~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Platen, Eckhard

Working Paper
A benchmark model for financial markets

SFB 373 Discussion Paper, No. 2001,52

Provided in Cooperation with:

Collaborative Research Center 373: Quantification and Simulation of Economic Processes,
Humboldt University Berlin

Suggested Citation: Platen, Eckhard (2001) : A benchmark model for financial markets, SFB 373
Discussion Paper, No. 2001,52, Humboldt University of Berlin, Interdisciplinary Research Project
373: Quantification and Simulation of Economic Processes, Berlin,
https://nbn-resolving.de/urn:nbn:de:kobv:11-10050040

This Version is available at:
https://hdl.handle.net/10419/62771

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:kobv:11-10050040%0A
https://hdl.handle.net/10419/62771
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

A Benchmark Model
for Financial Markets

Eckhard Platen !

July 18, 2001

Abstract. This paper introduces a benchmark model for
financial markets, which is based on the unique characterization
of a benchmark portfolio that is chosen to be the growth optimal
portfolio. The general structure of risk premia for asset prices
and portfolios is derived. Furthermore, the short rate is obtained
as an average of appreciation rates. The benchmark model is
shown to be locally arbitrage free, however, it still permits some
form of arbitrage. Finally, a subclass of arbitrage free contingent
claim prices is derived.
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1 Introduction to Benchmark Pricing

Various alternative methodologies for the modelling of asset prices and financial
markets have been proposed in the literature. The Capital Asset Pricing Model
(CAPM), which is a mean-variance one-period equilibrium model of exchange, see
Sharpe (1964), Lintner (1965) and Mossin (1966), has been designed to model
asset price dynamics. This model has been crucial for the understanding of the
relationship between mean and variance of returns in equilibrium. Merton (1973)
developed an intertemporal CAPM from portfolio selection behaviour of investors
maximizing equilibrium expected utility.

Of particular importance in the theory and practice of derivative pricing has been
the Arbitrage Pricing Theory (APT), originated by Ross (1976) and further de-
veloped in an extensive literature, including Harrison & Kreps (1979), Harrison
& Pliska (1981), Féllmer & Sondermann (1986), Follmer & Schweizer (1991),
Delbaen & Schachermayer (1997) and Yan (1998). The APT in its standard
version relies on the existence of an equivalent martingale measure. A closely
related approach uses the state price density or state price deflator, see, for in-
stance, Constatinides (1992), Duffie (1996) or Rogers (1997), which also leads to
an arbitrage free pricing methodology with reference to an equivalent martingale
measure.

In this paper we aim to model a certain form of arbitrage and still to obtain the
key features of the CAPM and APT without the standard assumption needed to
ensure the existence of an equivalent martingale measure. We will not use ex-
pected utility maximization, equilibrium arguments or an equivalent martingale
measure. Instead, we start from the concept of a growth optimal portfolio (GOP),
originally developed by Kelly (1956) and further developed in a stream of litera-
ture leading to Long (1990), Artzner (1997), Bajeux-Besnainou & Portait (1997),
Karatzas & Shreve (1998), Platen (2000) and Heath & Platen (2001). The GOP
is also known as the numeraire portfolio and appears in the APT as the inverse
state price deflator. The state price deflator has been independently suggested
for the modelling of financial and insurance markets by Bithlmann (1992, 1995)
and Biithlmann, Delbaen, Embrechts & Shiryaev (1998).

In Long (1990) and subsequent papers on the numeraire portfolio it has been
assumed that any asset price that is benchmarked by the GOP is a martingale.
We extend this to a benchmark methodology that requires only benchmarked
asset prices to be local martingales. This weaker assumption will be sufficient
to construct a financial market model with risk premia that are independent
of the chosen denomination. The resulting benchmark model provides a more
general modelling framework than the CAPM and APT. In the case when all
benchmarked price processes are martingales, then the benchmark methodology
is equivalent to the APT.

The benchmark methodology allows us to model some form of arbitrage, which



is likely to appear in emerging and maturing markets that are frequently subject
to shocks or turbulence. Under the APT, no-arbitrage prices are formed directly
from conditional expectations, which require participants to have perfect knowl-
edge of the probabilistic dynamics of asset prices. To achieve this they would
need to have a correct model that is always exactly calibrated. One must admit
that this is a strong assumption. For all of the above reasons we will relax the
restrictive assumptions of the APT.

A further advantage of the benchmark methodology is that derivative pricing,
Value at Risk analysis, portfolio optimization, calibration, estimation, filtering
and other risk management tasks can be performed under one and the same
probability measure, the real world probability measure. The benchmark ap-
proach can be extended to include asset price dynamics that are modeled as
semimartingales incorporating both predictable and inaccessible jumps. Under
such a model we are in a better position to analyze and manage the combination
of market, credit, operational, liquidity, insurance and other risks in an integrated
framework.

