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Abstract

In this paper we show that the Quasi ML estimation method yields consistent Random

and Fixed Effects estimators for the autoregression parameter ρ in the panel AR(1) model

with arbitrary initial conditions even when the errors are drawn from heterogenous distrib-

utions. We compare both analytically and by means of Monte Carlo simulations the QML

estimators with the GMM estimator proposed by Arellano and Bond (1991) [AB], which

ignores some of the moment conditions implied by the model. Unlike the AB GMM estima-

tor, the QML estimators for ρ only suffer from a weak instruments problem when ρ is close

to one if the cross-sectional average of the variances of the errors is constant over time, e.g.

under time-series homoskedasticity. However, even in this case the QML estimators are still

consistent when ρ is equal to one and they display only a relatively small bias when ρ is close

to one. In contrast, the AB GMM estimator is inconsistent when ρ is equal to one, and is

severly biased when ρ is close to one. Finally, we study the finite sample properties of two

types of estimators for the standard errors of the QML estimators for ρ, and the bounds of

QML based confidence intervals for ρ.



1 Introduction

In this paper we show that the Quasi ML estimation method yields consistent estimators

for the autoregression parameter ρ in the conditional panel AR(1) model, i.e. the panel

AR(1) model with arbitrary initial conditions, when the errors are drawn from heterogenous

distributions. We consider both Random Effects and Fixed Effects QML estimators for

ρ and compare them with various GMM estimators for ρ. In particular we analyze the

distributional properties of various QML and GMM estimators for ρ when ρ is close to unity.

We also compare the QML estimators with various prominent GMM estimators for ρ in a

Monte Carlo study.

In the panel data literature, broadly speaking, two classes of estimators are considered:

GMM (IV) estimators and Maximum Likelihood estimators. There is now a sizeable liter-

ature on GMM estimation of the panel AR(1) model, see e.g. Arellano and Bond (1991)

and Ahn and Schmidt (1995, 1997). The Generalized Method of Moments owes much of its

popularity to its flexibility: one can add or drop moment conditions depending on whether or

not specific assumptions about the model are likely to be satisfied by the data. Furthermore

GMM can be used in the presence of heterogenous data. For instance, the GMM estimator

due to Arellano and Bond [AB], which only exploits orthogonality of lagged values of the de-

pendent variable and the idiosyncratic errors, allows for both time-series and cross-sectional

heteroskedasticity and arbitrary initial conditions. On the other hand, Monte Carlo studies

have revealed that this GMM estimator is badly biased and very inprecise when the value

of ρ is close to unity. This is due to a weak instruments problem, see Blundell and Bond

(1998) and Kruiniger (2006a). However, Arellano and Bover (1995) and Blundell and Bond

have shown that if the data also satisfy a mean-stationarity assumption, a GMM estimator

with much better finite sample properties can be obtained, namely the System estimator.

The other major estimation principle, Maximum Likelihood, is generally not regarded as

a viable alternative to the Generalized Method of Moments in the case of dynamic panel data

models, because [one believes that] ML does not allow for heterogeneity of the idiosyncratic

errors and fixed effects ML estimators are subject to the incidental parameters problem (cf

Neyman and Scott, 1948). Nickell (1981) has shown that under stationarity of the data the

naive fixed effects ML estimator for the panel AR(1) model with homoskedastic errors, i.e.
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the Within Groups (WG) estimator, is inconsistent when the cross-sectional dimension of

the panel, N, tends to infinity and the time dimension of the panel, T, is fixed, while Kiefer

(1980) has shown that the fixed effects ML estimator for the covariance matrix of possibly

autocorrelated errors of an otherwise static panel regression model is inconsistent when T is

fixed.

The situation for the ML method is not so bleak if one looks further. MaCurdy (1981a,

1982) argued that the ML method does yield large-N consistent estimators for covariance

stationary panel ARMA models with fixed effects when it is applied to first-differences of

the data. The First Difference ML estimators for ρ are still consistent under cross-sectional

heteroskedasticity. Both Chamberlain (1980) and Anderson and Hsiao (1982) proposed the

same Random Effects MLE for the conditional panel AR(1) model. Recently, Hsiao et al.

(2002) and Kruiniger (2001) have independently shown that the conditional panel AR(1)

model with fixed effects (FE) and homogenously distributed errors can be consistently es-

timated by (Quasi) ML if the difference between the initial observations and the individual

effects (or equivalently the differenced data) satisfy a particular condition.

The above survey suggests that it is difficult to obtain reliable estimates for the panel

AR(1) model when the data are heterogenous and persistent but do not satisfy some form of

stationarity, such as mean-stationarity. However, in this paper we show that the aforemen-

tioned RE MLE and FE (Quasi) MLE for the conditional panel AR(1) model still contain

large-N consistent estimators for ρ when the errors display arbitrary heterogeneity of the

type usually found in real panel data.
1
In this case these estimators for ρ should be reinter-

preted as Quasi ML estimators in the most general sense.

When the cross-sectional average of the variances of the errors is constant over time and ρ

is close to one, the aforementioned QML estimators for ρ also suffer from a ‘weak instruments’

problem, but – unlike the AB GMM estimator – they are still consistent when ρ is equal

to unity. Furthermore, the REMLE attains the Cramér-Rao lowerbound for the conditional

1Earlier studies, e.g. Blundell and Bond (1998) and Alvarez and Arellano (2003), insisted that

consistency of the REMLE (or the related FGLS estimator) requires homogeneity (or homoskedas-

ticity) of the errors. Since real panel data are almost never homogenous, the REMLE would be of

limited practical interest if this claim were true.
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model if the errors are i.i.d. and Gaussian, whereas the AB GMM estimator ignores some

of the moment conditions implied by the conditional panel AR(1) model. Therefore, these

QML estimators may offer an attractive alternative to the AB GMM estimator.

To gain further insight into the performance of the Quasi ML estimators we have con-

ducted various Monte Carlo experiments. In particular, we have compared the finite sample

properties of the REQMLE, the FEQMLE, the Optimal AB GMM estimator and the Op-

timal System estimator for various values of ρ larger than 0.5. In the experiments we have

studied how the properties of the estimators are affected if we change (1) the distribution of

the differences between the initial conditions and the individual effects; (2) the distributions

of the idiosyncratic errors; and/or (3) the ratio of the variances of the error components.

For instance, we have carried out experiments where the idiosyncratic errors display arbi-

trary heteroskedasticity in both dimensions of the panel and where the errors follow MA(1)

processes with heterogenous MA parameters. Among other things, we find that the QML

estimators display only small biases and that they are (much) more precise than the AB

GMM estimator in all scenarios that we have considered. Furthermore the differences in

precision and RMSE between the QML estimators and the AB GMM estimator increase

considerably as ρ gets closer to unity. The System estimator generally performs better than

the QML estimators when all the moment conditions exploited by the former estimator are

valid. However, when the assumption of mean-stationarity is violated, the System estimator

can be substantially biased, whereas the QML estimators continue to perform well.

At the end of the paper we examine the finite sample properties of two types of estimators

for the standard errors of the QML estimators for ρ, and the bounds of QML based confidence

intervals for ρ. The first type of estimator that we consider is based on first-order fixed

parameter asymptotics while the second type of estimator is the product of a simple bootstrap

procedure.

The paper is organised as follows. Section 2 reviews various versions of the panel AR(1)

model and their underlying assumptions. Section 3 discusses GMM and (Quasi) ML estima-

tion of the panel AR(1) model. Section 4 analyzes the distributional properties of various

QML and GMM estimators for ρ when ρ is close to unity. Section 5 discusses QML and GMM

estimation of panel AR(1) models which include exogenous regressors. Section 6 conducts

a Monte Carlo study into the finite sample properties of the QML estimators and various
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prominent GMM estimators when the data are persistent and section 7 concludes. Proofs

are collected in two appendices. Below P(S)DS denotes Positive (Semi-)Definite Symmetric.

2 The panel AR(1) model

Consider the panel AR(1) model with individual effects:

yi,t = ρyi,t−1 + wi,t, (1)

wi,t = ηi + εi,t, where ηi = (1− ρ)µi,

for i = 1, ..., N and t = S + 2, ..., T. We assume that the number of ‘individuals’, N, is

large, S ≤ 0 and that the number of observations per ‘individual’, T, is fixed. Furthermore

−1 < ρ ≤ 1. Note that in the unit root case the individual effect, ηi, vanishes and that the

model can be rewritten as

yi,t − µi = ρ(yi,t−1 − µi) + εi,t.

The observations on y = (y.,1 ... y.,T )
′
are independently distributed across the N indi-

viduals.

The idiosyncratic error term, εi,t, satisfies the following Standard Assumptions (SA):

E(εi,t) = 0 and E |εi,t|
2+δ

< ∞ for i = 1, ..., N and t = 2, ..., T, (2)

where δ > 0 is arbitrarily small. The individual effects, the µi, are often treated as Random

Effects. In this case we make the following assumptions (REA):

(yi,1 ηi)
′
, i = 1, ..., N, are i.i.d. with E(y

2

i,1) = σ
2

y < ∞, (3)

and
2

E(µi) = 0, E(µ
2

i ) = σ
2

µ < ∞, and E(µiyi,1) = σµy when |ρ| < 1. (4)

We will assume that higher order moments of (yi,1 ηi)
′
exist whenever this is required.

Unlike the RE estimators, the Fixed Effects estimators only exploit data in first differ-

ences. Kruiniger (2001) has shown that consistent estimation of FE versions of the model is

2We could allow (yi,1 ηi)
′, i = 1, ..., N, to be i.h.d. at the cost of more complicated derivations.
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only possible if vi,1 ≡ yi,1 − µi, i = 1, ..., N , satisfy the Restricted Fixed Effects and Initial

Conditions Assumption (RFEA):

plimN→∞N
−1

N∑

i=1

v
2

i,1 = σ
2

v < ∞ when |ρ| < 1. (5)

Note that in the FE versions of the model only the differences between the initial conditions

and the individual effects are restricted; the individual effects themselves remain unrestricted.

Apart from distinguishing between RE and FE versions of the model, we can distinguish

among three versions of the panel AR(1) model which impose different restrictions on the

initial conditions and the error components.

The least restricted RE version of the model only imposes Assumption B:
3

E(εi,tyi,1) = 0 and E(εi,tηi) = 0 for i = 1, ..., N and t = 2, ..., T, (6)

and

E(εi,sεi,t) = 0 for i = 1, ..., N and t �= s. (7)

In the FE case, assumption (6) is replaced by:

plimN→∞N
−1

N∑

i=1

vi,1εi,t = 0 for t = 2, ..., T when |ρ| < 1. (8)

Note that REA plus (6) imply RFEA plus (8). We will refer to the model that only imposes

Assumption B as the conditional model.

A stronger version of the RE version of model also imposes Assumption M:

E(yi,1 − µi) = 0 and E((yi,1 − µi)µi) = 0 for i = 1, ..., N when |ρ| < 1. (9)

This assumption is also known as mean-stationarity (cf Arellano and Bover, 1995, and Blun-

dell and Bond, 1998). Assumption M holds for instance when S → −∞.

Finally, the strongest version of the model imposes full covariance stationarity on the

3We can relax this assumption and allow for autocorrelation in {εi,t} and correlation between

εi and yi,1, see e.g. Blundell ands Smith (1991). For instance, if εi,t ∼ MA(1), we would assume

that E(εi,tηi) = 0 for t = 2, ..., T, E(εi,tyi,1) = 0 for t = 3, ..., T, and E(εi,sεi,t) = 0 for |s− t| > 1.
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data, i.e. it also adds Assumption C which consists of assumptions TSH and STIV:

σ
2

i,t = E(ε
2

i,t) = σ
2

i < ∞, for i = 1, ..., N and t = 2, ..., T, (TSH), (10)

V ar(yi,1 − µi) =
σ
2

i

1− ρ
2
, for i = 1, ..., N when |ρ| < 1 (STIV). (11)

The first part of assumption C, TSH, means that the idiosyncratic errors, the εi,t, are ho-

moskedastic over time; the second part, STIV, imposes stationarity on the variances of the

initial conditions. Assume that TSH holds. Then STIV holds when S → −∞.

Below we will often use a weaker version of assumption TSH which we call TSH
∗
. Let

σ
2

t = N
−1

∑N

i=1 σ
2

i,t. Then assumption TSH
∗
holds if and only if σ

2

t = σ
2

2
, for t = 3, ..., T .

Finally, we will also consider estimators for conditional models that satisfy assumption TSH

or assumption TSH
∗
.

3 The estimators for the panel AR(1) model

3.1 GMM estimators

We will review the moment conditions that are available for GMM estimation of ρ in the

covariance stationary panel AR(1) model with random effects.

Arellano and Bond have derived the following (T −1)(T −2)/2 linear moment conditions

from assumption B, i.e. from (6)-(7):

E(yi,t−s∆wi,t) = 0 for s = 2, ..., t− 1 and t = 3, ..., T, (12)

where ∆wi,t = wi,t − wi,t−1 = ∆εi,t = ∆yi,t − ρ∆yi,t−1. Assumption B also implies T − 3

non-linear moment conditions (see Ahn and Schmidt, 1995):

E(wi,T∆wi,t−1) = 0 for t = 4, ..., T. (13)

The GMM estimator that exploits all the moment conditions in (12) and (13) will be referred

to as the RE Conditional GMM (or RECGMM) estimator.

If mean-stationarity holds as well, we can add T − 2 moment conditions to the moment

conditions in (12) (see Arellano and Bover, 1995):
4

E(wi,t∆yi,t−1) = 0 for t = 3, ..., T. (14)

4These moment conditions do not require that E(yi,1 − µi) = 0.
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The estimator that exploits the moment conditions in both (12) and (14) is known as the

System (or SYS) estimator.

The assumption of time-series homoskedasticity, (10), also implies T − 2 moment condi-

tions (see Ahn and Schmidt, 1995):

E(w
2

i,t − w
2

i,t−1) = 0 for t = 3, ..., T. (15)

The GMM estimator that exploits all the moment conditions in (12), (13) and (15) will be

referred to as the RE HOmoskedastic Conditional GMM (or REHOCGMM) estimator.

If the mean-stationarity assumption is valid, we can replace the non-linear moment con-

ditions in (15) by:

E(yi,twi,t − yi,t−1wi,t−1) = 0 for t = 3, ..., T. (16)

The AB GMM estimator, which only exploits the moment conditions in (12), is inconsis-

tent when ρ = 1. On the other hand the HOCGMM and SYS estimators are still consistent

when ρ = 1. However, as the following result makes clear, consistency at ρ = 1 does not

require that the data satisfy some form of stationarity:

Theorem 1 (Consistency of the RECGMM estimator for the conditional model)

Let assumptions SA, REA and B hold, and let −1 < ρ ≤ 1. Then the RE Conditional GMM

estimator for ρ is consistent if (and when ρ = 1 only if) T ≥ 4.

Proof

See appendix A.1. There we show that if ρ = 1, then ρ is uniquely identified by the moment

conditions in (13) unless T < 4 or σ
2

s/σ
2

s−1 = σ
2

3
/σ

2

2
�= 1 for all s ∈ {3, ..., T − 1}. If ρ = 1

and the average variance σ
2

t changes at a constant rate between t = 2 and t = T − 1 ≥ 3,

then ρ is only locally identified: r = 1 or r = σ
2

3
/σ

2

2
. However, when ρ �= 1 and T ≥ 3, then

ρ is uniquely identified whatever the values of σ
2

t are. Therefore, when ρ is not uniquely

identified, we know that ρ = 1. In appendix 1 we also show that if ρ = 1 and T ≥ 3, then ρ

is uniquely identified by the ‘homoskedasticity’ moment conditions in (15).

