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Abstract

We consider a �nancial market model with a large number of in-

teracting agents. Investors are heterogeneous in their expectations

about the future evolution of an asset price process. Their current

expectation is based on the previous states of their \neighbors" and

on a random signal about the \mood of the market". We analyze the

asymptotics of both aggregate behaviour and asset prices. We give suf-

�cient conditions for the distribution of equilibrium prices to converge

to a unique equilibrium, and provide a microeconomic foundation for

the use of di�usion models in the analysis of �nancial price uctuations.
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1 Introduction

In mathematical �nance, the price process of a risky assert is usually mod-

eled as the trajectory of a stochastic process on some underlying probability

space (
;F ;P). Such a probabilistic approach was �rst initiated by Bachelier
(1900), who introduced Brownian motion as a model for price uctuations

on the Paris stock exchange. As prices should stay positive, geometric Brow-

nian motion is now widely used as the basic reference model in the analysis

of �nancial price uctuations. Kreps (1982) showed that such a di�usion

model can be justi�ed as the rational expectation equilibrium in a market

with highly rational agents who all believe in this kind of price dynamics,

and who instantaneously and rationally discount all available information

into the present price. From this theoretical point of view large and sudden

price uctuations reect rational changes in the valuation of an asset rather

than irrational shifts in the sentiment of investors.

Traders, by contrast, often consider �nancial markets as being much less

rational. Many practitioners believe that technical trading is possible, and

that herd e�ects unrelated to economic fundamentals can cause bubbles or

crashes. In particular, they are typically aware of the fact that asset prices

may be driven by sudden shifts in the \mood of the market". In view of such

market realities, it seems natural to regard price processes as the result of

an interaction between many agents with bounded rationality. In particular,

one should admit imitation and contagion e�ects in the formation of agents'

expectations. When the set A of agents involved in the formation of stock

prices becomes large, such an approach allows to bring in techniques from

the theory of interacting Markov processes or from Markov random �eld

theory. An early attempt into this direction has been made by F�ollmer

(1974) who considers a static model of endogenous preference formation.

In this paper we provide a uni�ed probabilistic framework for modeling

�nancial markets where the demand for a risky asset results from the in-

teraction of a large number of traders. Following an approach suggested by

F�ollmer and Schweizer (1993), we are going to view the stock price process

as a sequence of temporary price equilibria. We assume that the excess de-

mand of agent a 2 A in period t depends on his current individual state xa
t

reecting, for example, his expectation about the future evolution of stock

prices. Such a distinction between di�erent types of agents has been a major
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topic in the recent literature on �nancial markets and on dynamic microe-

conomic models; see, e.g. Brock and Hommes (1997), Kirman (1998), Lux

(1998) or Lux and Marchesi (1999). For a given con�guration of individual

states x = (xa)a2A , the law of agent a's new state depends both on the cur-

rent states (xb)b2N(a) of the agents in his social neighborhood N(a) and on

the average expectation in the whole population, i.e., on the \mood of the

market". The mood of the market is described by the empirical distribu-

tion of individual agents' states or, more completely, by the empirical �eld

R(x) associated with the con�guration x. We consider a situation where

an individual agent has complete information about the actions chosen by

agents in his reference group, but only has incomplete information about the

average action throughout the entire population. Individual trader do not

know R(x) for sure, but only observe a random signal, e.g., a stock market

index, whose distribution depends on R(x).

In our �nancial market model, the random evolution of the mood of the

market is the only component a�ecting the formation of temporary price

equilibria. The microscopic process fxtgt2N which describes the stochastic

evolution of all the individual states generates via the macroscopic process

fR(xt)gt2N an endogenous random environment f~%tgt2N for the evolution

of the asset price process. The dynamics of the stock price process fptgt2N
obeys a recursive relation of the form

pt+1 = F (~%t+1; pt) (t 2 N): (1)

Our aim is to state conditions which ensure that the stock prices behave

asymptotically in a stable manner. To this end, we shall �rst analyze the

long run behaviour of the macroscopic process fR(xt)gt2N which describes

the dynamics of aggregate behaviour. Using results about the asymptotic be-

haviour of locally and globally interacting Markov chains provided in Horst

(2000), we show that, in the limit of an in�nite set A of traders, the dynam-

ics on the level of aggregate behaviour can be described by a Markov chain

associated with a suitable random system with complete connections. This

allows us to state conditions on the behaviour of individual agents which

guarantee that the mood of the market settles down in the long run. More

precisely, we place a quantitative bound of the e�ects of social interaction in

our economy, and show that the macroscopic process converges in law to a

unique equilibrium distribution if the interaction between di�erent agents is
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not too strong. In this case the sequence of equilibrium prices asymptotically

evolves in a stationary random environment.

In the second part of this paper we study the asymptotics of the induced

equilibrium price process. In a �rst step, we analyze an ergodic reference

model, i.e., we assume that the driving sequence f~%tgt2N is stationary and er-

godic. Economically, this amounts to a situation where the mood is already

in equilibrium. We show that the asset price process becomes asymptot-

ically stationary if the destabilizing e�ects of the random environment on

the dynamics of the price process is on average not too strong. Nonetheless,

the price uctuations in our �nancial market model may be highly volatile.

This feature may be interpreted as the temporary occurrence of bubbles and

crashes in a �nancial market model whose overall behaviour is ergodic.

From an economic point of view, however, such a stationarity assump-

tion on the driving sequence might be rather restrictive. Instead, it seems

more natural to investigate the asymptotic behaviour of asset prices un-

der the assumption the at the mood is out of equilibrium, i.e., under the

assumption that the random environment for the evolution of the price pro-

cess is speci�ed by a non-stationary stochastic process. However, given that

the macroscopic process settles down in the long run, it is desirable to have

suÆcient conditions which ensure that asset prices are driven into a station-

ary regime. Assuming a simple log-linear structure for the excess demand

functions leads to a class of log-linear price processes of the form

log pt+1 = f(~%t+1) log pt + g(~%t+1) (t 2 N): (2)

Under a suitable mean-contraction condition on the price dynamics fptgt2N
speci�ed by (2) we show that stock prices converge to a stationary regime

if the mood of the market itself settles down in the long run. Armed with

these results one could now try to analyze the structure of the equilibrium

distribution, and to estimate, for example, the asymptotic variance of stock

prices. Such an empirical analysis, however, is beyond the scope of this

paper, and is left for future research.

In our �nal section we study a di�usion approximation of the discrete-

time price process fptgt2N . Under simplifying assumption on excess de-

mand functions of the agents, the sequence of temporary price equilibria

can be approximated in law by a di�usion process fPtgt�0 in continuous

time. This result provides another microeconomic foundation for the use of
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di�usion processes in the analysis of �nancial price uctuations. If the mood

of the market is already in equilibrium, i.e., if the asset price process evolves

in a stationary and ergodic random environment, then we �nd ourselves

in the setting analyzed in F�ollmer and Schweizer (1993), who obtained a

continuous-time model from a sequence of suitably speci�ed discrete-time

processes evolving in an exogenously given random environment; see also

F�ollmer (1994). Proving a functional central limit theorem for stochastic

processes evolving in a non-stationary random environment, we are able

to extend the F�ollmer-Schweizer model by (i) analyzing a situation were

the driving sequence is derived endogenously, and (ii) by replacing the sta-

tionarity assumption on the mood of the market by an asymptotic stability

condition. We show that the di�usion limit fPtgt�0 converges to a stationary
process whose invariant distribution can be given in closed form.

The rest of this paper is organized as follows. In Section 2 we introduce

our �nancial market model. In Sections 3 and 4 we describe the dynamics

of individual and aggregate behaviour, respectively. Section 5 analyzes the

asymptotic behaviour of the discrete-time asset price process. In Section 6

we pass to a di�usion limit in continuous time. Section 7 concludes.