The paper demonstrates under appropriate assumption that the GOP is the only
reference portfolio that when used as benchmark, generates risk premia with
a structure that is independent of the considered denomination. The market
portfolio, which is used in the CAPM, is qualitatively similar to the GOP but,
in general, quantitatively different. Unlike the GOP, the market portfolio is
not directly linked to contingent claim pricing. Furthermore, we will see that
the GOP, when used as a benchmark, is the only portfolio that transforms all
nonnegative benchmarked price processes into supermartingales. This relates us
directly to the standard notion of no-arbitrage.

For a given asset its traded price is in practice a result of a process that matches
supply and demand. The difference between a benchmarked traded price and
any corresponding expected future benchmarked value of this traded asset is
nonnegative and represents an arbitrage amount, in case it is not zero. Such
arbitrage amounts naturally exist under the benchmark model. They do not
arise under the APT. The benchmark pricing methodology does not require the
existence of an equivalent martingale measure.

The subclass of benchmarked arbitrage free portfolios is uniquely determined by
corresponding conditional expectations under the real world probability measure.
If this subclass covers all traded prices, then the benchmark model is arbitrage

free and the results obtained are consistent with those obtained from the well-
known APT.



2 Continuous Multi-Asset Market

We consider a multi-asset market with d 4+ 1 primary assets. The uncertainty in
this market is generated by d independent standard Wiener processes W1, ..., W¢
defined on a filtered probability space (2, Ar, A, P) under the usual conditions,
see Karatzas & Shreve (1988). We choose d + 1 primary assets and d Wiener
processes because our aim in this paper is to describe the complete market case.
The filtration A = (A;)sec[o,r) is the augmentation under P of the natural filtration
AW generated by the vector W = {W(t) = (W(t),...,Wt))", t € [0,T]} of
independent, standard Wiener processes. For such a multi-asset market, we derive
in the following section relationships that naturally exist between volatilities and
risk premia.

2.1 Savings Accounts

Let us denote by B’(t) the savings account price at time ¢ of the jth primary
asset, when denominated in units of this asset. For the jth primary asset the jth
savings account is assumed to satisfy the differential equation

dBI(t) = BI(t) fi(t) dt (2.1)

for ¢ € [0, 7] with B/(0) = 1, where the jth short rate is predictable and such
that

/0 |f7(s)| ds < oo (2.2)

a.s. for j € {0,1,...,d}. The jth short rate process f/ = {f’(t), t € [0,T]} char-
acterizes the evolution of the time value of the jth primary asset, j € {0,1,...,d}.
Here B°(t) denotes the domestic savings account price and f°(¢) the correspond-
ing domestic short rate at time ¢. Other primary asset prices can be interpreted,
for instance, as prices of shares, currencies and commodities, when delivered to-
day or after a prescribed time period. This means a rollover savings account for
one year zero coupon bonds can represent a primary asset, where the one year
forward rate is the corresponding short rate.

The i, jth ezchange price X7 (t) describes the number of units of the sth primary
asset that are exchanged at time ¢ € [0, 7] for one unit of the jth primary asset,
i,j € {0,1,...,d}. For currencies the exchange price is the exchange rate. The
quantity

SHI(t) = X% (t) Bi(t) (2.3)

denotes the value of the jth savings account at time ¢ € [0, 7] when measured in
units of the sth primary asset 7,7 € {0,1,...,d}. Thus, S%/(¢) is the value of the
savings account of the jth primary asset at time ¢ when expressed in units of the
domestic currency.



We assume in the following that a strong solution of the SDE
. . d
dS*™(t) = S (t) (aiﬂ'(t) dt+ > b1 dW’“(t)) (2.4)
k=1

exists and is pathwise uniquely determined for ¢ € [0,7] with S“/(0) > 0 for
i,j € {0,1,...,d}, see Karatzas & Shreve (1988). We express without loss of
generality the 4, jth appreciation rate a*’(t) as the sum

a!(t) = f(t) +p™(t) (2.5)

forallt € [0,7T] and 7,5 € {0,1,...,d}. Here the 4, jth risk premium p*J(t) is the
expected return that an investor receives in excess of the ith short rate f'(t) for
the risk incurred through holding the jth savings account in the 7th denomination.
The i, j, kth volatility b*/*(t) measures at time ¢ the proportional fluctuations
of the price of the savings account of the jth primary asset with respect to the
kth Wiener process when this asset is denominated in units of the ¢th asset. To
ensure the existence of the stochastic integrals in (2.4), the i, jth risk premium
process p™/ and i, j, kth volatility process b*/* are assumed to be predictable and
such that

/0 {Ip"(s)| + (b"7*(s))*} ds < o (2.6)

a.s. forall 7,5 € {0,1,...,d} and k € {1,2,...,d}.

