ρ̂AB − ρ)
d→ N(0, 4/(λq̂(λ, ĉ))) if ∆gd > 0 and d > 0,

ρ̂AB
d→ ρ+ X̌1

X̌2

if ∆gd = 0 and d = 0, where X̌1 and X̌2 are defined in theorem 1,

ρ̂AB
d→ ρ+ X̂1

X̂2

, with

⎡⎣ X̂1

X̂2

⎤⎦ ∼ N

⎡⎣−√
λq̂(λ,ĉ)

2

⎛⎝ 0

1

⎞⎠ , 1
2

⎛⎝ 2 −1

−1 1

⎞⎠⎤⎦ if ∆gd = 0 and d > 0,

ρ̂AB
d→ ρ+ X̂1

X̂2

, with

⎡⎣ X̂1

X̂2

⎤⎦ ∼ N

⎡⎣⎛⎝ 0

0

⎞⎠ , 1
2

⎛⎝ 2 −1

−1 1

⎞⎠⎤⎦ if ∆gd < 0,

(b)
√
N(ρ̂Arbov − ρ)

d→ X̂3

X̂4

, with

⎡⎣ X̂3

X̂4

⎤⎦ ∼ N

⎡⎣1
2

⎛⎝ 0

[2− q(λ, c̄)]

⎞⎠ ,

⎛⎝ 1 0

0 q(λ,c)
2λ

⎞⎠⎤⎦ .

Proof

See appendix A.5.

Note that ∆gd =
1
2
(1 + d)− g and that ∆gd < 1/2. When the values of d and g are such

that ∆gd = 0, ρ is weakly identified by the AB moment condition(s). When ∆gd > 0, ρ is

nearly weakly identified and when ∆gd < 0, ρ is nearly non-identified by the AB moment

condition(s).

When 0 ≤ d ≤ 1 and ∆gd = 0, there are two extreme cases: if d = 0, then one obtains the

local-to-nonidentification asymptotic distribution of ρ̂AB for g = 1/2. This case corresponds

to local-to-zero asymptotics, see theorem 1. On the other hand, if d = 1, then one obtains

the local-to-nonidentification asymptotic distribution of ρ̂AB for g = 1. When ∆gd = 0 and

the value of d increases from 0 to 1, both the signal, E(yi,1∆yi,2) = O(Nd−g), and the noise

of the AB moment function, [V ar(yi,1∆yi,2)]
1/2 = O(N

1

2
d), become stronger.

The diagonal path local (-to-nonidentification) asymptotic results of theorem 5 are very

similar to the sequential asymptotic results of theorem 2, which were obtained for g = 1.

When d = 1 and ∆gd = 0 (so that g = 1), q̂(λ, ĉ) = q(λ, c) and the sequential local-to-

unity asymptotic distributions of ρ̂AB and ρ̂Arbov as (S, N → ∞)seq could be obtained from
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theorem 5 by letting c → ∞ so that q̂(λ, ĉ) = q(λ, c) = q(λ, c̄) = 1. Indeed, when d > 1

the non-normal local (-to-nonidentification) asymptotic distributions of ρ̂AB and ρ̂Arbov are

also obtained for g = 1 and they can be shown to be equal to the sequential local-to-unity

asymptotic distributions of ρ̂AB and ρ̂Arbov as (S, N → ∞)seq. On the other hand, the

first-order large N fixed S asymptotic distribution of ρ̂Arbov for ρ = 1 can be obtained from

theorem 5 by assuming that c̄ = 0, i.e. d < g ≤ 1, so that q(λ, c̄) = q(λ, c) = 0. Finally, note

that ∂q̂(λ,ĉ)
∂ĉ

> 0.

When 0 ≤ d ≤ 1 (and ∆gd = 0) one can easily obtain diagonal path local(-to-nonidentifica-

tion) asymptotic counterparts of theorems 3 and 4 by adjusting some rates of convergence and

by adjusting the formulae for the presence of q̂(λ, ĉ), q(λ, c̄) and q(λ, c) : 9 in fact, the results

in theorems 3 and 4 remain valid under diagonal path local (-to-nonidentification) asymp-

totics, apart from the fact that X̃5(= X̂5) = X̂1

√
q̂(λ, ĉ)/λ and X̃6(= X̂6) = X̂2

√
q̂(λ, ĉ)/λ

when T = 3, where X̂1 and X̂2 are defined in theorem 5, X̃81 ∼ N(σ
2ι
2
[2− q(λ, c̄)], σ

4q(λ,c)
2λ

I),

plimN→∞N−1−d
∑N

i=1(Z
I′
i Z

I
i ) =

σ2q̂(λ,ĉ)+1{d=0}E(y2
i,−S

)

2λ
I, and some straightforward adjustments

of some rates of convergence and the formulae for W̃−1
Arbov2 and W̃−1

SY S2. When d ≥ 1 and

g = 1 the estimators of the optimal weight matrices for the Arbov estimator and the System

estimator and the asymptotic standard errors of these estimators are inconsistent, and the

local asymptotic distribution of the two-step ‘optimal’ System estimator is skewed.

To see that the above asymptotic results could be empirically relevant, consider the

following example: let ρ = 0.95, N = 100 and S = 10. Choose d = g = 1. Then λ = 5,

c = 1/10, and q(λ, c) = 1− exp(−1) = 0.632, while 1− ρ2(1+S) = 0.676.

We now consider the diagonal path asymptotic distributions of the AB and Arbov esti-

mators for ρ = 1 :

Theorem 6 Let T = 3 and let ρ = 1. In addition, let N → ∞, S → ∞ simultaneously with

S/Nd → ĉ > 0 and S/N d̄ → c ≥ 0 where d ≥ 0 and d̄ = max(d, 1). Finally, let 1{d ≤ 1} = 1

if d ≤ 1 and let 1{d ≤ 1} = 0 if d > 1. Then

(a) ρ̂AB − ρ
d→ X̂1

X̂2

, where

⎡⎣ X̂1

X̂2

⎤⎦ ∼ N

⎡⎣⎛⎝ 0

0

⎞⎠ , 1
2

⎛⎝ 2 −1

−1 1

⎞⎠⎤⎦ ,

9Note that when d > 1, no adjustments are required.
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(b) N
1

2
d̄(ρ̂Arbov − ρ)

d→ X̂3

X̂4

, where

⎡⎣ X̂3

X̂4

⎤⎦ ∼ N

⎡⎣⎛⎝ 0

1{d ≤ 1}

⎞⎠ ,

⎛⎝ 1 0

0 c

⎞⎠⎤⎦ .

Proof

See appendix A.6.

The results in theorem 6 can easily be extended to T > 3 and to the System estimator.

One obtains the first-order large N fixed S asymptotic distributions of the estimators for

ρ = 1 by taking c = 0. However, in general c is unknown and could well be strictly positive

in which case the Arbov estimator has a non-normal asymptotic distribution for ρ = 1.

Observe that limλ↓0 q̂(λ, ĉ) = 0 and limλ↓0[q(λ, c)/2λ] = limλ↓0{[1 − exp(−2λc)]/2λ} =

limλ↓0{2c exp(−2λc)]/2} = c. From these observations and the results in theorems 5 and 6

we conclude that the diagonal path local asymptotic distributions of the Arbov and SYS

estimators are continuous at λ = 0 (ρ = 1) provided that 0 ≤ d ≤ 1. A similar continuity

result holds for the AB estimator for any d ≥ 0.

4 LM panel unit root tests

In this section we propose two LM-type panel unit root (UR) test statistics that are based on

an Arbov estimator and a System estimator which use a weight matrix that is optimal under

the null, and on restricted conventional estimators of their first-order fixed parameter asymp-

totic standard errors. The critical values for these LM tests can be taken from the standard

normal distribution irrespective of the assumptions made regarding the initial observations.

Let ρ̂Arbov2,R and ρ̂SY S2,R be GMM estimators that use WN,Arbov2(1) and WN,SY S2(1)

as weight matrix, respectively. Let SE(ρ̂Arbov2,R) = {N−1
∑N

i=1(y
′
i,−1Z

II
i )[WN,Arbov2(1)]×∑N

i=1(Z
II′
i yi,−1)}−1/2 and SE(ρ̂SY S2,R) = {N−1

∑N
i=1[(∆y′i,−1 y′i,−1)Z

S
i ][WN,SY S2(1)] ×∑N

i=1[Z
S′
i (∆y′i,−1 y′i,−1)

′]}−1/2. Then we have the following results:

Theorem 7 Let T ≥ 3.

(a) If ρ = 1 and if N → ∞, S → ∞ simultaneously with S/Nd → ĉ > 0 for some d ≥ 0,

then (ρ̂Arbov2,R − 1)/SE(ρ̂Arbov2,R)
d→ N(0, 1) and (ρ̂SY S2,R − 1)/SE(ρ̂SY S2,R)

d→ N(0, 1).

(b) If ρ = 1 − λN−1/2 with λ > 0 and if S → ∞, N → ∞ sequentially, then

(ρ̂Arbov2,R−1)/SE(ρ̂Arbov2,R)
d→ N(−λ

2

√
m, 1) and (ρ̂SY S2,R−1)/SE(ρ̂SY S2,R)

d→ N(−λ
2

√
m, 1).
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(c) If ρ = 1 − λN−1/2 with λ ≥ 0 and if N → ∞, S → ∞ simultaneously with S/N1/2 →
c ≥ 0 and S/Nd → ĉ > 0 where d ≥ 0, then (ρ̂Arbov2,R − 1)/SE(ρ̂Arbov2,R)

d→
N(−λ(1− q(λ, c)/2)

√
m, 1) and (ρ̂SY S2,R − 1)/SE(ρ̂SY S2,R)

d→ N(−λ(1− q(λ, c)/2)
√
m, 1).

Proof

See appendix A.7. The results in theorem 7(c) corresponding to c = 0 are also valid under

large N fixed S asymptotics. Madsen (2003) has derived some related local power results.

Note that the local power is the lowest when the data are covariance staionary or d > 1/2.

Any Arbov estimator can be used to construct an LM-type panel UR test but choosing

the optimal Arbov estimator ρ̂Arbov2,R yields a test statistic with the highest local power

within this class of LM tests. In particular, in the proof of theorem 7 it is shown that the

weight matrix used by ρ̂Arbov2,R is not only optimal under the null but also optimal under local

alternatives given by ρ = 1−λN−1/2 with λ > 0, irrespective of the asymptotic plan for S and

N. On the other hand, not every System estimator is suitable for the construction of an LM-

type panel UR test that has correct size for any value of d and nontrivial power against any

local alternative. However, the optimal System estimator ρ̂SY S2,R is
√
N -consistent under

both the null and local alternatives and yields an LM test that has correct size and the

same local power properties as the LM test which is based on the optimal Arbov estimator

ρ̂Arbov2,R, irrespective of the asymptotic plan for S and N.

In the last decade various other panel UR tests have been proposed. For instance,

Breitung and Meyer (1994) proposed a test-statistic which is based on an OLS estima-

tor for ρ in a model for deviations from the initial observations. Harris and Tzavalis (1999)

discussed an LM-type panel UR test which is based on the bias-corrected LSDV estimator

for ρ. Finally, Kruiniger (2004) discussed a Wald-type panel UR test which is based on the

First Difference MLE for ρ in the covariance stationary panel AR(1)/UR model.

4.1 Monte Carlo results

In this section we compare the finite sample performance of our GMM based panel UR

tests with three other panel UR tests, namely the Wald test which is based on the FDMLE,

the LM test due to Harris and Tzavalis (1999) which is based on the bias corrected LSDV

estimator, and a Wald test which is based on the Fixed Effects MLE for r in the panel
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AR(1) model (cf Hsiao et al., 2002, and Kruiniger, 2001 and 2004).10 11 We only consider

size-adjusted versions of the latter two tests. The implementation of the FEMLE based UR

test is further discussed in Kruiniger (2004).