2 The Microeconomic Model

Let us describe a temporary equilibrium model for the price evolution of a

speculative asset. We consider a �nancial market model with a countably

in�nite set A of economic agents trading a single risky asset. In reaction

to a proposed stock price p in period t, each agent a 2 A forms an excess

demand z
a

t
(p). Individual excess demand at time t is to be thought of as

the di�erence between individual demand and individual initial endowment

in period t. The actual stock price pt at date t will be determined by the

equilibrium condition of zero total excess demand, and so the price process

will be given by a sequence of temporary price equilibria fptgt2N . We assume

that the excess demand of an individual agent a 2 A takes the form

z
a

t
(p) = z(p; pa

t
): (3)

Here, pat denotes an individual reference level of an agent a at date t, e.g.,

his price expectation for the following period t + 1. We shall assume that

agents are heterogeneous in their individual reference levels. More precisely,

4



at any given date t 2 N, the value pat depends on the present individual

state x
a

t
of agent a 2 A , on the previous equilibrium price pt�1, and on the

proposed price p. Thus, it takes the form

p
a

t
(p) = g(xa

t
; pt�1; p) (4)

for some measurable function g : C � R
2 ! R. Here

C := fc1; : : : ; cNg

is a �xed set of individual states.

Example 2.1 (\Fundamentalists and Chartists") Let us consider a �nan-

cial market model where the individual excess demand function takes the

log-linear form

z(p; pat ) = log pat � log p (5)

as in F�ollmer and Schweizer (1993). We put C = f�1; 0;+1g and consider

a model with optimistic (xa
t
= +1) and pessimistic (xa

t
= �1) information

traders (\fundamentalists") and with chartists (xa
t = 0).

We assume that a fundamentalist's subjective perception logL + x
a

t of

the current value of the asset uctuates around some long run fundamental

value logL. Independent of the proposed price, his expectation is based on

the idea that the next price will move closer to his actual benchmark for the

fair value of the stock. More precisely, his reference level takes the form

log pat = log pt�1 + cf (logL+ x
a

t � log pt�1) (cf > 0): (6)

The chartist, on the other hand, takes the proposed price as a serious

signal about the future evolution of the security price and replaces L in (6)

by p. Thus, his price expectation takes the form

log pat = log pt�1 + cc(log p� log pt�1) (cc > 0): (7)

In equilibrium, i.e., for p = pt, a chartist forecasts the future evolution of

the asset price process from past observations.

In our model, the dynamics of the price process will be induced by an

underlying microscopic process fxtgt2N = f(xa
t
)a2A gt2N which describes the
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stochastic evolution of all the individual states. The process fxtgt2N takes

values in the con�guration space

E := C
A = fx = (xa)a2A : xa 2 Cg:

We shall view E as a compact metric space which is equipped with the

product topology and denote by E the product-�-�eld on E.

Let us now concentrate on the resulting stock price process fptgt2N . In
a �rst step, we consider a situation where only �nitely many investors are

active on the market. To this end, we �x a sequence fA ngn2N of �nite

subsets of A satisfying A n " A as n " 1. If only the traders in A n are active

on the market, the equilibrium stock price pn
t
at date t is determined by the

market clearing condition of zero total excess demand, i.e., pnt is given by

an implicit solution of the equationX
a2A n

z
a

t
(pn

t
) = 0: (8)

In view of (3) and (4), and in terms of per capita excess demand, we can

rewrite (8) as Z
C

z(pnt ; g(c; p
n

t�1; p
n

t ))%
n(xt)(dc) = 0: (9)

Here,

%
n(xt) :=

1

jA n j
X
a2An

Æx
a

t
(�) 2M(C)

denotes the empirical distribution of the states assumed by the traders a 2
A n in period t, and M(C) is the class of all probability measures on C.

For any n 2 N, the implicit equation (9) de�nes the sequence of tem-

porary equilibrium prices fpnt gt2N in the case of a �nite set A n of traders

who are involved in the formation of equilibrium prices. In order to extend

the construction of equilibrium prices to the in�nite system of all agents,

we are going to restrict our state space E to the class E0 of con�gurations

x = (xa)a2A 2 E which admit the weak limit

%(x) := lim
n!1

%
n(x):
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That is,

E0 :=

(
x 2 E : 9 lim

n!1
1

jAnj
X
a2A n

Æxa(�) 2M(C)

)
:

Thus, for x 2 E0 the empirical distribution %(x) associated with the con�g-

uration x exists. We will call %(xt) the mood of the market at time t.

Even though we consider an economy with a countably in�nite set of

agents, it seems reasonable to view the set of agents who are directly involved

in the formation of the equilibrium price at date t as a random subset At � A

of representative agents. By saying that At is a set of representative agents

we mean that the empirical distribution ~%t of the states assumed by the

traders in At is a random variable whose conditional law

~
Q(%(xt); �): (10)

is described by a stochastic kernel ~
Q from M(C) to M(C).

We are now ready to de�ne the equilibrium price pt at date t. In the

limit of an in�nite set of agents, pt will be given as an implicit solution of

the equation Z
C

z(pt; g(c; pt�1; pt)) ~%t(dc) = 0 (11)

which may be viewed as the limiting form of (9). In order to obtain a

uniquely de�ned stock price process, we impose the following condition on

the excess demand function z:

Assumption 2.2 There exists a measurable function F : M(C) � R ! R

such that the implicit equationZ
C

z(p�; g(c; p; p�))~%(dc) = 0

admits a unique solution p� = F (~%; p) for any pair (~%; p) 2M(C)� R.

Example 2.3 Let us return to the log-linear demand structure described

by (5) together with (6) and (7). For a given con�guration xt 2 E0, the

empirical distribution ~%t is described by the proportions ~%+
t
; ~%�

t
and ~%0t of

optimistic and pessimistic fundamentalists and of chartists, respectively. In
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the limit of an in�nite set of agents the market clearing condition (11) im-

plies the following linear structure for the evolution of the logarithmic stock

price process:

log pt+1 = f(~%t+1) log pt + g(~%t+1); (12)

where

f(~%t) :=
1� cf (~%

+
t
� ~%�

t
)� cc~%

0
t

1� cc~%
0
t

; g(%(xt)) :=
cf (logL+ ~%+

t
� ~%�

t
)

1� cc~%
0
t

: (13)

In Section 5.2 we will state conditions which guarantee that the sequence

flog ptgt2N converges to a stationary regime if the mood of the market settles

down as t ! 1. Observe, however, that for cc > 1, the mappings f and

g have a singularity. If the fraction of chartists who are actually involved

in the formation of price equilibria comes close to the critical value ~% = 1
cc
,

then the price process becomes highly volatile. A slight change in the current

proportion of chartists may have a lasting e�ect on asset prices.

Given that our Assumption 2.2 holds true, the stock price process fptgt2N
is de�ned by the recursive relation

pt+1 = F (~%t+1; pt) (t 2 N): (14)

In our setting, the evolution of the empirical distribution of agents' states

is therefore the only component a�ecting the formation of temporary price

equilibria. The process fxtgt2N generates { via the aggregate quantities

f%(xt)g and f~%tgt2N { an endogenous random environment for the evolution

of the stock price process. Our goal is to analyze the long run behaviour

of the asset price process fptgt2N . To this end, we have to analyze the

asymptotics of the driving sequence f~%tgt2N . In the next section, we begin

by describing the dynamics of the microscopic process fxtgt2N . In Section 4

we state conditions on the behaviour of individual agents which guarantee

that the mood of the market settles down in the long run. In this case the

price process asymptotically evolves in a stationary random environment.

In Section 5 we show that this yields weak convergence of the asset price

process if the excess demand functions take the log-linear form (5).
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3 The Dynamics of Individual Behaviour

Let us now specify the dynamics of the microscopic process fxtgt2N . We

assume that, in each period t, any agent a 2 A chooses his next state xa
t+1

at random according to some probability law which depends on the present

con�guration of individuals states xt = (xat )a2A . More precisely, the process

fxtgt2N will be described by a Markov chain,

�(x; dy) =
Y
a2A

�
a(x; dya);

on a suitable subset of the con�guration space E = C
A .