2.2 Portfolios and Strategies

Let us denote by S = {Si(t) = (S*°(¢),...,S%(t))", t € [0,T]} the vector
process of savings accounts of primary assets expressed in units of the ¢th denom-
ination. We call a stochastic process § = {§(t) = (6°(¢),...,8%¢))", t € [0,T]} a
strategy, if § is predictable and S‘-integrable for all 7 € {0, 1, ..., d}, see Karatzas
& Shreve (1988). Here &7(t) is the number of units of the savings account of the
jth primary asset that are held at time ¢t € [0,7] in a corresponding portfolio,
j € {0,1,...,d}. For a strategy d, we denote by V{(¢) the value of the corre-
sponding portfolio at time ¢ when measured in units of the sth primary asset such
that

Vi(t)=0(t)S'(t)" (2.7)

for t € [0,T] and 7 € {0,1,...,d}. Note that for any strategy J with a.s. strictly
positive portfolio value Vi (s) > 0 for all s € [0,T] one can express the 4, jth
exchange price X*/(¢) at time ¢ in the form

X5(t) =

(2.8)



fort € [0,T] and 4,5 € {0,1,...,d}. From (2.3) the savings account of the jth
primary asset in the ith denomination can therefore be expressed as

Sii(f) = 55]8 Bi(t) (2.9)

fort € [0,7T] and 4,5 € {0,1,...,d}. A strategy ¢ is called self-financing if
dVi(t) Zéﬂ dsS™i(t (2.10)

for all t € [0,7] and 7 € {0,1,... ,d}. Changes in the value of the portfolio
are exactly matched by the corresponding gains from trade. By considering self-
financing strategies one acknowledges the conservation of value. For a given
self-financing strategy ¢, let ﬂg(t) denote the jth proportion of the value of the
corresponding portfolio, which is invested at time ¢ in the jth savings account.
This proportion is given by the relation

- §(t) Bi(t o SHI(t
wg(t)=w=5f(t) Z()
Vi (¢) Vi(t)
for t € [0,T] and 4,5 € {0,1,...,d}, where the second equation follows from

(2.9). Note that by (2.7), for any given strategy ¢ the proportions always add to
one, that is

(2.11)

PEAGES! (2.12)

for all t € [0, 7.

For a given self-financing strategy ¢, which has a.s. strictly positive corresponding
portfolio value V() > 0 for all ¢t € [0,7], i € {0,1,...,d}, we introduce the
corresponding %, kth portfolio volatility

Zw £) bk (t (2.13)
for k € {1,2,...,d} and the ith portfolio risk premium
p(t) = mi(t) p (1) (2.14)

The expression (2.13) characterizes the portfolio volatility with respect to the kth
Wiener process under the ith denomination. For the above portfolio we obtain
from (2.10), (2.4) and (2.11) with (2.13) the SDE

dVi(t) = Vi(t) ({fi( + pj(t }dt—i—Za t) dW*(t) ) (2.15)

fort € [0,T] and i € {0,1,...,d}.



2.3 Growth Optimal Portfolio

From (2.15), (2.14) and (2.13) we obtain by application of the Ité formula for
the logarithm of the domestic value V2 (¢) of an a.s. strictly positive portfolio the
SDE

dlog(V2(t)) = ¢2(t) dt + Za t) dW*(t) (2.16)

with domestic growth rate

9 (1) = £°0) + 3_mi () p* %Z(Zw £) 69 (1) ) (2.17)

k=1

fort € [0,T]. We now choose in our multi-asset market a self-financing benchmark
portfolio. In particular, we construct it to be such that its long term growth
cannot be outperformed by any other portfolio. This portfolio is known as growth
optimal portfolio (GOP), discovered by Kelly (1956). It achieves the maximum
domestic growth rate at each time ¢ € [0, 7).

In the following, we denote a self-financing strategy that generates such a GOP
by § = {6(t) = (8°(t),...,8%¢))", ¢t € [0,T]}. A necessary condition for achieving
the maximum domestic growth rate by a self-financing portfolio is obtained by
setting the partial derivatives of the quadratic form gj(¢) with respect to w(¢), j €
{1,2,...,d}, in (2.17) equal to zero. In particular, it follows that the proportions
7d(t),. .., m%(t) must satisfy the linear system of equations

(1) = Z (Zb‘“’ 1) 87 (2) ) (2.18)

r=0

forall j € {1,2,...,d} and t € [0, T] together with relation (2.12). This leads us
to the formulation of the following assumption.

Assumption 2.1  There exists a unique vector of proportions ms(t) = (ﬂ'g(t),
., m§(t)) T, which satisfies equation (2.18) for all j € {1,2,...,d} together with
(2.12) for Lebesgue-almost every t € [0,T].

