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Abstract

The problem of selecting a clustering algorithm from the myriad of algorithms has been discussed in
recent years. Many researchers have attacked this problem by using the concept of admissibility (e.g.
Fisher and Van Ness, 1971, Yadohisa, et al., 1999). We propose a new criterion called the “structured
ratio” for measuring the clustering results. It includes the concept of the well-structured admissibility as
a special case, and represents some kind of “goodness-of-fit” of the clustering result. New admissibilities
of the clustering algorithm and a new agglomerative hierarchical clustering algorithm are also provided
by using the structured ratio. Details of the admissibilities of the eight popular algorithms are discussed.

Keywords and phrases: admissibility, AHCA (agglomerative hierarchical clustering algorithm), structure

1 Introduction

Several criteria for measuring the results of clustering algorithms have been proposed. Examples are the
cophenetic correlation coefficient (Sokal and Rohlf, 1962), sum of squares (Hartigan, 1967), and Minkowski
metrics (Jardine and Sibson, 1971). Takeuchi, et al. (1999) proposed the distortion ratio based on the
concept of space distortion introduced by Lance and Williams (1967).

The well-structured criterion proposed by Rubin (1967) is another measure and is based on the dispersion
of clusters. He defined data as well-structured (l-group) if there exist clusters C1, C2, . . . , Cl such that all
within-cluster distances are smaller than the smallest between-cluster distance. Using this concept, Fisher
and Van Ness (1971) proposed a new clustering algorithm admissibility called the well-structured admissible.

In this paper, we propose a new criterion for measuring clustering results called the “structured ratio”.
It includes the well-structured concept as a special case, and represents some kind of goodness-of-fit of a
clustering result. New admissibilities and a new agglomerative hierarchical clustering algorithm (AHCA) are
also provided by using the structured ratio, and details of the admissibilities of the eight popular algorithms
are discussed.

Cluster I at stage m (1 ≤ m < N) is denoted as CI(m). We denote the dissimilarity between objects p
and q by dpq, the dissimilarity between CI(m) and CJ(m) by dIJ , and the number of objects to be clustered
by N . We use the standard set theoretic notation p ∈ CI(m) to indicate that object p belongs to CI(m); the
number of objects belonging to CI(m) is denoted by nI . To simplify notation, we define nI C2 = 0 if nI = 1.

We assume that clusters CI(m) are obtained using some AHCAs. From this assumption, the number
of the clusters at stage m is N − m. When CT (m) and CK(m) are combined at stage m and CT (m) is
not a singleton, it is assumed that CT (m) was formed from CI(t) and CJ (t), which were combined at stage
t (1 < t < m), and that CK(m) is a singleton or was formed from CI′(t′) and CJ′(t′), which were combined
at stage t′ (1 ≤ t′ < t). Hereafter, we assume this relationship between the two combined clusters, without
loss of generality, and we assume dIJ < dIK ≤ dJK .
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We abbreviate the single linkage algorithm as SL, the complete linkage algorithm as CL, the weighted
average algorithm (WPGMA) as WA, the median algorithm (WPGMC) as MD, the group average algorithm
(UPGMA) as GA, the centroid algorithm (UPGMC) as CE, the minimum variance algorithm (Ward’s
method) as WD, and the flexible algorithm with β = −0.25 (see Gordon, 1996) as FX.

2 Structured measures

Here we define the “structured ratio” as an extension of the well-structured concept that was first proposed
by Rubin (1967). We define Wh as the dispersion within a cluster and Bh as the dispersion between clusters.