Thus although some of its underlying moment conditions are non-linear in ρ, an REC-

GMM estimator can easily be implemented for any given weight matrix. Consistent estima-

tion of the elements of the optimal weight matrix will be discussed at the end of section 3.

Sofar we have only discussed RE GMM estimators. The FE versions of these estimators
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are obtained by considering the maximum subset of moment conditions that only involve

first differences of the data. Note that the FE SYS estimator is equal to the FE AB GMM

estimator. Note also that the variances of the FE estimators do not depend on σ
2

µ.

3.2 ML estimators for the conditional model

A Random Effects ML or GLS estimator for the conditional version of the panel AR(1)

model stated in (1) will generally be inconsistent due to correlation between the individual

effect ηi and the regressor, yi,t−1. Given Assumption B, which maintains that E(εi,tyi,1) = 0,

t = 2, ..., T, the regressors and the ηi are correlated if and only if the initial conditions yi,1 and

the ηi are correlated. Following Chamberlain (1980), we can decompose the ηi into a term

that depends on the yi,1, and a term that does not. This leads to the following ‘correlated

effects’ specification:
5

ηi = π(1− ρ)yi,1 + (1− ρ)vi, i = 1, ..., N, (17)

where vi is a new random effect and

π(1− ρ) = plimN→∞

∑N

i=1 yi,1ηi∑N

i=1 y
2

i,1

,

so that the vi are uncorrelated with the initial conditions and subsequent observations on y:

plimN→∞(1− ρ)N
−1

N∑

i=1

yi,tvi = 0, t = 1, ..., T.

Let yi = (yi,2 ... yi,T )
′
, yi,−1 = (yi,1 ... yi,T−1)

′
and let ι denote a vector of ones. Then using

the decomposition of ηi given in (17) we can rewrite the conditional panel AR(1) model as

yi = ρyi,−1 + π(1− ρ)yi,1ι+ ui, (18)

where ui = (1− ρ)viι+ εi with E(εiε
′

i) = diag(σ
2

t ).

After adding the assumption that the errors are i.i.d. and Gaussian, that is ui ∼ i.i.d.

N(0, (1−ρ)
2
σ
2

vιι
′
+diag(σ

2

t )), application of the Maximum Likelihood method to (18) yields

5W.l.o.g. we assume that E(yi,1) = 0 so that E(vi) = 0. E(yi,1) �= 0 can be handled by including

an intercept in the model, see section 5.
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Chamberlain’s correlated RE ML Estimator for ρ, π, σ
2

v, σ
2

2
, ..., σ

2

T−1 and σ
2

T .
6
When calcu-

lating the REMLE it is convenient to use the reparameterization σ̃
2

v = (1− ρ)
2
σ
2

v.

A special case arises for π = 0. When π = 0, imposing this restriction leads to a

more efficient Random Effects ML estimator, i.e. the Uncorrelated Random Effects MLE of

Balestra and Nerlove (1966).

Blundell and Smith (1991) have discussed ML estimation of generalized versions of the

model in (18) allowing for correlation between εi and yi,1 but maintaining homogeneity

of the distributions of the errors. For instance, if the εi,t follow an MA(1) process and

E(εi,2yi,1) �= 0, then one should apply the ML method to the following extended model:

yi = ρyi,−1 + π(1− ρ)yi,1ι+ τ1yi,1e1 + ũi, (19)

where ũi = (1− ρ)viι+ ε̃i, with E(ε̃iε̃
′

i) = Ψ,

where e1 is the first column of an identity matrix and where Ψs,t = 0 for |s− t| > 1. By

including the term τ1yi,1e1 in the model, one ensures that the resulting error terms, the ε̃i,t,

are uncorrelated with the regressors.

Hsiao et al. (2002) and Kruiniger (2001) have independently derived the FEML estimator

and the FE Quasi ML estimator, respectively, for the conditional model. We follow the

exposition in Kruiniger (2001). One can obtain the FE (Quasi) MLE by replacing µi in the

conditional model by yi,1− vi,1, and by assuming (or imposing) that the vi,1 (and the εi) are

i.i.d. and Gaussian. This is equivalent to imposing the restriction π = 1 on the conditional

model in (18) and treating the vi = −vi,1 as random effects which are drawn from a normal

distribution. This leads to the following formulation of the conditional model

yi = ρyi,−1 + (1− ρ)yi,1ι+ ui, (20)

where ui = −(1− ρ)vi,1ι+ εi with E(εiε
′

i) = diag(σ
2

t ),

6Sims (2000) proposed an estimation approach for the panel AR(1) model where the initial con-

ditions and the individual means follow a bivariate (normal) distribution that allows for correlation

between both variables. Thus Sims’ random effects approach also specifies a (marginal) distribu-

tion for the initial condition, whereas Chamberlain’s approach does not. The latter approach is

therefore more general.

9



and where the vi,1 satisfy assumptions RFEA and B. After imposing ui ∼ i.i.d. N(0, σ̃
2

vιι
′
+

diag(σ
2

t )), application of the Maximum Likelihood method to (20) yields the FE (Quasi) ML

Estimator for ρ, σ̃
2

v, σ
2

2
, ..., σ

2

T−1 and σ
2

T .
7 8

The FEQML estimator is “Quasi” in a double sense: it allows for heterogeneity in the

moments of the vi,1’s and for non-normality of the εi,t’s and the vi,1’s.

Applying a nonsingular constant transformation to the model in (20), we obtain a model

that only involves first differences of the data:

∆yi,2 = ui,2 = −(1− ρ)vi,1 + εi,2, (21)

∆yi,t = ρ∆yi,t−1 +∆εi,t t = 3, ..., T.

Thus the FE(Q)MLE only exploits data in first differences.

3.3 Quasi ML estimation of ρ when the data are heterogenously

distributed

So far we have assumed homogeneity of the distributions of the εi,t although we have allowed

for possible heterogeneity in the distributions (i.e. the first two moments) of the vi,1 in the

case of the FEQMLE. However, such strong distibutional assumptions with respect to the

error terms are almost never satisfied by panel data and therefore the REMLE and the

FEQMLE discussed above seem almost useless for practical purposes.

It turns out that the above RE and FE ML estimation procedures still yield consistent

estimators for ρ (and only for ρ) when the errors display arbitrary heterogeneity of the type

usually found in real panel data provided that the relevant moments of the data exist. In

that case one should reinterpret the above estimators as Quasi ML estimators for ρ where the

label Quasi reflects the fact that the estimators allow for heterogenously distributed data.

7We assume that N−1
∑N

i=1E(vi,1) = 0. RE and FE QML estimation of panel AR(1) models

with a constant term and possibly exogenous regressors is discussed in section 5.

8The ‘pure’ FEMLE requires that the vi,1 are i.i.d. and Gaussian. However, this requirement

is not in the spirit of the fixed effects approach. Therefore, strictly speaking, the estimator that

we refer to in the text as a FE Quasi MLE could b e considered as the true Fixed Effects MLE,

p rovid ed th at th e dis tu r ba nce s ε i,t ar e i.i .d. an d Ga us s ian .
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We have the following result:

Theorem 2 Let assumptions SA, REA or RFEA, and B hold. Moreover let −1 < ρ ≤ 1.

Then the RE Quasi MLE and the FE Quasi MLE that are based on the likelihood fuctions

corresponding to the models in (18) and (20), respectively, are consistent estimators for ρ if

ρ is identified.

Proof

See appendix A.2. The conditions for identification of ρ in the case of the REQML estimator

are the same as those for the RECGMM estimator which were discussed below theorem 1.

We have the following result on the fixed-parameter first-order asymptotic distribution

of the FEMLE:

Theorem 3 Let assumptions SA, RFEA and B hold. Moreover let the εi and vi,1 be i.i.d.

and Gaussian. Then the fixed-parameter first-order asymptotic distribution of the FEMLE

based on (20) is normal when |ρ| < 1 but non-normal when the εi,t are homoskedastic and

ρ = 1. The limiting variance of the FEMLE for the homoskedastic case with |ρ| < 1 is given

in appendix A.3.

Proof

See appendix A.3. One can easily prove a similar result with respect to the asymptotic

distribution of the REMLE. Unlike the limiting variance of the FEMLE for ρ, the limiting

variance of the REMLE for ρ depends on σ
2

y and also on σ
2

µ through σ̃
2

v = (1 − ρ)
2
σ
2

v =

(1−ρ)
2
(σ

2

µ−π
2
σ
2

y). When ρ = 1, the Expected Hessian of the (quasi) log-likelihood function

corresponding to the FE(Q)MLE is singular when it is evaluated at the true values of the

parameters and when TSH
∗
holds.

When the error components are not i.i.d. and Gaussian, the asymptotic distribution of

the REQMLE (FEQMLE) will in general be different from the asymptotic distribution of

the REMLE (FEMLE). When the error components are i.h.d., e.g. when they are cross-

sectionally heteroskedastic, asymptotic normality of the REQMLE (FEQMLE) is implied by

the Lindeberg-Feller Central Limit Theorem. When the error components are i.h.d. or i.i.d.

and non-normal, the asymptotic variance of the REQMLE can be computed by using the
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sandwich formula H
−1
GH

−1
, where H is the asymptotic Hessian and G is the limit of the

outerproduct of the gradient of the log-likelihood function (cf MaCurdy, 1981b). Provided

that the 4+ δ− th moments of the data exist, the matrix G can be consistently estimated by

a cross-sectional average of the outerproducts of the ‘individual’ contributions to the score

vector where the parameters have been replaced by their REQML (FEQML) estimates.

In Kruiniger (2001) it has been shown that when the error components are i.i.d. and

Gaussian the Optimal REHOCGMM estimator for ρ is asymptotically equivalent to the

REMLE for ρ in the homoskedastic version of (18). A similar equivalence result holds for

the Optimal RECGMM, FECGMM and FEHOCGMM estimators for ρ.

When the error components are i.i.d. and Gaussian, the QML estimators for ρ attain the

relevant Cramér-Rao lowerbounds. Under non-normality or heterogeneity of the distributions

of the error components an Optimal CGMM estimator for ρ is generally asymptotically more

efficient than the corresponding QMLE for ρ.

The optimal versions of the CGMM estimators can only be computed in two-steps: an

initial consistent estimator for ρ is required for consistent estimation of the elements of

the optimal weight matrix. Clearly, the finite sample properties of these two-step CGMM

estimators depend on the choice of the initial estimator that is used to compute the optimal

weight matrix. One possibility is to use the corresponding QMLE as the initial estimator.

4 The distributional properties of QML and GMM es-

timators for ρ when ρ is close to unity

When ρ is close to unity, the (RE) AB GMM estimator suffers from a weak instruments

problem, see appendix B.2 and also Blundell and Bond (1998) and Kruiniger (2006a). Stock

and Wright (1997) have argued that doing local-to-zero asymptotics provides a better ap-

proximation to the finite sample distribution of a GMM estimator that exploits weak mo-

ment conditions than traditional first-order fixed parameter asymptotics. In this context

local-to-zero means that the covariance between the (weak) instrument and the regressor

becomes smaller when the sample size increases. To be specific let Z
′

3,i = [yi,1(∆yi,3−ρ∆yi,2)

yi,1(∆yi,4−ρ∆yi,3) yi,2(∆yi,4−ρ∆yi,3) ... yi,T−2(∆yi,T −ρ∆yi,T−1)] and let Z4,i = −d(Z3,i)/dρ.

12



The local-to-zero approach recognizes that for ρ = 1 − λN
−0.5

plimN→∞N
−1

∑N

i=1Z4,i = 0

and that for this parameter sequence the mean of the vector Z4 = N
−0.5

∑N

i=1Z4,i remains of

the same order of magnitude as the standard deviations of its elements when N grows

large. Therefore, when ρ is close to one, the local-to-zero large sample distribution of

ρ̂AB − ρ = Z
′

4
WNZ3/Z

′

4
WNZ4, where Z3 = N

−0.5
∑N

i=1Z3,i and {WN} is a sequence of

weight matrices such that plimN→∞WN = W exists, may provide a better approximation

to the finite sample distribution of ρ̂AB than the fixed parameter large sample distribution

of N
0.5
(ρ̂AB − ρ) = Z

′

4
WNZ3/Z

′

4
WNZ4, where Z4 = N

−1
∑N

i=1Z4,i. The following result is

based on theorem 1 in Kruiniger (2006a).

Theorem 4 Let assumptions SA, REA and B hold and let S be fixed so that V ar(yi,1 −

µi) ∝ (1 − ρ)
0 ∀i ∈ {1, 2, ..., N}. In addition, let ρ = 1 − λN

−0.5
with λ ≥ 0, let σµy =

E(yi,1µi), let σ
2

y = E(y
2

i,1) and let WN be an arbitrary sequence of PDS weight matrices with

plimN→∞WN = W, where W is PDS and finite. Finally, let the εi,t be i.i.d.

(a) If T = 3 then ρ̂AB
d
→ ρ+

Ž1
Ž2
, with




ˇ
Z1

ˇ
Z2



 ∼ N







 0

λ

(
σµy − σ

2

y

)



 , σ
2
σ
2

y



 2 −1

−1 1







 .

(b) If T > 3 then ρ̂AB
d
→ ρ+

ˇ
Z
′

4
W

ˇ
Z3/

ˇ
Z
′

4
W

ˇ
Z4, where

ˇ
Z3 and

ˇ
Z4 are Gaussian random vectors

with E(
ˇ
Z3) = 0, E(

ˇ
Z4,k) ∝ λ for k = 1, 2, ..., (1/2)(T − 1)(T − 2), and E(

ˇ
Z3

ˇ
Z
′

4
) �= 0.

One obtains the asymptotic distribution of the AB GMM estimator for ρ = 1 by taking

λ = 0. Kruiniger (2006a) also derives a local-to-unity asymptotic distribution of the AB

GMM estimator when the data are covariance stationary, e.g. when assumption TSH holds

and S → −∞.

The local asymptotic distributions of the AB GMM estimator also capture the fact that

this estimator is biased when ρ is close to unity. The bias stems from the fact that the

instruments are weak and the fact that E(Z3Z
′

4
) �= 0, again see Kruiniger (2006a) for details.

We now consider the distributional properties of the RECGMM and REHOCGMM esti-

mators when ρ is close to unity. We have the following result:

Theorem 5 Let assumptions SA, REA and B hold and let S be fixed so that V ar(yi,1−µi) ∝

(1 − ρ)
0 ∀i ∈ {1, 2, ..., N}. Then the moment conditions in (12) and (15) are weak when ρ

13



is close to unity. Moreover, when ρ is close to unity the moment conditions in (13) are all

weak as well if and only if assumption TSH
∗
(almost) holds.

Proof

See appendix B.1.

Thus if the cross-sectional average of the variances of the errors is not constant over time,

then one can find some moment conditions that are not weak when ρ is local to unity without

having to invoke mean-stationarity of the data, namely some or all of the moment conditions

in (13). We expect a GMM estimator which exploits these non-linear moment conditions,

e.g. the RECGMM estimator, to have much better finite sample properties than the AB

GMM estimator when ρ is close to one and assumption TSH
∗
does not hold (approximately).

On the other hand, if all the moment conditions in (12), (13), and (15) are weak, then again

local-to-zero asymptotics yields a better approximation to the finite sample distributions of

the RECGMM and REHOCGMM estimators than traditional fixed parameter asymptotics.

Since the RE and FE CGMM estimators are asymptotically equivalent to QML estimators

when the error components are i.i.d and Gaussian, we expect to have a result related to

theorem 5 for the latter estimators.

Theorem 6 Let assumptions SA, REA (or RFEA) and B hold and let S be fixed so that

V ar(yi,1 − µi) ∝ (1 − ρ)
0 ∀i ∈ {1, 2, ..., N}. Moreover, let ρ be local to unity. Then the

probability limit of the Hessian (divided by N) of the (quasi) log-likelihood function of the

REQMLE (FEQMLE) is almost singular if and only if assumption TSH
∗
(almost) holds,

irrespective of whether assumption TSH has been imposed or not.