This assumption is satisfied if and only if the matrix () = [8"(¢)]?;_, with

. 1 for =0
pr(t) = . (2.19)
S BOTE(E) BOIR(E) for v e {1,2,...,d}

for j € {0,1,...,d} is invertible for Lebesgue-almost every ¢ € [0,7]. Then we
have

m5(t) = (m5(1), ..., w5 (1) = B ()" (1) (2-20)



with
p°(t) = (1,p" (1), ..., p™ ()" (2.21)
for ¢ € [0, 7.

Theorem 2.2  Under Assumption 2.1, there exists a unique GOP, satisfying
in its ith denomination the SDE

dvi(t) = Vi(t (( +Z( ))dt+Za 1) dW* (1) ) (2.22)

The 1, j, kth volatility has the form
k() = og®(t) — of(2). (2.23)

The 1, jth risk premium is given by

d

Pt =3 op (1) (o (1) - oF*(0)) (2:24)

k=1

and the GOP-volatilities satisfy the system of equations

Xd: of(t =0 (2.25)

together with the normalization condition (2.12) fort € [0,T], 4,7 € {0,1,...,d}
and k € {1,2,...,d}.

The proof of the above theorem is given in Appendix A.

Note from (2.22) that the dynamics of the GOP has the same form for each
denomination. Also with the resulting specifications (2.23) and (2.24) the dy-
namics of the savings accounts for the primary assets given by (2.4) has the same
structure for each denomination.

3 Benchmark Model

Let us now establish the benchmark model by reparameterizing the model in terms
of GOP-volatilities.

3.1 Asset Price Dynamics in the Benchmark Model

We first formulate the following assumption, which as we will see, can be used to
replace Assumption 2.1.



Assumption 3.1 There exist predictable processes o** = {o%k(t),t € [0,T]}
with

/0 (0 ()2 < 00 (3.1)

a.s. for alli € {0,1,...,d} and k € {1,2,...,d}, that form the volatility matrix
v(t) = [Uk’i(t)]g,izo with

1 for k=0

v = { ot®(t) for ke{l1,2,...,d} (32)

for all t € [0,T), which is assumed to be invertible for Lebesgue-almost-every
t €10,7].

The invertibility of the matrix v(¢) does not impose too much of a restriction on
the asset price dynamics. To satisfy this condition, one needs to model a suffi-
ciently diverse set of nonredundant primary assets. According to the structures
established by Theorem 2.2, it is easy to see that the SDE (2.4) for the savings
account of the jth primary asset, when denominated in units of the ith primary
asset, can be written as

dshi(t) = Si’j(t)(

+ Z(oi’k(t) — 0¥ (1)) dW’“(t)) (3.3)

for all t € [0,7] and 4,57 € {0,1,...,d}. A multi-asset market with all savings
accounts S*/, 4,5 € {0,1,...,d} satisfying the above SDE and Assumption 3.1,
is called a benchmark model.

Thus the benchmark model is obtained by specifying the 4, j, kth savings account
volatility b“7*(t) by the difference o} (t) — aé’k(t) of GOP-volatilities and the

i, jth risk premium in the form (2.24).

It can be shown under Assumption 3.1 and with all assets S*/, 4, j € {0,1,...,d},
satisfying the SDE (3.3), that there exists the vector of proportions

ms(t) = (mp(t), ..., m5(t))"
= v (¢ (1,0,...,0)7, (3.4)

which satisfies the equation (2.18) together with (2.12). This allows us to replace
Assumption 2.1 by Assumption 3.1. Note that if Assumption (2.1) is not satisfied
we do not have a GOP.

Obviously, due to Theorem 2.2 the 7, kth GOP-volatility is given by
ag’k (t) = o"*(t) (3.5)

9



for t € [0,T], i € {0,1,...,d} and k € {1,2,...,d}.

The different denominations of the GOP specify a benchmark model. These can
be obtained from the GOP-volatilities, the short rates and the initial values of
the denominations of the GOP. The above analysis shows us that the GOP is the
central building block for the benchmark model.

3.2 Short Rates

According to (2.22) and (3.5), the short rate plays an important role in the ith de-
nomination Vg of the GOP and consequently by (2.5) also in the ith appreciation
rates. From equations (2.5) and (2.24), it follows that

Fi(0) = a¥9(8) = 30 0™ (1) (04 (t) — o7 (1) (3.

forallt € [0,7] and j € {1,2,...,d} and 7 € {0,1,...,d}. Thus, in the case
i = 0, the domestic short rate f°(¢) can be obtained from the appreciation rate
of any savings account process when denominated in domestic currency if the
corresponding GOP-volatilities are known.

In addition, if we set in (3.6) ¢ = 0 and weight the appreciation rates a%/(t) for
j €{1,2,...,d} by the corresponding GOP-proportions 73 (¢), then the following
statement follows by (3.6) and (2.25).