The dependence of the probability law �
a on the present con�guration

can have both a local and a global component. Local dependence in the

choice of an individual agent a 2 A refers to dependence of �a on some

set of neighbors b 2 N(a). In particular, introducing the notion of local

interaction requires to endow the countable set A with the structure of a

graph, where the agents are the nodes and where interactive links between

certain pairs of agents exist. Since we shall also admit a global component

in the interaction, we will need to consider ergodic averages over the whole

graph of agents. Therefore, we limit ourselves to the case best understood

so far, where A carries a lattice structure, and assume that the agents are

located on the d-dimensional integer lattice, i.e., A := Z
d.

The neighborhood or reference group N(a) associated with agent a 2 A

is given by the set

N(a) := fb 2 A : ja� bj � l <1g:

Here, j � j denotes the Euclidean distance on R
d and l 2 N is a �xed \in-

teraction radius". In terms of such peer groups we can model situations

where the current reference level pa
t+1 of agent a, e.g., his expectation about

the future evolution of the stock price, is inuenced by the previous states

(xb
t
)b2N(a) of his neighbors. Note that in our model any agent a�ects the

next state of just 2dl other persons, and so no individual trader is able to

inuence the mood of the whole market in one single period. In this sense,

we consider a �nancial market model with many small investors.

In real �nancial markets, the behaviour of an individual trader is, of

course, not only inuenced by the actions chosen by the agents in his refer-

ence group, but also depends on the current mood of the market, i.e., on the
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average behaviour throughout the entire population. However, investors do

typically not have complete information about the empirical distribution of

individual agents' states in a given period. Instead, it seems reasonable to

assume that they only have incomplete information about %(xt) in the sense

that they receive a common noisy signal st about the average expectation at

date t. For example, st could be a signal about the fraction of chartists or

optimistic information traders who are active on the market in period t and

may be revealed by, e.g., a stock market index. Thus, it makes immediate

sense to introduce an additional dependence on signals about \global prop-

erties" of the current con�guration, e.g., a dependence on signals about the

mood of the market, into the interaction. The following simple voter model

illustrates this approach.

Example 3.1 Let us put C = f0; 1g. We assume that an inidividual in-

vestor reacts both to the currents states of his neighbors and to a random

signal s 2 [0; 1] about the average action throughout the entire population.

For any �xed signal s, an agent chooses his next state according to a tran-

sition law �
a

s
from E0 to C which is described by the convex combination

�
a

s
(x; 1) = �p(xa) + �m

a(x) + s: (15)

Here, �p(xa) measures the dependence of agent a's new state on his current

one, and ma(x) is the proportion of `1' in the neighborhood N(a). Moreover,

s 2 [0; 1] denotes a commonly known random signal about the empirical

average

m(x) := lim
n!1

1

jA n j
X
a2An

x
a

associated with the con�guration x 2 E0. The conditional law Q(m(xt); �)
of the signal st given the average m(xt) is described by a signal kernel Q

on [0; 1]. Due to the linear structure of the transition probabilities �a
s
, the

law of large numbers shows that, for any given signal sequence fstgt2N , the
process fm(xt)gt2N satis�es almost surely the deterministic dynamics

m(xt+1) = u(m(xt); st) := �fm(xt)p(1) + (1�m(xt))p(0)g + �m(xt) + st:

In this model, the sequence of empirical averages fm(xt)gt2N may therefore

be viewed as a Markov chain on the state space [0; 1]. In Sections 4 and 5,
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respectively, we provide conditions which ensure that both the Markov chain

fm(xt)gt2N and the induced price process fptgt2N converge in law to a unique

equilibrium.

The next example shows that the dynamics of the sequence fm(xt)gt2N
typically cannot be described by a Markov chain.

Example 3.2 Consider the following generalization of the voter model (15).

For x 2 E0 and s 2 [0; 1], the individual transition probabilities are described

by a measurable mapping gs : C
jN(a)j ! [0; 1] in the sense that

�
a

s
(x; 1) = gs

�
fxbgb2N(a)

�
: (16)

Typically, we cannot expect that there exist a function u : [0; 1]�[0; 1] ! [0; 1]

such that m(xt+1) = u(m(xt); st). Nevertheless, we will show that the mood

of the market settles down in the long run if the dependence of the mapping

gs on x
b (b 2 N(a)) is not too strong; cf. Example 4.6.

Due to the local dependence of the individual transition laws �a on the

current con�guration, the dynamics of the mood of the market in general

cannot be described by a Markov chain. In order to analyze the long run

behaviour of aggregate behaviour in our �nancial market model, we need a

more general mathematical framework which we are now going to specify.

To start with, we introduce the family of shift-transformations �a (a 2 A )

on E de�ned by (�ax)(b) = x
a+b.

De�nition 3.3 (i) We denote by M(E) the class of all probability mea-

sures on E. A probability measure � 2 M(E) will also be called a

random �eld.

(ii) A random �eld � 2 M(E) is called homogeneous, if � is invariant

under the shift maps (�a)a2A . By

Mh(E) := f� 2M(E) : � = � Æ �a for all a 2 A g

we denote the class of all homogeneous random �elds � on E.

(iii) A homogeneous random �eld � 2Mh(E) is called ergodic, if � satis�es

a 0-1-law on the �-�eld of all shift invariant events. The class of all

ergodic probability measures � on E is denoted by Me(E).
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For a given n 2 N we put A n := [�n; n]d \ A ; and denote by Ee the set

of all con�guration x 2 E such that the empirical �eld R(x), de�ned as the

weak limit

R(x) := lim
n!1

1

jA n j
X
a2An

Æ�ax
(�);

exists and belongs to Me(E). The empirical �eld R(x) carries all macro-

scopic information carried in the con�guration of individual states x =

(xa)a2A 2 Ee. In particular, the empirical distribution

%(x) = lim
n!1

1

jA n j
X
a2A n

Æxa(�);

i.e., the mood of the market associated with the con�guration x 2 Ee, is

given as the one-dimensional marginal distribution of R(x).

Consider the product kernel �s on E governed by the transition laws �a
s

in (16). Proposition 4.1 below shows that the measure �s(x; �) (x 2 Ee) is

concentrated on the set Ee and that the empirical average satis�es

m(y) = u(R(x); s) :=

Z
�s(x; 1)R(x)(dz) �s(x; �)-a.s. (17)

Thus, we have to consider the full dynamics of the sequence of empirical

�elds fR(xt)gt2N even if, as in Example 3.2, the behaviour of agent a 2 A

depends on R(x) only on the empirical average m(x). Theorem 4.2 below

shows that, in contrast to the sequence of empirical distributions f%(xt)gt2N ,
the dynamics of the sequence of empirical �eld fR(xt)gt2N can indeed be

described by a Markov chain. Our aim is to formulate conditions on the

transition laws �a, i.e., on the behaviour of individual agents, which guar-

antee that the sequence of empirical �elds fR(xt)gt2N converges in law to a

unique equilibrium distribution. In case we will say that the mood of the

market settles down in the long run.

To this end, we shall now be more speci�c about the structure of the

transition probabilities �a. We assume that the interactive inuence of the

present con�guration x 2 Ee on agent a is felt both through the local sit-

uation (xb)b2N(a) in his neighborhood, and through a random signal about

the average situation throughout the entire population A . The average sit-

uation is described by the empirical �eld R(x) associated with x 2 Ee. The

12



conditional law

Q(R(x); �) (18)

of the signal s given the empirical �eld R(x) is speci�ed by a stochastic

kernel Q from Mh(E) to S, where S is a �nite signal space.1 The kernel Q

will be called the signal kernel.

We also assume that interaction between di�erent agents is spatially

homogeneous. This means that all traders react in the same manner both

to the actions previously chosen by the agents in their reference group and

to the signal about aggregate behaviour. Thus, for a �xed signal s 2 S

and con�guration x 2 E, the probability that agent a 2 A switches to state

c 2 C in the following period is given by

�
a

s
(x; c) = �s(�ax; c); (19)

where �s(x; �) is a stochastic kernel from E � S to C.