Proof

See appendix B.2.

It is well-known that (Quasi) ML estimators can be reinterpreted as GMM estimators.

The underlying moment conditions can be obtained by setting the expected score vector

equal to zero. For instance, when assumption TSH holds and has been imposed, the RE-

QMLE can be reinterpreted as a GMM estimator which exploits the following moment

conditions: E(y
′

i,−1
Φ
−1
ui) = 0, E(yi,1ι

′
Φ
−1
ui) = 0, E(tr((uiu

′

i − Φ)∂Φ
−1
/∂σ

2
)) = 0, and

E(tr((uiu
′

i − Φ)∂Φ
−1
/∂σ̃

2

v)) = 0, where Φ = E(uiu
′

i) = σ
2
I + σ̃

2

vιι
′
and Φ

−1
= σ

−2
Q+

14



(σ
2
+ (T − 1)σ̃

2
v)
−1 1

T−1
ιι
′
with Q = IT−1 −

1
T−1

ιι
′
. It follows that the expected Hessian of

the (quasi) log-likelihood function equals the first derivative of the vector of moment condi-

tions exploited by the QMLE with respect to the parameters. Therefore when the expected

Hessian of the (quasi) log-likelihood function is almost singular, the (Quasi) MLE suffers

from a ‘weak moment conditions problem.’ In that case one can also obtain the local-to-zero

asymptotic distribution of the (Quasi) MLE.

For the FEMLE we have the following local-to-zero asymptotic result:

Theorem 7 Let assumptions SA, RFEA, B and TSH hold, let T ≥ 4 and let S be fixed so

that V ar(yi,1 − µi) ∝ (1− ρ)
0 ∀i ∈ {1, 2, ..., N}. In addition, let FH(d) = − 1

N

∂2 logLF (δ)
∂δ∂δ′

|δ=d

and FEH(δ) = E(FH(δ)), where LF (δ) is the FE likelihood function corresponding to (20)

and δ = δ(ρ) = (ρ σ
2
σ̃
2
v(ρ))

′
. Let cdet(ρ) = det(FEH(δ(ρ)))/(1 − ρ)

2
, and FEH(δ) =

(FEH(δ))
−1

det(FEH(δ)). Let
ˇ
δ be such that (FH(

ˇ
δ))(δ̂FEML − δ) = N

−1 ∂ logLF (δ)
∂δ

and

ˇ
δk = µkδ̂FEML,k+(1−µk)δk for some µk ∈ [0, 1], k = 1, 2, 3. Finally, let ρ = 1−λN

−0.25
with

λ > 0. Then N
0.25

(ρ̂FEML − ρ)
d
→ Z̃1/Z̃2, where Z̃1 ∼ N

(
0, λ

2
limρ↑1 cdet(ρ)FEH11(δ(1))

)
,

and Z̃2 ≡ λ
2
limρ↑1 cdet(ρ)+Zdet(λ) is the limiting distribution of N

0.5
det(FH(

ˇ
δ)). Moreover,

Z̃1 and Z̃2 are correlated.

Proof

See appendix B.3. There we also show that FEH11(δ(1)) �= 0 and that det(FEH(δ(ρ))) =

(1− ρ)
2
c(ρ) where c(ρ) is a polynomial in ρ with c(1) �= 0. Hence limρ↑1 cdet(ρ) = cdet(1) �=

0. Furthermore det(FEH(δ(1))) = 0. The latter result is also shown in appendix A.3.

When ρ is close to unity and the REQMLE and the FEQMLE suffer from a ‘weak moment

conditions problem,’ then the finite sample distributional properties of these QML estimators

are different from those of the AB GMM estimator. Note also that the local-to-zero rate of

convergence of the FEMLE is positive while that of the AB GMM estimator is zero. Indeed

the FEMLE is consistent when ρ is (local to) one whereas the AB GMM estimator is not.

When ρ is local to unity but assumption TSH
∗
does not (nearly) hold, the RE and FE

QML estimators, just like the RE and FE CGMM estimators, do not suffer from a ‘weak

moment conditions problem’ and their first-order fixed parameter asymptotic distributions

are expected to give a reasonable approximation to their finite sample distributions.
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5 Models with exogenous regressors

In this section we discuss QML and GMM estimation of dynamic panel data models with a

constant term and one time-varying exogenous variable, i.e.

yi,t = α(1− ρ) + ρyi,t−1 + β(1− ρ)xi,t + (1− ρ)µi + εi,t, t = 2, ..., T, (22)

To keep the discussion simple we assume that TSH holds, i.e. E(εiε
′

i) = σ
2
I. We also assume

that the xi,1 are observed whenever this is required. We consider estimation of both FE and

RE versions of this model and we also consider the possibility that the xi,t are correlated with

the µi. Below the terms and moment conditions in curly brackets should be added whenever

the xi,t are correlated with the µi. Furthermore we distinguish between the case where the

xi,t are weakly exogenous, i.e. E(x
t
iεi,t) = 0, t = 2, ..., T, where x

t
i = (xi,1 ... xi,t)

′
, and the

case where the xi,t are strictly exogenous, i.e. E(x
T
i εi,t) = 0, t = 2, ..., T.

We first assume that the xi,t are strictly exogenous. Then the RE and FE models can

be estimated by the QML method. In addition, when the error components are i.i.d. and

Gaussian, one can construct asymptotically equivalent GMM estimators.

To obtain the REQMLE for ρ and β, apply ML to the model in (22) with µi replaced by

πyi,1 {+γ
′

1
xi}+ vi,

where xi = (xi,2 ... xi,T )
′
.

Let ui = (1 − ρ)viι + εi. Then the REQMLE is asymptotically equivalent to a GMM

estimator that exploits E(y
′

i,−1
Φ
−1
ui) = 0, E(yi,1ι

′
Φ
−1
ui) = 0, E(ι

′
Φ
−1
ui) = 0, E(x

′

iΦ
−1
ui) =

0, {E(xiι
′
Φ
−1
ui) = 0}, E(tr((uiu

′

i−Φ)∂Φ
−1
/∂σ

2
)) = 0, and E(tr((uiu

′

i−Φ)∂Φ
−1
/∂σ̃

2

v)) = 0,

where Φ = E(uiu
′

i) = σ
2
I + σ̃

2

vιι
′
.

To obtain the FEQMLE for ρ and β in the model given in (22), µi should be replaced by

yi,1 − βxi,1 {+γ
′

2
(xi − xi,−1)}+ vi,

where xi,−1 = (xi,1 ... xi,T−1)
′
.

A GMM estimator that is asymptotically equivalent to the FEQMLE exploits E((yi,−1−

yi,1ι)
′
Φ
−1
ui) = 0, E(ι

′
Φ
−1
ui) = 0, E((xi − xi,1ι)

′
Φ
−1
ui) = 0, {E((xi − xi,−1)ι

′
Φ
−1
ui) = 0},

E(tr((uiu
′

i −Φ)∂Φ
−1
/∂σ

2
)) = 0, and E(tr((uiu

′

i −Φ)∂Φ
−1
/∂σ̃

2

v)) = 0, where Φ = E(uiu
′

i) =

σ
2
I + σ̃

2

vιι
′
.
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Let us now assume that the xi,t are weakly exogenous. We show that in this case the

QML method does not yield consistent estimators.
9

In the RE case one would replace µi

in (22) by µi = πyi,1 {+γ3xi,2} + vi. Let again ui = (1− ρ)viι + εi. Then the REQMLE for

ρ and β is inconsistent because the expected score vector is not equal to zero at the true

value of the parameters. In particular, E(y
′

i,−1Φ
−1
ui) �= 0, because generally E(xi,sεi,t) �= 0

when s > t. A similar argument applies to the FE case. However, when the xi,t are weakly

exogenous one can still formulate consistent GMM estimators.

Let us define zi,t = yi,t−1 − β(1 − ρ)

∑t−4

s=0 ρ
s
xi,t−s−1, t = 2, ..., T, and zi = (zi,2 ... zi,T )

′
.

Then a consistent GMM estimator for the RE version of the model with weakly exogenous

regressors exploits E(z
′

iΦ
−1
ui) = 0, E(yi,1ι

′
Φ
−1
ui) = 0, E(ι

′
Φ
−1
ui) = 0, E(x̃

t
iui,t) = 0,

t = 2, ..., T, E(tr((uiu
′

i − Φ)∂Φ
−1
/∂σ

2
)) = 0, and E(tr((uiu

′

i − Φ)∂Φ
−1
/∂σ̃

2

v)) = 0, where

x̃
t
i = (xi,2 ... xi,t)

′
, ui,t = (1− ρ)vi + εi,t = yi,t − c(1− ρ)− ρyi,t−1− β(1− ρ)xi,t − (1− ρ)πyi,1

{−(1− ρ)γ2xi,2}, t = 2, ..., T, and Φ = E(uiu
′

i) = σ
2
I + σ̃

2

vιι
′
. In this case consistency of the

estimator also requires that the exogenous regressors are equi-correlated with the individual

effects, i.e. E(vi∆xi,t) = 0, t = 2, ..., T. Since E(vixi,2) = 0 (by construction if the term in

{} is included in the model), this assumption guarantees that E(vixi,t) = 0, t = 3, ..., T .

Finally, a consistent GMM estimator for the FE model with weakly exogenous regressors

exploits E(z̃
′

iΦ
−1
ui) = 0, E(ι

′
Φ
−1
ui) = 0, E((x̃

t
i − xi,1ι)ui,t) = 0, t = 2, ..., T, E{tr((uiu

′

i −

Φ)∂Φ
−1
/∂σ

2
)} = 0, and E{tr((uiu

′

i − Φ)∂Φ
−1
/∂σ̃

2

v)} = 0, where ui,t = (1 − ρ)vi + εi,t =

yi,t − yi,1 − c(1 − ρ) − ρ(yi,t−1 − yi,1) − β(1 − ρ)(xi,t − xi,1) {−(1 − ρ)γ4(xi,2 − xi,1)}, z̃i,t =

yi,t−1−yi,1−β(1−ρ)

∑t−4

s=0 ρ
s
(xi,t−s−1−xi,1), t = 2, ..., T, z̃i = (z̃i,2 ... z̃i,T )

′
and Φ = E(uiu

′

i) =

σ
2
I+σ̃

2

vιι
′
. Consistency of this estimator also requires that the exogenous regressors are equi-

correlated with the individual effects, i.e. E(vi∆xi,t) = 0, t = 3, ..., T. Since E(vi∆xi,2) = 0

(by construction if the term in {} is included in the model), this assumption implies that

E(vi(xi,t − xi,1)) = 0, t = 2, ..., T. If the exogenous regressors are not equi-correlated with

the individual effects, then one can still obtain a consistent FE GMM estimator by replacing

E((x̃
t
i − xi,1ι)ui,t) = 0, t = 2, ..., T, by E((x̃

t−1
i − xi,1ι)∆ui,t) = 0, t = 3, ..., T.

9Thus the results in Hsiao et al. (2002) regarding this case are incorrect.
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6 The finite sample performance of the estimators

In this section we compare through Monte Carlo simulations the finite sample properties of

the REQMLE, the FEQMLE, the 2-step Optimal AB GMM estimator, the 2-step Optimal

System estimator and the 2-step Optimal Linear GMM estimator due to Kruiniger (2003).

In particular we study how the properties of these estimators are affected if we change (1) the

conditional distributions of the differences between the initial conditions and the individual

effects (the µi) given the individual effects, (2) the distributions of the idiosyncratic errors

(the εi,t), and/or (3) the ratio of the variances of the error components.

In order to ascertain whether the QML estimators offer an attractive alternative to the

AB GMM estimator we conducted the simulation experiments for ρ = 0.5, 0.8, 0.9 and 0.95.

In most of the experiments T = 6 and N = 100. In one set of experiments, however, T = 10

and N = 100. For ρ = 0.95, we also conducted experiments where T = 6 and N = 500.

In all simulation experiments the error components have been drawn from normal distri-

butions with zero means. For the distributions of the εi,t we considered five different designs

(indicated by a Roman number):

I Homogeneity and no autocorrelation of εi,t: E(εiε
′

i) = σ
2
I and σ

2
i,1 = σ

2
= 1.

II Arbitrary ‘flat’ heteroskedasticity but no autocorrelation of εi,t: E(εiε
′

i) = diag(σ
2
i,t) with

σi,t = exp(−0.6+1.2Ui) exp(−0.3+0.6Vi,t), t = 1, ..., T, where Ui ∼ uniform[0, 1], Vi,1 = 0.5,

and Vi,t ∼ uniform[0, 1], t = 2, ..., T.

III Arbitrary ‘non-flat’ heteroskedasticity but no autocorrelation of εi,t: E(εiε
′

i) = diag(σ
2
i,t)

with σi,t = cT ((T + 1)/T )
t
exp(−0.6 + 1.2Ui) exp(−0.3 + 0.6Vi,t), t = 1, ..., T, where Ui ∼

uniform[0, 1], Vi,1 = 0.5, Vi,t ∼ uniform[0, 1], t = 2, ..., T, and cT = ((T + 1)/T )
−(T+1)/2

.

IV Arbitrary ‘flat’ heteroskedasticity + individual specific MA(1): εi,t = ωi,t + φiωi,t−1, t =

2, ..., T, with φi = −0.6 + 1.2Ci, ωi,t ∼ N(0, σ
2
ω,i,t) and σω,i,t = exp(−0.6 + 1.2Ui) exp(−0.3 +

0.6Vi,t), where Ci ∼ uniform[0, 1], Ui ∼ uniform[0, 1], and Vi,t ∼ uniform[0, 1], t = 1, ..., T.

Furthermore σ
2
i,1 = σ

2
ω,i,0(1 + 2ρφi + φ

2
i ) with σω,i,0 = exp(−0.6 + 1.2Ui).

V Arbitrary ‘flat’ heteroskedasticity + arbitrary MA(1): εi,t = ωi,t + φi,tωi,t−1, t = 2, ..., T,

with φi,t = −0.6 + 1.2Ci − 0.15 + 0.3Ki,t, ωi,t ∼ N(0, σ
2
ω,i,t) and σω,i,t = exp(−0.6 +

1.2Ui) exp(−0.3+ 0.6Vi,t), where Ci ∼ uniform[0, 1], Ki,t ∼ uniform[0, 1], t = 2, ..., T, Ui ∼
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uniform[0, 1], and Vi,t ∼ uniform[0, 1], t = 1, ..., T. Furthermore σ
2

i,1 = σ
2

ω,i,0(1+2ρφi,1+φ
2

i,1)

with σω,i,0 = exp(−0.6 + 1.2Ui) and φi,1 = −0.6 + 1.2Ci.

Note that in designs I, II, IV and V the cross-sectional average of the variances of the

idiosyncratic errors is constant (‘flat’) over time, whereas in design III the cross-sectional

average of these variances is increasing over time. Thus in designs I, II, IV and V the QML

estimators suffer from a weak moment conditions problem when ρ is close to one, whereas

in design III this is not the case.

For the individual effects we considered two scenarios: (IE1) σ
2

µ = 1 and (IE2) σ
2

µ =

1/(1 − ρ
2
). Under design I, i.e. when V ar(εi,t) = σ

2
, scenario (IE2) keeps the ratio of the

variances of the error components of yi,t constant across different values of ρ.