Remark 3.2  The domestic short rate takes the form

S~

. d Wj(t) 0 d 5Ok 2
f (t)zg(fw)a’m—g% 5.7)

fort e [0,T].

Recall from (2.25) and (3.5), that the proportions of the GOP are determined
by the GOP-volatilities. Therefore, the appreciation rates of the risky domestic
assets together with the GOP-volatilities fully determine the domestic short rate.
There is no freedom in a benchmark model to set the domestic short rate or
to choose it exogenously. In the case when 7{(t) is close to zero, then by (3.7)
the short rate is approximately the average of the appreciation rates of the risky
domestic primary assets minus the sum of the squared volatilities of the domestic
GOP. This provides an intuitive explanation for the nature of the domestic short
rate. In a different framework a similar observation has been pointed out by Reif,
Schoenemakers & Schweizer (2001).

10



3.3 Risk Premium

Inspection of the SDE (2.22) for ¢ = 0 shows that the appreciation rate of the
domestic GOP must equal the short rate plus its squared volatility. In terms of
returns, this feature can be interpreted as the optimal mean-variance property,
emphasized in the seminal work by Markowitz (1959).

There has been a long standing debate between theorists and practitioners on
how risk premia for asset prices should be modeled. This is referred to as the risk
premium puzzle. Based on the use of the market portfolio, the CAPM provides
some response to this problem, obtained under relatively strong equilibrium and
utility based assumptions. However, the CAPM does not yield the same structure
for the risk premia when one considers asset prices under different denominations.
Under the benchmark approach, by using the GOP as numeraire, the same form
for the risk premia, see (2.24), is obtained for each denomination. In the bench-
mark model, the risk premium is proportional to the covariance between the
return of the given asset or portfolio and that of the corresponding denomination
of the GOP, see (2.24) together with (3.3) and (2.22). To some extent this allows
us to recover a key property of the CAPM under the benchmark model, where
the covariance between the domestic return of the given asset and that of the
market portfolio are defined to be the domestic risk premium.

3.4 Example for the Benchmark Model

In Platen (2000) an example for the benchmark model, the Minimal Market
Model, with stochastic volatility is given. To provide a further example for the
benchmark model one can simply choose deterministic GOP-volatilities and short
rates, which results in a general Black-Scholes benchmark model.

Let us now consider another example with a volatility matrix v(¢), see (3.2), that
can be directly inverted. This case arises when all volatilities of the domestic
denomination of the GOP are a.s. strictly positive and the other GOP-volatilities
are such that o%*(t) > 0, o®(t) = 0 for i # k and o®*(t) < 0 for ¢ € [0,T] and
k,i € {1,2,...,d}. For this special volatility structure it follows from (2.25) and
(3.5) that

T3 (t) o™*(t) + w5 (t) ™*(t) = 0 (3.8)
fort € [0,T] and k € {1,2,...,d}. Thus one obtains the relation
0,k
ke O (E) o
s (1) = ~oRE (D) s (t) (3.9)

for k € {1,2,...,d}, where according to (2.12)

1
wg(t)zl_ PRy (3.10)

k=1 GFF()

11



for t € [0,T]. Consequently, in this case we obtain explicit expressions for the
proportions of the GOP.

Using the above special volatility structure with constant volatilities %! and

o, and short rates f° and f!, we obtain the following two asset Black-Scholes
market. For this example the domestic GOP Vg, domestic savings account B°
and savings account S%! of the other asset satisfy the SDEs

dv(t) = V) ([f°+ (0®)?] dt + o™ dW' (1)),
dB°(t) = B°t) f0dt,
ds¥(t) = SN ([f'+ 0% (6% =" h)] dt + (6% — ") dW'(t))  (3.11)

for t € [0,T], respectively. Note that the domestic risk premium for S%! is
proportional to the covariance between the domestic returns of V¥ and S%!. On
the other hand, the prices of these securities, when expressed in units of the other
asset, satisfy the SDEs

dvi(t) = Vi) ([f' + ()] dt + o™t dW' (1)),
dS@t) = SY) ([f + 0" (o —a"D] dt + (oM — ¥ dW' (1)),
dB'(t) = B'(t)f'dt (3.12)

for ¢ € [0, T, respectively. Here again, the risk premium for S%! is proportional
to the covariance between the returns of V' and S™*. In general, the CAPM
would not generate such risk premia unless the GOP coincides with the market
portfolio. Note that by (3.9) and (3.10), the GOP-proportions are given by the

expressions

1 1
Wg(t) = -7 and w3 (t) = el (3.13)

1= 1 — %

For illustration, let us simulate this two asset Black-Scholes market over a ten
year period, that is T = 10, with domestic short rate f° = 0.05, short rate of the
other primary asset f! = 0.05 and volatilities 0%! = —o! = 0.1. Here we set, for
simplicity, B°(0) = S%1(0) = $%°(0) = B!(0) = 1. Trajectories for the domestic
GOP V2(t) and the savings accounts B°(t) and S%!(¢) are shown in Figure 1.
The corresponding securities in the denomination of the other primary asset are
plotted in Figure 2. Note that only the Wiener process W1 drives this two asset
market dynamics. The paths of S%! and V° as well as S'° and V! appear to be
positively correlated, whereas S%! and S, as well as V° and V!, are negatively
correlated.