In most simulation experiments the errors have been drawn from normal distributions:

εi,t ∼ N(0, 1) and µi ∼ N(0, 1). To assess how assumptions with respect to yi,1 − µi, i =

1, ..., N, affect the power of the tests, we have conducted four different kinds of experiments:

in one set the initial observations are drawn from stationary distributions, i.e. (yi,1−µi)|µi ∼
N(0, 1/(1−r2)), while in the other three sets the initial observations are non-stationary. The

three non-stationary cases considered are: (1) yi,1−µi = 0; (2) (yi,1−µi)|µi ∼ N(0, 2/(1−r2));

and (3) (yi,1 − 2µi)|µi ∼ N(0, r2/(1− r2)). Note that in all situations E(yi,t − yi,t−1) = 0 as

is the case under the null hypothesis. In both case (1) and case (2) the variance of yi,1 − µi

is different from the variance under stationarity, while in case (3) nonstationarity is due to

the fact that E[µi(yi,1 − µi)] �= 0. Case (1) corresponds to small S. We have also considered

experiments with σ2
µ = 0, σ2

µ = 100 or εi,t ∼ (χ2(1) − 1)/
√
2. Note that the size and the

power of test-statistics which only exploit data in differences are not affected by changes in

σ2
µ. Finally, in the simulation experiments we have varied the dimensions of the panel data

sets as well: (N,T ) = (100, 10), (100, 6), or (500, 6). All simulation results are based on 5,000

replications and the (nominal) level of the tests is either 2.5% or 5%.

Tables 1-7 report the simulation results on the empirical size and power of the panel

UR tests that were mentioned above. Tables 2, 5, 6 and 7 report results on power against

stationary alternatives, whereas tables 1, 3 and 4 report results on power against non-

stationary alternatives. In the tables ‘W’ denotes the Wald version of a test, ‘LM’ stands for

the LM version of a test, whilst ‘SA’ indicates that the test has been size adjusted. When

10Note that the FEMLE is derived under the imposed assumption that  plimN→∞
1
N

∑N
i=1(yi,1−

µi)
2 <∞ and is different from the LSDV estimator.

11Bond et al. (2005) have also compared various panel unit root tests by calculating their

asymptotic local power and by conducting simulation experiments. The only GMM based test they

consider is a Wald test based on the ‘optimal’ System estimator. As expected this test has poor

size and power properties. They also find that the Breitung-Meyer test and the test based on the

FDMLE have very similar size and power properties.
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the (nominal) level of a test is 2.5% this is indicated by a, otherwise the level of a test is 5%.

Inspection of the results in tables 1-7 leads to the following conclusions with respect to the

GMM based UR tests:

1. In most cases considered the GMM based tests have correct size. However non-

normality of the errors affects the size of the tests.

2. The power of the test based on the System estimator is greater than or equal to the

power of the test based on the Arbov estimator. However, in many cases the power of

both tests is roughly the same and equal to the power of the FDMLE.

3. When the variance of the yi,1 − µi is larger than the value implied by covariance

stationarity, the power of the test based on the System estimator is greater than the

power of the tests based on the Arbov estimator and the FDMLE.

4. The power of the GMM based tests decreases with an increase of the value of σ2
µ.

5. In the cases considered the GMM based tests have greater power than either the test

that is based on the LSDV estimator or the test that is based on the FEMLE.

5 Concluding remarks

In this paper we considered GMM based estimation and inference for the panel AR(1)

model when the data are persistent and the time dimension of the panel is fixed. We derived

local asymptotic approximations to the finite sample distributions of the AB, Arbov and

System estimators, respectively, under a variety of distributional assumptions about the

initial observations. Among other things we found that the nature of the weak instruments

problem of the Arellano-Bond estimator depends on the distributional properties of the

initial observations. Moreover, when ρ = 1− λ/N and when either the data are covariance

stationary or both S and N grow large with S/Nd → c > 0 and d ≥ 1, then both the Arbov

and the two-step ‘optimal’ System estimator have non-normal local asymptotic distributions,

and the estimators of the optimal weight matrices for the Arbov estimator and the System

estimator and their asymptotic standard errors are no longer consistent. We also argued

that in these cases one should use LM tests and not Wald tests. Two LM-type panel unit

root tests that we proposed were found to have good size and power properties.
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T N test size, S = −1 size, S = 49 ρ = 0.95 ρ = 0.9 ρ = 0.8
6 100 ARBOV2-LMa 0.035 0.030 0.308 0.799 0.999

ARBOV2-LM 0.058 0.056 0.416 0.872 0.999
SYS2-LMa 0.029 0.030 0.281 0.759 0.998
SYS2-LM 0.050 0.054 0.378 0.842 0.999
FDML-W 0.056 0.056 0.457 0.914 1.000
FEML-W-SA 0.049 0.049 0.138 0.182 0.290
LSDV-LM-SA 0.050 0.050 0.308 0.732 0.994

Table 1: power against “non-stationary” alternatives with yi,1 = µi.

T N test size, S = −1 size, S = 49 ρ = 0.95 ρ = 0.9 ρ = 0.8
10 100 ARBOV2-LMa 0.030 0.029 0.261 0.663 0.987

ARBOV2-LM 0.059 0.054 0.370 0.756 0.993
SYS2-LMa 0.024 0.028 0.209 0.592 0.981
SYS2-LM 0.049 0.047 0.306 0.700 0.989

6 100 ARBOV2-LMa 0.035 0.030 0.145 0.339 0.844
ARBOV2-LM 0.058 0.056 0.217 0.459 0.901
SYS2-LMa 0.029 0.030 0.139 0.341 0.856
SYS2-LM 0.050 0.054 0.209 0.453 0.916
FDML-W 0.056 0.056 0.200 0.466 0.925
FEML-W-SA 0.049 0.049 0.118 0.162 0.319
LSDV-LM-SA 0.050 0.050 0.153 0.327 0.812

6 500 ARBOV2-LMa 0.029 0.029 0.446 0.939 1.000
ARBOV2-LM 0.055 0.053 0.553 0.968 1.000
SYS2-LMa 0.027 0.028 0.446 0.958 1.000
SYS2-LM 0.050 0.052 0.567 0.979 1.000

Table 2: power against stationary alternatives.

T N test size, S = −1 size, S = 49 ρ = 0.95 ρ = 0.9 ρ = 0.8
6 100 ARBOV2-LMa 0.035 0.030 0.096 0.138 0.359

ARBOV2-LM 0.058 0.056 0.157 0.217 0.473
SYS2-LMa 0.029 0.030 0.089 0.189 0.609
SYS2-LM 0.050 0.054 0.151 0.278 0.721
FDML-W 0.056 0.056 0.068 0.116 0.351
FEML-W-SA 0.049 0.049 0.098 0.170 0.396
LSDV-LM-SA 0.050 0.050 0.060 0.101 0.378

Table 3: power against “non-stationary” alternatives with (yi,1 − µi)|µi ∼ N(0, 2/(1− ρ2)).
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T N test size, S = −1 size, S = 49 ρ = 0.95 ρ = 0.9 ρ = 0.8
6 100 ARBOV2-LMa 0.035 0.030 0.138 0.351 0.799

ARBOV2-LM 0.058 0.056 0.216 0.459 0.870
SYS2-LMa 0.029 0.030 0.133 0.355 0.826
SYS2-LM 0.050 0.054 0.205 0.461 0.893
FDML-W 0.056 0.056 0.205 0.474 0.927
FEML-W-SA 0.049 0.049 0.118 0.166 0.325
LSDV-LM-SA 0.050 0.050 0.143 0.335 0.811

Table 4: power against “non-stationary” alternatives with (yi,1− 2µi)|µi ∼ N(0, ρ2/(1−ρ2))

and µi ∼ N(0, 1).

T N test size, S = −1 size, S = 49 ρ = 0.95 ρ = 0.9 ρ = 0.8
6 100 ARBOV2-LMa 0.035 0.030 0.155 0.355 0.846

ARBOV2-LM 0.058 0.056 0.228 0.470 0.906
SYS2-LMa 0.029 0.030 0.143 0.370 0.881
SYS2-LM 0.050 0.054 0.215 0.477 0.930

Table 5: power against stationary alternatives, σ2 = 1 and σ2
µ = 0.

T N test size, S = −1 size, S = 49 ρ = 0.95 ρ = 0.9 ρ = 0.8
6 100 ARBOV2-LMa 0.035 0.030 0.085 0.161 0.376

ARBOV2-LM 0.058 0.056 0.138 0.236 0.459
SYS2-LMa 0.029 0.030 0.077 0.147 0.351
SYS2-LM 0.050 0.054 0.127 0.215 0.435

Table 6: power against stationary alternatives, σ2 = 1 and σ2
µ = 100.

T N test size, S = −1 size, S = 49 ρ = 0.95 ρ = 0.9 ρ = 0.8
6 100 ARBOV2-LMa 0.052 0.047 0.163 0.311 0.619

ARBOV2-LM 0.100 0.091 0.256 0.420 0.732
SYS2-LMa 0.036 0.039 0.141 0.328 0.743
SYS2-LM 0.070 0.075 0.228 0.447 0.831

Table 7: power against stationary alternatives with (yi,1 − µi)|µi ∼ [χ2(1)− 1]/21/2

and µi ∼ N(0, 1).
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A Proofs of the results

A.1 Proof of theorem 1

Part a1): When T = 3, ρ̂AB =
N−1

∑N
i=1 yi,1∆yi,3

N−1
∑N

i=1 yi,1∆yi,2
= ρ +

N−1
∑N

i=1 yi,1∆εi,3

N−1
∑N

i=1 yi,1∆yi,2
. Note that

E(yi,1∆yi,2|yi,1, µi) = (ρ − 1)yi,1(yi,1 − µi), V ar(yi,1∆yi,2|yi,1, µi) = V ar(yi,1εi,2|yi,1, µi) =

σ2y2i,1, E(yi,1∆εi,3) = 0, V ar(yi,1∆εi,3) = 2σ2σ2
y and Cov(yi,1∆εi,3, yi,1∆yi,2) = −σ2σ2

y.

Let us define X1 = N−1/2
∑N

i=1 yi,1∆εi,3 and X2 = N−1/2
∑N

i=1 yi,1∆yi,2. Then we obtain

for the parameter sequence ρ = 1− λN−1/2 that X1
d→ N(0, 2σ2σ2

y) and X2
d→ N(−λ(σ2

y −
σµy), σ

2σ2
y). Moreover, it is easily verified that Cov(X1,X2) = −σ2σ2

y.

It follows that ρ̂AB
d→ ρ + X̌1

X̌2

, where

[
X̌1

X̌2

]
∼ N

[(
0

λ(σµy − σ2
y)

)
, σ2σ2

y

(
2 −1
−1 1

)]
.

Part a2): Similar to part a1). For instance, let X5,p = N−1/2
∑N

i=1 yi,k∆εi,l and X6,p =

N−1/2
∑N

i=1 yi,k∆yi,l−1 with k ≤ l− 2. Note that E(yi,k∆yi,l−1) = (ρ− 1)E[yi,k(yi,l−2−µi)] =

(ρ−1)ρl−2−kE[(yi,k−µi+µi)(yi,k−µi)]. Moreover, let σ̃2
y,k = σ2

y+(k−1)σ2. Then it is easily

seen that for ρ = 1 − λN−1/2,

[
X5,p

X6,p

]
d→

[
X̌5,p

X̌6,p

]
∼ N

[(
0

µ̌6,p

)
, σ2σ̃2

y,k

(
2 −1
−1 1

)]
,

where µ̌6,p = λ(σµy − σ̃2
y,k). Finally, let s ≤ t − 2. Then the (p, q)-th elements of Σ̌55 =

V ar(X̌5) = E(X̌5X̌
′
5), Σ̌66 = V ar(X̌6), and Σ̌56 = Cov(X̌5, X̌6) = E(X̌5X̌

′
6) are given by,

respectively:

Cov(X̌5,p, X̌5,q) = limN→∞Cov(yi,k∆εi,l, yi,s∆εi,t) = limN→∞E(yi,kyi,s∆εi,l∆εi,t), where

limN→∞E(yi,kyi,s∆εi,l∆εi,t) = 2σ2(σ2
y + σ2[−1 + min(k, s)]) if l = t,

limN→∞E(yi,kyi,s∆εi,l∆εi,t) = −σ2(σ2
y + σ2[−1 + min(k, s)]) if |l − t| = 1, and

limN→∞E(yi,kyi,s∆εi,l∆εi,t) = 0 if |l − t| > 1;

Cov(X̌6,p, X̌6,q) = limN→∞Cov(yi,k∆yi,l−1, yi,s∆yi,t−1) = limN→∞E(yi,kyi,sεi,l−1εi,t−1), where

limN→∞E(yi,kyi,sεi,l−1εi,t−1) = σ2(σ2
y + σ2[−1 + min(k, s)]) if l = t, and

limN→∞E(yi,kyi,sεi,l−1εi,t−1) = 0 if |l − t| > 0; and

Cov(X̌5,p, X̌6,q) = limN→∞Cov(yi,k∆εi,l, yi,s∆yi,t−1) = limN→∞E(yi,kyi,sεi,t−1∆εi,l), where

limN→∞E(yi,kyi,sεi,t−1∆εi,l) = σ2(σ2
y + σ2[−1 + min(k, s)]) if l = t− 1,

limN→∞E(yi,kyi,sεi,t−1∆εi,l) = −σ2(σ2
y + σ2[−1 + min(k, s)]) if l = t, and

limN→∞E(yi,kyi,sεi,t−1∆εi,l) = 0 if l �= t− 1 and l �= t.
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Recall that Z ′i = KABZAB′
i , where ZAB

i = [ZI
i ZD

i ]. The above results imply that[
N−1/2

∑N
i=1Z

I′
i ∆vi

N−1/2
∑N

i=1Z
I′
i ∆yi,−1

]
d→
[
X̌51

X̌61

]
∼ N

[(
0

λ(σµy − σ2
y)

)
, σ2σ2

y

(
H −C ′

−C I

)]
, and[

N−1/2
∑N

i=1Z
D′
i ∆vi

N−1/2
∑N

i=1Z
D′
i ∆yi,−1

]
d→
[
X̌52

X̌62

]
∼

N

[(
0

−λσ2ι

)
, σ4

(
diag(HT−3, HT−4, ..., H1) −diag(CT−3, CT−4, ..., C1)

′

−diag(CT−3, CT−4, ..., C1) I

)]
.