In order to assess how the assumptions with respect to yi,1 − µi, i = 1, ..., N, affect

the properties of the estimators, we conducted five different sets of experiments, which

are identified by a capital: in one set the initial observations are drawn from ‘stationary’

distributions, (S), (yi,1 − µi)|µi ∼ N(0, σ
2

i,1/(1 − ρ
2
)), whereas in the other four sets the

initial observations are non-stationary. The four non-stationary cases considered are: (L):

yi,1−µi = 0; (H): (yi,1−µi)|µi ∼ N(0, 2σ
2

i,1/(1−ρ
2
)); (C): (yi,1−2µi)|µi ∼ N(0, ρ

2
σ
2

i,1/(1−ρ
2
));

and (M): (yi,1 − µi)|µi ∼ N(σi,1/(1− ρ
2
)
0.5
, σ

2

i,1/(1− ρ
2
)).

Note that (yi,t − µi)|µi is stationary only under design I-S, i.e. when σ
2

i,t = σ
2
= 1,

t = 2, ..., T, and (yi,1−µi)|µi ∼ N(0, σ
2
/(1−ρ

2
)). In both design L and design H the variance

of yi,1−µi is different from its variance under stationarity, while in design C non-stationarity

of (yi,t−µi)|µi is due to the fact that E(µi(yi,1−µi)) �= 0. Note also that under design I-IE1-C

V ar(yi,1 − µi) = 1/(1− ρ
2
), while under design I-IE2-C V ar(yi,1 − µi) = (1 + ρ

2
)/(1− ρ

2
).

Finally, note that E(yi,t − yi,t−1) = 0 in all designs except design M.

When the data were generated according to design I, we imposed homoskedasticity on

the likelihood functions. We also added the restrictions s
2
> 0 and (T − 1)s̃

2

v + s
2
> 0 to the

likelihood functions to ensure that the estimates of E(uiu
′

i) were PDS. Under designs II-V

we added instead the restrictions s
2

t > 0, t = 2, ..., T, and the stronger restriction s̃
2

v > 0.

Finally, in all cases we supposed the absence of a constant term and time dummies.

Tables 1-11 report the simulation results on the mean and standard deviations (SD) of the

estimators. The tables differ with respect to the assumptions made about the distributions
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of εi,t and µi. Tables 1 and 2 correspond to design I-IE1, table 3 to design I-IE2, table 4 to

design II-IE1, table 5 to design II-IE2, table 6 to design III-IE1, table 7 to design III-IE2,

table 8 to design IV-IE1, table 9 to design IV-IE2, table 10 to design V-IE1, and table 11

corresponds to design V-IE2. In the tables the 2-step Optimal AB GMM estimator is labeled

as ARBOND2.

Inspection of the results in tables 1-11 leads to the following conclusions:
10

1. The AB GMM becomes severely biased and very imprecise when ρ approaches unity.

The bias and variance of this estimator depend on the distribution of the yi,1 − µi as

well as on the ratio of the variances of the error components.

2. When ρ = 0.50, the AB GMM estimator performs reasonably well when the εi,t are

not autocorrelated (designs I, II and III) but becomes substantially biased when the

εi,t ∼ MA(1) (designs IV + V).

3. The REQMLE and FEQMLE display only a small bias and are more precise than the

AB GMM estimator in almost all scenarios considered. The differences in precision

between the QMLE and the AB GMM estimator increase considerably when ρ gets

closer to unity.

4. When ρ = 0.95, the REQMLE and FEQMLE display a larger bias and are less precise

in design II (weak moment conditions) than in design III (no weak moment conditions).

5. The System estimator (and the OLGMM estimator) perform(s) better than the QML

estimators when all the moment conditions which are exploited by the former estima-

tor(s) are valid; however, when mean-stationarity is violated (as in design C), then the

System estimator can be substantially biased, whereas the QML estimators continue

to perform well.

6. The differences in performance between the AB GMM and QML estimators and be-

tween the QML estimators and the System estimator are larger, when the variance of

the initial conditions is smaller (as in design L).

10Some additional Monte Carlo evidence supporting conclusion 4, which is based on alternative
designs, is available at http://alpha.qmul.ac.uk/~ugte185/
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7. When the errors are heteroskedastic the REQMLE is more precise than the FEQMLE.

On the other hand, the REQMLE has a larger bias than the FEQMLE when ρ = 0.95.

We have also constructed histograms for the AB GMM, SYS, REQML and FEQML

estimators of ρ for designs I-IE1-S (weak moment conditions when ρ is close to unity) and III-

IE1-S (no weak moment conditions for the QML estimators) and for ρ = 0.50 and ρ = 0.95.

Each histogram is based on 10,000 simulations. When ρ = 0.95 the differences between

the empirical distributions of the AB GMM estimator on the one hand and the other three

estimators for ρ on the other hand are striking: the values of the first estimator are more

dispersed and they are centered around a value well below 0.95. Furthermore, when the

moment conditions are weak (design I-IE1-S and ρ = 0.95), the empirical distributions of

the REMLE and FEMLE are different – the latter being bimodal – whereas in the other

cases that we considered they are very similar.

We have also investigated the quality of some estimators for the standard errors of the

QML estimators for ρ, and the bounds of 90% confidence intervals for ρ. We considered

both traditional estimators based on first-order fixed parameter asymptotics and bootstrap

estimators. The bootstrap estimators are based on reweighting the ‘individual’ contributions

to the likelihood functions. We applied this bootstrap using 100 replications. When we used

the bootstrap, we allowed for asymmetry of the CI’s around the point estimates of ρ.

Tables 12 and 13 report the simulation results for designs I-IE1-S/C (weak instruments),

while tables 14 and 15 report the simulation results for designs III-IE1-S/C (no weak in-

struments for the QML estimators). In the case of the CI’s we have counted the number of

times that the true value of ρ was outside the constructed CI’s, that is, we have computed

the rejection probabilities (RP). The results related to the AB GMM and SYS estimators

have been included for comparison. For the latter estimators we have also reported corrected

standard errors and CI’s based on the method of Windmeijer (2005).

The findings can be summarized as follows:

1. Under design I the asymptotic standard errors, which are based on the ‘sandwich

formula’ H
−1
GH

−1
, tend to underestimate the standard deviation of the REMLE.

Furthermore when ρ is close to unity, the asymptotic standard errors tend to overesti-

mate the standard deviation of the FEMLE. Under design III, the asymptotic standard
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errors are nearly unbiased.

2. Under design I the bootstrap standard errors tend to underestimate the standard

deviation of both the REMLE and the FEMLE when ρ is close to unity. This seems to

be due to the weak instruments problem because in design III this problem disappears.

3. Under design I both the asymptotic CI’s based on the MLE and the bootstrap CI’s

are too narrow when ρ is close to unity. Only the coverage probability (= 1−RP ) of

the bootstrap CI based on the REMLE, (84.6% when ρ = 0.95 and N = 100), is not

very far from the nominal value of 90%. In the case of the FEMLE the asymptotic

CI performs better than the bootstrap CI. The bootstrap CI based on the REMLE

performs better than the asymptotic CI based on the FEMLE and the CI based on the

AB GMM estimator and the corresponding Windmeijer corrected standard errors.

Under design III the coverage probabilities of the bootstrap CI’s based on the FEQMLE

are close to the nominal value of 90%. In the case of the REQMLE the asymptotic

CI performs better than the bootstrap CI. The bootstrap CI based on the FEQMLE

performs better than the asymptotic CI based on the REQMLE and the CI based on

the AB GMM estimator and the corresponding Windmeijer corrected standard errors.

Finally, we investigated the accuracy of the local-to-zero asymptotic distributions of the

optimal AB GMM estimator and the FEMLE. According to theorem 4 the distributions of

ρ̂AB − ρ are very similar for values of ρ that satisfy ρ = 1 − λN
−0.5

. Theorem 7 implies

that when TSH (or TSH
∗
) holds, the distributions of N

0.25
(ρ̂FEML − ρ) are very similar for

values of ρ that satisfy ρ = 1−λN
−0.25

. Tables 16 and 17 report Monte Carlo results on the

distributions of ρ̂AB and ρ̂FEML when ρ is close to unity. These results have been obtained for

design I-IE1. Moreover, in all cases considered, i.e. for all values of ρ considered, the initial

conditions have been drawn from the same distribution: (yi,1−µi)|µi ∼ N(0, σ
2
/[1−(0.9)

2
]).

Noting that 4
0.25

= 2
0.5 ≈ 0.7071, it is easily seen from the tables that the biases and

standard deviations of ρ̂AB and ρ̂FEML are in agreement with the aforementioned predictions

of theorems 4 and 7.

22



7 Conclusions

In this paper we have shown that the Quasi ML estimation method yields a consistent

estimator for the autoregression parameter ρ in the conditional panel AR(1) model (i.e. with

arbitrary initial conditions) even when the errors are drawn from heterogenous distributions.

We have compared both analytically and by means of Monte Carlo simulations the QML

estimators with the GMM estimator proposed by Arellano and Bond, which ignores some

of the moment conditions implied by the model. Unlike the AB GMM estimator, the QML

estimators for ρ only suffer from a weak instruments problem when ρ is close to unity if the

cross-sectional average of the variances of the errors is constant over time, e.g. under time-

series homoskedasticity. However, even in this case the QML estimators are still consistent

when ρ equals one and they display only a relatively small bias when ρ is close to one. On

the other hand the AB GMM estimator is inconsistent when ρ equals one, and is severly

biased when ρ is close to one. Moreover, our Monte Carlo results suggest that the local-to-

zero asymptotic distributions of the AB GMM estimator and the FEQML estimator that we

have derived in this paper give an accurate characterization of the distributional properties

of these estimators when the moment condtions are weak. A panel unit root test based on

the FEQML estimator is discussed in Kruiniger (2006b).

We have also examined the finite sample properties of two types of estimators for the

standard errors of the QML estimators for ρ, and the bounds of QML based confidence

intervals for ρ. The first estimator is based on first-order fixed parameter asymptotics while

the second estimator is based on a simple bootstrap procedure. In a simulation study we

found that the bootstrap CI based on the REQMLE performs better than alternative CI’s

when the moment conditions are weak, while the bootstrap CI based on the FEQMLE

performs best when the moment conditions are not weak.

Finally, we have considered QML and GMM estimation of models that include exogenous

regressors. We found that QML estimators are inconsistent when the model includes weakly

exogenous regressors. Nonetheless we showed that for such models GMM estimators can be

constructed which are not only closely related to the QML estimators but also consistent.

The results that we have obtained in this paper – in particular (the results related to) the

QML based methods – should be useful when estimating dynamic panel data models with
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persistent data, e.g. when estimating production functions with panel data (see Griliches

and Mairesse, 1998, and Blundell and Bond, 2000). Firm data on factor inputs, especially

data on capital stocks constructed by using the perpetual inventory method, tend to display

a high degree of persistence.

A Proofs of the results in section 3

A.1 Proof of theorem 1 (Consistency of the RECGMM estimator

for ρ in the conditional model when −1 < ρ ≤ 1):

To prove consistency of the RECGMM estimator for ρ we need to verify that ρ is (uniquely)

identified by the moment conditions in (12) and (13).

Tedious but straightforward algebra shows that the set of moment conditions given in

(12) and (13) is equivalent to the following set:

E[m1,t(ρ)] = 0, t = 3, ..., T, and (23)

E[m2,s,t(ρ)] = 0, s = 2, ..., t− 1, and t = 4, ..., T, (24)

where m1,t(ρ) = yi,1(∆yi,t − ρ∆yi,t−1), and

m2,s,t(ρ) = (yi,t − ρyi,t−1)(yi,s − ρyi,s−1)− (yi,3 − ρyi,2)(yi,2 − ρyi,1),

It is clear and well-known that ρ is uniquely identified by E[m1,t(ρ)] = 0, t = 3, ..., T,

when −1 < ρ < 1. Therefore we focus on the unit root case, i.e. ρ = 1. Below we show that

in this case ρ is uniquely identified by E[m2,s,t(ρ)] = 0, s = 2, ..., t− 1, and t = 4, ..., T

if T ≥ 4 unless σ
2

i,s/σ
2

i,s−1 = σ
2

i,3/σ
2

i,2 �= 1, for all s ∈ {3, ..., T − 1}.

When ρ = 1 the model in (1) reduces to yi,t = yi,t−1 + εi,t and we obtain the following

results:

m1,t(r) = yi,1(∆yi,t−r∆yi,t−1) = yi,1(∆εi,t+(ρ−r)εi,t−1) andE[m1,t(r)] = (ρ−r)E(yi,1εi,t−1) =

0 ∀r ∈ (−1, 1]. Therefore ρ is not identified by E[m1,t(ρ)] = 0 when ρ = 1. In fact a similar

result holds for all the moment conditions in (12).

m2,s,t(r) = (yi,t − ryi,t−1)(yi,s − ryi,s−1)− (yi,3 − ryi,2)(yi,2 − ryi,1) =

((ρ− r)yi,t−1 + εi,t)((ρ− r)yi,s−1 + εi,s)− ((ρ− r)yi,2 + εi,3)((ρ− r)yi,1 + εi,2) and

24



E[m2,s,t(r)] = (ρ− r)
2
E(y

2

i,s−1 − y
2

i,1) + (ρ− r)(σ
2

i,s − σ
2

i,2). There are two cases:

s = 2 : E[m2,2,t(r)] = 0 ∀r ∈ (−1, 1]. Therefore ρ is not identified by E[m2,2,t(ρ)] = 0 when

ρ = 1.

s > 2 : E[m2,s,t(r)] = 0 ⇒ r = ρ ∨ r = ρ + (E(y
2

i,s−1 − y
2

i,1))
−1
(σ

2

i,s − σ
2

i,2). Note that

E(y
2

i,s−1 − y
2

i,1) =

∑s−1

m=2
σ
2

i,m > 0. Therefore, when ρ = 1, ρ is uniquely identified by

E[m2,s,t(ρ)] = 0, s = 3, ..., t − 1, and t = 4, ..., T unless (

∑s−1

m=2
σ
2

i,m)
−1
(σ

2

i,s − σ
2

i,2) =

(σ
2

i,2)
−1
(σ

2

i,3 − σ
2

i,2) �= 0 for all s ∈ {3, ..., T − 1} in which case r = 1 ∨ r = σ
2

i,3/σ
2

i,2. It

can be shown by induction that the latter condition is satisfied if and only if σ
2

i,s/σ
2

i,s−1 =

σ
2

i,3/σ
2

i,2 �= 1, for all s ∈ {3, ..., T − 1}. When T = 4, the proof of this claim is trivial.

Let σ
2

i,3/σ
2

i,2 = c. When T = 5 and s = 4, (

∑
3

m=2
σ
2

i,m)
−1
(σ

2

i,4 − σ
2

i,2) = (σ
2

i,2)
−1
(σ

2

i,3 −

σ
2

i,2) ⇔ (

∑
3

m=2
σ
2

i,m/σ
2

i,2)
−1
(

∑
4

m=3
σ
2

i,m/σ
2

i,2) = σ
2

i,3/σ
2

i,2 ⇔ σ
2

i,4/σ
2

i,2 = c
2 ⇔ σ

2

i,4/σ
2

i,3 = c.

Suppose now that the assertion holds for T = n ≥ 5. Then it also holds for T = n +

1 : the only new case is s = n and (

∑n−1

m=2
σ
2

i,m)
−1
(σ

2

i,n − σ
2

i,2) = (σ
2

i,2)
−1
(σ

2

i,3 − σ
2

i,2) ⇔

(

∑n−1

m=2
σ
2

i,m/σ
2

i,2)
−1
(

∑n

m=3
σ
2

i,m/σ
2

i,2) = c ⇔ (

∑n−1

m=2
c
m−2

)
−1
(σ

2

i,n/σ
2

i,2 +

∑n−1

m=3
c
m−2

) = c ⇔

σ
2

i,n/σ
2

i,2 = c
n−2 ⇔ σ

2

i,n/σ
2

i,n−1 = c.