4 Arbitrage under the Benchmark Model

We now demonstrate that the benchmark model permits, in general, some form
of arbitrage, which can be directly expressed.

12



time

Figure 1: V} and savings accounts B® and S*' in the domestic market.

4.1 Benchmarked Savings Accounts

We introduce the jth benchmarked savings account process ST = {Si(t), t €

[0,T]}, which is obtained by using the GOP as benchmark for the jth savings
account, that is _ N

. Bi(t) Sbi(t

Sy B0 800

Vi) Vi)

for t € [0,7T], 1,5 € {0,1,...,d}, see (2.9). We assume that the quadratic varia-
tion of the jth benchmarked savings account remains finite, that is, (S7)7 < oo

a.s., for all j € {0,1,...,d}. By application of the It6 formula, one obtains from
(4.1), (2.1) (2.22) and (3.5), for S?(¢), the SDE

d
dSi(t) = =S (t) Y oP*(t) dW*(2) (4.2)
k=1
forallt € [0,7]and j € {0,1,...,d}. Note that this SDE is driftless, which means
that S7 is an (A, P)-local martingale, j € {0, 1,...,d} and since the benchmarked

savings account S7 is nonnegative, it is an (A, P)-supermartingale, see Karatzas
& Shreve (1988).

(4.1)

4.2 Locally Arbitrage Free Portfolios

Let us denote by S = {S(t) = (5°(¢),...,5%t))7, t € [0,T]} the vector process
of benchmarked savings accounts. For a given self-financing strategy § = {d(¢) =
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time

Figure 2: V§, B! and S™° in units of the other primary asset.

(8°(t),...,0%2)7, t € [0,T]}, which is assumed to be S-integrable, see Karatzas
8} Shreye (1988), we introduce the corresponding benchmarked portfolio process
Vs = {V5(t), t € [0,T]} given by

d
Vs(t) =) o (1) S°(t) (4.3)
=0
for t € [0, T]. Thus it follows from (2.7) and (4.1) that

Ti(t) = = (4.4)

fort € [0,T] and i € {0,1,...,d}.

Similar to Jamshidian (1997), we say that a benchmarked portfolio process Vs,
associated with an S-integrable, self-financing strategy 0, is locally arbitrage free
if Vs is an (A, P)-local martingale. This allows us to prove the following result.

Lemma 4.1  In a benchmark model, any benchmarked portfolio process Vs that
corresponds to an S-integrable, self-financing strategy 6 is locally arbitrage free.

Proof: For given i € {0,1,...,d} and an S-integrable, self-financing strategy o

14



we obtain from (4.4) and (2.10) by the It6 formula with (4.1) the SDE

Vi1 =‘&0ﬂﬂﬂ+wuw<ﬁ%ﬁ+w<wﬁ%k

= Z(sa‘(t) {d“i;zg) + 8% (t)d (V}l(t)> + d<si=j’ Vig> }
Ny SH(t)
= Zé (t)d(Vf(t)>

J=0

= d 8 () dS7(t) (4.5)
)3

§=0

for ¢t € [0,T]. Thus by (4.2), Vj is an (A, P)-local martingale. [

Since any nonnegative local martingale is a supermartingale, see Karatzas &
Shreve (1988), we can state the following result as a direct consequence.

Lemma 4.2 In a benchmark model, any nonnegative benchmarked portfolio
process Vs, which corresponds to an S-integrable, self-financing strategy 6, is an
(A, P)-supermartingale.

This fundamental property of the benchmark model is based on its structure that
is determined via the denominations of the GOP.

4.3 Arbitrage Amounts

For an S’—integrable, self-financing strategy 6 with corresponding a.s. nonnegative,
square integrable, benchmarked portfolio process Vs and a stopping time T €
[0, T] we define at time ¢ € [0, T] the corresponding benchmarked arbitrage amount
as the difference

A7 ()= V() — E (VD) | A (16)

Note that the benchmarked arbitrage amount fl?(}f) is a.s. nonnegative for all
t e [O,T] due to the supermartingale property of V5. We assume here that the
above Vs corresponds to actually traded benchmarked prices.