Assumption 3.4 The probability laws f�s(x; �)gx2E satisfy a spatial Markov

property of order l in their dependence on the present con�guration:

�s(�ax; �) = �s(�ay; �) if �ax = �ay on N(a):

Economically, this condition means that, for any �xed signal about the mood

of the market, the new state of an agent only depends on the previous states

of this neighbors.

Let us now �x a signal s 2 S and a con�guration x 2 E. It follows from
our Assumption 3.4 and from (19) that

�s(x; �) :=
Y
a2A

�s(�ax; �)

de�nes a Feller kernel on the con�guration space E which is spatially ho-

mogeneous: Z
E

f(y)�s(�ax; dy) =

Z
E

f(�ay)�s(x; dy) (20)

1The assumption that S is �nite merely simpli�es notation. Our analysis also goes

through under the assumption that (S;S) is an arbitrary measurable space.
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for all a 2 A and f 2 C(E). In particular, the individual transition laws �s

together with the signal kernel Q determine a stochastic kernel

�(x; �) :=
Z
S

�s(x; �)Q(R(x); ds) (21)

from Ee to E. In fact, Proposition 4.1 below shows that � may be viewed

as a stochastic kernel on the con�guration space Ee. In contrast to �s,

however, the kernel � typically does not have the Feller property, due to the

macroscopic dependence on the present con�guration x via the empirical

�eld R(x). Thus, we cannot apply the method in Vasserstein (1969) in order

to study the long run behaviour of the processes fxtgt2N and fR(xt)gt2N .
Instead, we will use results about the asymptotic behaviour of locally and

globally interacting Markov processes recently reported in F�ollmer and Horst

(2001) and Horst (2001a).

4 The Dynamics of Aggregate Behaviour

In this section we are going to formulate conditions on the individual tran-

sition laws �s and on the signal kernel Q which guarantee that the mood

of the market settles down in the long run.2 In a �rst step, we use a law

of large numbers for the random �elds �s in order to view � as a stochas-

tic kernel on the con�guration space Ee. For the proof we refer to Horst

(2001a), Proposition 3.1.

Proposition 4.1 For all con�gurations x 2 Ee, and for any signal s 2 S,

we have �s(x;Ee) = 1. For �s(x; �)-a.e. y 2 Ee, the empirical �eld R(y)

takes the form

R(y) = u(R(x); s) :=

Z
E

�s(y; �)R(x)(dy):

In view of the this Proposition, we use Ee as the state space for our

microscopic process fxtgt2N . We denote by Px the distribution of the Markov

chain fxtgt2N with initial state x 2 Ee. Since a con�guration x 2 Ee induces

2The asymptotics of the Markov chain � is explicitly analyzed in Horst (2001a). In

order to keep the present paper self-contained, we summarize some of the results, but omit

the proofs.
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an ergodic empirical �eld R(x), the microscopic process fxtgt2N induces Px-

a.s. the macroscopic process fR(xt)gt2N with state space Me(E). The law

of the random variable R(xt+1) depends on the microscopic con�guration

xt in period t only through the empirical �eld R(xt). Thus, it is easily seen

that the following result holds true.

Theorem 4.2 (i) Under the measure Px the macroscopic process is a

Markov chain on the state space Me(S) with initial value R(x).

(ii) For any given initial con�guration x 2 Ee, and for each �xed signal

sequence fstgt2N our macroscopic process satis�es

R(xt+1) = u(�; st) Æ � � � Æ u(�; s1) Æ u(R(x); s0) Px-a.s. (22)

for any t 2 N.

Since, conditioned on the environment fstgt2N , the macroscopic pro-

cess follows almost surely a deterministic dynamics, we propose a \random

system with complete connections" (henceforth RSCC) as a suitable math-

ematical framework for analyzing the dynamics of aggregate behaviour in

our �nancial market model. Let us recall the notion of a RSCC.

De�nition 4.3 Let (M1; dM1
) be a metric space and (M2;M2) be a mea-

surable space. Let Z denote a stochastic kernel from M1 to M2, and let

v : M1 � M2 ! M1 be a measurable mapping. Following Iosefescu and

Theodorescu (1968), we call the quadruple

� := ((M1; dM1
); (M2;M2); Z; v)

a random system with complete connections.3

(i) Given an initial value � 2 M1, a RSCC induces two stochastic pro-

cesses f�tgt2N and f�tgt2N on the canonical probability space (
̂; F̂ ; P̂�)
taking values in M1 and in M2, respectively, by

�t+1 = v(�t; �t) and P̂�(�t 2 �j�t; �t�1; �t�1; �t�2; : : : ) = Z(�t; �):
3We refer the reader to the books of Iosefescu and Theodorescu (1968) and Norman

(1972) for a detailed discussion of RSCCs. Under the di�erent name \iterated function

systems", this class of processes is also studied in, e.g., Barnsley, Demko, Elton, and

Geronimo (1988) and Lasota and York (1994).
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Here, �0 = � P̂�-a.s. These processes are called the associated Markov

process and the signal sequence, respectively.

(ii) We say that a random system with complete connections is a distance-

diminishing model, if the transformation v : M1 �M2 !M1 satis�es

the contraction condition

dM1
(v(�; �); v(�̂; �)) � �dM1

(�; �̂)

for some constant � < 1.

Let f�tgt2N be a Markov chain associated with a random system with

complete connections � = ((M1; dM1
); (M2;M2); Z; v). For any �xed signal

sequence f�tgt2N , we have that

�t+1 = v(�; �t) Æ � � � Æ v(�; �1) Æ u(�; �0) P̂�-a.s. (23)

Let us now �x an initial con�guration x 2 Ee. In view of (20) and (23), our

macroscopic process may be viewed as the Markov chain with starting point

R(x) associated with the random system with complete connections

�� := ((Mh(E); d); (S;S); Q; u); (24)

where the mapping u :Mh(E) � S !Mh(E) is de�ned by

u(R; s) :=

Z
E

�s(x; �)R(dx);

and where d denotes the metric introduced in F�ollmer and Horst (2001)

which induces the weak topology onMh(E); see also (2.53) in Horst (2000).
4

Indeed, let us denote by (f�tgt2N ; (P̂%)%2Mh(E)) the Markov chain onMh(E)
N

associated with ��. An easy induction argument shows that

Px[fR(xt)gt2N 2 B] = P̂R(x)[f�tgt2N ;2 B] (25)

for all B in BN , the Borel-�-�eld onMh(E)
N . In order to guarantee asymp-

totic stability of our macroscopic process, it is therefore enough to state

4Observe that we are going to view the macroscopic process as a Markov chain on the

compact metric space (Mh(E); d) even though R(xt) 2Me(E) for all t 2 N. We refer to

Horst (2001a) for a detailed discussion of this issue.
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conditions which ensure that the Markov chain f�tg2N converges in law to

a unique equilibrium. Due to Theorem 4.1.2 in Norman (1972), the process

f�tgt2N converges in law whenever the random system �� is distance dimin-

ishing in the sense of De�nition 4.3 (ii), and given that the signal kernel Q

satis�es the following conditions.

Assumption 4.4 (i) The signal kernel Q from Mh(E) to S satis�es a

uniform Lipschitz condition in the sense that

sup
s2S;� 6=�̂

jQ(�; s)�Q(�̂; s)

d(�; �̂)
� L <1: (26)

(ii) We have that inf�;iQ(�; si) > 0.

Remark 4.5 Economically, our Assumption 4.4 (ii) states that the agents

receive every signal with small but positive probability, regardless of the pre-

vailing mood of the market. Both parts (i) and (ii) of the above assumption

exclude situations where the traders have complete information about the

aggregate behaviour throughout the entire population.