Moreover, they imply that Σ̌55,12 ≡ Cov(X̌51, X̌52) = 0, and also that Σ̌56,12 = Σ̌56,21 =

Σ̌66,12 = 0. Finally note that X̌5 = KAB(X̌ ′
51 X̌ ′

52)
′ and X̌6 = KAB(X̌ ′

61 X̌ ′
62)

′.

Part b): When S is fixed, ρ̂Arbov does not suffer from a weak instruments problem. Let

εti = [εi,2 ... εi,t]. When ρ = 1, vi = εi, ∆yti = εti and ZII
i = diag(ε2i , ..., ε

T−1
i ). It follows that

for ρ = 1−λN−1/2, N−1/2
∑N

i=1Z
II′
i vi

d→ N(0, σ4Im), N
−1

∑N
i=1Z

II′
i yi,−1

q.m.→ σ2ιm and hence

plimN→∞N
−1

∑N
i=1Z

II′
i yi,−1 = σ2ιm. The local-to-unity asymptotic distribution of ρ̂Arbov is

equal to the first-order fixed-parameter asymptotic distribution of ρ̂Arbov for ρ = 1.

Part c): It is easy to verify that the sequences of sample averages in c), d) and e) converge

in probability to the corresponding population means for ρ = 1. Therefore we will only

prove the claims made with respect to those limits. We first show that limN→∞E(Z ′iHZi) is

PDS. Recall that Z ′i = KABZAB′
i , where KAB is a nonsingular constant matrix and ZAB

i =

[yi,1IT−2 d1∆yi,2 d2∆yi,3 ... dT−3∆yi,T−2]. We have limN→∞E(ZAB′
i HZAB

i ) = diag(σ2
yHT−2,

σ2HT−3, σ2HT−4, ..., σ2H1) is PDS since Ht is PDS for all t ≤ T − 2. It follows that

limN→∞E(Z ′iHZi) = limN→∞K
ABE(ZAB′

i HZAB
i )KAB′ is PDS. Similarly, limN→∞E(Z ′iZi) is

PDS since limN→∞E(ZAB′
i ZAB

i ) = diag(σ2
yIT−2, σ

2IT−3, σ
2IT−4, ..., σ

2I1) is PDS.

Parts d) and e): When ρ = 1, vi = εi, E[(∆v′i v
′
i)

′

(∆v′i v
′
i)] = σ2A, ∆yti = εti and ZS

i =

diag(yi,1IT−2, diag(ε2i , ..., ε
T−1
i )). It follows that limN→∞E(ZS′

i AZS
i ) = diag(σ2

yH, σ2Im),

which is PDS, plimN→∞WN,Arbov1 = σ2×plimN→∞WN,Arbov2(ρ̂1) = σ−2Im and

plimN→∞WN,SY S1 = σ2×plimN→∞WN,SY S2(ρ̂1) = diag(σ−2y H−1, σ−2Im).

Part f): These results follow from parts a) and b), that is, from plimN→∞N−1
∑N

i=1Z
I′
i ∆yi,−1

= plimN→∞N−1
∑N

i=1Z
I′
i (ε

T−1
i )′ = 0, while plimN→∞N−1

∑N
i=1Z

II′
i yi,−1 = σ2ιm = X̌8 �= 0,

and from the fact that N−1/2
∑N

i=1Z
II′
i vi

d→ X̌7 and N−1/2
∑N

i=1Z
′
i∆vi = N−1/2

∑N
i=1K

AB×
[ZI

i ZD
i ]
′∆vi

d→ X̌5, where KAB is a constant and nonsingular matrix.
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Part g): From parts b), d) and e) we have X̌8 = σ2ιm, V ar(X̌7) = W−1
SY S2,22 = W−1

Arbov2 =

σ4Im and WSY S2,12 = WSY S2,21 = 0. It follows that Asyvar(ρ̂SY S2) = (X̌ ′
8WSY S2,22X̌8)

−1 =

(X̌ ′
8WArbov2X̌8)

−1 = Asyvar(ρ̂Aρbov2) = 1/m.

Part h): Recall that ρ̂AB1 = {∑T−1
t=2 [ỹ

′
−1,t−1Zt(Z

′
tZt)

−1Z ′tỹ−1,t−1]}−1
∑T−1

t=2 [ỹ
′
−1,t−1Zt(Z

′
tZt)

−1×
Z ′tỹt]. Since

∑T−1
t=2 [ỹ

′
−1,t−1Zt(Z

′
tZt)

−1Z ′tṽt] = (
∑N

i=1∆y′i,−1Zi)[
∑N

i=1(Z
′
iHZi)]

−1
∑N

i=1Z
′
i∆vi

and
∑T−1

t=2 [ỹ
′
−1,t−1Zt(Z

′
tZt)

−1Z ′tỹ−1,t−1] = (
∑N

i=1∆y′i,−1Zi)[
∑N

i=1(Z
′
iHZi)]

−1
∑N

i=1Z
′
i∆yi,−1, it

follows from parts a) and c) that the numerator and denominator of ρ̂AB1 − ρ converge in

distribution.

We now show that limN→∞E[ỹ′−1,t−1Zt(Z
′
tZt)

−1Z ′tṽt] < 0 for t = 2, ..., T − 1. Note that

limN→∞E[ỹ′−1,t−1Zt(Z
′
tZt)

−1Z ′tṽt] = limN→∞E{∑N
i=1[ỹi,−1,t−1z

′
i,t(Z

′
tZt)

−1zi,tε̃i,t]} =

limN→∞

∑N
i=1[E(z′i,t(Z

′
tZt)

−1zi,t)× E(ỹi,−1,t−1ε̃i,t)].

Now, E(ỹi,−1,t−1ε̃i,t) =
(

T−t
T−t+1

)
E
[
(yi,t−1 − 1

T−t

∑T−1
s=t yi,s)(εi,t − 1

T−t

∑T
s=t+1 εi,s)

]
=(

1
T−t+1

)
E
[
−∑T−1−t

k=0 ρkε2i,t +
1

T−t

∑T−1
s=t+1

∑T−1−s
k=0 ρkε2i,s

]
= −σ2

(
1

T−t+1

) (
1

T−t

)×[∑T
s=t+1

∑T−1−t
k=T−1−s+1 ρ

k
]
. It follows that limN→∞E(ỹi,−1,t−1ε̃i,t) = limρ↑1E(ỹi,−1,t−1ε̃i,t) =

−1
2
σ2. We also have limN→∞E(

∑N
i=1 z

′
i,t(Z

′
tZt)

−1zi,t) = E[tρ(It−1)] = t− 1 > 0.

We conclude that limN→∞

∑T−1
t=2 E(ỹ′−1,t−1Zt(Z

′
tZt)

−1Z ′tṽt) < 0.

To complete the proof of the asymptotic biasedness of ρ̂AB, we write the numerator of

ρ̂AB − ρ, i.e.
∑T−1

t=2 [(
∑N

i=1 ỹi,−1,t−1z
′
i,t)(Z

′
tZt)

−1(
∑N

i=1 zi,tε̃i,t)], as the sum of two terms:{
T−1∑
t=2

[
N∑
i=1

z′i,t(Z
′
tZt)

−1zi,t(
1

T − t+ 1
)

(
−

T−1−t∑
k=0

ρkε2i,t +
1

T − t

T−1∑
s=t+1

T−1−s∑
k=0

ρkε2i,s

)]}
(15)

+

{
T−1∑
t=2

[
ỹ′−1,t−1Zt(Z

′
tZt)

−1Z ′tε̃t− (16)

N∑
i=1

z′i,t(Z
′
tZt)

−1zi,t(
1

T − t + 1
)

(
−

T−1−t∑
k=0

ρkε2i,t +
1

T − t

T−1∑
s=t+1

T−1−s∑
k=0

ρkε2i,s

)]}
.

The first term, (15), converges in probability to limN→∞

∑T−1
t=2 E[ỹ′−1,t−1Zt(Z

′
tZt)

−1Z ′tε̃t].

Since the numerator of ρ̂AB − ρ,
∑T−1

t=2 ỹ′−1,t−1Zt(Z
′
tZt)

−1Z ′tε̃t, converges in distribution to a

random variable with mean limN→∞

∑T−1
t=2 E[ỹ′−1,t−1Zt(Z

′
tZt)

−1Z ′tε̃t], the second term, (16),

converges in distribution to a random variable with mean zero. For convenience we will

assume that the ε′i,ts are symmetrically distributed around zero. Doing so does not entail a
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loss of generality since imposing this assumption does not affect the asymptotic distribution

of ρ̂AB. Noting that the second term does not involve higher powers of εi,t (higher than

one) and using that the ε′i,ts are symmetrically distributed around zero, it follows that the

second term is symmetrically distributed around zero and also asymptotically uncorrelated

with the denominator of ρ̂AB − ρ,
∑T−1

t=2 [ỹ
′
−1,t−1Zt(Z

′
tZt)

−1Z ′tỹ−1,t−1]. We conclude that the

expectation of the second term divided by the denominator converges to zero as N → ∞.

The ratio of the first term and the denominator converges to a negative constant divided by

a positive random variable and gives rise to the negative bias of ρ̂AB. �

Lemma 8 Let {yi,t} be a stationary process and let ui,t = yi,t − µi.

Then E(ui,t−1∆ui,t) = − σ2

1+ρ
, E[(∆ui,t)

2] = 2σ2

1+ρ
, E(u4i,t) =

(1−ρ2)κ+6ρ2

(1−ρ2)2(1+ρ2)
σ4,

E[(∆ui,t)
4] = (1−ρ)2[κ(1−ρ2)+6ρ2]

(1+ρ)2(1+ρ2)
σ4 + 6(1−ρ)

1+ρ
σ4 + κσ4, E[ui,t−1(∆ui,t)

3] =

− (1−ρ)[κ(1−ρ2)+6ρ2]
(1+ρ)2(1+ρ2)

σ4 − 3
(1+ρ)

σ4, and E[u2i,t−1(∆ui,t)
2] = (κ(1−ρ2)+6ρ2)

(1+ρ)2(1+ρ2)
σ4 + 1

1−ρ2
σ4.