We call a square integrable, benchmarked portfolio process V(;, corresponding to
an S’—integrable, self-financing strategy 0, arbitrage free if it has arbitrage amount
AT (t) = 0 for all stopping times T € [0, 7] and ¢ € [0, T]. Obviously, due to (4.6),
a benchmarked arbitrage free portfolio process is a square integrable (A, P)-
martingale. Due to a well-known property of the expected quadratic variation
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of square integrable, local martingales, see Karatzas & Shreve (1988), one can
use the following result to distinguish between benchmarked portfolios that are
arbitrage free and those that are not.

Lemma 4.3 A square integrable, benchmarked portfolio process VJ, which cor-
responds to an S-integrable self-financing strategy 0 is arbitrage free if and only
if it has finite expected quadratic variation, that is E((Vs)r) < 0.

For a given benchmark model, we denote by ® the set of benchmarked arbitrage
free portfolio processes. The Martingale Representation Theorem, see Karatzas
& Shreve (1988), allows us to establish the following result.

Theorem 4.4  For any benchmarked arbitrage free portfolio process u € @
there exists a progressively measurable process x, = {x,(t) = (zL(t),...,zd(t))",

t €10,T)} such that ; » Ty
E ( | ey ds> < oo W

forke{1,2,...,d} and

u(t) =u(0) + 3 /O 25 (s) dIW(s) (4.8)

for t € [0,T], where u is a.s. continuous. Furthermore, if the integrands ¥,
k € {1,2,...,d}, are any other progressively measurable processes, satisfying

(4.7) and (4.8), then

/0 Z |zt (s) — :EZ(S)|2 ds=0 (4.9)

The above theorem allows us to establish a unique representation for any bench-
marked arbitrage free portfolio process. Note that in a benchmark model where
not all benchmarked portfolio processes are arbitrage free, Theorem 4.4 still ap-
plies to the subclass ® of arbitrage free portfolios. Only for this subclass we
obtain what is typically provided by the APT.

In the benchmark framework one has the freedom to model the formation of
primary asset prices as a consequence of demand, supply and other market forces.
These prices may not be formed via conditional expectations as is strictly required
by the APT. Arbitrage amounts can be explicitly expressed. Note however that
these would be typically minimized as a market matures and models become more
accurate.
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4.4 Standard Arbitrage

There exists an extensive literature on various important notions relating to
no-arbitrage, see, for instance, Harrison & Kreps (1979), Harrison & Pliska
(1981), Follmer & Sondermann (1986), Follmer & Schweizer (1991) or Delbaen
& Schachermayer (1994), The following definition is similar to the standard no-
arbitrage condition formulated, for instance, in Karatzas & Shreve (1998). Note
that we consider benchmarked portfolios and not domestic savings account dis-
counted portfolios. Also the following no-arbitrage definition applies to portfolios
and not to the overall model. Finally, it refers to the real world measure and not
some equivalent martingale measure.

We say that a nonnegative benchmarked portfolio process f/(; that corresponds to
a self-financing strategy 0, which is S-integrable, is arbitrage free in the standard
sense if Vj is an (A, P)-supermartingale.

This means, that a portfolio that is not arbitrage free in the standard sense,
allows us to generate strictly positive wealth out of nothing with strictly positive

probability as can be shown in the classical manner, see, for instance, Karatzas
& Shreve (1998).

From the supermartingale property established by Lemma 4.2, we obtain the
following result.

Remark 4.5 In a benchmark model any nonnegative portfolio process Vs with
corresponding S-integrable, self-financing strategy 6 is arbitrage free in the stan-
dard sense.

4.5 Prices for Contingent Claims

Let us now define a maturity date T € [0,T] as a stopping time. For a given
maturity date T € [0,T] we call an Ap-measurable, square integrable random
variable lﬁIT a benchmarked contingent claim. Using Proposition 4.18 in Karatzas
& Shreve (1988), the following theorem can be directly obtained.

Theorem 4.6  For any contingent claim I:IT, there exists a unique progressively
measurable vector process ., satisfying (4.7), such that

1. = E (ﬁf | At) +kzi‘; /t ! 2 (s) dW*(s) (4.10)

a.s. for t € [0,7).
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The benchmarked arbitrage free portfolio value for the benchmarked contingent
claim Hy is the conditional expectation

Vs, (1) =E (HT | At) (4.11)
for t € [0, T], where & i, is the strategy that is determined by the representation
(4.10). This strategy can be explicitly determined in a Markovian multi-factor
version of the benchmark model, see Heath & Platen (2001). For the subclass of
arbitrage free portfolio processes the above theorem gives us access to the corre-
sponding arbitrage free prices of contingent claims via conditional expectations.
It thus allows us to obtain arbitrage free derivative prices when the risk neutral
methodology fails. This case arises, for instance, when some benchmarked savings

accounts are strict local martingales. In particular, when the Radon-Nikodym
_ 5%
—5%0)
we do not have an equivalent martingale measure, which is essential for the APT.
The benchmark approach provides us with arbitrage free prices, even when the

equivalent martingale measure does not exist.

derivative process A = {A(t) t € [0, 7]} is a strict local martingale, then

As shown in Heath & Platen (2001), in a complete market, as considered in
this paper, the above benchmark model permits perfect hedging also in cases
where arbitrage arises. However, the hedge is no longer unique. In a market
that is made incomplete by not allowing trade in certain assets, the Follmer &
Schweizer decomposition (1991), see also Follmer & Sondermann (1986), provides
in the arbitrage free case a natural hedge that is related to local risk minimization.