Let us now state a condition on the individual transition laws �s which

guarantees that the random system �� is distance diminishing. To this

end, we de�ne, for any pair (a; s) 2 A � S, a vector rs
a = (rs

a;b
)b2A with

components

r
s

a;b
= sup

�
1

2
k�s(x; �) � �s(y; �)k : x = y o� a� b

�
(b 2 A );

where k�s(x; �)� �s(y; �)k denotes the total variation distance of the signed

measure �s(x; �)��s(y; �) on the set C. Since we assume that the interaction

between di�erent agents is spatially homogeneous, it is easily seen that

r
s

a;b
= r

s

a�b;0 (a; b 2 A ):

Economically, the quantity rs
a;0 measures, for a �xed signal s 2 S, the de-

pendence of the new state of agent 0 on the current state of agent a. In order

to ensure convergence of the mood of the market, we place a quantitative
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bound on the e�ect of social interactions in our economy. We shall say that

Weak Social Interaction prevails if

� := sup
s

X
a

r
s

a;0 < 1; (27)

i.e., if the dependence of an agent's action on the current con�guration is

not too strong. Our weak social interaction assumption excludes situations

where an agents imitates with probability one the behaviour of any of his

neighbors.

Before we prove the main result of this section, we consider a simple ex-

ample, where our weak social interaction assumption can indeed we veri�ed.

Example 4.6 Let us �x a con�guration x 2 Ee and a signal s 2 S, and

assume that the probability that an agent switches to state `1' is given by

(16). Suppose that the mapping gs : C
jN(a)j ! [0; 1] is di�erentiable, and

denote the partial derivative with respect to xb by gbs. If

max
s

X
a2N(0)

max
n���gas �(xb)b2N(0)

���� : xb 2 C
o
< 1;

then our weak social interaction condition (27) is satis�ed.

We shall now state conditions on the behaviour of individual agents and

on the signal kernel Q which guarantee asymptotic stability on the level of

aggregate behaviour.

Theorem 4.7 Suppose that our Assumption 4.4 holds true, and that the

weak social interaction condition (27) is satis�ed. Then the macroscopic

process fR(xt)gt2N converges in law to a unique stationary distribution �
�.

Here �� is a probability measures on Mh(E).

Proof: Due to Lemma 4.9 in Horst (2001a), our weak social interaction

condition yields

ju(�; s) � u(�̂; s)j � �d(�; �̂) (�; �̂ 2Mh(E); s 2 S):

Thus, the random system with complete connections �� introduced in (24)

is distance diminishing in the sense of De�nition 4.3 (ii). In view of (25),

our assertion therefore follows from Theorem 4.1.2 in Norman (1972) as

(Mh(E); d) is a compact metric space. 2
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5 Dynamics of Equilibrium Prices

We are now going to analyze the long run behaviour of stock prices in our �-

nancial market model. In order to simplify notation, and in view of (25), we

shall from now on assume that the random environment f~%gt2N for the evo-

lution of the asset price process fptgt2N is generated by the Markov chain

(f�tgt2N ; (P̂�)�2Mh(E)) associated with the random system with complete

connections �� introduced in (24). More precisely, we consider a price pro-

cess fptgt2N which is de�ned by the recursive relation (14), but assume that

the conditional law

~
Q(�t; �) (28)

of the random variable ~%t given the random �eld �t is described by a stochas-

tic kernel ~
Q from Mh(E) to M(C). Throughout this section, we assume

that the assumptions stated in Theorem 4.7 are satis�ed.

In Section 5.1 we consider an ergodic reference model. We shall assume

that the initial distribution of the Markov chain f�tgt2N is given by its unique

invariant distribution ��. Under the law P̂��(�) :=
R
P̂�(�)��(d�) the process

f�tgt2N is stationary and ergodic. In economic terms this amounts to a

situation where the mood of the market is already in equilibrium. Imposing

a suitable mean-contraction condition on the transformation F we show that

the sequence fptgt2N governed by (14) converges pathwise to a stationary

process fP �t gt2N in the sense that

P̂�� [ lim
t!1

jpt � P
�
t
j = 0] = 1: (29)

Nonetheless, the price uctuations in our �nancial market model may be

highly volatile. Consider, for example the log-linear dynamics (12) and

assume that cc > 1. In periods where the fraction of chartists who are

involved in the formation of equilibrium prices comes close to the critical

value 1
cc
, the process fptgt2N may become highly unstable. Economically,

this feature can be interpreted as the temporary occurrence of bubbles or

crashes in a �nancial market model whose overall behaviour is ergodic.

In Section 5.2, we concentrate on a �nancial market model where the

sequence of temporary price equilibria is governed by a log-linear stochastic

di�erence equation of the form

log pt+1 = f(~%t+1) log pt + g(~%t+1) (t 2 N):
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We consider a situation where the mood of the market is out of equilibrium,

but settles down in the long run. We state conditions on the non-stationary

random environment f~%tgt2N which ensure that the price process converges

to a stationary regime.

5.1 Equilibrium Prices in a Stationary Environment

Let us analyze the long run behaviour of the asset price process in an ergodic

reference model. We assume that the Markov chain f�tgt2N which described

the stochastic evolution of the aggregate behaviour already starts in its

probabilistic equilibrium �
�; see Theorem 4.7. In this case, the sequence

of temporary price equilibria fptgt2N is driven by a stationary and ergodic

random environment f~%tgt2N , and so we can apply a result provided in

Borovkov (1998) in order to study to asymptotics of the asset price process.

We denote by p the initial price at time t = 0, put ~%0n := (~%1; : : : ; ~%n)

and assume that the following conditions concerning the iterates

F (~%0n; p) := F (~%n; �) Æ � � � Æ F (~%2; �) Æ F (~%1; p) (n 2 N):

are satis�ed; see also Borovkov (1998), Chapter 2, Section 8.

Assumption 5.1 (i) For some p0 2 R and for each Æ > 0, there exists

N = N(Æ) such that, for all n � 1, we have

P̂�� [jp0 � F (~%0n; p0)j > N ] < Æ:

Thus, the sequence fptgt2N is assumed to be bounded in probability.

(ii) The function F = F (~%; p) is continuous in p and there exists an integer

r � 1, a number � > 0, and a measurable function c : Rr ! R+ such

that

jF (~%0
r
; p1)� F (~%0

r
; p2)j � c(~%0

r
)jp1 � p2j (p1; p2 2 R)

1

r

Ê�� log c(~%
0
r
) � ��;

where Ê�� denotes the expectation with respect to the measure P̂�� .

(iii) The sequence flog c(~%jr; : : : ; ~%jr+r)gj2N satis�es the strong law of large

numbers.
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Note that Assumption 5.1 (ii) may be viewed as a mean contraction

condition for the sequence fptgt2N governed by (14). The next theorem

follows from Theorem 12.2 in Borovkov (1998). In the case of a linear

transformation F , it reduces to Theorem 1 in Brandt (1986).

Theorem 5.2 Suppose that Assumption 5.1 is satis�ed. Then there exists a

stationary process fP �t gt2N such that, for any starting point p of the sequence

fptgt2N , we have

P̂�� [ lim
t!1

jP �
t
� ptj = 0] = 1:

If the initial value p has the same distribution as the random variable P �0 ,

then the price process fptgt2N is stationary.

For our �nancial market model, and under the assumption that the mood

of the market is already in equilibrium, Theorem 5.2 provides a bound for

the aggregate e�ect of interaction between di�erent traders which ensures

that the induced price uctuations are asymptotically stationary. Beyond

this bound the price process may become highly transient. A continuous-

time analogue of Theorem 5.2 is formulated in F�ollmer and Schweizer (1993),

where it is shown that the trajectories in a simple log-linear model may either

tend to zero or go o� to in�nity with positive probability if the destabilizing

e�ects of the environment are on average too strong.

Example 5.3 Consider the log-linear demand structure described by (5)

together with (6) and (7). In this case, the market clearing condition implies

the log-linear price dynamics of the form

log pt+1 = f(~%t+1) log pt + g(~%t+1);

where the mappings f; g :M(C)! R are given by (13). If the conditions

Ê�� log jf(%̂0)j < 0 and Ê�� (log jg(%̂0)j)+ <1

are satis�ed, then the price process converges pathwise to a stationary pro-

cess. Such a log-linear price dynamics is analyzed in detail in Section 5.2.