Proof of lemma 8: Note that ui,t = ρui,t−1 + εi,t and ∆ui,t = (ρ− 1)ui,t−1 + εi,t. Moreover

{ui,t} is a stationary process. Then verification of the first two claims is straightforward. The

other claims are proved as follows:

E(u4i,t) = E(ρ4u4i,t−1 + 6ρ2u2i,t−1ε
2
i,t + ε4i,t) = ρ4E(u4i,t) +

6σ4ρ2

(1−ρ2)
+ κσ4 ⇔

E(u4i,t) =
κσ4

1−ρ4
+ 6σ4ρ2

(1−ρ2)(1−ρ4)
= (1−ρ2)κ+6ρ2

(1−ρ2)2(1+ρ2)
σ4,

E[(∆ui,t)
4] = E[(ρ−1)4u4i,t−1+6(ρ−1)2u2i,t−1ε

2
i,t+ε4i,t] =

(1−ρ)2[κ(1−ρ2)+6ρ2]
(1+ρ)2(1+ρ2)

σ4+ 6(1−ρ)
1+ρ

σ4+κσ4,

E[ui,t−1(∆ui,t)
3] = E[(ρ− 1)3u4i,t−1 + 3(ρ− 1)u2i,t−1ε

2
i,t] = − (1−ρ)[κ(1−ρ2)+6ρ2]

(1+ρ)2(1+ρ2)
σ4 − 3

(1+ρ)
σ4, and

E[u2i,t−1(∆ui,t)
2] = E[(ρ− 1)2u4i,t−1 + u2i,t−1ε

2
i,t] =

(κ(1−ρ2)+6ρ2)
(1+ρ)2(1+ρ2)

σ4 + 1
1−ρ2

σ4. �

Lemma 9 Let {yi,t} be a stationary process. Then

E(yi,1∆yi,2) = − σ2

1+ρ
, E(yi,2∆yi,2) =

σ2

1+ρ
,

V ar(yi,1∆εi,3) =
2σ2[σ2+σ2µ(1−ρ

2)]

(1+ρ)(1−ρ)
, V ar[(εi,3 + (1− ρ)µi)∆yi,2] =

2σ2[σ2+σ2µ(1−ρ)
2]

1+ρ
,

V ar(yi,1∆yi,2) =
(κ(1−ρ2)+6ρ2)σ4

(1+ρ)2(1+ρ2)
+ σ4

(1+ρ)(1−ρ)
+

σ2[2σ2µ(1+ρ)−σ
2]

(1+ρ)2
,

V ar(yi,2∆yi,2) =
ρ2(κ(1−ρ2)+6ρ2)
(1+ρ)2(1+ρ2)

σ4 + σ4

(1+ρ)(1−ρ)
+

κ(1+ρ)2−1−6ρ(1+ρ)+2(σ2µ/σ
2)(1+ρ)

(1+ρ)2
σ4,

Cov(yi,1∆εi,3, yi,1∆yi,2) = −σ2[σ2+σ2µ(1−ρ
2)]

(1−ρ)(1+ρ)
, and

Cov[(εi,3 + (1− ρ)µi)∆yi,2, yi,2∆yi,2] =
2σ2σ2µ(1−ρ)

1+ρ
.
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Proof of lemma 9: Noting that yi,t = ui,t + µi, application of lemma 8 yields

E(yi,1∆yi,2) = E[(ui,1 + µi)∆ui,2] = − σ2

1+ρ
,

E(yi,2∆yi,2) = E[yi,1∆yi,2 + (∆ui,2)
2] = σ2

1+ρ
,

V ar(yi,1∆εi,3) = E[(yi,1∆εi,3)
2] = E[((ui,1 + µi)∆εi,3)

2] = 2σ4

1−ρ2
+ 2σ2

µσ
2 =

2σ2[σ2+σ2µ(1−ρ
2)]

(1+ρ)(1−ρ)
,

V ar[(εi,3 + (1− ρ)µi)∆yi,2] = E[((εi,3 + (1− ρ)µi)∆ui,2)
2] =

2σ2[σ2+σ2µ(1−ρ)
2]

1+ρ
,

V ar(yi,1∆yi,2) = E[(ui,1∆ui,2 + µi∆ui,2 +
σ2

1+ρ
)2] = E[(ui,1∆ui,2)

2 − 2σ4

(1+ρ)2
+

2σ2σ2µ
1+ρ

+ σ4

(1+ρ)2
] =

(κ(1−ρ2)+6ρ2)σ4

(1+ρ)2(1+ρ2)
+ σ4

(1+ρ)(1−ρ)
+

σ2[2σ2µ(1+ρ)−σ
2]

(1+ρ)2
,

V ar(yi,2∆yi,2) = E[(ui,1∆ui,2 + (∆ui,2)
2 + µi∆ui,2 − σ2

1+ρ
)2] =

E[(ui,1∆ui,2)
2+(∆ui,2)

4+(µi∆ui,2)
2+ σ4

(1+ρ)2
+2ui,1(∆ui,2)

3− 2σ2

1+ρ
(ui,1∆ui,2)− 2σ2

1+ρ
(∆ui,2)

2] =

(κ(1−ρ2)+6ρ2)
(1+ρ)2(1+ρ2)

σ4+ σ4

1−ρ2
+ (1−ρ)2[κ(1−ρ2)+6ρ2]

(1+ρ)2(1+ρ2)
σ4+ 6(1−ρ)

1+ρ
σ4+κσ4+

2σ2σ2µ
1+ρ

+ σ4

(1+ρ)2
− 2(1−ρ)[κ(1−ρ2)+6ρ2]

(1+ρ)2(1+ρ2)
σ4

− 6
(1+ρ)

σ4 + 2σ4

(1+ρ)2
− 4σ4

(1+ρ)2
= ρ2(κ(1−ρ2)+6ρ2)

(1+ρ)2(1+ρ2)
σ4 + σ4

(1+ρ)(1−ρ)
+

κ(1+ρ)2−1−6ρ(1+ρ)+2(σ2µ/σ
2)(1+ρ)

(1+ρ)2
σ4,

Cov(yi,1∆εi,3, yi,1∆yi,2) = Cov(ui,1∆εi,3, ui,1∆ui,2) + Cov(µi∆εi,3, µi∆ui,2) =

E(u2i,1∆εi,3∆ui,2) + σ2
µE(∆εi,3∆ui,2) = −E(u2i,1ε

2
i,2)− σ2

µE(ε2i,2) = −σ2[σ2+σ2µ(1−ρ
2)]

(1−ρ)(1+ρ)
, and

Cov[(εi,3 + (1− ρ)µi)∆yi,2, yi,2∆yi,2] = E[(1− ρ)(µi∆ui,2)
2] =

2σ2σ2µ(1−ρ)

1+ρ
. �

A.2 Proof of theorem 2

When T = 3, ρ̂AB = ρ +
N−1

∑N
i=1 yi,1∆εi,3

N−1
∑N

i=1 yi,1∆yi,2
and ρ̂Arbov = ρ +

N−1
∑N

i=1(εi,3+(1−ρ)µi)∆yi,2

N−1
∑N

i=1 yi,2∆yi,2
.

Let us define X1 = N−1
∑N

i=1 yi,1∆εi,3, X2 = N−1
∑N

i=1 yi,1∆yi,2, X3 = N−1/2
∑N

i=1(εi,3 +

(1− ρ)µi)∆yi,2 and X4 = N−1
∑N

i=1 yi,2∆yi,2.

Let the CS model hold. Then using the results in lemma 9 we obtain as N → ∞ for the

parameter sequence ρ = 1− λN−1 that X1
d→ N(0, σ4/λ), X2

d→ N(−σ2/2, σ4/(2λ)), X3
d→

N(0, σ4), and X4
d→ N(σ2/2, σ4/(2λ)). It is also easily verified that limN→∞Cov(X1,X2) =

−σ4/(2λ) and limN→∞Cov(X3, X4) = 0. It follows that

ρ̂AB
d→ ρ+ X̃1

X̃2

, where

[
X̃1

X̃2

]
∼ N

[
−1

2

√
λ

(
0
1

)
, 1
2

(
2 −1
−1 1

)]
, and

√
N(ρ̂Arbov − ρ)

d→ X̃3

X̃4

, where

[
X̃3

X̃4

]
∼ N

[
1
2

(
0
1

)
,

(
1 0
0 1

2λ

)]
. �
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Lemma 10 Let {yi,t} be a stationary process, let ui,t = yi,t − µi, let l, p, and q be positive

integers, and let κq =
∣∣E(εqi,t)/σ

q
∣∣ < ∞.

Then (a) limρ↑1(1−ρ)pE(u2pi,t) < ∞, (b) limρ↑1(1−ρ)p
∣∣E(u2p+1i,t )

∣∣ < ∞, (c) limρ↑1E[(∆ui,t)
p] =

κpσ
p, (d) limρ↑1(1 − ρ)p

∣∣E[u2pi,s(∆ui,t)
q]
∣∣ < ∞, (e) limρ↑1(1 − ρ)p

∣∣E[u2p+1i,s (∆ui,t)
q]
∣∣ < ∞,

(f) limρ↑1(1− ρ)p
∣∣E[εli,ku

2p
i,s(∆ui,t)

q]
∣∣ < ∞, and (g) limρ↑1(1− ρ)p

∣∣E[εli,ku
2p+1
i,s (∆ui,t)

q]
∣∣ < ∞.

Proof of lemma 10: Note that {ui,t} is a stationary process, ui,t = ρui,t−1+εi,t and ∆ui,t =

(ρ− 1)ui,t−1 + εi,t. Moreover, E(upi,t) = E[(ρui,t−1 + εi,t)
p] = E[

∑p
k=0B(p, k)(ρui,t−1)

p−kεki,t],

where B(p, k) = [k!(p− k)!]−1p! .

We prove (a) and (b) together. The proof proceeds by induction:

First consider p = 0 : E(u0i,t) = 1 and E(u1i,t) = 0 and hence limρ↑1E(u0i,t) < ∞ and

limρ↑1

∣∣E(u1i,t)
∣∣ < ∞.

Now let p > 0 and suppose that limρ↑1(1−ρ)qE(u2qi,t) < ∞ and limρ↑1(1−ρ)q
∣∣E(u2q+1i,t )

∣∣ < ∞
for q ≤ p − 1. Note that limρ↑1(1 − ρ2p)−1(1 − ρ) = limρ↑1(

∑2p−1
k=0 ρk)−1 = 1/(2p) and

limρ↑1(1 − ρ2p+1)−1(1 − ρ) = 1/(2p + 1). It follows that limρ↑1(1 − ρ)pE(u2pi,t) = limρ↑1(1 −
ρ2p)−1(1 − ρ)pB(2p, 2)E(u2p−2i,t )E(ε2i,t) = σ2(2p)−1B(2p, 2) × limρ↑1(1 − ρ)p−1E(u2p−2i,t ) < ∞.

It also follows that limρ↑1(1 − ρ)p
∣∣E(u2p+1i,t )

∣∣ ≤ limρ↑1(1 − ρ2p+1)−1(1 − ρ)pB(2p + 1, 2) ×∣∣E(u2p−1i,t )
∣∣E(ε2i,t) + limρ↑1(1 − ρ2p+1)−1(1 − ρ)pB(2p + 1, 3)E(u2p−2i,t )

∣∣E(ε3i,t)
∣∣ =

σ2(2p + 1)−1B(2p + 1, 2) × limρ↑1(1 − ρ)p−1
∣∣E(u2p−1i,t )

∣∣ + |κ3|σ3(2p + 1)−1B(2p + 1, 3) ×
limρ↑1(1− ρ)p−1E(u2p−2i,t ) < ∞.

The proofs of (c) to (g) are now straightforward:

(c): limρ↑1E[(∆ui,t)
p] = limρ↑1E[((ρ− 1)ui,t−1 + εi,t)

p] = E[(εi,t)
p] = κpσ

p,

(d): limρ↑1(1− ρ)p
∣∣E[u2pi,s(∆ui,t)

q]
∣∣ = limρ↑1(1− ρ)p

∣∣E[u2pi,sε
q
i,t]
∣∣ < ∞,

(e): limρ↑1(1−ρ)p
∣∣E[u2p+1i,s (∆ui,t)

q]
∣∣ = limρ↑1(1−ρ)p

∣∣E[u2p+1i,s (B(q, 1)(ρ− 1)ui,t−1ε
q−1
i,t + εqi,t)]

∣∣
< ∞, (f): limρ↑1(1−ρ)p

∣∣E[εli,ku
2p
i,s(∆ui,t)

q]
∣∣ = limρ↑1(1−ρ)p

∣∣E[εli,ku
2p
i,sε

q
i,t]
∣∣ < ∞, and finally

(g): limρ↑1(1−ρ)p
∣∣E[εli,ku

2p+1
i,s (∆ui,t)

q]
∣∣ = limρ↑1(1−ρ)p

∣∣E[εli,ku
2p+1
i,s (B(q, 1)(ρ− 1)ui,t−1ε

q−1
i,t +

εqi,t)]
∣∣ < ∞. �
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A.3 Proof of theorem 3

Part a): The proof of the first two results is similar to the proof of the first part of

theorem 2:

For ρ = 1 − λN−1 limN→∞E(yi,1∆yi,t−1) = limN→∞ ρt−3E(yi,1∆yi,2) = −1
2
σ2 and

limN→∞N−1V ar(yi,1∆vi,t) = limN→∞N−1E[(yi,1∆εi,t)
2] = limN→∞N−1E[(yi,1∆εi,3)

2] =

limN→∞ 2σ2N−1E(y2i,1) = limN→∞ 2σ2N−1E(u2i,1) = σ4/λ.