If in our benchmark model all benchmarked portfolio processes are arbitrage
free, then the APT can be applied. Consequently, in this setting the benchmark
approach yields the same results as the APT.

Conclusion

This paper presents a benchmark model for financial markets, which is con-
structed on the basis of the different denominations of the growth optimal port-
folio. The risk premia for primary assets and portfolios have been identified and
do not depend on the denomination. Furthermore, the domestic short rate is
determined as a functional of an average of appreciation rates. It has been shown
that the benchmark model is locally arbitrage free and that all nonnegative bench-
marked portfolio prices are supermartingales. Contrary to the classical equivalent
martingale measure approach, the benchmark framework permits a certain form
of arbitrage. Arbitrage amounts can be expressed as they occur after shocks or
market turbulence in emerging and maturing markets.
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A Appendix

At first we establish a lemma about some symmetry in volatilities.

Lemma A.1  For any self-financing strateqy d, which has an a.s. strictly posi-
tive corresponding portfolio process, the corresponding portfolio volatilities satisfy
the relation

()~ i) = (1) = b (A1)
fortel0,T),i,7€{0,1,...,d} and k € {1,2,...,d}.

Proof: Using (2.15), one obtains by the It6 formula together with (2.3), (2.8)
and (2.1) the SDE

dsiiy) — d(v;(t)Bf(t))
Vi)

d

+) (ag’k(t) - ag’k(t)> dwk(t)) (A.2)
k=1

fort € [0,T] and 4,5 € {0,1,...,d}. A comparison of the SDEs (A.2) and (2.4)
reveals the symmetry (A.1) in the portfolio volatilities. Note that the i, j, kth
volatility 6%7*(¢) is independent of the strategy §. [

Proof of Theorem 2.2

Under Assumption 2.1, there exists only one unique vector of proportions that
maximizes the quadratic form (2.17). Therefore the GOP is uniquely deter-
mined by the resulting unique vector of proportions 7s(¢) with corresponding
self-financing strategy J. Note that (2.23) follows directly from (A.1). From
(2.18) and (2.13) we see that

d

Y M) = (Z my () b7 (t)>



for t € [0,T]. It follows from (2.15) and (A.3) that the obtained GOP must
satisfy the SDE

vy (t) = (

for t € [0, 7). In addition, from (2.18) with (2.23) and (2.13) it can be concluded
that the 0, jth domestic risk premium is

0+ Y0

k=1

dt+Za t) dW*(t) ) (A.4)

() =Y (a3 - 03" (1)) 02" (1) (A-5)

for t € [0,7) and j € {0,1,...,d}. Thus one obtains for $% by (2.4), (2.23) and
(A.5) the SDE

dsPi(r) = $"(1) ( [fo(t) + 3ot (opk ) - Ué’k(t»] at

k=1
d -
+) (og’k(t) - ag’f(t)) dW’“(t)) (A.6)
k=1
for t € [0,T] and j € {0,1,...,d}. By application of the It6 formula together
with (2.3), (2.8), (A.4) and (A.6) the SDE for V() becomes

avi(t) = d(%?;(t))

- vio [0+ X ()

fort € [0,7] and j € {0,1,...,d}, which yields (2.22). Furthermore, by appli-
cation of the Ité formula using (2.3), (2.8), (A.4), (A.7) and (2.1) it follows for
Sb9(t) the SDE

dt + Za(; t) dW*(t) ) (A.7)

dshi(t) = Si’j(t)(

1) + 3 o) (o () - og”“(o)] at

+ Z (Oé’k(t) —of* (t)) dW’“(t)) (A.8)

fort € [0,7] and 4,5 € {0,1,...,d}. A comparison of the drift coefficients of the
SDEs (A.8) and (2.4) shows that the ¢, jth risk premium must be of the form
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(2.24). We compute from the self-financing property (2.10) with (A.8) the SDE
for V; (t) to obtain

k=1

fort €[0,7] and i € {0,1,...,d}. A comparison of the diffusion and drift coeffi-
cients of the SDEs (A.9) and (A.7) reveals that the proportions of the obtained
GOP must satisfy (2.25). [
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