The above implies that if ρ = 1 and T ≥ 4, then ρ is uniquely identified by the moment

conditions in (24) [or by those in (13)] unless σ
2

s/σ
2

s−1 = σ
2

3
/σ

2

2
�= 1 for all s ∈ {3, ..., T−1}. If

ρ = 1 and the average variance σ
2

t changes at a constant rate between t = 2 and t = T−1 ≥ 3,

then ρ is only locally identified: r = 1 or r = σ
2

3
/σ

2

2
. However, ρ is potentially not uniquely

identified only when ρ = 1: when ρ �= 1 and T ≥ 3, ρ is always uniquely identified.

Therefore, when ρ is not uniquely identified, we know that ρ must be equal to one. We

conclude that if T ≥ 4 the RECGMM estimator for ρ is consistent even when ρ = 1. �

Identification by the ‘homoskedasticity’ moment conditions in (15):

Let m3,t(ρ) = (yi,t − ρyi,t−1)
2 − (yi,2 − ρyi,1)

2
, t = 3, ..., T . If ρ = 1 and assumption

TSH holds with σ
2

i > 0, then for each t ∈ {3, ..., T} we have m3,t(r) = ((ρ − r)yi,t−1 +

εi,t)
2 − ((ρ − r)yi,1 + εi,2)

2
, E[m3,t(r)] = (ρ − r)

2
E(y

2

i,t−1 − y
2

i,1) = (ρ − r)
2
(t − 2)σ

2

i , and

E[m3,t(r)] = 0 ⇒ r = ρ.
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A.2 Proof of theorem 2 (Consistency of the RE and FE (Q)MLE’s):

We first prove consistency of the FEQMLE for ρ.

The FE Quasi MLE for ρ in the conditional panel AR(1) model is based on the quasi

likelihood function corresponding to the following auxiliary model

yi − yi,1ι = ρ(yi,−1 − yi,1ι) + ui, (25)

where ui = −(1− ρ)vi,1ι+ εi ∼ N(0,Φ), with Φ = Φ(ϕ) = σ̃
2

vιι
′
+ Ψ, where ϕ is the vector

comprising all (co-)variance parameters.

We have assumed that −1 < ρ ≤ 1, and that assumptions SA, RFEA and B hold. To

simplify matters we also assume that plimN→∞N
−1

∑N

i=1
εiε

′

i = Ψ.

Let ∆̃yi = yi − yi,1ι and ∆̃yi,−1 = yi,−1 − yi,1ι. Then the quasi log-likelihood function for

the conditional panel AR(1) model with fixed effects is given by

logLF (r, F ) = −
1

2

N(T − 1) log 2π −
N

2

log |F | (26)

−
1

2

N∑

i=1

(∆̃yi − r∆̃yi,−1)
′
F
−1
(∆̃yi − r∆̃yi,−1).

To prove consistency of the FEQMLE for ρ, we will verify the conditions of theorem

4.1.1. in Amemiya (1985).

We can express ∆̃yi,−1 in terms of vi,1 and εi

∆̃yi,−1 = Pui = Pι(ρ− 1)vi,1 + Pεi, (27)

where

P = P (ρ) =






0 . . 0 0 0

1 0 0 0

ρ 1 0 0

. ρ 1 0 .

. ρ 1 0 .

ρ
T−3

. . ρ 1 0






. (28)

Next, we can rewrite the quasi log-likelihood function using that

∆̃yi − r∆̃yi,−1 = (ρ− r)∆̃yi,−1 + ui = [(ρ− r)P + I]ui = (29)

[(ρ− r)Pι+ ι](ρ− 1)vi,1 + [(ρ− r)P + I]εi.
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It can easily be seen from (29) that the quasi log-likelihood function, divided by N ,

converges uniformly in probability if our assumptions hold.

We note that one would obtain the same probability limit of the quasi log-likelihood

function if the ṽi,1 = (ρ−1)vi,1 and εi were i.i.d. and Gaussian with E(ṽ
2

i,1) = σ̃
2

v, E(ṽi,1εi) =

0, and E(εiε
′

i) = Ψ. In that case we would have a standard ML estimation problem based

on an error-component model. Identification of ρ (of the parameters) is discussed below. It

immediately follows that the probability limit of the quasi log-likelihood function attains a

maximum at the true value(s) of ρ (of the parameters).

Consistency of the REQMLE for ρ in the conditional panel AR(1) model can be proved

along similar lines. However, instead of (29), one should use

yi − ryi,−1 − p(1− r)yi,1ι = (30)

[(ρ− r)P + I]ui + (ρ− r)Pι(1− ρ)πyi,1 + [π(1− ρ)− p(1− r)]yi,1ι.

�

Identification of the parameters in (26):

To show that the parameters ρ and ϕ are identified when −1 < ρ ≤ 1 one can proceed

as follows:

Let LF (∆̃yi|ρ, ϕ) be the pdf of ∆̃yi.

From (29) we obtain (∆̃yi − r∆̃yi,−1)
′
F

−1
(∆̃yi − r∆̃yi,−1) = u

′

i[(ρ − r)P + I]
′
F

−1
[(ρ −

r)P + I]ui.

Note that F
−1

is PDS when s
2

t > 0 for t ≥ 2, and that [(ρ − r)P + I] is nonsingular for

any −1 < ρ, r ≤ 1. Therefore [(ρ− r)P + I]
′
F

−1
[(ρ− r)P + I] is PDS.

Moreover, given the specific structure of F
−1

and P, [(ρ−r)P+I]
′
F

−1
[(ρ−r)P+I] = Φ

−1

if and only if f = ϕ and r = ρ.

It follows that Pr(∆̃yi : LF (∆̃yi|r, F ) �= LF (∆̃yi|ρ,Φ)) = 1 if r �= ρ and f �= ϕ.

As an example, identification of ρ and ϕ can easily be verified for the homoskedastic case

where F = s̃
2

vιι
′
+ s

2
I with s

2
> 0 and T ≥ 3. It follows from well-known results in the panel

data literature that in this case F
−1

= s
−2
Q+[s

2
+(T−1)s̃

2

v]
−1 1

T−1
ιι
′
with Q = IT−1−

1

T−1
ιι
′
.
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A.3 Proof of theorem 3 (Limiting distribution of the FEMLE):

We consider the simple case where E(uiu
′

i) = Φ = σ̃
2
vιι

′
+ σ

2
I. After noting that Φ =

σ
2
Q+(σ

2
+(T − 1)σ̃

2
v)

1
T−1

ιι
′
, where Q = IT−1−

1
T−1

ιι
′
, it follows from some classical matrix

algebra results in the panel data literature that Φ
−1

= σ
−2
Q+ σ̃

−2 1
T−1

ιι
′
and |Φ| = σ

2(T−2)
σ̃
2

where σ̃
2
= σ

2
+ (T − 1)σ̃

2
v (see e.g. Hsiao, 1986). These results allow us to write the log-

likelihood function of the FEMLE as:

logL[(r s
2
s̃
2
v)

′
] = −

1

2

N(T − 1) log 2π −
N(T − 2)

2

log s
2 −

N

2

log(s
2
+ (T − 1)s̃

2
v)

−
1

2s
2

N∑

i=1

(∆̃yi − r∆̃yi,−1)
′
Q(∆̃yi − r∆̃yi,−1) (31)

−
1

2(s
2
+ (T − 1)s̃

2
v)

1

T − 1

N∑

i=1

[ι
′
(∆̃yi − r∆̃yi,−1)]

2
.

The Fixed Effects (Quasi) ML estimator is defined as the global maximizer of the (quasi)

log-likelihood function given in (31). The corresponding likelihood equations for ρ, σ
2
and

σ̃
2
v are given by:

∂ logL

∂r

=

N∑

i=1

∆̃y
′

i,−1F
−1
(∆̃yi − r∆̃yi,−1) = 0, (32)

∂ logL

∂s
2

= −
N(T − 2)

2s
2

−
N

2s̃
2
+

1

2s
4

N∑

i=1

(∆̃yi − r∆̃yi,−1)
′
Q(∆̃yi − r∆̃yi,−1)

+

1

2s̃
4

1

T − 1

N∑

i=1

[ι
′
(∆̃yi − r∆̃yi,−1)]

2
= 0, (33)

and

∂ logL

∂s̃
2
v

= −
N(T − 1)

2s̃
2

+

1

2s̃
4

N∑

i=1

[ι
′
(∆̃yi − r∆̃yi,−1)]

2
= 0, (34)

where F
−1

= s
−2
Q + s̃

−2 1
T−1

ιι
′
and s̃

2
= s

2
+ (T − 1)s̃

2
v.

To derive the limiting variance of the FEMLE, we will make use of the function ξ(r) =

1
T−1

∑T−2
t=1

T−1−t

t
r
t
and the fact that ∆̃yi,−1 = Pui = Pι(ρ−1)(yi,1−µi)+Pεi, cf (27). Then

the following results are easily obtained:

E[(∆̃yi,−1)
′
Φ
−1
(∆̃yi,−1)] = σ

2
tr(P

′
Φ
−1
P ) + σ̃

2
vι

′
P

′
Φ
−1
Pι,
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E([ι
′
(∆̃yi − ρ∆̃yi,−1)]

2
) = (T − 1)σ̃

2
,

E[(∆̃yi − ρ∆̃yi,−1)
′
Q(∆̃yi,−1)] = E[ε

′

iQPui] = σ
2
tr(QP ) = −σ

2
ξ
′
(ρ), and

E[ι
′
(∆̃yi,−1)(∆̃yi − ρ∆̃yi,−1)

′
ι] = E[ι

′
Puiu

′

iι] = [(T − 1)σ̃
2
v + σ

2
]ι
′
Pι = σ̃

2
ι
′
Pι =

σ̃
2
(T − 1)ξ

′
(ρ).

Let δ = (ρ σ
2
σ̃
2
v)

′
. Then the limiting variance of the FEMLE for δ is given by

[FEH]
−1

= N [E(−
∂
2
logL(δ)

∂δ∂δ
′

)]
−1

=




V11 V12 V13

V12
T−2
2σ4

+
1

2σ̃4
T−1
2σ̃4

V13
T−1
2σ̃4

(T−1)2

2σ̃4





−1

, (35)

where V11 = σ
2
tr(P

′
Φ
−1
P )+σ̃

2
vι

′
P

′
Φ
−1
Pι, V12 = − 1

σ2
ξ
′
(ρ)+

1
σ̃2
ξ
′
(ρ), and V13 =

1
σ̃2
(T−1)ξ

′
(ρ).

When |ρ| < 1,

√
N(δ̂FEML − δ)

d
→ N (0, [FEH]

−1
) .

When ρ = 1, σ̃
2
v = 0, σ̃

2
= σ

2
and Φ = σ

2
I. Furthermore tr(P

′
P ) =

1
2
(T − 1)(T − 2) and

ξ
′
(1) =

1
2
(T − 2). It follows that when ρ = 1, FEH is a singular matrix. In this case the

FEMLE for δ has a non-normal asymptotic distribution.
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B Proofs of the results in section 4

B.1 Proof of theorem 5 (weak moment conditions GMM):

Let E[mAB,s,t(ρ)] = 0 with mAB,s,t(ρ) = yi,s(∆yi,t − ρ∆yi,t−1) (where s ≤ t − 2) repre-

sent an arbitrary Arellano-Bond moment condition from (12), let E[mAS,t(ρ)] = 0 with

mAS,t(ρ) = (yi,T − ρyi,T−1)(∆yi,t−1 − ρ∆yi,t−2) represent an arbitrary Ahn-Schmidt moment

condition from (13), and let mHO,t(ρ) = (yi,t−ρyi,t−1)
2− (yi,2−ρyi,1)

2
represent an arbitrary

‘homoskedasticity’ moment condition from (15). Then we obtain the following results:

dmAB,s,t

dρ
= −yi,s∆yi,t−1 and E(−yi,s∆yi,t−1) = (1 − ρ)E[(yi,s − µi + µi)(yi,t−2 − µi)] = (1 −

ρ)ρ
t−2−s

E[(yi,s − µi + µi)(yi,s − µi)]. It follows that limρ↑1E(
dmAB,s,t

dρ
) = 0;

dmHO,t

dρ
= −2yi,t−1(yi,t − ρyi,t−1) + 2yi,1(yi,2 − ρyi,1) and E(

dmHO,t

dρ
|yi,1, µi) = E[−2yi,t−1(1 −

ρ)µi + 2yi,1(1− ρ)µi|yi,1, µi] = 2(1− ρ)(1− ρ
t−2

)µi(yi,1 − µi). Hence limρ↑1E(
dmHO,t

dρ
) = 0;

dmAS,t(ρ)

dρ
= −yi,T−1∆εi,t−1−(εi,T+(1−ρ)µi)∆yi,t−2 and E(

dmAS,t(ρ)

dρ
) = −E[(yi,T−1−µi)∆εi,t−1]+

(1 − ρ)
2
E[µi(yi,t−3 − µi)] = −ρ

T−t
E[(yi,t−1 − µi)∆εi,t−1] + (1 − ρ)

2
E[µi(yi,t−3 − µi)] =

−ρ
T−t

(σ
2
i,t−1−ρσ

2
i,t−2)+(1−ρ)

2
E[µi(yi,t−3−µi)]. It follows that limρ↑1E(

dmAS,t

dρ
) = −σ

2
i,t−1+

σ
2
i,t−2 = 0 if and only if σ

2
i,t−1 = σ

2
i,t−2.

We conclude that E[mAB,s,t(ρ)] = 0 and E[mHO,t(ρ)] = 0 are weak when ρ is close to one.

However, E[mAS,t(ρ)] = 0 is weak when ρ is close to one if and only if σ
2
t−1 = σ

2
t−2. We

remark that E[mAB,s,t(ρ)] = 0, E[mAS,t(ρ)] = 0 and E[mHO,t(ρ)] = 0 are also weak under

covariance stationarity (in the case of E[mAB,s,t(ρ)] = 0, see Kruiniger (2006a)). �

B.2 Proof of theorem 6 (weak moment conditions QML):

There are two cases that we must consider. In the first case assumption TSH
∗
does not

hold while in the second case assumption TSH
∗
does hold. In the former case we need to

show that the Expected Hessian of the QMLE is nonsingular when ρ = 1, whereas in the

latter case we need to show that the Expected Hessian of the QMLE is singular when ρ = 1

irrespective of whether TSH is embodied in the estimator or not.

We prove the theorem for the REQMLE’s. In fact it is sufficient to consider the REMLE’s

only. Thus we assume that the εi and vi are i.i.d. and Gaussian.
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As noted at the end of section 3, when the εi and vi are i.i.d. and Gaussian and assumption

TSH has not been imposed on the estimator, the REMLE for ρ is asymptotically equivalent to

the ORECGMM estimator for ρ. In fact, one can show that the REMLE for all the parameters

of the conditional model is asymptotically equivalent to an Optimal GMM estimator that

exploits all the second moment conditions (i.e. those involving all the elements of E[(yi,1

yi)(yi,1 yi)
′
] ) that are implied by this model. It follows that the Expected Hessian of the

REMLE is equal to the inverse of the limiting variance of such an Optimal GMM estimator.

Establishing (non-)singularity of the former matrix when ρ = 1 is therefore equivalent to

proving (non-)singularity of the latter matrix when ρ = 1. The formula for the latter is given

by G(θ0)
′
(Ω(θ0))

−1
G(θ0), where G(θ0) = E(dm(θ)/dθ|θ0) is the first derivative of the vector

of moment conditions E(m(θ)) = 0 with respect to the vector of parameters θ evaluated at

the true values of the parameters, θ0, and Ω(θ0) = E(m(θ0)m(θ0)
′
) is the optimal weight

matrix.

We first prove that G(θ0)
′
(Ω(θ0))

−1
G(θ0) is nonsingular when ρ = 1 and TSH

∗
does not

hold. In this case consistency of the REMLE requires that T ≥ 4 (cf theorem 1).