Note that V ar(yi,1∆yi,t−1) = E[(ui,1∆ui,t−1+µi∆ui,t−1+
σ2

1+ρ
ρt−3)2], ui,t = ρui,t−1+εi,t and

∆ui,t = (ρ − 1)ui,t−1 + εi,t. Then it is easily seen that for ρ = 1 − λN−1

limN→∞N−1V ar(yi,1∆yi,t−1) = limN→∞N−1E[(ui,1∆ui,t−1)
2] = limN→∞N−1E{[(ρ−1)u2i,1+

ui,1εi,t−1]
2} = limN→∞N−1E[(ui,1εi,t−1)

2] = σ4/2λ; that if s < t − 1 and ρ = 1 − λN−1

limN→∞N−1Cov(yi,1∆yi,s, yi,1∆yi,t−1) = limN→∞N−1E(u2i,1∆ui,s∆ui,t−1) =

limN→∞N−1E(u2i,1∆ui,s∆ui,s+1) = limN→∞N−1E{u2i,1[(ρ−1)us−1+εs][(ρ−1)(ρus−1+εs)]} =

0; limN→∞N−1Cov(yi,1∆vi,t, yi,1∆yi,t−1) = limN→∞N−1E(y2i,1∆εi,t∆ui,t−1) = −σ4/2λ and

finally that limN→∞N−1Cov(yi,1∆vi,t, yi,1∆yi,t) = limN→∞N−1E(y2i,1∆εi,t∆ui,t) = σ4/2λ.

Thus for ρ = 1 − λN−1 limN→∞N−1E(ZI′
i ∆vi∆v′iZ

I
i ) = limN→∞ σ2N−1E(y2i,1)H =

(σ4/2λ)H, limN→∞N−1E(ZI′
i ∆yi,−1∆y′i,−1Z

I
i ) = limN→∞ σ2N−1E(y2i,1)I = (σ4/2λ)I and

limN→∞N−1E(ZI′
i ∆yi,−1∆v′iZ

I
i ) = − limN→∞ σ2N−1E(y2i,1)C = −(σ4/2λ)C and hence[

N−1
∑N

i=1Z
I′
i ∆vi

N−1
∑N

i=1Z
I′
i ∆yi,−1

]
d→
[
X̃51

X̃61

]
∼ N

[(
0

−1
2
σ2ι

)
, (σ

4

2λ
)

(
H −C ′

−C I

)]
.

Note that Σ̃56,11 = E(X̃51X̃
′
61) = −(σ4/2λ)C ′ �= 0. Moreover, when T = 3, X̃51 = X̃1/

√
λ

and X̃61 = X̃2/
√
λ, where X̃1 and X̃2 are defined in theorem 2.

Consider now the scaled sums N−1/2
∑N

i=1Z
D′
i ∆vi and N−1/2

∑N
i=1Z

D′
i ∆yi,−1. For

ρ = 1 − λN−1 we obtain limN→∞N1/2E(ZD′
i ∆yi,−1) = limN→∞N1/2E(ZD′

i ∆ui,−1) =

limN→∞N 1/2E{ZD′
i [(ρ − 1)ui,−2 + εi,−1]} = 0. In addition, limN→∞E(ZD′

i ∆vi∆v′iZ
D
i ) =

limN→∞ σ2E(ZD′
i HZD

i ), limN→∞E(ZD′
i ∆yi,−1∆y′i,−1Z

D
i ) = limN→∞ σ2E(ZD′

i ZD
i ) and

limN→∞E(ZD′
i ∆yi,−1∆v′iZ

D
i ) = − limN→∞ σ2E(ZD′

i CZD
i ). Hence for ρ = 1 − λN−1[

N−1/2
∑N

i=1Z
D′
i ∆vi

N−1/2
∑N

i=1Z
D′
i ∆yi,−1

]
d→
[
X̃52

X̃62

]
∼

N

[(
0
0

)
, σ4

(
diag(HT−3, HT−4, ..., H1) −diag(CT−3, CT−4, ..., C1)

′

−diag(CT−3, CT−4, ..., C1) I

)]
.

Note that Σ̃56,22 = E(X̃52X̃
′
62) = −σ4diag(CT−3, CT−4, ..., C1)

′ �= 0.
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Next consider the off-diagonal blocks Σ̃55,12, Σ̃66,12, Σ̃56,12 and Σ̃56,21. Since

limN→∞E(ZI′
i ∆vi∆v′iZ

D
i ) = limN→∞ σ2E(ZI′

i HZD
i ) = limN→∞ σ2HE(yi,1Z

D
i ) =

limN→∞ σ2HE(yi,1[d1∆yi,2 d2ρ∆yi,2 ... dT−3ρ
T−4∆yi,2]) = limN→∞−1

2
σ4H[d1 d2 ... dT−3],

we have Σ̃55,12 = E(X̃51X̃
′
52) = limN→∞ σ2N−1/2E(ZI′

i HZD
i ) = 0. Similarly, Σ̃66,12 =

E(X̃61X̃
′
62) = limN→∞ σ2N−1/2E(ZI′

i Z
D
i ) = 0, Σ̃56,12 = E(X̃51X̃

′
62) = − limN→∞ σ2 ×

N−1/2E(ZI′
i C

′ZD
i ) = 0, and Σ̃56,21 = E(X̃52X̃

′
61) = − limN→∞ σ2N−1/2E(ZD′

i C ′ZI
i ) = 0.

Recall that Z ′i = KABZAB′
i , where ZAB

i = [ZI
i ZD

i ] and rank(KAB) = m. There-

fore ρ̂AB1 is equal to an GMM estimator that exploits E(ZAB′
i ∆vi) = 0 and uses the

weight matrix (N−1
∑N

i=1Z
AB′
i HZAB

i )−1. Consider the local-to-unity limiting behaviour of

this weight matrix. Since limN→∞N−2V ar(y2i,1) < ∞, limN→∞N−1V ar(yi,1∆yi,t) < ∞ and

limN→∞ V ar([∆yi,t]
2) < ∞, it is easily seen that for ρ = 1−λN−1 σ2N−2

∑N
i=1(Z

I′
i HZI

i )
q.m.→

Σ̃55,11 and σ2N−3/2
∑N

i=1(Z
I′
i HZD

i )
q.m.→ 0.Moreover σ2N−1

∑N
i=1(Z

D′
i HZD

i )
q.m.→ Σ̃55,22. There-

fore plimN→∞ σ2N−2
∑N

i=1(Z
I′
i HZI

i ) = Σ̃55,11, plimN→∞ σ2N−1
∑N

i=1(Z
D′
i HZD

i ) = Σ̃55,22

and plimN→∞ σ2N−3/2
∑N

i=1(Z
I′
i HZD

i ) = Σ̃55,12 = 0. Furthermore Σ̃55 is PDS. It follows

from the above results that ρ̂AB1 − ρ
d→ X̃ ′

6Σ̃
−1
55 X̃5/X̃

′
6Σ̃

−1
55 X̃6. Assuming that ρ̂AB exploits

E(ZAB′
i ∆vi) = 0, it also follows that ρ̂AB − ρ

d→ X̃ ′
61W11X̃51/X̃

′
61W11X̃61.

Finally, it is easily seen that if T = 3, then X̃5 = X̃51 = X̃1/
√
λ and X̃6 = X̃61 = X̃2/

√
λ,

where X̃1 and X̃2 are defined in theorem 2.

Part b): The proof of the first two results is similar to the proof of the last part of

theorem 2 and the proof of part a) of this theorem:

Stationarity implies that for ρ = 1−λN−1 limN→∞E(yi,t∆yi,t) = limN→∞E(yi,2∆yi,2) =

σ2/2 and limN→∞N−1V ar(yi,t∆yi,t) = limN→∞N−1V ar(yi,2∆yi,2) = σ4/(2λ). Moreover, if

s < t, then for ρ = 1− λN−1 limN→∞N−1E(yi,s∆yi,syi,t∆yi,t) = limN→∞N−1E(ui,s∆ui,s ×
ui,t∆ui,t) = limN→∞N−1E(ui,s−1∆ui,sui,t−1∆ui,t) = limN→∞N−1E(ui,s−1∆ui,sui,s−1∆ui,s+1)

= limN→∞N−1E{u2i,s−1[(ρ− 1)us−1 + εs][(ρ− 1)(ρus−1 + εs)]} = 0.

Thus for ρ = 1 − λN−1 limN→∞E(ZL′
i viv

′
iZ

L
i ) = limN→∞ σ2E(ZL′

i ZL
i ) = σ4I,

limN→∞N−1E(ZL′
i yi,−1y

′
i,−1Z

L
i ) = (σ4/2λ)I and limN→∞N−1/2E(ZL′

i yi,−1v
′
iZ

L
i ) = 0

and hence

[
N−1/2

∑N
i=1Z

L′
i vi

N−1
∑N

i=1Z
L′
i yi,−1

]
d→
[
X̃71

X̃81

]
∼ N

[(
0

1
2
σ2ι

)
, (σ

4

2λ
)

(
2λI 0
0 I

)]
.

Note that Σ̃78,22 = E(X̃71X̃
′
81) = 0. Since limN→∞N−1/2E(ZD′

i ∆viy
′
i,−1Z

L
i ) = 0, we also have

Σ̃78,12 = E(X̃52X̃
′
81) = 0. We conclude that Σ̃78 = 0. Furthermore it is easily verified that
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Σ̃77 = V ar(X̃7) = limN→∞KIIE(ZII′
i viv

′
iZ

II
i )KII′ = σ4KIIKII′.

It follows in a straightforward manner from the above results that plimN→∞(ρ̂Arbov−ρ) =

0 and
√
N(ρ̂Arbov − ρ)

d→ X̃ ′
8WX̃7/X̃

′
8WX̃8 with X̃7 = (X̃ ′

52 X̃ ′
71)

′ ∼ N(0, Σ̃77) and X̃8 = (0′

X̃ ′
81)

′.

Finally, it is easily seen that if T = 3, then X̃7 = X̃3 and X̃8 = X̃4, where X̃3 and X̃4 are

defined in theorem 2.

Part c): Since limN→∞N−2V ar(y2i,1) < ∞, limN→∞N−1V ar(yi,1∆yi,t) < ∞ and

limN→∞ V ar([∆yi,t]
2) < ∞, it is easily seen that for ρ = 1 − λN−1, N−2

∑N
i=1(Z

I′
i Z

I
i )

q.m.→
limN→∞N−1E(ZI′

i Z
I
i ) = σ2

2λ
I, N−3/2

∑N
i=1(Z

I′
i Z

D
i )

q.m.→ limN→∞N−1/2E(ZI′
i Z

D
i ) = 0 and

N−1
∑N

i=1(Z
D′
i ZD

i )
q.m.→ limN→∞E(ZD′

i ZD
i ) = σ2I. The results are obtained by noting that

convergence in quadratic mean implies convergence in probability.

Part d): Since limN→∞ V ar([∆yi,t]
2) < ∞ ∀t, it is easily seen that for ρ = 1 − λN−1

N−1
∑N

i=1(Z
II′
i ZII

i )
q.m.→ limN→∞E(ZII′

i ZII
i ) = σ2I and hence plimN→∞N−1

∑N
i=1(Z

II′
i ZII

i ) =

σ2I.

To establish the second claim of part d), note that v̂i = yi − ρ̂1yi,−1 = vi + (ρ− ρ̂1)yi,−1

and ∆v̂i = ∆yi − ρ̂1∆yi,−1 = ∆vi + (ρ− ρ̂1)∆yi,−1.