Example 5.4 (Generalized auto-regression) Suppose that the sequence of

equilibrium prices fptgt2N obeys the recurrence relation

pt+1 = G(f(~%t+1)Ĝ(pt) + g(~%t+1));
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where Ĝ;G : R ! R are Lipschitz continuous functions, i.e.,

jĜ(p1)� Ĝ(p2)j � k̂jp1 � p2j; jG(p1)�G(p2)j � kjp1 � p2j:

As a result of Theorems 8.4 and 12.2 in Borovkov (1998), the sequence

fptgt2N satis�es parts (i) and (ii) of our Assumption 5.1 if

log jk̂kj+ Ê�� log jf(~%0)j < 0 and Ê�� (log jg(~%0)j)+ <1:

5.2 Equilibrium Prices in a Non-Stationary Environment

Let us now concentrate on a �nancial market model where both the indi-

vidual excess demands functions and the reference levels take a log-linear

form; see for instance (5) together with (6) and (7). In such a situation,

the dynamics of our price uctuations is described by a stochastic sequence

fptgt2N which obeys the log-linear recursive relation

log pt+1 = f(~%t+1) log pt + g(~%t+1) (t 2 N): (30)

Our goal is to analyze the asymptotic behaviour of asset prices under the

assumption that the mood of the market is out of equilibrium but becomes

stationary in the long run.

In order to make this more precise, note �rst that the environment

f~%tgt2N for the evolution of the price process is stationary and ergodic under

the law P̂�� . Next, we introduce the �-�elds

F̂t := � (~%s : s � t)

and denote by T̂ :=
T
t2N F̂t the tail-�eld generated by the sequence f~%gt2N .

We say that the process f~%gt2N has a nice asymptotic behaviour, if

lim
t!1

sup
�

kP̂� � P̂��kF̂t = 0: (31)

Here, kP̂��P̂��kF̂t denotes the total variation of the signed measure P̂��P̂��
on F̂t. Since the total variation distance is continuous along decreasing �-

algebras, we have

lim
t!1

kP̂� � P̂��kF̂t = kP̂� � P̂��kT̂ :
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Thus, (31) implies that P̂� = P̂�� on T̂ , and so the asymptotic behaviour of

a nice driving sequence f~%tgt2N is the same under P̂� and under P̂�� . In this

sense the sequence f~%gt2N becomes stationary in the long run.

Lemma 5.6 below shows that the process f~%tgt2N has a nice asymptotic

behaviour whenever the Markov chain f�tgt2N converges in law to a unique

equilibrium and if the stochastic kernel ~Q introduced in (28) satis�es a mild

regularity condition. Using this result, we show in Theorem 5.7, that our

�nancial price uctuations behave asymptotically in a stable manner if the

destabilizing e�ects of the random environment on the dynamics of the price

process are on average not too strong.

Assumption 5.5 The stochastic kernel ~
Q from (Mh(E); d) to M(C) in-

troduced in (28) satis�es a uniform Lipschitz condition:

k ~Q(�; �)� ~
Q(�̂; �)k � Ld(�; �̂):

Let us now establish the following result about the asymptotic behaviour

of the driving sequence f~%tgt2N .

Lemma 5.6 Suppose that our Assumptions 4.4 and 5.5 are satis�ed. Then

the random environment f~%tgt2N for the evolution of the asset price process

has a nice asymptotic behaviour in the sense of (31).

Proof: Let us denote by B the Borel-�-�eld on (Mh(E); d). In a �rst step,

we are going to establish the existence of a constant L <1 such that���P̂�[f~%0; : : : ; ~%tg 2 B]� P̂~�[f~%0; : : : ; ~%tg 2 B]
��� � Ld(�; ~�) (32)

for all t 2 N and B 2 
t

i=1B. To this end, we denote by LQ and L ~Q the

Lipschitz constants for the stochastic kernels Q and ~
Q, respectively, and

introduce the quantity

�t := sup
B

sup
� 6=~�

���P̂� [f~%0; ~%2; : : : ; ~%tg 2 B]� P̂~�[f~%0; ~%2; : : : ; ~%tg 2 B]
���

d(�; ~�)
:

Due to the contraction property of the transformation u established in The-

orem 4.7 and because of the uniform Lipschitz conditions imposed on the
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stochastic kernel Q and ~
Q, we have that���P̂� [f~%0; : : : ; ~%t+1g 2 B]� P̂~� [f~%0; : : : ; ~%t+1g 2 B]

���
� sup

B

���P̂� [~%0 2 B]� P̂~� [~%0 2 B]
���+ sup

B

���Q̂(�;B)� Q̂(~�;B)
���

sup
B;s

���P̂u(�;s)[f~%0; : : : ; ~%tg 2 B]� P̂
u(~�;s)[f~%0; : : : ; ~%tg 2 B]

���
� (L ~Q + LQ + ��t)d(�; ~�);

and so

�t � (L ~Q + LQ)
X
i2N

�
i �

L ~Q + LQ

1� �

:

In particular, (32) holds with L =
L ~Q

+LQ
1�� .

Let us denote by U
t the t-fold iteration of the transition operator U

associated with the Markov chain f�tgt2N . Since

kP̂� � P̂��kF̂t = sup
B

����(U t
P̂�[f~%tgt2N 2 B])(�)�

Z
P~� [f~%tgt2N 2 B]��(d~�)

����
and because the mapping � 7! P�[f~%tgt2N 2 B] from Mh(E) to [0; 1] is

Lipschitz continuous with Lipschitz constant L <1, we can apply Lemma

2.1.57 in Iosefescu and Theodorescu (1968): There are constants �L <1 and

�� < 1 such that

sup
�;B

�����(U t
P̂�[f~%tgt2N 2 B])(�)�

Z
Mh(E)

P~� [f~%tgt2N 2 B]��(d~�)
����� � �

L��t:

This yields our assertion. 2

In our present setting, the logarithmic stock price process is described by

a linear recursive stochastic equation in a non-stationary environment. Un-

der the assumption that the environment has a nice asymptotic behaviour,

the asymptotics of such processes is analyzed in Horst (2001b). These re-

sults allow us to introduce a bound for the aggregate e�ect of interaction

between di�erent traders which ensures that the price process is driven into

equilibrium whenever the mood of the market itself settles down in the long.
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Theorem 5.7 Suppose that the asset price process fptgt2N obeys the log-

linear relation (30) and that our Assumptions 4.4 and 5.5 are satis�ed. If

the random variables f(~%0) and g(~%0) satisfy

Ê�� log jf(~%0)j < 0 and Ê��(log jg(~%0)j)+ <1; (33)

then there exists a unique probability measure � on R
N such that the shifted

sequence fpt+T gt2N converges in distribution to � as T !1.

Proof: Due to (31) and (33), the sequence f(f(~%t); g(~%t))gt2N is \nice" in

the sense of De�nition 2.1 in Horst (2001b). Thus, our assertion follows

from Theorem 2.4 in Horst (2001b). 2

6 Continuous-Time Asset Price Processes

In this section, we shall again assume that the dynamics of the logarithmic

price process can be described by linear recursive stochastic equation. Under

mild technical assumptions on the driving sequence f~%tgt2N we will obtain

a continuous-time asset price process fPtgt�0 by passage to the limit from

the discrete-time equilibrium price process fptgt2N de�ned recursively by

log pt+1 � log pt = f(~%t+1) log pt + g(~%t+1) (t 2 N): (34)

The convergence concept we use is weak convergence on the Skorohood space

D
d of all Rd -valued right-continuous functions with left limits on [0;1), en-

dowed with the weak topology. A similar approach was carried out by

F�ollmer and Schweizer (1993) who passed to a continuous-time model from

a sequence of suitably speci�ed discrete-time processes evolving in an ex-

ogenously given stationary and ergodic random environment. We extend

the F�ollmer-Schweizer model by (i) analyzing a situation were the driving

sequence is derived endogenously, and (ii) by replacing the stationarity as-

sumption on the mood of the market by an asymptotic stability condition.