Definition 1: The structured ratio at stage m (< N − 1) is defined as:

SRh(m) = Wh(m)/Bh(m), (1)

where Wh(m) and Bh(m) are within cluster and between cluster dispersions at stage m, respectively. We
define several measures of within cluster and between cluster dispersion. For example, for I �= J , which we
assume hereafter,

W1(m) = max
I

max
p,q∈CI(m)

dpq , B1(m) = min
I,J

min
p∈CI(m),q∈CJ (m)

dpq ,

W2(m) =
∑

I

(
max

p,q∈CI(m)
dpq

)/
(N − m),

B2(m) =
∑
I,J

(
min

p∈CI(m),q∈CJ (m)
dpq

)/
N−mC2,

W3(m) = max
I


 ∑

p,q∈CI(m)

dpq/nI C2


 , B3(m) = min

I,J


 ∑

p∈CI(m),q∈CJ (m)

dpq/nInJ


 ,

W4(m) =
∑

I


 ∑

p,q∈CI(m)

dpq/nI C2


/

(N − m),

B4(m) =
∑
I,J


 ∑

p∈CI(m),q∈CJ (m)

dpq/nInJ


/

N−mC2,

W5(m) =
∑

I


 ∑

p,q∈CI(m)

dpq


/∑

I

nI C2,

B5(m) =
∑
I,J


 ∑

p∈CI(m),q∈CJ (m)

dpq


/∑

I,J

nInJ .

Using the same dispersion measures, we define another ratio for representing the structure of clustering
results, while the structured ratio is defined for each combination.

Definition 2: The total structured ratio is defined as:

TSRh(N − L) =
N−L∑
m=1

SRh(m)/(N − L), (2)

where L (1 < L < N) is the number of clusters selected.
The total structured ratio can be used to measure the structure of clustering algorithms. If we would

like to measure the final results of a clustering algorithm, SRh(N − L) may be more appropriate than the
total structured ratio.

Since the structured ratio is the ratio of dispersion within a cluster to dispersion between clusters, a
smaller value is preferable in terms of the concept of structure. However, the value of the structured ratio
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depends heavily on the dispersion measure. The characterization of dispersion measures still remains to be
completed. However, we can obtain some useful information from the structured ratio using the following
properties.

Property 1: W1(m) and B1(m) are monotone increasing functions.

Property 2: If B1(m + 1)/B1(m) ≤ W1(m + 1)/W1(m) for all m, then SR1 is a monotone increasing
function.

Property 3: For any m (< N − 1), the following inequalities hold;

SR4(m) ≤ SR2(m) ≤ SR1(m), SR4(m) ≤ SR3(m) ≤ SR1(m).

Property 4: If

W3 ≤ min
I

max
p,q∈CI(m)

dpq and max
I,J


 min

p ∈ CI(m)
q ∈ CJ(m)

dpq


 ≤ B3

hold, then the following inequalities hold.

SR4(m) ≤ SR3(m) ≤ SR2(m) ≤ SR1(m).

Property 5: The following equation hold for all m (< N − 1);
∑

I

nI C2W5(m) +
∑
I,J

nInJB5(m) =
∑
p,q

dpq.

3 ζ-structured admissibility

In this section, we propose some admissibilities of the clustering by using the structured ratio and the total
structured ratio defined in previous section. Using the structured ratio, we redefine the condition of the
well-structured (L-group) admissible first proposed by Fisher and Van Ness (1971), as follows.

An algorithm is well-structured (L-group) admissible if and only if the following equation is satisfied for
any well-structured (L-group) data;

SR1(N − m) < 1.

We defined an admissibility including this as a special case.

Definition 3: Suppose an algorithm classifies objects to L (1 < L < N) clusters at stage m (= N − L). If
the following inequality is satisfied, the algorithm is ζ-structured (L-group) admissible;

SRh(m) < ζ. (3)

The ζ-structured (L-group) admissible is defined at one combined stage. Next we define admissibilities
for the entire set of combined stages.

Definition 4: Suppose an algorithm classifies objects to L (1 < L < N) clusters at stage m (= N − L). If
the following inequality is satisfied for all n (≤ m), the algorithm is ζ-structured (perfect) admissible;

SRh(n) < ζ. (4)

Similarly, we can define admissibility by using the total structured ratio.