Lemma 10 implies that limN→∞E(∆ui,t)
8 < ∞, limN→∞N−1E[u2i,s(∆ui,t)

6] < ∞,

limN→∞N−2E[u4i,s(∆ui,t)
4] < ∞, limN→∞E[(∆ui,t)

4] < ∞, limN→∞ |E[ui,s(∆ui,t)
3]| < ∞

and limN→∞N−1E[u2i,s(∆ui,t)
2] < ∞ ∀s, t. It follows from the first result, our model assump-

tions and the Cauchy-Schwarz (CS) inequality that limN→∞ V ar([vi,s∆yi,t]
2) < ∞ ∀s, t and

hence N−1
∑N

i=1 Z̃
II′
i [∆v′i v

′
i]
′

[∆v′i v
′
i]Z̃

II
i

q.m.→ limN→∞KIIE(ZII′
i viv

′
iZ

II
i )KII′ = σ4KIIKII′.

Similarly it follows that N−2
∑N

i=1(Z
L′
i yi,−1y

′
i,−1Z

L
i )

q.m.→ limN→∞N−1E(ZL′
i yi,−1y

′
i,−1Z

L
i ) =

(σ4/2λ)I, N−2
∑N

i=1(Z
D′
i ∆yi,−1∆y′i,−1Z

D′
i )

q.m.→ 0 and N−2
∑N

i=1(Z
L′
i yi,−1∆y′i,−1Z

D′
i )

q.m.→ 0.

Lemma 10 and our model assumptions also imply that limN→∞ |E[vi,kui,s(∆ui,t)
2]| < ∞

and limN→∞N−1E[v2i,ku
2
i,s(∆ui,t)

4] < ∞ ∀k, s, t. It follows from these results, our model as-

sumptions and the CS inequality that N−3/2
∑N

i=1(Z
L′
i viy

′
i,−1Z

L
i )

q.m.→ 0,

N−3/2
∑N

i=1(Z
L′
i vi∆y′i,−1Z

D
i )

q.m.→ 0, N−3/2
∑N

i=1(Z
L′
i yi,−1∆v′iZ

D
i )

q.m.→ 0 and

N−3/2
∑N

i=1(Z
D′
i ∆yi,−1∆v′iZ

D
i )

q.m.→ 0.

We conclude from the above results thatN−1
∑N

i=1 Z̃
II′
i [∆̂v

′

i v̂
′
i]
′

[∆̂v
′

i v̂
′
i]Z̃

II
i

d→ σ4KIIKII′+

(σ4/2λ)K2diag(Om−(T−2), IT−2).
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Part e): The proof is very similar to part h) of the proof of theorem 1 apart from the

first paragraph: Again recall that ρ̂AB1 = {∑T−1
t=2 [ỹ

′
−1,t−1Zt(Z

′
tZt)

−1Z ′tỹ−1,t−1]}−1×∑T−1
t=2 [ỹ

′
−1,t−1Zt(Z

′
tZt)

−1Z ′tỹt]. Since
∑T−1

t=2 [ỹ
′
−1,t−1Zt(Z

′
tZt)

−1Z ′tṽt] = (
∑N

i=1∆y′i,−1Z
AB
i )×

[
∑N

i=1(Z
AB′
i HZAB

i )]−1
∑N

i=1Z
AB′
i ∆vi and

∑T−1
t=2 [ỹ

′
−1,t−1Zt(Z

′
tZt)

−1Z ′tỹ−1,t−1] =

(
∑N

i=1∆y′i,−1Z
AB
i )[

∑N
i=1(Z

AB′
i HZAB

i )]−1
∑N

i=1Z
AB′
i ∆yi,−1, it follows from part a) above that∑T−1

t=2 [ỹ
′
−1,t−1Zt(Z

′
tZt)

−1Z ′tỹt]
d→ X̃ ′

6Σ̃
−1
55 X̃5 and

∑T−1
t=2 [ỹ

′
−1,t−1Zt(Z

′
tZt)

−1Z ′tỹ−1,t−1]
d→ X̃ ′

6Σ̃
−1
55 X̃5.

The rest of the proof is the same as part h) of the proof of theorem 1. �

A.4 Proof of theorem 4

Part a): WN,SY S1 = (N−1
∑N

i=1Z
S′
i AZS

i )
−1 where ZS

i = diag(ZI
i , Z

II
i ) and A =

[
H C
C ′ IT−2

]
.

Let M11 = N−1
∑N

i=1(Z
I′
i HZI

i ), M12 = M ′
21 = N−1

∑N
i=1(Z

I′
i CZII

i ) and M22 =

N−1
∑N

i=1(Z
II′
i ZII

i ). From parts a) and d) of the proof of theorem 3, we have plimN→∞N−1×
M11 = σ−2Σ̃55,11 = (σ

2

2λ
)H and plimN→∞M22 = σ2I. Moreover, since limN→∞E(yi,1∆yi,t) =

−σ2/2 and limN→∞N−1V ar(yi,1∆yi,t) = σ4/2λ, we have limN→∞

∣∣E(ZI′
i CZII

i )
∣∣ < ∞ and

plimN→∞N−1/2M12 = plimN→∞N−1/2M ′
21 = 0.

Note that WN,SY S1 =

[
M11 M12

M21 M22

]−1
=

[
M11 M12

M21 M22

]
, where

M11 = N−1(M11/N − M12M
−1
22 M21/N)−1, M12 = −M11M12M

−1
22 , M

21 = −M−1
22 M21M

11,

and M22 = M−1
22 +M−1

22 M21M
11M12M

−1
22 .

The first claim follows now straightforwardly by Slutsky’s theorem. The proof of the

second claim is very similar.

Part b): Note that Z̃S′
i [∆̂v

′

i v̂
′
i]
′ = ((ZI′

i ∆̂vi)
′ (Z̃II′

i [∆̂v
′

i v̂
′
i]
′

)′)′.

From part d) of theorem 3 we have N−1
∑N

i=1 Z̃
II′
i [∆̂v

′

i v̂
′
i]
′

[∆̂v
′

i v̂
′
i]Z̃

II
i

d→ σ4W̃−1
Arbov2.

Lemma 10, our model assumptions and the Cauchy-Schwarz inequality imply that

limN→∞N−1E[(∆vi,s)
2u2i,t] < ∞ and limN→∞N−2E[(∆vi,s)

4u4i,t] < ∞ ∀s, t, and

hence N−2
∑N

i=1(Z
I′
i ∆vi∆v′iZ

I
i )

q.m.→ limN→∞N−1E(ZI′
i ∆vi∆v′iZ

I
i ). In part a) of the proof of

theorem 3 we showed that limN→∞N−1E(ZI′
i ∆vi∆v′iZ

I
i ) = limN→∞ σ2N−1E(ZI′

i HZI
i ) =

(σ
4

2λ
)H. It then follows along the lines of part d) of the proof of theorem 3 that

plimN→∞N−2
∑N

i=1(Z
I′
i ∆̂vi∆̂v

′

iZ
I
i ) = (σ

4

2λ
)H.
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Similar arguments show that plimN→∞N−3/2
∑N

i=1(K
IIZII′

i vi∆v′iZ
I
i ) = 0 and

plimN→∞N−2
∑N

i=1(K
IIZII′

i yi,−1∆v′iZ
I
i ) = plimN→∞N−2

∑N
i=1(y

2
i,1K

IIZII′
i ι∆v′i) =

σ2

2λ
KII ×

E[diag(ε2i , ..., ε
T−1
i )′ι∆ε′i] =

σ4

2λ
KIID. Note that KIIZII′

i v̂i = Z̃II′
i [∆̂v

′

i v̂′i]. It follows that

N−3/2
∑N

i=1(Z̃
II′
i [∆̂v

′

i v̂
′
i]∆̂v

′

iZ
I
i )

d→ −σ4

2λ
KKIID.

Noting that W̃ 11
SY S2 =

1
2λ
H, W̃ 21

SY S2 = (W̃ 12
SY S2)

′ = − 1
2λ
KKIID, and W̃ 22

SY S2 = W̃−1
Arbov2, we

conclude that diag(N−1IT−2, N
−1/2Im)

∑N
i=1 Z̃

S′
i [∆̂v

′

i v̂
′
i]
′

[∆̂v
′

i v̂
′
i]Z̃

S
i diag(N

−1IT−2, N
−1/2Im)

d→ σ4W̃−1
SY S2.

Part c): From part a) of theorem 3 we have N−1
∑N

i=1Z
I′
i ∆vi

d→ X̃51, N
−1

∑N
i=1Z

I′
i ∆yi,−1

d→
X̃61, N

−1/2
∑N

i=1Z
D′
i ∆vi

d→ X̃52, and N−1/2
∑N

i=1 Z
D′
i ∆yi,−1

d→ X̃62, with X̃5 = (X̃ ′
51 X̃

′
52)

′ ∼
N(0, Σ̃55) and X̃6 = (X̃ ′

61 X̃ ′
62)

′ ∼ N(µ̃6, Σ̃66).

From part b) of theorem 3 we have N−1/2
∑N

i=1Z
L′
i vi

d→ X̃71 ∼ N(0, Σ̃77,22), and

N−1
∑N

i=1Z
L′
i yi,−1

d→ X̃81 ∼ N(σ
2ι
2
, σ

4

2λ
I).

Recall that Z̃II′
i [∆v′i v′i]

′

= KIIZII′
i vi. Let KS = diag(IT−2, KII). It follows that

Z̃S′
i [∆v′i v

′
i]
′

= ((ZI′
i ∆̂vi)

′ (Z̃II′
i [∆̂v

′

i v̂
′
i]
′

)′)′ = KSZS′
i [∆v′i v

′
i]
′

.

Consider now KSW−1
N,SY S1K

S′ = N−1
∑N

i=1K
SZS′

i AZS
i K

S′ and KSW−1
N,SY S1bK

S′ =

N−1
∑N

i=1K
SZS′

i ZS
i K

S′. From part a) we obtain plimN→∞N−2
∑N

i=1(Z
I′
i HZI

i ) =

(σ
2

2λ
)H, plimN→∞N−1

∑N
i=1(K

IIZII′
i ZII

i KII′) = σ2KIIKII′ = σ−2Σ̃77, and

plimN→∞N−3/2
∑N

i=1(Z
I′
i CZII

i KII′) = 0. We also have plimN→∞N−2
∑N

i=1(Z
I′
i Z

I
i ) = (σ

2

2λ
)I.

We conclude from the above results that plimN→∞(ρ̂SY Sk−ρ) = 0 and
√
N(ρ̂SY Sk−ρ)

d→
X̃ ′

8Σ̃
−1
77 X̃7/X̃

′
8Σ̃

−1
77 X̃8, for k = 1, 1b.

It immediately follows from part b) and the above results that plimN→∞(ρ̂SY S2 − ρ) =

0 and
√
N(ρ̂SY S2 − ρ)

d→ X̃ ′
11W̃SY S2X̃10/X̃

′
11W̃SY S2X̃11 with X̃10 = (X̃ ′

51 X̃ ′
52 X̃ ′

71)
′ and

X̃11 = (0 0 X̃ ′
81)

′.

Part d): From the results mentioned in part c) above we conclude ρ̂SY S−ρ
d→ (X̃ ′

61W11X̃51+

X̃ ′
81W31X̃51)/X̃

′
12WX̃12 with X̃12 = (X̃ ′

61 0 X̃ ′
81)

′. �

Lemma 11 Let g, d, ĉ and λ be constants such that 0 < g ≤ 1, 0 ≤ d ≤ g, 0 < ĉ < ∞,

and 0 < λ < ∞. Furthermore, let ρ = 1− λN−g. Then limN→∞, S/Nd→ĉN
g−d(1− ρ2(1+S)) ≡

q̂(λ, ĉ) < ∞, where q̂(λ, ĉ) = 2λ(S + 1) if d = 0; q̂(λ, ĉ) = 2λĉ if 0 < d < g; and q̂(λ, ĉ) =

q(λ, ĉ) if d = g.
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Proof of lemma 11: Note that (1− ρ2(1+S))/(1− ρ) = (1 + ρ1+S)
∑S

k=0 ρ
k and recall that

limp→∞(1 + x/p)p = exp(x) and q(λ, c) = 1 − exp(−2λc). There are three cases: d = 0,

0 < d < g, and d = g.