To this end, we consider in Section 6.1 a sequence of discrete-time

stochastic processes fP ngn2N , P n = fP n

t
gt2N , de�ned recursively by the

linear relation

P
n

t+1 � P
n

t
=

1p
n

AtP
n

t
+

1p
n

Bt (t; n 2 N)
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in the random environment f(At; Bt)gt2N . We formulate conditions on the

non-stationary driving sequence f(At; Bt)gt2N which allow us to derive a

convergence result for the processes fP ngn2N . This will be achieved by

applying an invariance principle to the non-stationary continuous-time pro-

cesses Xn and Y n which are speci�ed by

X
n

t
:=

1p
n

[nt]X
i=0

Ai and Y
n

t
:=

1p
n

[nt]X
i=0

Bi: (35)

Armed with these results, we establish in Section 6.2 a Black-Scholes type

approximation for the asset price process (34) in a situation where the mood

of the market settles down in the long run.

In the sequel it will be convenient to denote by Law(X;P) the law of a

random variable X under the measure P.

6.1 A Functional Central Limit Theorem for Non-Stationary

Sequences

Let f(At; Bt)gt2N a sequence of R2 -valued random variables de�ned on some

probability space (
;F ;P). For any n 2 N, we consider a discrete-time

process fP n

t gt2N given by the linear relation

P
n

t+1 � P
n

t
=

1p
n

AtP
n

t
+

1p
n

Bt: (36)

If fZn

t gt2N is any discrete-time process, we identify Zn with the continuous-

time process Zn

t := Z
n

[nt] (t � 0) whose paths are right-continuous. In

terms of the quantities Xn and Y n de�ned in (35), our stochastic di�erence

equation (36) is equivalent to the stochastic di�erential equation

dP
n

t = P
n

t�dX
n

t + dY
n

t : (37)

If the driving sequence f(At; Bt)gt2N is stationary and ergodic under the

law P, and under what F�ollmer and Schweizer (1993) call \standard as-

sumptions" on the two sources of randomness fAtgt2N and fBtgt2N , one can
apply an invariance principle to the sequences Xn and Y n (n 2 N) de�ned

by (35) and assume that the process f(Xn
; Y

n)gn2N is \good" in the sense

of the following de�nition.
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De�nition 6.1 (DuÆe and Protter (1992)) A sequence fZngn2N of semi-

martingales de�ned on probability spaces (
n
;Fn

;P
n) is called \good" if,

for any sequence fHngn2N of c�adl�ag adapted processes, the convergence

Law((Zn
;H

n);Pn)
w�! Law((Z;H);P) (n!1)

implies the convergence

Law

��
Z
n
;H

n
;

Z
H

n

�dZ
n

�
;P

n

�
w�! Law

��
Z;H;

Z
H�dZ

�
;P

�
:

Here
w�! denotes weak convergence of probability measures.

Let us summarizes some results from F�ollmer and Schweizer (1993).

Proposition 6.2 (i) Suppose that the driving sequence f(At; Bt)gt2N is

stationary and ergodic and that EA0 = EB0 = 0. Under \standard

assumptions" on the two sources of randomness fAtgt2N and fBtgt2N ,
the sequence f(Xn

; Y
n)gn2N introduced in (35) converges in law to the

Gaussian martingale (X;Y ) = V �W . Here, W = (W1;W2) denotes

a two-dimensional standard Brownian motion and V is a suitable de-

terministic 2� 2 dispersion matrix.

(ii) If the sequence f(Xn
; Y

n)gn2N is \good" in the sense of De�nition 6.1,

the process f(Xn
; Y

n
; P

n)gn2N converges in law to (X;Y; P ). Here,

P = fPtgt�0 is the unique strong solution of the stochastic di�erential

equation

dPt = PtdXt + dYt: (38)

That is, P = fPtgt�0 is the pathwise solution of a SDE of the form

dPt = �PtdWt + ~�d ~Wt

where W , ~W are standard Brownian motions with correlation %. If � >

0, then the di�usion limit fPtgt�0 converges to a stationary process,

and its invariant distribution can be given in closed form.

We are now going to establish a \non-stationary" version of Proposition

6.2. We obtain a convergence result for the processes fP ngn2N given that

the driving sequence f(At; Bt)gt2N is out of equilibrium, but has a nice

asymptotic behaviour.
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Assumption 6.3 (i) There exists a probability measure P
� on (
;F)

such that the environment f(At; Bt)gt2N is stationary and ergodic un-

der the law P
�.

(ii) The asymptotic behaviour of the environment f(At; Bt)gt2N is the same

under P and under P�, i.e.,

kP� P
�kT = lim

t!1
kP � P

�kF̂t = 0

where F̂t := � ((As; Bs) : s � t) and T :=
T
t2N F̂t is the tail-�eld gen-

erated by the sequence f(At; Bt)gt2N .

(iii) We have E
�
A0 = E

�
B0 = 0, where E

� denotes the expectation with

respect to the law P
�.

(iv) Under the law P
� an invariance principle can be applied to the sequence

f(Xn
; Y

n)gt2N given by (35).

Below, we will show that the driving sequence f(f(~%t); g(~%t))gt2N for the

asset price process de�ned by (34) satis�es parts (i), (ii) and (iv) of the above

assumption whenever our Assumptions 4.4 and 5.5 are satis�ed. In this case

the driving sequence also satis�es one of the \standard assumptions". This

allows us to obtain a di�usion approximation for the asset price process (34).

Theorem 6.4 If the driving sequence f(At; Bt)gt2N satis�es Assumption

6.3, then the sequence of processes fZngn2N = f(Xn
; Y

n)gn2N converges

in distribution to the Gaussian martingale (X;Y ) = V � W . Here, W =

(W1;W2) is a 2-dimensional standard Brownian motion under the law P
�

and V is a deterministic volatility matrix.

Proof: In order to verify our assertion, we proceed in several steps.

1. Due to our Assumption 6.3, we know that

Law(Zn
;P
�)

w�! Law(V �W;P�) (n!1):

2. We shall now use the assumption that the asymptotic behaviour of

the driving sequence f(At; Bt)gt2N is the same under P� and under

the original measure P in order to show that the sequences fXngn2N
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and fY ngn2N satisfy an invariance principle P. More precisely, we are

going to verify that

Law(Zn
;P)

w�! Law(V �W;P�) (n!1): (39)

To this end, let f�ngn2N be a sequence of real numbers such that

�n " 1 and such that �n=
p
n ! 0 as n ! 1. For a given \time

horizon" T > 0, and for each n 2 N, we introduce the two-dimensional

process f eZn
t
g0�t�T given by

e
Z
n

t
:=

(
1p
n

P[nt]
i=�n

(Ai; Bi) if �np
n
� t � T

0 otherwise.

We denote by d0(�; �) and BD the Skorohood metric5 and the Borel-�-

�eld on the space D R2 [0; T ], respectively. Note that

d0(Z
n
;
e
Z
n) � �np

n

�����
 

1

�n

�nX
i=0

jAij;
1

�n

�nX
i=0

jBij
!����� : (40)

Since P = P
� on the tail-�eld generated by the sequence f(At; Bt)gt2N

and because the environment f(At; Bt)gt2N is ergodic under the law

P
�
; the series

1

�n

�nX
i=0

jAij and
1

�n

�nX
i=0

jBij

are P- and P�-almost surely convergent as n!1. Since limn!1
�np
n
=

0 we obtain that

lim
n!1

d0(Z
n
;
e
Z
n) = 0 P-a.s. and P

�-a.s. (41)

Observe now that the event f eZn 2 Bg (B 2 BD ) belongs to the �-

algebra F̂�n . Since the environment has a nice asymptotic behaviour

in the sense of (31), there exists a sequence fcngn2N , cn # 0 as n!1
such that

sup
B

���P[ eZn 2 B]� P
�[ eZn 2 B]

��� � cn: (42)

5For the de�nition of d0 see, e.g., Billingsley (1968), p. 113.
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3. Let us now denote by Q� the law of the Gaussian martingale V �W
under the measure P� and �x a Q�-continuous set B 2 BD . By Step 1

above we know that

lim
n!1

P
�[Zn 2 B] = Q

�[B]:

Thus, due to (41) and due to Theorem 4.2 in Billingsley (1968), we

have that

lim
n!1

P
�[ eZn 2 B] = Q

�[B]:

Using (42) we see that

lim
n!1

P[ eZn 2 B] = Q
�[B]:

Therefore, (41) and Theorem 4.2 in Billingsley (1968) imply that

Law(Zn
;P)

w�! Law(V �W;P�) (n!1): (43)

2

Remark 6.5 It is straightforward to extend the above theorem to the case

E
�
A0 6= 0, E�B0 6= 0. For notational convenience, however, we shall restrict

our attention to the case E�A0 = E
�
B0 = 0.