Definition 5: Suppose an algorithm classifies objects to L (1 < L < N) clusters. If the following inequality
is satisfied, the algorithm is ζ-total structured admissible;

TSRh(N − L) < ζ. (5)
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As is obvious from these definitions, the concept of ζ-structured admissible is determined only at the stage
when the data is separated into L clusters. This admissibility is a looser condition than the ζ-structured
(perfect) admissible. In fact, for a small value of L, it is necessary to select quite a large value of ζ when the
algorithm is ζ-structured (perfect) admissible.

These admissibilities satisfy the following properties.

Property 6: If an AHCA is ζ-structured (perfect) admissible, then the algorithm is ζ-structured (L-group)
admissible and ζ-total structured admissible.

Property 7: If an AHCA is 1-structured (L-group) admissible, then the algorithm is well-structured (L-
group) admissible, as proposed by Fisher and Van Ness (1971).

4 New algorithm

In this section, we defined a new AHCA which has the minimum SRh(m) at the stage m.

Definition 6: An AHCA, that combines CI(m − 1) and CJ(m − 1) to make a new cluster at stage m by
minimizing SRh(m) is called MSRh algorithm.

5 A numerical example

Here, we analyze an artificial dataset in two-dimensional space (see, Figure 1). We anticipate that this data
can be separated into three clusters.
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Figure 1: Scatter plots of 30 objects

Here, we analyze the data using eight popular AHCAs and the MSR1 algorithm.
The SR1 of the results of these algorithms are represented on the ordinate in Figures 2 and 3. The values

of SR1(27) and TSR1(27) are shown in these figures and the abscissa shows the combined stage. We select
the 27th stage because there are three clusters that combine at this stage.
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Figure 2: Structured ratios of 8 popular AHCAs
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Figure 3: The structured ratio of MSR1

The structured admissibilities for ζ = 5, 7.5, 10 or ζ = 3.5, 4, 5 are indicated in Table 1. Generally,
from the definitions, the structured admissibilities are sensitive concepts in contrast to the total structured
admissibilities. For example, most algorithms are not 5-structured (3-group or perfect) admissible, but they
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are 5-total structured admissible. By changing the value of ζ, we can control the condition of the structured
admissibilities. For example, the structured (perfect) admissibilities are changed from ‘No’ to ‘Yes’ by
decreasing the value of ζ at the assessment of CL, GA, WD, FX, and MSR1 algorithms, respectively.

Table 1: ζ-structured admissibilities of the AHCAs

Admissible SL CLWAMDGACEWD FX MSR1

5-structured (3-group) No Yes No No No No No No No
7.5-structured (3-group) No Yes Yes Yes YesYes Yes Yes Yes
10-structured (3-group) No Yes Yes Yes YesYes Yes Yes Yes
5-structured (perfect) No No No No No No No No No

7.5-structured (perfect) No No No No No No No No Yes
10-structured (perfect) No Yes No No Yes No Yes Yes Yes
3.5-total structured No No No No No No No No Yes
4-total structured No Yes No No Yes No Yes Yes Yes
5-total structured YesYes Yes Yes YesYes Yes Yes Yes

6 Discussion

We consider the concept of well-structured, in which the desired classification condition has similar objects
classified to the same cluster with small within-cluster dispersion, and dissimilar objects classified to different
clusters with large between-cluster dispersion. However, the concept of well-structured is very strict, and is
determined for specific data. The equation of the condition for a well-structured is only satisfied by a large
L in data, and popular AHCAs are not satisfied with small values of L.

The structured concept using the structured ratio that we proposed can be used for any data and can
control the condition of judgement. In addition, our concept can select from many criteria that is most
suited for the user’s purpose, not only the particular criterion. Thus, the concept of the structured includes
the existing well-structured concept and can be used for more general and extensive cases. Additionally,
this concept can numerically measure the degree of structure, so it can be used in a manner similar to
admissibilities of an algorithm. By using this concept, we believe analysts can better select algorithms to
obtain a desired result.
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