Let T = 4. Then θ0 = (σηy σ
2

y ρ σ
2

η σ
2

2
σ
2

3
σ
2

4
)
′
and the vector of all the 0.5T (T + 1)

available moment conditions E(m(θ0)) = 0 is defined by the 10−dimensional vector:

m(θ0) = m4(θ0) =






yi,1∆wi,3

yi,1∆wi,4

yi,2∆wi,4

yi,1∆yi,2 − σηy − (ρ− 1)σ
2

y

y
2

i,1 − σ
2

y

wi,4∆wi,3

wi,2wi,3 − σ
2

η

w
2

i,2 − σ
2

η − σ
2

2

w
2

i,3 − σ
2

η − σ
2

3

w
2

i,4 − σ
2

η − σ
2

4






. (36)

We can write m(θ0) = (m
′

I(θ0), m
′

II(θ0))
′
where dim(m

′

II(θ0)) = dim(θ) = 7. It can

easily be seen that det(E(dmII(θ)/dθ|θ0)) �= 0 when ρ = 1 and TSH
∗
does not hold. It

follows immediately that G(θ0) has full rank when ρ = 1 and TSH
∗
does not hold.

We will now prove that Ω(θ0) is PDS when ρ = 1. Notice that in this case ηi = 0,

∆yi,2 = εi,2 and wi,t = εi,t, t = 2, 3, 4.
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It is useful to define my(θ0) = (y
2
i,1−σ

2
y, yi,1∆yi,2−σηy−(ρ−1)σ

2
y, yi,1∆wi,3, yi,1∆wi,4)

′

and mny+(θ0) = (wi,2wi,3 − σ
2
η, m

′

ny(θ0))
′
, where the vector mny(θ0) contains the remaining

moment functions from m(θ0) including yi,2∆wi,4. Notice that when ρ = 1 all the elements

of mny+(θ0) involve products of εi,s and εi,t, with s, t ∈ {2, ..., T}, whereas the elements of

my(θ0) only involve products of yi,1 and a second factor, namely yi,1 or εi,t where t ∈ {2, ..., T}.

Notice also that when ρ = 1 the covariance matrix of yi,2∆wi,4 (= yi,1∆εi,4 + εi,2∆εi,4),

wi,4∆wi,3 (= εi,4∆εi,3), and wi,2wi,3 (= εi,2εi,3) is nonsingular. It is then easily seen that

both E(my(θ0)my(θ0)
′
) and E(mny+(θ0)mny+(θ0)

′
) are nonsingular when ρ = 1. From the

preceding observations it follows immediately that Ω(θ0) is PDS when ρ = 1. We conclude

that G(θ0)
′
(Ω(θ0))

−1
G(θ0) is PDS when ρ = 1 and TSH

∗
does not hold.

The above argument for showing that Ω(θ0) is nonsingular when T = 4 can easily be

extended to the general case where T ≥ 4. To that end we redefine the vector my(θ0) by

adding the elements yi,1∆wi,t, t = 5, 6, ..., T. All the other additional moment functions that

are available from (12), (13) and (15) are included inmny(θ0) and thereby inmny+(θ0). Again

it is easily seen that both E(my(θ0)my(θ0)
′
) and E(mny+(θ0)mny+(θ0)

′
) are nonsingular when

ρ = 1. It follows again straightforwardly that Ω(θ0) is nonsingular.

When T > 4, we can formulate the vector of additional moment conditions E(mad(θ0)) =

0 in such a way that E(m4(θ0)mad(θ0)
′
) = 0. To see this, let the original set of additional

moment conditions be given by E(min(θ0)) = 0, let Ωin,4(θ0) = E(min(θ0)m4(θ0)
′
) and let

Ω4(θ0) = E(m4(θ0)m4(θ0)
′
). Next define mad(θ0) = min(θ0) − Ωin,4(θ0)(Ω4(θ0))

−1
m4(θ0).

Then E(m4(θ0)mad(θ0)
′
) = 0.

Now let G4(θ0) = E(dm4(θ)/dθ|θ0), let Gad(θ0) = E(dmad(θ)/dθ|θ0) and let Ωad(θ0) =

E(mad(θ0)mad(θ0)
′
). Then it follows fromE(m4(θ0)mad(θ0)

′
) = 0 thatG(θ0)

′
(Ω(θ0))

−1
G(θ0) =

G4(θ0)
′
(Ω4(θ0))

−1
G4(θ0)+Gad(θ0)

′
(Ωad(θ0))

−1
Gad(θ0). Since G4(θ0)

′
(Ω4(θ0))

−1
G4(θ0) is PDS

and Gad(θ0)
′
(Ωad(θ0))

−1
Gad(θ0) is PSDS, it follows that G(θ0)

′
(Ω(θ0))

−1
G(θ0) is PDS and

therefore nonsingular. This completes the proof of the first case.

We will now consider the ‘homoskedastic’ case, i.e. the case where assumption TSH
∗
does

hold. We will prove that the Expected Hessian of the REMLE that embodies assumption

TSH is singular when ρ = 1 and TSH
∗
holds. We can prove a similar claim for the REMLE

that does not embody TSH along similar lines. Note that when ρ = 1 the former REMLE
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is consistent for T ≥ 3, while the latter REMLE is only consistent for T ≥ 4 (cf theorem 1).

Let us first define E(m(θ0)) = 0 for general T . This vector consists of all the moment

conditions in (12) and (13), E(w
2
i,t − σ

2
η − σ

2
) = 0, t = 2, ..., T, and the three remaining

elements of E(m4(θ0)) = 0. It is useful to replace E(w
2
i,t − σ

2
η − σ

2
) = 0, t = 2, ..., T in

E(m(θ0)) = 0 by E(w
2
i,t − w

2
i,t−1) = 0, t = 3, ..., T (i.e. the moment conditions in (15)) and

E(w
2
i,2 − σ

2
η − σ

2
) = 0. Now, when ρ = 1 and TSH

∗
holds, rank(G(θ0)) < dim(θ0) = 5 for

any T ≥ 3. This follows from the fact that the four columns of G(θ0) corresponding to ρ,

σηy, σ
2
η, and σ

2
are linearly dependent when ρ = 1. These columns consist of zeros except in

the three rows corresponding to E(yi,1∆yi,2−σηy − (ρ− 1)σ
2
y) = 0, E(wi,2wi,3−σ

2
η) = 0, and

E(w
2
i,2 − σ

2
η − σ

2
) = 0, because these are the only moment conditions that involve σηy, σ

2
η,

and σ
2
, and because theorem 5 implies that all the other moment conditions involving ρ, i.e.

(12) and (13) and (15), are weak when TSH
∗
holds and ρ = 1. Since G(θ0) does not have

full rank, G(θ0)
′
(Ω(θ0))

−1
G(θ0) is singular and hence the Expected Hessian of the REMLE

that embodies assumption TSH is singular when ρ = 1 and TSH
∗
holds. �

B.3 Proof of theorem 7 (local-to-zero asymptotics FEMLE):

We first prove two lemmata. Some of the notation used below is defined in appendix A.3.

Lemma 8 Let T ≥ 3 and f(ρ) = (T − 2)tr(P
′
P ) − 2(T − 1)(ξ

′
(ρ))

2
, where P = P (ρ) is

given in (28). Then f(1) = 0, f
′
(1) = 0, and f

′′
(1) = (1/18))T (T − 1)(T − 1)

2
(T − 3).

Proof of lemma 8:

Note that tr(P
′
P ) =

∑T−2
t=1 tρ

2(T−2−t)
and (T − 1)ξ

′
(ρ) =

∑T−2
t=1 tρ

(T−2−t)
. Furthermore,

note that

∑T

t=1 t = (1/2)T (T + 1),

∑T

t=1 t
2
= (1/6)T (T + 1)(2T + 1), and

∑T

t=1 t
3
=

((1/2)T (T + 1))
2
. Then the claims of lemma 8 follow straightforwardly. �

Lemma 9 If −1 < ρ ≤ 1 and T ≥ 4, then det(FEH(δ(ρ))) = (1 − ρ)
2
c(ρ) where c(ρ) is a

polynomial in ρ with c(1) �= 0.

Proof of lemma 9:

Note that Φ
−1

= σ
−2
σ̃
−2
(σ

2
I + (T − 1)σ̃

2
vQ). Hence V11 = σ

2
tr(P

′
Φ
−1
P ) + σ̃

2
vι

′
P

′
Φ
−1
Pι =
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σ
−2
σ̃
−2

(σ
4
h1(ρ) + σ

2
σ̃
2
v(T − 1)h2(ρ) + σ

2
σ̃
2
vh3(ρ) + σ̃

4
v(T − 1)h4(ρ)) , where h1(ρ) = tr(P

′
P ),

h2(ρ) = tr(P
′
QP ), h3(ρ) = ι

′
P
′
Pι, and h4(ρ) = ι

′
P
′
QPι.

It follows that det(FEH(δ(ρ))) = (4σ
6
σ̃
6
)
−1

(T − 1)
2
(σ

4
q1(ρ) + σ

2
σ̃
2
vq2(ρ) + σ̃

4
vq3(ρ)) ,

where q1(ρ) = (T−2)h1(ρ)−2(T−1)(ξ
′
(ρ))

2
, q2(ρ) = (T−2)(T−1)h2(ρ)−2(T−1)

2
(ξ
′
(ρ))

2
+

(T − 2)h3(ρ), and q3(ρ) = (T − 2)(T − 1)h4(ρ).

Recall that σ̃
2
v = σ̃

2
v(ρ) = (1 − ρ)

2
σ
2
v. From lemma 8 it follows that if T ≥ 4 then

q1(ρ) = f(ρ) = (1 − ρ)
2
q̃1(ρ) where q̃1(ρ) is a polynomial in ρ with q̃1(1) �= 0. Hence

det(FEH(δ(ρ))) = (1− ρ)
2
c(ρ) where c(ρ) is a polynomial in ρ with c(1) �= 0. By the way,

if T = 3 then q1(ρ) = q2(ρ) = 0 and q3(ρ) = 1/2 so that det(FEH(δ(ρ))) = (2σ
6
σ̃
6
)
−1
σ̃
4
v =

(2σ
6
σ̃
6
)
−1
(1− ρ)

4
σ
4
v . �

Proof of theorem 7:

A Taylor expansion of N
−1 ∂ logLF (δ)

∂δ
around δ̂FEML yields (δ̂FEML − δ) = (FH(

ˇ
δ))

−1×

N
−1 ∂ logLF (δ)

∂δ
, where

ˇ
δk = µkδ̂FEML,k + (1 − µk)δk with µk ∈ [0, 1] for k = 1, 2, 3. Note

that (FH(
ˇ
δ))

−1
= (det(FH(

ˇ
δ)))

−1
FH(

ˇ
δ).

Lemma 9 implies that limρ↑1 cdet(ρ) = cdet(1) �= 0. Moreover when −1 < ρ ≤ 1 we have

det(FEH(δ(ρ))) ≥ 0 and hence cdet(ρ) ≥ 0. It can also easily be verified that FEH11(δ(1)) =

(1/4)σ
−8
(T − 2)(T − 1)

2 �= 0 and FEH11(δ(ρ)) ≥ 0 when −1 < ρ ≤ 1.

Note that under fixed parameter first-order asymptotics we have δ̂FEML − δ
p
→ 0 and

when |ρ| < 1 we also have N
0.5
(δ̂FEML − δ)

d
→ N (0, (FEH)

−1
) (cf appendix A.3).

Let ρ = 1− λN
−0.25

with λ > 0. Then since 0.25 is less than the rate of convergence of

δ̂FEML under fixed parameter asymptotics (i.e. 0.5), we still have δ̂FEML− δ
p
→ 0 and hence

FH(
ˇ
δ)

p
→ FEH(δ(1)) and FH(

ˇ
δ)

p
→ FEH(δ(1)). Furthermore N

0.5
(FH(

ˇ
δ) − FEH(δ))

converges in distribution. Now, since N
0.5

det(FEH(δ(ρ))) = λ
2
cdet(ρ), we obtain by using

standard arguments that N
0.25

FEH(
ˇ
δ)(N

−0.5 ∂ logLF (δ)
∂δ

)
d
→ N

(
0, λ

2
cdet(1)FEH(δ(1))

)
and

N
0.5

det(FH(
ˇ
δ)) = N

0.5
det(FH(

ˇ
δ) − FEH(δ) + FEH(δ))

d
→ Z̃2 = λ

2
cdet(1) + Zdet(λ).

Moreover N
0.25

(δ̂FEML − δ) = (N
0.5

det(FH(
ˇ
δ)))

−1
N

0.25
FEH(

ˇ
δ)(N

−0.5 ∂ logLF (δ)
∂δ

).

We can use the above results to obtain the local-to-zero asymptotic distribution of

ρ̂FEML : N
0.25

(ρ̂FEML−ρ)
d
→ Z̃1/Z̃2, where Z̃1 ∼ N

(
0, λ

2
limρ↑1 cdet(ρ)FEH11(δ(1))

)
. More-

over E(Z̃1Z̃2) = limN→∞E[N
0.25

(1, 0, 0)FEH(
ˇ
δ)(N

−0.5 ∂ logLF (δ)
∂δ

)N
0.5

det(FH(
ˇ
δ))] �= 0. �
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T = 10 N = 100 ARBOND2 REQMLE FEQMLE SYS2 OLGMM2

model ρ mean SD mean SD mean SD mean SD mean SD

L 0.50 0.475 0.057 0.499 0.046 0.499 0.046 0.508 0.041 0.549 0.043

L 0.80 0.729 0.084 0.805 0.070 0.805 0.069 0.802 0.029 0.837 0.027

L 0.95
a

0.597 0.195 0.935 0.068 0.929 0.065 0.950 0.021 0.966 0.015

L 0.95
b

0.818 0.101 0.946 0.044 0.943 0.043 0.951 0.009 0.989 0.005

S 0.50 0.473 0.061 0.500 0.042 0.500 0.042 0.516 0.047 0.518 0.046

S 0.80 0.750 0.069 0.805 0.059 0.809 0.069 0.801 0.042 0.804 0.040

S 0.95
a

0.820 0.110 0.962 0.065 0.937 0.060 0.945 0.038 0.946 0.032

S 0.95
b

0.923 0.043 0.956 0.039 0.949 0.041 0.949 0.017 0.951 0.016

H 0.50 0.478 0.055 0.500 0.038 0.500 0.038 0.518 0.044 0.536 0.043

H 0.80 0.769 0.055 0.801 0.047 0.804 0.055 0.804 0.045 0.823 0.040

H 0.95
a

0.878 0.076 0.958 0.060 0.948 0.064 0.941 0.045 0.951 0.033

H 0.95
b

0.935 0.031 0.951 0.030 0.953 0.038 0.947 0.028 0.977 0.016

C 0.50 0.480 0.052 0.499 0.042 0.499 0.043 0.642 0.063 0.635 0.060

C 0.80 0.758 0.064 0.803 0.056 0.808 0.069 0.783 0.045 0.793 0.043

C 0.95
a

0.825 0.109 0.963 0.065 0.936 0.061 0.942 0.040 0.945 0.033

C 0.95
b

0.925 0.043 0.955 0.038 0.950 0.041 0.944 0.019 0.950 0.017

M 0.50 0.477 0.054 0.499 0.038 0.499 0.038 0.517 0.044 0.539 0.043

M 0.80 0.770 0.055 0.801 0.047 0.803 0.053 0.805 0.045 0.827 0.040

M 0.95
a

0.880 0.077 0.958 0.060 0.949 0.064 0.942 0.045 0.952 0.032

M 0.95
b

0.936 0.031 0.952 0.030 0.954 0.038 0.947 0.028 0.979 0.016

Table 1: Estimators of ρ; Design I with σ
2

µ = 1; 10000 replications; SD: standard deviation;