Let us assume that the non-stationary driving sequence f(At; Bt)gt2N
de�ned on (
;F ;P) is \good" in the sense of DuÆe and Protter (1992)

and satis�es our Assumption 6.3. In this case it follows from Theorem 6.4

and Proposition 6.2 that the sequence of processes fP ngn2N de�ned by (37)

converges in distribution to the unique strong solution of the stochastic

di�erential equation

dPt = PtdXt + dYt:

Armed with these results we are now ready to show how the discrete-time

asset price process fptgt2N in a �nancial market model with log-linear excess

demand functions can indeed be approximated in law by a di�usion process.
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6.2 A Di�usion Approximation for the Stock Price Process

Let us return to the stock price process described by (34). Throughout this

section we assume that Markov chain f�tgt2N associated with the random

system with complete connections �� de�ned by (24) converges in law to

�
� and that the random environment f~%tgt2N for the evolution of the stock

price process has a nice asymptotic behaviour in the sense of (31). This

condition is satis�ed if, for example, our Assumptions 4.4 and 5.5 hold true.

Uniqueness of the stationary probability measure implies that the sequence

 := f(f(~%t); g(~%t))gt2N

is stationary and ergodic under the law P�� , and so the environment  

satis�es Assumption 6.3 (i) and (ii).

It follows from the proof of Lemma 5.6 that  is '-mixing under P̂� and

that, independent of � 2 Mh(E), the n-th mixing coeÆcient is bounded

above by L�n. Hence, due to (2.58) and (2.59) in Billingsley (1968), the

driving sequence  also satis�es part (iv) of Assumption 6.3 whenever the

random variables f(~%0) and g(~%0) have �nite variance under P̂�� . Thus, we

have shown

Theorem 6.6 Suppose that the random variables f(~%0) and g(~%0) have �-

nite variance under P̂�� and that Ê�� f(~%0) = Ê�� f(~%0) = 0. Then the

sequence f(Xn
; Y

n)gn2N de�ned on the probability space (
̂; F̂ ; P̂�) by

X
n

t :=
1p
n

[nt]X
i=0

f(~%i) and Y
n

t :=
1p
n

[nt]X
i=0

g(~%i) (t � 0) (44)

converges in law to the continuous martingale (X;Y ) = V �W . Here W =

(W1;W2) is a two-dimensional Brownian motion under P̂�� , and V is a

deterministic 2� 2 dispersion matrix.

In order to obtain a di�usion approximation for our asset price process

fptgt2N de�ned by (36), it remains to verify that the sequence f(Xn
; Y

n)gn2N
de�ned in (44) is indeed \good" in the sense of DuÆe and Protter (1992).

Proposition 6.7 Under Assumptions 4.4 and 5.5 the sequence fZngn2N =

f(Xn
; Y

n)gn2N of semimartingales given by (44) is \good" in the sense of

DuÆe and Protter (1992).
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Proof: In order to show that the sequence fZngn2N is \good", we have to

�nd a suitable semimartingale decomposition of the processes Zn (n 2 N)

under the law P̂� . In the sequel, Ê � denotes the expectation with respect to

P̂� . Following Ethier and Kurtz (1986), and DuÆe and Protter (1992), we

introduce the �-�elds

Gt := � (ff(~%i); g(~%i)g : 0 � i � t) (t 2 N)

and the processes M = fMtgt2N and A = fAtgt2N given by

Mt :=

 P
t

k=0 f(~%k) +
P1

k=0 Ê � [f(~%k+t)jGt]P
t

k=0 g(~%k) +
P1

k=0 Ê � [g(~%k+t)jGt]

!
(45)

and

At :=

 P1
k=0 Ê � [f(~%k+t)jGt]P1
k=0 Ê � [g(~%k+t)jGt]

!
: (46)

Since the sequence f~%tgt2N is '-mixing under the law P̂� , and because the

n-th mixing coeÆcient is bounded above by L�
n, the series in (45) and

(46) are almost surely absolutely convergent; see, e.g., Ethier and Kurtz

(1986), p. 351. Furthermore, M is a vector of square integrable martingales

with respect to the measure P̂� and the �ltration fGtgt2N . In terms of the

quantities

M
n = fM[nt]gt�0; and A

n = fA[nt]gt�0

we consider the following decomposition:

Z
n

t =
1p
n

M
n

t �
1p
n

A
n

t (t � 0):

According to Theorem 4.3 in DuÆe and Protter (1992), the sequence of

semimartingales fZngn2N is \good" as soon as the following condition is

satis�ed (\Condition B"):

sup
n2N

fÊ � [sup
t�T

j�Mn

t j]g <1 and sup
n2N

fÊ � [jAnjT ]g <1:

Here, jAn

T
j denotes the total variation of the process An on the time interval

[0; T ] and �Mn

t
:=M

n

t
�Mn

t�. Obviously, the martingaleMn has uniformly
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bounded expected jumps. Using standard estimates provided in DuÆe and

Protter (1992), Example 6.3, it follows that

sup
n2N

fE � [jAnjT ]g <1:

Thus, \Condition B" is satis�ed, and so the sequence fZngn2N is indeed

\good". 2

Combining Theorem 6.6 with Proposition 6.7 leads us to the �nal result

of this paper:

Theorem 6.8 Suppose that the random variables f(~%0) and g(~%0) have �-

nite variance under P̂�� , that our Assumptions 4.4 and 5.5 are satis�ed and

that

Ê��f(~%0) = Ê��g(~%0) = 0:

Then the asset price process fptgt2N de�ned by (34) can be approximated

in law by the continuous-time di�usion process fPtgt�0 which solves the

stochastic di�erential equation

dPt = PtdXt + dYt:

Here, (X;Y ) = V �W , where W = (W1;W2) is a two-dimensional standard

Brownian motion under the law P̂�� , and V is a deterministic dispersion

matrix. The di�usion limit fPtgt�0 converges to a stationary regime and its

invariant distribution can be given in closed from.

7 Conclusion

We have provided a uni�ed probabilistic framework which allows us to anal-

yse the long run behaviour of stock prices in a situation where the demand

for a risky asset results from the interaction of a large number boundedly

rational of agents. In our model, agents interact locally with their neighbors,

and, at the same give, receive random signals about the average behaviour

throughout the entire population. Under simplifying assumptions on their

excess demand functions, and given that the interaction between di�erent

agents is not too strong, we have shown that the asset price process (i) con-

verges to a unique equilibrium distribution and (ii) can be approximated in
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law by a di�usion process. In this sense the present paper provides another

microeconomic foundation for the use of di�usion processes in the analysis

of �nancial price uctuations.

In our model, all randomness was generated endogenously, but can eas-

ily be extended to situations where the behaviour of agents also depends on

exogenous economic fundamentals like interest rates or government spend-

ing. In a simple mean �eld type model, i.e., under the assumption that

N(a) = fag, such a situation is analyzed in Horst (1999). Numerical simu-

lations show that slight changes in economic fundamentals may lead to large

and sudden price uctuations even though the price process becomes station-

ary in the long run. These uctuations do not reect rational adjustments

to new information, but are due to a distinct herd behaviour.
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