First assume that d = 0. Then S = ĉ is fixed and limN→∞, S/Nd→ĉN
g−d(1 − ρ2(1+S)) =

limN→∞, S=ĉ λ(1− ρ2(1+S))/ (1− ρ) = limN→∞, S=ĉ λ(1 + ρ1+S)
∑S

k=0 ρ
k = 2λ(S + 1).

Next assume that 0 < d < g. Then we have limN→∞, S/Nd→ĉ S
−1

∑S
k=0 ρ

k = 1,

because 1 ≥ limN→∞, S/Nd→ĉ S
−1

∑S
k=0 ρ

k ≥ limN→∞, S/Nd→ĉ ρ
S = 1. It follows that

limN→∞, S/Nd→ĉN
g−d(1 − ρ2(1+S)) = limN→∞, S/Nd→ĉ λN

−d(1 − ρ2(1+S))/(1 − ρ) =

limN→∞, S/Nd→ĉ λ(1 + ρ1+S)ĉS−1
∑S

k=0 ρ
k = 2λĉ.

Finally assume that d = g. Then we have limN→∞, S/Nd→ĉN
g−d(1 − ρ2(1+S)) =

limN→∞, S/Ng→ĉ(1− ρ2(1+S)) = 1− exp(−2λĉ) = q(λ, ĉ) < ∞. �

A.5 Proof of theorem 5

Note that limρ↑1 V ar(yi,−S−µi) = 0. Then we obtain for the parameter sequence ρ = 1−λN−g

that limN→∞, S/Nd→ĉN
−dV ar(yi,1 − µi) = limN→∞, S/Nd→ĉ σ

2N−d(1 − ρ2(1+S))/(1 − ρ2) =

limN→∞, S/Nd→ĉ σ
2N g−d(1− ρ2(1+S))/(2λ) = σ2q̂(λ, ĉ)/(2λ) by lemma 11.

Let σ2
−S = E(y2i,−S) and let the indicator function 1{d = 0} = 1 if d = 0 and let

1{d = 0} = 0 if d �= 0. Then it follows that limN→∞, S/Nd→ĉN
−dV ar(yi,1∆yi,2) =

limN→∞, S/Nd→ĉN
−dV ar(yi,1εi,2) = σ2(σ2q̂(λ, ĉ)/(2λ) + 1{d = 0}σ2

−S). Furthermore, if

0 < d ≤ g, we have limN→∞, S/Nd→ĉN
g−dE(yi,1∆yi,2) = − limN→∞, S/Nd→ĉ λN

−dV ar(yi,1 −
µi) = −σ2q̂(λ, ĉ)/2. Finally, if d = 0, we obtain by using arguments similar to those in the

proof of theorem 1 that limN→∞, S/Nd→ĉN
g−dE(yi,1∆yi,2) = λ(σµy − σ2

y). Note that when

d = 0, σ2
y = σ2q̂(λ, ĉ)/(2λ) + σ2

−S.

When T = 3, ρ̂AB = ρ +
∑N

i=1 yi,1∆εi,3
∑N

i=1 yi,1∆yi,2
and ρ̂Arbov = ρ+

∑N
i=1(εi,3+(1−ρ)µi)∆yi,2
∑N

i=1 yi,2∆yi,2
.

Let us define X1 = N− 1

2
(1+d)

∑N
i=1 yi,1∆εi,3, X3 = N−1/2

∑N
i=1(εi,3 + (1 − ρ)µi)∆yi,2

and X4 = N−1
∑N

i=1 yi,2∆yi,2. Moreover, let X2 = N− 1

2
(1+d)

∑N
i=1 yi,1∆yi,2 if ∆gd ≤ 0 and

X2 = N−1+g−d
∑N

i=1 yi,1∆yi,2 if ∆gd > 0.

Recall that q(λ, c) = 0 if c = 0. Then using results similar to those in lemma 9 we obtain

as N, S → ∞ with S/N → c ≥ 0, S/N g → c̄ ≥ 0 and S/Nd → ĉ > 0, where 0 < g ≤ 1 and

0 ≤ d ≤ g, for the parameter sequence ρ = 1− λN−g that X1
d→ N(0, 2σ2(σ2q̂(λ, ĉ)/(2λ) +
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1{d = 0}σ2
−S)), X3

d→ N(0, σ4) and X4
d→ N(σ2(1− q(λ, c̄)/2), σ4q(λ, c)/(2λ)). In addition,

we obtain that

X2
d→ N(λ(σµy − σ2

y), σ
2(σ2q̂(λ, ĉ)/(2λ) + σ2

−S)) if ∆gd = 0 and d = 0,

X2
d→ N(−σ2q̂(λ, ĉ)/2, σ4q̂(λ, ĉ)/(2λ)) if ∆gd = 0 and d > 0,

X2
d→ N(0, σ2(σ2q̂(λ, ĉ)/(2λ) + 1{d = 0}σ2

−S)) if ∆gd < 0,

X2
d→ λ(σµy − σ2

y) if ∆gd > 0 and d = 0, and

X2
d→ −σ2q̂(λ, ĉ)/2 if ∆gd > 0 and d > 0,

and we obtain that limN→∞, S/Nd→ĉCov(X1, X2) = −σ2(σ2q̂(λ, ĉ)/(2λ) + 1{d = 0}σ2
−S) if

∆gd ≤ 0, limN→∞, S/Nd→ĉCov(X1,X2) = 0 if ∆gd > 0, and limN→∞, S/Nd→ĉCov(X3, X4) = 0.

Finally note that if ∆gd = 0 and d = 0, then g = 1/2. This case corresponds to local-to-

zero asymptotics, see theorem 1. Parts a) and b) of theorem 5 follow now straightforwardly

from the above results. �

A.6 Proof of theorem 6

When T = 3 and ρ = 1, ρ̂AB = ρ +
∑N

i=1 yi,1∆εi,3
∑N

i=1 yi,1εi,2
and ρ̂Arbov = ρ+

∑N
i=1 εi,3εi,2∑N
i=1 yi,2εi,2

.

Let us define X1 = N− 1

2
(1+d)

∑N
i=1 yi,1∆εi,3, X2 = N− 1

2
(1+d)

∑N
i=1 yi,1εi,2, X3 =

N−1/2
∑N

i=1 εi,3εi,2 and X4 = N− 1

2
(1+d̄)

∑N
i=1 yi,2εi,2. Let σ2

−S = E(y2i,−S) + σ2. Finally,

let the indicator function 1{d = 0} = 1 if d = 0 and let 1{d = 0} = 0 if d �= 0.

Then it is easily seen that as N, S → ∞ with S/Nd → ĉ > 0 and S/N d̄ → c ≥ 0

where d ≥ 0 and d̄ = max(d, 1), one obtains that X1
d→ N(0, 2(ĉσ2 + 1{d = 0}σ2

−S)σ
2),

X2
d→ N(0, (ĉσ2 + 1{d = 0}σ2

−S)σ
2), X3

d→ N(0, σ4) and X4
d→ N(1{d ≤ 1}σ2, cσ4). In

addition, one obtains that limN→∞, S/Nd→ĉCov(X1,X2) = −(ĉσ2 + 1{d = 0}σ2
−S)σ

2 and

limN→∞, S/Nd→ĉCov(X3, X4) = 0. Parts a) and b) of theorem 6 follow now straightforwardly

from the above results. �

A.7 Proof of theorem 7

Part a): Recall that Z̃II
i = diag(ZD

i , Z
L
i ) and that Z̃S

i = diag(ZAB
i , ZL

i ), where ZAB
i =

[ZI
i ZD

i ]. Also recall that KIIZII′
i vi = Z̃II′

i [∆v′i v
′
i]
′

and from the proof of theorem 4 that

KSZS′
i [∆v′i v′i]

′

= Z̃S′
i [∆v′i v′i]

′

, when KS = diag(IT−2, KII). Similarly, we have

KIIZII′
i yi,−1 = Z̃II′

i [∆y′i,−1 y′i,−1]
′

and KSZS′
i [∆y′i,−1 y′i,−1]

′

= Z̃S′
i [∆y′i,−1 y′i,−1]

′

.
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Note that when ρ = 1, vi,t = εi,t, ∆yi,t = εi,t, ∆yti = εti and ZII
i = diag(ε2i , ..., ε

T−1
i ). Now

let σ2
−S = E(y2i,−S) + σ2. Furthermore, let the indicator function 1{d = 0} = 1 if d = 0 and

let 1{d = 0} = 0 if d �= 0. Similarly let 1{d ≤ 1} = 1 if d ≤ 1 and let 1{d ≤ 1} = 0 if d > 1.

Then as N,S → ∞ with S/Nd → ĉ > 0 and S/N d̄ → c ≥ 0 where d ≥ 0 and d̄ = max(d, 1),

we obtain that

N− 1

2
(1+d)

∑N
i=1Z

I′
i ∆vi

d→ X̂51 ∼ N(0, (ĉσ2 + 1{d = 0}σ2
−S)σ

2H),

N− 1

2
(1+d)

∑N
i=1Z

I′
i ∆yi,−1

d→ X̂61 ∼ N(0, (ĉσ2 + 1{d = 0}σ2
−S)σ

2I),

N−1/2
∑N

i=1Z
D′
i ∆vi

d→ X̂52 ∼ N(0, σ4(HT−3, HT−4, ..., H1)),

N−1/2
∑N

i=1Z
D′
i ∆yi,−1

d→ X̂62 ∼ N(0, σ4I),

N−1/2
∑N

i=1Z
L′
i vi

d→ X̂71 ∼ N(0, σ4I),

N− 1

2
(1+d̄)

∑N
i=1Z

L′
i yi,−1

d→ X̂81 ∼ N(1{d ≤ 1}σ2ι, cσ4I),

limN→∞, S/Nd→ĉCov(N− 1

2
(1+d̄)

∑N
i=1Z

L′
i yi,−1, N

−1/2
∑N

i=1Z
D′
i ∆vi) = 0, and

limN→∞, S/Nd→ĉCov(N− 1

2
(1+d̄)

∑N
i=1Z

L′
i yi,−1, N

−1/2
∑N

i=1Z
L′
i vi) = 0.

Let X̂7 = (X̂ ′
52 X̂

′
71)

′ and X̂8 = (0′ X̂ ′
81)

′. From the above results we have Cov(X̂7, X̂8) =

E(X̂7X̂
′
8) = 0 and X̂7 ⊥ X̂8.

Note that WN,Arbov2(1) = (N−1
∑N

i=1Z
II′
i viv

′
iZ

II
i )−1 and WN,SY S2(1) = (N−1

∑N
i=1Z

S′
i ×

[∆v′i v′i]
′

[∆v′i v′i]Z
S
i )
−1. Consider now KIIW−1

N,Arbov2(1)K
II′ and KSW−1

N,SY S2(1)K
S′. Recall

that σ4KIIKII′ = Σ̃77. Then it is easy to verify that

plimN→∞, S/Nd→ĉN
−(1+d)

∑N
i=1Z

I′
i ∆vi∆v′iZ

I
i = (ĉσ2 + 1{d = 0}σ2

−S)σ
2H,

plimN→∞, S/Nd→ĉN
−1

∑N
i=1K

IIZII′
i viv

′
iZ

II
i KII′ = Σ̃77, and

plimN→∞, S/Nd→ĉN
− 1

2
(2+d)

∑N
i=1K

IIZII′
i vi∆v′iZ

I
i = 0.

We conclude from the above results that plimN→∞, S/Nd→ĉ(ρ̂Arbov2,R − 1) = 0 and

N
1

2
d̄(ρ̂Arbov2,R − 1)

d→ X̂ ′
8Σ̃

−1
77 X̂7/X̂

′
8Σ̃

−1
77 X̂8. Furthermore, we can conclude that

plimN→∞, S/Nd→ĉ(ρ̂SY S2,R − 1) = 0 and N
1

2
d̄(ρ̂SY S2,R − 1)

d→ X̂ ′
8Σ̃

−1
77 X̂7/X̂

′
8Σ̃

−1
77 X̂8.