a : N = 100, b : N = 500.
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T = 6 N = 100 ARBOND2 REQMLE FEQMLE SYS2 OLGMM2

model ρ mean SD mean SD mean SD mean SD mean SD

L 0.50 0.466 0.113 0.506 0.101 0.506 0.101 0.503 0.057 0.602 0.070

L 0.80 0.645 0.210 0.796 0.126 0.793 0.123 0.802 0.043 0.894 0.038

L 0.95
a

0.298 0.410 0.922 0.117 0.899 0.106 0.953 0.037 0.984 0.015

L 0.95
b

0.604 0.297 0.935 0.075 0.922 0.071 0.950 0.015 0.995 0.005

S 0.50 0.469 0.105 0.503 0.083 0.506 0.090 0.507 0.074 0.511 0.073

S 0.80 0.738 0.139 0.822 0.119 0.813 0.122 0.795 0.074 0.805 0.070

S 0.95
a

0.750 0.256 0.976 0.114 0.917 0.107 0.937 0.077 0.943 0.061

S 0.95
b

0.915 0.099 0.966 0.073 0.931 0.066 0.948 0.031 0.952 0.029

H 0.50 0.481 0.085 0.502 0.066 0.502 0.069 0.511 0.072 0.568 0.072

H 0.80 0.767 0.100 0.810 0.097 0.814 0.111 0.798 0.085 0.859 0.070

H 0.95
a

0.851 0.172 0.971 0.110 0.946 0.118 0.931 0.095 0.956 0.059

H 0.95
b

0.933 0.067 0.957 0.062 0.949 0.069 0.945 0.055 0.983 0.023

C 0.50 0.481 0.086 0.501 0.075 0.505 0.089 0.631 0.114 0.628 0.110

C 0.80 0.751 0.127 0.816 0.112 0.811 0.120 0.761 0.080 0.798 0.078

C 0.95
a

0.753 0.251 0.974 0.115 0.916 0.109 0.932 0.083 0.941 0.064

C 0.95
b

0.915 0.097 0.964 0.071 0.933 0.065 0.941 0.034 0.950 0.029

M 0.50 0.480 0.084 0.501 0.066 0.501 0.068 0.510 0.071 0.575 0.072

M 0.80 0.768 0.098 0.811 0.097 0.814 0.110 0.798 0.084 0.864 0.068

M 0.95
a

0.852 0.169 0.971 0.109 0.947 0.118 0.932 0.095 0.958 0.058

M 0.95
b

0.935 0.070 0.959 0.064 0.950 0.070 0.945 0.057 0.984 0.024

Table 2: Estimators of ρ; Design I with σ
2

µ = 1; 10000 replications; SD: standard deviation;

a : N = 100, b : N = 500.
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T = 6 N = 100 ARBOND2 REQMLE FEQMLE SYS2 OLGMM2

model ρ mean SD mean SD mean SD mean SD mean SD

L 0.50 0.466 0.112 0.506 0.101 0.506 0.100 0.503 0.060 0.592 0.078

L 0.80 0.644 0.210 0.795 0.127 0.791 0.124 0.802 0.047 0.871 0.056

L 0.95
a

0.294 0.414 0.922 0.116 0.899 0.107 0.952 0.040 0.970 0.038

L 0.95
b

0.599 0.304 0.929 0.074 0.923 0.071 0.951 0.016 0.990 0.011

S 0.50 0.466 0.111 0.503 0.085 0.506 0.092 0.509 0.077 0.512 0.075

S 0.80 0.711 0.167 0.837 0.132 0.811 0.122 0.800 0.078 0.811 0.072

S 0.95
a

0.617 0.335 0.971 0.118 0.916 0.106 0.941 0.079 0.949 0.060

S 0.95
b

0.878 0.135 0.978 0.076 0.932 0.066 0.947 0.034 0.953 0.030

H 0.50 0.477 0.089 0.501 0.067 0.501 0.068 0.514 0.073 0.571 0.073

H 0.80 0.758 0.112 0.826 0.112 0.815 0.109 0.812 0.089 0.868 0.071

H 0.95
a

0.802 0.216 0.985 0.114 0.945 0.118 0.944 0.093 0.963 0.058

H 0.95
b

0.923 0.083 0.964 0.070 0.951 0.070 0.949 0.061 0.983 0.025

C 0.50 0.482 0.082 0.500 0.072 0.503 0.084 0.756 0.103 0.750 0.095

C 0.80 0.767 0.102 0.809 0.097 0.815 0.114 0.905 0.079 0.935 0.057

C 0.95
a

0.839 0.177 0.974 0.111 0.942 0.117 0.968 0.071 0.979 0.040

C 0.95
b

0.930 0.072 0.957 0.065 0.948 0.069 0.992 0.037 0.995 0.011

M 0.50 0.478 0.088 0.500 0.065 0.501 0.067 0.514 0.073 0.578 0.072

M 0.80 0.757 0.114 0.826 0.113 0.816 0.111 0.811 0.090 0.871 0.070

M 0.95
a

0.803 0.212 0.983 0.112 0.947 0.117 0.946 0.094 0.964 0.058

M 0.95
b

0.923 0.083 0.964 0.070 0.950 0.070 0.949 0.062 0.983 0.025

Table 3: Estimators of ρ; Design I with σ
2

µ = 1/(1 − ρ
2
); 10000 replications; SD: standard

deviation; a : N = 100, b : N = 500.
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T = 6 N = 100 ARBOND2 REQMLE FEQMLE SYS2 OLGMM2

model ρ mean SD mean SD mean SD mean SD mean SD

L 0.50 0.463 0.130 0.462 0.075 0.463 0.075 0.504 0.063 0.597 0.070

L 0.80 0.608 0.232 0.729 0.094 0.729 0.094 0.802 0.049 0.881 0.043

L 0.95
a

0.268 0.420 0.863 0.103 0.864 0.107 0.954 0.042 0.979 0.021

L 0.95
b

0.531 0.341 0.899 0.062 0.897 0.064 0.951 0.019 0.993 0.006

S 0.50 0.462 0.115 0.496 0.087 0.509 0.109 0.503 0.083 0.505 0.082

S 0.80 0.720 0.156 0.762 0.083 0.784 0.111 0.794 0.080 0.800 0.076

S 0.95
a

0.699 0.296 0.880 0.094 0.893 0.104 0.938 0.085 0.943 0.069

S 0.95
b

0.898 0.119 0.912 0.052 0.915 0.066 0.948 0.035 0.951 0.032

H 0.50 0.479 0.093 0.500 0.077 0.510 0.098 0.510 0.081 0.555 0.080

H 0.80 0.758 0.111 0.769 0.072 0.810 0.122 0.793 0.090 0.840 0.077

H 0.95
a

0.814 0.212 0.888 0.085 0.909 0.104 0.930 0.097 0.946 0.067

H 0.95
b

0.925 0.082 0.921 0.045 0.934 0.066 0.941 0.064 0.977 0.029

C 0.50 0.476 0.097 0.477 0.067 0.506 0.105 0.524 0.105 0.532 0.105

C 0.80 0.735 0.137 0.754 0.078 0.778 0.111 0.754 0.086 0.781 0.082

C 0.95
a

0.693 0.299 0.878 0.094 0.888 0.105 0.935 0.085 0.941 0.067

C 0.95
b

0.900 0.113 0.914 0.052 0.916 0.065 0.945 0.037 0.950 0.033

M 0.50 0.478 0.093 0.500 0.077 0.506 0.097 0.509 0.079 0.563 0.078

M 0.80 0.761 0.109 0.772 0.071 0.806 0.115 0.794 0.089 0.849 0.076

M 0.95
a

0.815 0.206 0.889 0.086 0.905 0.104 0.930 0.099 0.949 0.067

M 0.95
b

0.924 0.083 0.920 0.044 0.932 0.066 0.939 0.061 0.977 0.031

Table 4: Estimators of ρ; Design II with σ
2

µ = 1; 2500 replications; SD: standard deviation;

a : N = 100, b : N = 500.
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T = 6 N = 100 ARBOND2 REQMLE FEQMLE SYS2 OLGMM2

model ρ mean SD mean SD mean SD mean SD mean SD

L 0.50 0.458 0.132 0.460 0.072 0.461 0.073 0.504 0.064 0.589 0.074

L 0.80 0.610 0.244 0.731 0.093 0.730 0.094 0.802 0.052 0.867 0.055

L 0.95
a

0.282 0.419 0.863 0.101 0.864 0.104 0.952 0.045 0.969 0.037

L 0.95
b

0.533 0.333 0.899 0.064 0.896 0.065 0.951 0.019 0.991 0.011

S 0.50 0.465 0.121 0.501 0.090 0.511 0.107 0.508 0.082 0.510 0.081

S 0.80 0.699 0.174 0.765 0.093 0.780 0.112 0.798 0.083 0.807 0.079

S 0.95
a

0.579 0.350 0.877 0.099 0.890 0.105 0.939 0.086 0.945 0.068

S 0.95
b

0.869 0.146 0.914 0.057 0.916 0.065 0.946 0.038 0.952 0.033

H 0.50 0.476 0.097 0.500 0.079 0.507 0.095 0.512 0.080 0.558 0.080

H 0.80 0.747 0.128 0.779 0.081 0.816 0.121 0.805 0.096 0.847 0.079

H 0.95
a

0.764 0.248 0.887 0.091 0.904 0.105 0.939 0.095 0.954 0.065

H 0.95
b

0.918 0.097 0.925 0.050 0.936 0.066 0.946 0.067 0.977 0.032

C 0.50 0.479 0.092 0.478 0.065 0.509 0.105 0.634 0.120 0.641 0.118

C 0.80 0.757 0.114 0.763 0.070 0.794 0.114 0.846 0.097 0.892 0.082

C 0.95
a

0.799 0.217 0.887 0.086 0.904 0.102 0.956 0.085 0.970 0.056

C 0.95
b

0.924 0.085 0.921 0.045 0.929 0.066 0.973 0.056 0.989 0.021

M 0.50 0.476 0.094 0.501 0.078 0.509 0.097 0.513 0.077 0.566 0.076

M 0.80 0.751 0.127 0.779 0.081 0.808 0.116 0.804 0.093 0.854 0.076

M 0.95
a

0.764 0.244 0.888 0.093 0.904 0.106 0.940 0.098 0.956 0.067

M 0.95
b

0.914 0.098 0.922 0.050 0.931 0.066 0.942 0.061 0.977 0.032

Table 5: Estimators of ρ; Design II with σ
2

µ = 1/(1 − ρ
2
); 2500 replications; SD: standard

deviation; a : N = 100, b : N = 500.
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T = 6 N = 100 ARBOND2 REQMLE FEQMLE SYS2 OLGMM2

model ρ mean SD mean SD mean SD mean SD mean SD

L 0.50 0.438 0.173 0.461 0.080 0.462 0.081 0.501 0.072 0.570 0.083

L 0.80 0.508 0.334 0.749 0.086 0.750 0.086 0.803 0.061 0.879 0.056

L 0.95
a

0.249 0.484 0.894 0.086 0.896 0.086 0.953 0.054 0.979 0.027

L 0.95
b

0.433 0.459 0.919 0.042 0.919 0.043 0.950 0.023 0.996 0.006

S 0.50 0.438 0.165 0.494 0.091 0.500 0.101 0.504 0.085 0.506 0.094

S 0.80 0.627 0.255 0.762 0.085 0.775 0.095 0.799 0.079 0.814 0.087

S 0.95
a

0.495 0.442 0.896 0.084 0.902 0.088 0.949 0.075 0.952 0.067

S 0.95
b

0.816 0.219 0.926 0.041 0.931 0.045 0.950 0.032 0.971 0.036

H 0.50 0.449 0.138 0.495 0.086 0.501 0.097 0.506 0.088 0.513 0.085

H 0.80 0.699 0.196 0.772 0.080 0.794 0.100 0.799 0.092 0.806 0.088

H 0.95
a

0.653 0.382 0.900 0.081 0.910 0.089 0.947 0.098 0.945 0.081

H 0.95
b

0.882 0.146 0.928 0.039 0.937 0.047 0.948 0.045 0.949 0.042

C 0.50 0.469 0.114 0.474 0.070 0.501 0.099 0.566 0.112 0.583 0.112

C 0.80 0.697 0.191 0.759 0.079 0.780 0.097 0.768 0.091 0.779 0.091

C 0.95
a

0.535 0.421 0.896 0.084 0.903 0.089 0.943 0.083 0.946 0.074

C 0.95
b

0.841 0.198 0.925 0.041 0.930 0.045 0.947 0.035 0.956 0.040

M 0.50 0.463 0.117 0.498 0.080 0.503 0.090 0.510 0.084 0.556 0.083

M 0.80 0.737 0.147 0.773 0.076 0.797 0.103 0.801 0.098 0.836 0.082

M 0.95
a

0.745 0.286 0.901 0.079 0.914 0.090 0.943 0.106 0.949 0.078

M 0.95
b

0.913 0.106 0.929 0.038 0.940 0.049 0.950 0.053 0.965 0.035

Table 6: Estimators of ρ; Design III with σ
2

µ = 1; 2500 replications; SD: standard deviation;

a : N = 100, b : N = 500.
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T = 6 N = 100 ARBOND2 REQMLE FEQMLE SYS2 OLGMM2

model ρ mean SD mean SD mean SD mean SD mean SD

L 0.50 0.441 0.175 0.461 0.084 0.462 0.084 0.503 0.077 0.562 0.089

L 0.80 0.521 0.337 0.752 0.084 0.753 0.084 0.804 0.064 0.860 0.070

L 0.95
a

0.240 0.486 0.895 0.086 0.897 0.087 0.954 0.057 0.968 0.048

L 0.95
b

0.434 0.450 0.924 0.042 0.924 0.042 0.951 0.024 0.990 0.015

S 0.50 0.431 0.172 0.494 0.095 0.500 0.103 0.505 0.089 0.506 0.095

S 0.80 0.571 0.298 0.768 0.089 0.775 0.095 0.801 0.081 0.812 0.088

S 0.95
a

0.381 0.481 0.900 0.086 0.903 0.088 0.948 0.079 0.953 0.068

S 0.95
b

0.698 0.319 0.929 0.043 0.931 0.045 0.951 0.033 0.964 0.037

H 0.50 0.447 0.144 0.497 0.089 0.502 0.099 0.508 0.091 0.518 0.089

H 0.80 0.668 0.220 0.776 0.087 0.790 0.102 0.802 0.096 0.811 0.089

H 0.95
a

0.538 0.420 0.900 0.086 0.906 0.092 0.947 0.099 0.948 0.079

H 0.95
b

0.845 0.194 0.931 0.043 0.936 0.048 0.950 0.045 0.953 0.041

C 0.50 0.472 0.105 0.475 0.069 0.502 0.098 0.662 0.114 0.681 0.108

C 0.80 0.744 0.140 0.765 0.072 0.794 0.100 0.858 0.098 0.889 0.084

C 0.95
a

0.747 0.285 0.902 0.079 0.913 0.090 0.965 0.102 0.965 0.067

C 0.95
b

0.913 0.106 0.929 0.038 0.940 0.048 0.975 0.057 0.982 0.028

M 0.50 0.463 0.123 0.500 0.083 0.503 0.091 0.510 0.085 0.556 0.084

M 0.80 0.716 0.174 0.783 0.082 0.799 0.102 0.809 0.099 0.842 0.084

M 0.95
a

0.648 0.354 0.906 0.083 0.914 0.091 0.950 0.106 0.954 0.078

M 0.95
b

0.890 0.132 0.933 0.041 0.940 0.048 0.951 0.055 0.965 0.038

Table 7: Estimators of ρ; Design III with σ
2

µ = 1/(1− ρ
2
); 2500 replications; SD: standard

deviation; a : N = 100, b : N = 500.
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T = 6 N = 100 ARBOND2 REQMLE SYS2

model ρ mean SD mean SD mean SD

S 0.50 0.353 0.291 0.484 0.196 0.478 0.204

S 0.80 0.656 0.273 0.726 0.136 0.771 0.138

S 0.95
a

0.594 0.448 0.850 0.131 0.920 0.129

S 0.95
b

0.882 0.185 0.900 0.072 0.943 0.052

C 0.50 0.370 0.248 0.462 0.184 0.472 0.223

C 0.80 0.687 0.243 0.725 0.126 0.738 0.144

C 0.95
a

0.625 0.437 0.854 0.129 0.916 0.127

C 0.95
b

0.891 0.186 0.899 0.073 0.940 0.055

Table 8: Estimators of ρ; Design IV with σ
2

µ = 1; 2500 replications; SD: standard deviation;

a : N = 100, b : N = 500.

T = 6 N = 100 ARBOND2 REQMLE SYS2

model ρ mean SD mean SD mean SD

S 0.50 0.344 0.294 0.485 0.192 0.485 0.209

S 0.80 0.630 0.296 0.734 0.141 0.780 0.140

S 0.95
a

0.519 0.480 0.857 0.133 0.929 0.122

S 0.95
b

0.847 0.228 0.899 0.079 0.942 0.058

C 0.50 0.372 0.267 0.470 0.188 0.547 0.252

C 0.80 0.710 0.212 0.739 0.121 0.800 0.153

C 0.95
a

0.738 0.339 0.862 0.123 0.946 0.125

C 0.95
b

0.911 0.132 0.904 0.066 0.955 0.078

Table 9: Estimators of ρ; Design IV with σ
2

µ = 1/(1− ρ
2
); 2500 replications; SD: standard

deviation; a : N = 100, b : N = 500.
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T = 6 N = 100 ARBOND2 REQMLE SYS2

model ρ mean SD mean SD mean SD

S 0.50 0.362 0.285 0.482 0.194 0.482 0.203

S 0.80 0.665 0.266 0.732 0.135 0.777 0.136

S 0.95
a

0.624 0.432 0.855 0.130 0.927 0.121

S 0.95
b

0.874 0.183 0.894 0.073 0.942 0.052

C 0.50 0.377 0.261 0.464 0.185 0.473 0.226

C 0.80 0.688 0.244 0.727 0.126 0.743 0.143

C 0.95
a

0.605 0.454 0.855 0.126 0.916 0.130

C 0.95
b

0.883 0.180 0.896 0.073 0.937 0.055

Table 10: Estimators of ρ; Design V with σ
2

µ = 1; 2500 replications; SD: standard deviation;

a : N = 100, b : N = 500.

T = 6 N = 100 ARBOND2 REQMLE SYS2

model ρ mean SD mean SD mean SD

S 0.50 0.334 0.303 0.482 0.202 0.481 0.204

S 0.80 0.629 0.309 0.738 0.138 0.780 0.136

S 0.95
a

0.513 0.494 0.860 0.131 0.923 0.130

S 0.95
b

0.841 0.222 0.898 0.076 0.943 0.054

C 0.50 0.369 0.259 0.462 0.186 0.532 0.246

C 0.80 0.700 0.221 0.735 0.127 0.799 0.158

C 0.95
a

0.738 0.337 0.862 0.124 0.940 0.125

C 0.95
b

0.911 0.130 0.904 0.067 0.955 0.078

Table 11: Estimators of ρ; Design V with σ
2

µ = 1/(1− ρ
2
); 2500 replications; SD: standard

deviation; a : N = 100, b : N = 500.
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T = 6 N = 100 ARBOND2 REQMLE FEQMLE SYS2

model ρ LB UB LB UB LB UB LB UB

S 0.50 E 0.298 0.636 0.377 0.634 0.376 0.643 0.384 0.628

A 0.326 0.613 0.375 0.631 0.371 0.639 0.414 0.600

B/W 0.299 0.643 0.378 0.660 0.382 0.688 0.388 0.625

S 0.80 E 0.507 0.966 0.643 1.037 0.630 1.023 0.669 0.909

A 0.551 0.924 0.667 0.980 0.617 1.009 0.705 0.885

B/W 0.511 0.964 0.658 0.982 0.669 0.992 0.677 0.910

S 0.95
a

E 0.309 1.109 0.773 1.145 0.733 1.063 0.796 1.050

A 0.453 1.042 0.810 1.136 0.687 1.141 0.853 1.021

B/W 0.355 1.134 0.799 1.097 0.789 1.065 0.819 1.056

S 0.95
b

E 0.756 1.073 0.848 1.080 0.823 1.024 0.895 0.995

A 0.759 1.066 0.860 1.066 0.785 1.080 0.903 0.993

B/W 0.752 1.074 0.855 1.051 0.857 1.029 0.897 0.998

C 0.50 E 0.335 0.623 0.381 0.629 0.376 0.648 0.447 0.818

A 0.361 0.596 0.380 0.622 0.371 0.640 0.550 0.708

B/W 0.342 0.620 0.382 0.637 0.383 0.694 0.495 0.769

C 0.80 E 0.539 0.953 0.644 1.015 0.629 1.021 0.626 0.889

A 0.577 0.916 0.660 0.966 0.615 1.005 0.655 0.866

B/W 0.541 0.955 0.654 0.969 0.671 0.993 0.628 0.896

C 0.95
a

E 0.298 1.117 0.776 1.143 0.732 1.068 0.781 1.052

A 0.461 1.046 0.811 1.137 0.694 1.139 0.844 1.020

B/W 0.360 1.133 0.797 1.096 0.784 1.064 0.806 1.059

C 0.95
b

E 0.759 1.075 0.851 1.076 0.824 1.024 0.882 0.993

A 0.762 1.065 0.859 1.065 0.788 1.082 0.891 0.991

B/W 0.755 1.075 0.851 1.052 0.857 1.033 0.885 0.998

Table 12: 90% Confidence Intervals; Design I with σ
2

µ = 1; 10000 Monte Carlo replications;

E: CI based on empirical distribution; A: CI based on first-order fixed parameter asymptotic

standard errors; B: asymmetric 90% bootstrap CI based on 100 replications (for QMLE only);

W: CI based on Windmeijer’s corrected asymptotic standard errors (for GMM estimators

only); LB: lowerbound; UB: upperbound; a : N = 100, b : N = 500.
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T = 6 N = 100 ARBOND2 REQMLE FEQMLE SYS2

model ρ SE RP SE RP SE RP SE RP

S 0.50 E 0.104 0.082 0.089 0.074

A 0.087 0.190 0.078 0.096 0.081 0.088 0.057 0.218

B/W 0.105 0.116 0.087 0.114 0.095 0.115 0.072 0.125

S 0.80 E 0.139 0.119 0.121 0.073

A 0.113 0.221 0.095 0.242 0.119 0.194 0.055 0.224

B/W 0.138 0.142 0.099 0.122 0.099 0.239 0.071 0.116

S 0.95
a

E 0.252 0.115 0.107 0.061

A 0.179 0.353 0.099 0.289 0.138 0.183 0.051 0.257

B/W 0.237 0.210 0.092 0.154 0.086 0.158 0.072 0.117

S 0.95
b

E 0.097 0.072 0.065 0.031

A 0.093 0.153 0.062 0.252 0.090 0.156 0.028 0.132

B/W 0.098 0.128 0.060 0.124 0.054 0.249 0.031 0.096

C 0.50 E 0.087 0.076 0.090 0.113

A 0.071 0.193 0.073 0.110 0.082 0.093 0.048 0.674

B/W 0.085 0.124 0.078 0.102 0.097 0.115 0.083 0.471

C 0.80 E 0.125 0.112 0.122 0.080

A 0.103 0.218 0.093 0.226 0.118 0.202 0.064 0.245

B/W 0.126 0.131 0.097 0.120 0.099 0.234 0.082 0.141

C 0.95
a

E 0.252 0.114 0.108 0.082

A 0.178 0.343 0.099 0.281 0.135 0.183 0.053 0.270

B/W 0.235 0.207 0.092 0.153 0.087 0.154 0.077 0.118

C 0.95
b

E 0.096 0.070 0.064 0.034

A 0.092 0.147 0.063 0.226 0.089 0.143 0.030 0.137

B/W 0.097 0.124 0.060 0.143 0.053 0.254 0.034 0.100

Table 13: Standard errors and size; Design I with σ
2

µ = 1; 10000 Monte Carlo replica-

tions; E: based on empirical distribution; A: based on first-order fixed parameter asymptotic

distribution; B: based on bootstrap with 100 replications (for QMLE only); W: based on

Windmeijer’s corrected asymptotic standard errors (for GMM estimators only); SE: stan-

dard deviation/error; RP: rejection probability using the CI’s defined in table 12 (nominal

size is 10%); a : N = 100, b : N = 500.
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T = 6 N = 100 ARBOND2 REQMLE FEQMLE SYS2

model ρ LB UB LB UB LB UB LB UB

S 0.50 E 0.153 0.712 0.337 0.641 0.338 0.671 0.364 0.644

A 0.230 0.643 0.343 0.644 0.335 0.666 0.408 0.606

B/W 0.165 0.707 0.333 0.619 0.334 0.649 0.370 0.644

S 0.80 E 0.193 1.004 0.613 0.884 0.610 0.911 0.662 0.917

A 0.334 0.925 0.621 0.906 0.620 0.932 0.710 0.890

B/W 0.215 1.045 0.597 0.867 0.599 0.894 0.674 0.926

S 0.95
a

E -0.273 1.134 0.744 1.018 0.743 1.031 0.819 1.072

A 0.070 0.929 0.759 1.038 0.756 1.048 0.867 1.032

B/W -0.172 1.170 0.733 1.000 0.735 1.012 0.829 1.070

S 0.95
b

E 0.454 1.128 0.849 0.982 0.848 0.991 0.896 1.003

A 0.531 1.109 0.854 0.997 0.854 1.010 0.904 0.999

B/W 0.478 1.162 0.844 0.976 0.845 0.986 0.899 1.004

C 0.50 E 0.280 0.650 0.353 0.585 0.349 0.681 0.378 0.755

A 0.320 0.614 0.357 0.593 0.346 0.667 0.475 0.658

B/W 0.282 0.651 0.339 0.569 0.344 0.659 0.417 0.716

C 0.80 E 0.381 0.990 0.616 0.875 0.610 0.922 0.610 0.912

A 0.464 0.938 0.629 0.890 0.623 0.941 0.660 0.878

B/W 0.388 1.014 0.604 0.857 0.606 0.901 0.619 0.919

C 0.95
a

E -0.272 1.130 0.737 1.011 0.735 1.024 0.797 1.077

A 0.122 0.947 0.759 1.032 0.751 1.057 0.856 1.033

B/W -0.072 1.169 0.731 0.997 0.732 1.010 0.816 1.081

C 0.95
b

E 0.514 1.122 0.848 0.979 0.845 0.990 0.888 1.003

A 0.575 1.104 0.855 0.996 0.851 1.011 0.895 0.998

B/W 0.531 1.147 0.846 0.976 0.846 0.987 0.889 1.004

Table 14: 90% Confidence Intervals; Design III with σ
2

µ = 1; 10000 Monte Carlo replications;

E: CI based on empirical distribution; A: CI based on first-order fixed parameter asymptotic

standard errors; B: asymmetric 90% bootstrap CI based on 100 replications (for QMLE only);

W: CI based on Windmeijer’s corrected asymptotic standard errors (for GMM estimators

only); LB: lowerbound; UB: upperbound; a : N = 100, b : N = 500.
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T = 6 N = 100 ARBOND2 REQMLE FEQMLE SYS2

model ρ SE RP SE RP SE RP SE RP

S 0.50 E 0.168 0.092 0.100 0.087

A 0.126 0.255 0.092 0.164 0.100 0.165 0.060 0.263

B/W 0.165 0.140 0.086 0.095 0.095 0.100 0.083 0.130

S 0.80 E 0.259 0.083 0.095 0.078

A 0.180 0.334 0.086 0.162 0.095 0.205 0.055 0.252

B/W 0.252 0.162 0.082 0.158 0.089 0.109 0.077 0.117

S 0.95
a

E 0.446 0.083 0.088 0.077

A 0.261 0.511 0.085 0.179 0.089 0.186 0.050 0.273

B/W 0.408 0.288 0.081 0.188 0.084 0.153 0.073 0.112

S 0.95
b

E 0.216 0.042 0.044 0.032

A 0.176 0.213 0.043 0.126 0.047 0.153 0.029 0.131

B/W 0.208 0.129 0.040 0.166 0.043 0.113 0.032 0.101

C 0.50 E 0.112 0.070 0.101 0.110

A 0.089 0.210 0.071 0.132 0.097 0.136 0.056 0.477

B/W 0.112 0.123 0.069 0.145 0.095 0.105 0.091 0.262

C 0.80 E 0.190 0.080 0.099 0.092

A 0.144 0.267 0.080 0.160 0.097 0.217 0.066 0.272

B/W 0.190 0.137 0.076 0.173 0.089 0.105 0.091 0.133

C 0.95
a

E 0.421 0.083 0.088 0.083

A 0.251 0.484 0.083 0.184 0.093 0.178 0.054 0.268

B/W 0.377 0.265 0.080 0.206 0.084 0.164 0.081 0.118

C 0.95
b

E 0.191 0.040 0.045 0.036

A 0.161 0.210 0.043 0.143 0.049 0.160 0.031 0.153

B/W 0.187 0.130 0.040 0.172 0.043 0.107 0.035 0.106

Table 15: Standard errors and size; Design III with σ
2

µ = 1; 10000 Monte Carlo replica-

tions; E: based on empirical distribution; A: based on first-order fixed parameter asymptotic

distribution; B: based on bootstrap with 100 replications (for QMLE only); W: based on

Windmeijer’s corrected asymptotic standard errors (for GMM estimators only); SE: stan-

dard deviation/error; RP: rejection probability using the CI’s defined in table 14 (nominal

size is 10%); a : N = 100, b : N = 500.
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ARBOND2 N = 100 N = 200 N = 400

ρ bias SD bias SD bias SD

0.90 -0.110 0.180 -0.051 0.119

0.92929 -0.202 0.256 -0.101 0.164 -0.048 0.113

0.95 -0.345 0.336 -0.195 0.238 -0.100 0.159

0.96465 -0.498 0.404 -0.340 0.328 -0.197 0.232

0.975 -0.618 0.424 -0.497 0.404 -0.320 0.336

Table 16: Distributions of ρ̂AB; Design I with (yi,1−µi)|µi ∼ N(0, σ
2
/[1−(0.9)

2
]) and σ

2

µ = 1;

T = 6; 5000 replications; SD: standard deviation.

FEMLE N = 100 N = 400

ρ bias SD bias SD

0.90 -0.018 0.107

0.92929 -0.034 0.105 -0.014 0.073

0.95 -0.045 0.108 -0.025 0.072

0.96465 -0.045 0.108 -0.031 0.071

0.975 -0.042 0.110 -0.033 0.071

Table 17: Distributions of ρ̂FEML; Design I with (yi,1 − µi)|µi ∼ N(0, σ
2
/[1 − (0.9)

2
]) and

σ
2

µ = 1; T = 6; 5000 replications; SD: standard deviation.
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Top four graphs for ρ = 0.50 and bottom four graphs for ρ = 0.95; in both groups of four

graphs clockwise starting from top left: the AB GMM, the SYS, the FEML and the REML

estimator for ρ; Design I-IE1-S, T = 6, N = 100; 10,000 replications.
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Top four graphs for ρ = 0.50 and bottom four graphs for ρ = 0.95; in both groups of four

graphs clockwise starting from top left: the AB GMM, the SYS, the FEML and the REML

estimator for ρ; Design III-IE1-S, T = 6, N = 100; 10,000 replications.
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