Note that SE(ρ̂Arbov2,ρ) = [N−1
∑N

i=1(y
′
i,−1Z

II
i KII′)(KII′)−1WN,Arbov2(1)(K

II)−1 ×∑N
i=1(K

IIZII′
i yi,−1)]

−1/2 and that SE(ρ̂SY S2,R) = [N−1
∑N

i=1((∆y′i,−1 y′i,−1)Z
S
i K

S′) ×
(KS′)−1WN,SY S2(1)(K

S)−1
∑N

i=1(K
SZS′

i (∆y′i,−1 y′i,−1)
′)]−1/2.

It follows from the above results that [SE(ρ̂Arbov2,R)]
−2/N d̄ d→ X̂ ′

8Σ̃
−1
77 X̂8 and hence

(ρ̂Arbov2,R− 1)/SE(ρ̂Arbov2,R)
d→ (X̂ ′

8Σ̃
−1
77 X̂8)

−1/2X̂ ′
8Σ̃

−1
77 X̂7. Since X̂7 ⊥ X̂8, (X̂

′
8Σ̃

−1
77 X̂8)

−1/2 ×
X̂ ′

8Σ̃
−1
77 X̂7|X̂8 ∼ N(0, 1) and therefore (ρ̂Arbov2,R − 1)/SE(ρ̂Arbov2,R)

d→ N(0, 1). Similarly we

obtain that [SE(ρ̂SY S2,R)]
−2/N d̄ d→ X̂ ′

8Σ̃
−1
77 X̂8 and (ρ̂SY S2,R − 1)/SE(ρ̂SY S2,R)

d→ N(0, 1).
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Part b): We first consider the weight matrix and some other fourth order moments.

Note that ρ = 1 − λN−1/2. Let ui,t = yi,t − µi ∀t. Then limS,N→∞, seq E[(∆ui,t)
8] < ∞,

limS,N→∞, seq E[(∆ui,t)
2] = σ2 and provided s �= t, limS,N→∞, seq E(∆ui,s∆ui,t) = 0.

It follows from these results, our model assumptions and the Cauchy-Schwarz inequal-

ity that limS,N→∞, seq E(ZII′
i viv

′
iZ

II
i ) = σ4I and limS,N→∞, seq V ar([vi,s∆yi,t]

2) < ∞ ∀s, t.
Consequently we obtain that N−1

∑N
i=1Z

II′
i viv

′
iZ

II
i

q.m.→ σ4I as (S,N → ∞)seq and

hence plimS,N→∞, seqN
−1

∑N
i=1Z

II′
i viv

′
iZ

II
i = σ4I. Similar arguments show that

plimS,N→∞, seqN
−1

∑N
i=1Z

II′
i ∆yi∆y′iZ

II
i = σ4I, plimS,N→∞, seqN

−3/2
∑N

i=1Z
I′
i ×

(∆yi − ∆yi,−1)(∆yi − ∆yi,−1)
′ZI

i = plimS,N→∞, seqN
−3/2

∑N
i=1Z

I′
i ∆vi∆v′iZ

I
i = (σ

4

2λ
)H, and

plimS,N→∞, seqN
−5/4

∑N
i=1Z

I′
i (∆yi − ∆yi,−1)∆y′iZ

II
i = plimS,N→∞, seqN

−5/4
∑N

i=1(Z
I′
i ∆vi×

v′iZ
II
i ) = 0.

Next we consider second moments. By lemma 9 we have that limS,N→∞, seq E(ui,t∆ui,t) =

σ2/2 ∀t, while lemma 10 yields limS,N→∞, seq N
−1E(u2i,t(∆ui,t)

2) = 0 ∀t. It follows that

N−1
∑N

i=1Z
II′
i yi,−1

q.m.→ (σ2/2)ι as (S,N → ∞)seq and hence plimS,N→∞, seqN
−1

∑N
i=1Z

II′
i yi,−1

≡ �X8 = (σ2/2)ι. Similarly, we obtain that plimS,N→∞, seq N
−1

∑N
i=1Z

I′
i ∆yi,−1 = −(σ2/2)ι.

The above results imply that both plimS,N→∞, seq[SE(ρ̂Arbov2,ρ)]
−2/N = �X ′

8
�X8/σ

4 =

(1/2)2m and plimS,N→∞, seq[SE(ρ̂SY S2,R)]
−2/N = �X ′

8
�X8/σ

4.

SinceN−3/4
∑N

i=1Z
I′
i ∆vi

d→ �X51 ∼ N(0, (σ
4

2λ
)H) andN−1/2

∑N
i=1Z

II′
i vi

d→ �X7 ∼ N(0, σ4I)

as (S,N → ∞)seq, we also obtain that (ρ̂Arbov2,R − ρ)/SE(ρ̂Arbov2,R)
d→ σ−2( �X ′

8
�X8)

−1/2 �X ′
8
�X7

and (ρ̂SY S2,R − ρ)/SE(ρ̂SY S2,R)
d→ σ−2( �X ′

8
�X8)

−1/2 �X ′
8
�X7 as (S,N → ∞)seq.

Note that �X7 ⊥ �X8. Therefore σ−2( �X ′
8
�X8)

−1/2 �X ′
8
�X7| �X8 ∼ N(0, 1). We conclude that

(ρ̂Arbov2,R − 1)/SE(ρ̂Arbov2,R)
d→ N(−(λ/2)

√
m, 1) and (ρ̂SY S2,R − 1)/SE(ρ̂SY S2,R)

d→
N(−(λ/2)

√
m, 1).

Part c): We first consider the weight matrix and some other fourth order moments.

Note that ρ = 1 − λN−1/2 and d ≥ 0. Let ui,t = yi,t − µi ∀t. Then

limN→∞, S/Nd→ĉE[(∆ui,t)
8] < ∞, limN→∞, S/Nd→ĉE[(∆ui,t)

2] = σ2 and provided s �= t,

limN→∞, S/Nd→ĉE(∆ui,s∆ui,t) = 0. It follows from these results, our model assumptions and

the Cauchy-Schwarz inequality that limN→∞, S/Nd→ĉE(ZII′
i viv

′
iZ

II
i ) = σ4I and

limN→∞, S/Nd→ĉ V ar([vi,s∆yi,t]
2) < ∞ ∀s, t. Consequently we obtain that N−1

∑N
i=1(Z

II′
i vi×

v′iZ
II
i )

q.m.→ σ4I and hence plimN→∞, S/Nd→ĉN
−1

∑N
i=1Z

II′
i viv

′
iZ

II
i = σ4I. Similar arguments
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show that plimN→∞, S/Nd→ĉN
−1

∑N
i=1Z

II′
i ∆yi∆y′iZ

II
i = σ4I.

Since limS,N→∞, seq N
−1E(ε2li,ku

4
i,s(∆ui,t)

2q) < ∞ ∀k, s, t and ∀l, q ≥ 0 by lemma 10,

we have a fortiori limN→∞, S/Nd→ĉN
−1V ar([yi,1∆yi,t]

2) < ∞ and

limN→∞, S/Nd→ĉN
−1V ar([yi,1∆vi,t]

2) < ∞ ∀t when d ≥ 0. Moreover, when d = 0, we have

limN→∞, S/Nd→ĉ V ar([yi,1∆yi,t]
2) < ∞ and limN→∞, S/Nd→ĉ V ar([yi,1∆vi,t]

2) <

∞ ∀t. It follows that plimN→∞, S/Nd→ĉN
−(1+d)

∑N
i=1Z

I′
i (∆yi − ∆yi,−1)(∆yi − ∆yi,−1)

′ZI
i =

plimN→∞, S/Nd→ĉN
−(1+d)

∑N
i=1Z

I′
i ∆vi∆v′iZ

I
i = (σ2�q(λ, ĉ)/(2λ) +1{d = 0}σ2

−S)σ
2H, and

plimN→∞, S/Nd→ĉN
−(1+ 1

2
d)
∑N

i=1Z
I′
i (∆yi − ∆yi,−1)∆y′iZ

II
i = plimN→∞, S/Nd→ĉN

−(1+ 1

2
d)×∑N

i=1(Z
I′
i (∆vi)v

′
iZ

II
i ) = 0, where d = min(d, 1/2), 1{d = 0} = 1 if d = 0 and 1{d = 0} = 0

if d �= 0, σ2
−S = E(y2i,−S) and �q(λ, ĉ)/(2λ) ≡ limN→∞, S/Nd→ĉN

−d(1 − ρ2(1+S))/(1 − ρ2) (cf

q̂(λ, ĉ)/(2λ) in the proof of theorem 5). Note that �q(λ, ĉ)/(2λ) = S+1 if d = 0; �q(λ, ĉ)/(2λ) =

ĉ if 0 < d < 1/2; �q(λ, ĉ)/(2λ) = q(λ, ĉ)/(2λ) if d = 1/2; and �q(λ, ĉ)/(2λ) = 1/(2λ) if d > 1/2.

Next we consider second moments. When 0 < d < 1/2, we have limN→∞, S/Nd→ĉE((1−
ρ)u2i,1) = limN→∞, S/Nd→ĉ σ

2(1 − ρ2(1+S))/2 = 0 by part (b) of lemma 11. When d = 0,

we obtain limN→∞, S/Nd→ĉE((1 − ρ)u2i,1) = 0 as well. Finally, when d ≥ 1/2, we have

limN→∞, S/Nd→ĉE((1− ρ)u2i,1) = limN→∞, S/N1/2→c, S/Nd→ĉ σ
2(1− ρ2(1+S))/2 = σ2q(λ, c)/2.

Recall that if c = 0, then q(λ, c) = 0. Then it is easily verified that for d ≥ 0

limN→∞, S/Nd→ĉE(ui,t∆ui,t) = σ2 + limN→∞, S/Nd→ĉE(ui,t−1∆ui,t) = σ2 +

limN→∞, S/N1/2→c, S/Nd→ĉE((ρ−1)u2i,1) = σ2−σ2q(λ, c)/2.Moreover, since limS,N→∞, seqN
−1×

E(u2i,t(∆ui,t)
2) = 0 by lemma 10, we have a fortiori limN→∞, S/Nd→ĉN

−1E(u2i,t(∆ui,t)
2) = 0

when d ≥ 0. It follows that N−1
∑N

i=1Z
II′
i yi,−1

q.m.→ σ2(1 − q(λ, c)/2)ι and hence

plimN→∞, S/Nd→ĉN
−1

∑N
i=1Z

II′
i yi,−1 ≡ �X8 = σ2(1 − q(λ, c)/2)ι. Similarly, we obtain that

plimN→∞, S/Nd→ĉN
−(1+ 1

2
d)
∑N

i=1Z
I′
i ∆yi,−1 = 0 when d ≥ 0.

Finally, note that N− 1

2
(1+d)

∑N
i=1Z

I′
i ∆vi

d→ �X51 ∼ N(0, (σ2�q(λ, ĉ)/(2λ)+1{d = 0}σ2
−S)×

σ2H) and N−1/2
∑N

i=1 Z
II′
i vi

d→ �X7 ∼ N(0, σ4I) as N, S → ∞ with S/N 1/2 → c ≥ 0 and

S/Nd → ĉ > 0, where d ≥ 0.

The above results imply that plimN→∞, S/Nd→ĉ[SE(ρ̂Arbov2,R)]
−2/N = �X ′

8
�X8/σ

4 = (1 −
q(λ, c)/2)2m and plimN→∞, S/Nd→ĉ[SE(ρ̂SY S2,R)]

−2/N = �X ′
8
�X8/σ

4. Moreover, as N, S → ∞
with S/N 1/2 → c ≥ 0 and S/Nd → ĉ > 0, where d ≥ 0, (ρ̂Arbov2,R − ρ)/SE(ρ̂Arbov2,R)

d→
σ−2( �X ′

8
�X8)

−1/2 �X ′
8
�X7 and (ρ̂SY S2,R − ρ)/SE(ρ̂SY S2,R)

d→ σ−2( �X ′
8
�X8)

−1/2 �X ′
8
�X7.

Note that �X7 ⊥ �X8 Therefore σ−2( �X ′
8
�X8)

−1/2 �X ′
8
�X7| �X8 ∼ N(0, 1). We conclude that
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(ρ̂Arbov2,R−1)/SE(ρ̂Arbov2,R)
d→ N(−λ(1−q(λ, c)/2)

√
m, 1) and (ρ̂SY S2,R−1)/SE(ρ̂SY S2,R)

d→
N(−λ(1− q(λ, c)/2)

√
m, 1). �
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