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Heuristics as Decision Rules∗

— Part I: The Single Consumer —
by

Werner Güth† and Wilhelm Neuefeind‡

Abstract: Many consumption prices are highly volatile. It would certainly
overburden our cognitive system to fully adjust to all these changes. House-
holds therefore often rely on simple heuristics when deciding what to con-
sume, e.g. in the form of a constant budget share for a specific consumption
commodity, like a vacation, or of a constant consumption amount for low-
cost commodities as food items. Using utility functions we can measure the
welfare loss, caused by such heuristics, and to what extent this can be re-
duced by adaptation. In the present Part I the analysis is mainly restricted
to a single consumer with a Cobb-Douglas utility function. General utility
functions will also be considered. Part II will study exchange economies.

1 Introduction

Traditional microeconomic theory assumes that consumers optimally ad-
just to prices which are simultaneously determined through market clear-
ing. This has led to a well developed theory of household behavior and
trade (see for instance Mas-Colell, Whinston & Green (1993)), which, how-
ever, is not based on a realistic model of consumers’ behavior. Here we do
not assume immediate and perfect adjustment to prices. Consumers may
not even have the latest information on prices when determining their con-
sumption behavior. This will, of course, often render their consumption
behavior suboptimal. On the other hand consumers are by no means ne-
glecting new information on prices; they rather frequently try to improve
their choice in the light of earlier experiences. In such a setup one can ask

1. whether the results depend on the type of choice variable (in our study
expenditure shares or consumption amounts) on which consumers rely,

2. how the parameters of the adaptation dynamics influence the welfare
losses and the process,
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schaft (DFG) via SFB 373. We acknowledge helpful comments by Rainer Schulz and Reinhard Selten.
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2 W. Güth and W. Neuefeind

3. whether the welfare losses due to relying on learning heuristics rather
than on optimization decrease or even vanish over time,

4. how the stable distributions of the resulting stochastic process depend
on the parameters of the dynamics, and

5. whether and how the interaction of dynamically adjusting agents in a
general equilibrium model modifies the conclusions.

Part I of our study concentrates on (1), (2), (3), and (4) whereas Part II
will explore question (5).

More specifically, it will be assumed that success in the sense of ex
post-satisfaction, which determines the adaptation dynamics, is measured
by a utility function. Regardless which degree of happiness the consumer
experiences (as measured by the utility function), she does not attempt to
maximize her utility. She rather gradually adjusts her choice variable as
somehow suggested by past experience. As choice variables of the consumer
we investigate

(a) consumption expenditures and

(z) consumption amounts.

Due to the choice of the specific Cobb-Douglas utility function, in the case
of stochastic price expectations, an optimal adjustment is possible for a,
whereas z-heuristics excludes perfect adjustment.

The adaptation dynamics is close to directional learning. A consumer,
who has changed her decision, later learns whether this has increased or
decreased her satisfaction without being aware how exactly these changes
depend on her choice variable and on the (deterministic or stochastic) price
level. If the former change has been successful, the consumer will continue
to move in the same direction whereas otherwise she will redo the former
change. By introducing a smallest grid and assuming that all changes
be local, i.e. of just one step on the grid, this completely determines the
adaptation where, of course, the adjustment process is stochastic in case
of stochastic prices. We, however, will introduce a stochastic element even
in the case of fixed prices.

Usual adaptation dynamics assume that agents may try out radically
different strategies rather than experiment with directional changes. Re-
inforcement learning (Bush-Mosteller (1955) and Roth-Erev (1998)), for
instance, assumes that agents use their different behaviors with probabil-
ities, determined by their respective previous accumulated success. Best
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reply dynamics or variants thereof are essentially belief dynamics which do
not question decision rationality with respect to prevailing beliefs. They
assume awareness of the true success function and forward looking rational
deliberation (see Fudenberg & Levine (1998)) which we wanted to substi-
tute by decision heuristics and adaptation to past experiences.

Evolutionary dynamics (see Hammerstein & Selten (1994) and Weibull
(1995) for surveys) deny any cognition by just focusing on the survival
prospects of possible strategies. More specifically, one asks which behav-
ior is best or evolutionarily stable if reproductive success is measured by
the true utility. When considering isolated consumers, the stable result is
obviously maximizing the true utility over the set of all possible realisa-
tions of the variables of the heuristics. Although other interpretations are
possible, too, the typical interpretation would be the one of evolutionary
biology: A more successful consumer has more offspring so that over time
more and more consumers would rely on the best variant of the possible
decision heuristic.

In contrast to those concepts, directional learning (for applications and
experimental support see Selten & Buchta (1999)) requires a cognitive rep-
resentation of the decision environment by the decision maker. It assumes
that she, after receiving feedback information about her former choice, e.g.
by experiencing her ex post-satisfaction as measured by the utility function,
asks herself whether it would have been better to have chosen a larger or
smaller activity level. If so, she either changes her behaviour in the desired
direction or not at all. Thus what is excluded is only a change in the non-
desired direction. How far she moves in the desired direction, if she does,
is not at all specified, i.e. it is a qualitative theory of direction learning.

Our adaptation dynamics also looks at the direction of changes, but
based on past experiences with such changes rather than based on ex post-
valuations (assuming a correct cognitive representation of the decision en-
vironment). Thus the main difference of our adaptive dynamics and di-
rectional learning seems to be that we substitute awareness of the decision
environment by past experiences with directional adaptation. Other differ-
ences are minor: If a change has been successful, she will continue to move
in this direction only with a given adaptation rate. If she has not recently
experimented with behavioral changes, she will mutate locally in either
direction. The purely qualitative aspect is finally avoided by assuming a
smallest grid and only local changes of just one step in a grid.

A similar study, regarding the basic methodology, is Huck, Normann &
Oechsler (1998), whose adaptive dynamics correspond very closely to ours
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in the sense that agents continue to move in one direction if this has been
successful before. The study of homogeneous oligopoly markets, however,
denies any stochastic aspects of the decision environment which we consider
as crucial when judging the reliability of certain decision heuristics. These
authors also explore different action variables, namely sales amounts and
sales prices, and a different environment. These somewhat restrictive as-
sumptions , however, allow them to derive a very interesting result, namely
that the stable result is cooperation. It will be interesting to see whether
a similar conclusion results for the simple exchange economy.

The report will be organized as follows: In Section 2, we lay out our
model of a single consumer confronting a deterministic price path. Sec-
tion 3 illustrates aspects and properties of the adaptive process which is
theoretically explored in Section 4. Section 5 formally introduces price
uncertainty. Section 6 studies the effect of price uncertainty via simula-
tions. Section 7 concludes. In Part II of this project we plan to analyse
the interactive adaptation dynamics of several interacting consumers in
deterministic and stochastic exchange economies.

2 The Household Model

Since we focus on consumption heuristics for a specific consumption good,
we assume just two commodities x and y, interpreting commodity y as “all
other consumption goods.” Choosing commodity y as numeraire commod-
ity, i.e. setting its price equal to 1, we just have one variable price p, the
price of commodity x. While we are especially interested in a randomly
fluctuating price, for the sake of exposition we will present the case of a
fixed price first. To save on notation we assume a constant disposable
income of 1 which is completely reserved for consumption purposes. To
measure the loss, implied by relying on periodic heuristics, and to pro-
vide some success measure when judging whether a previous change has
been good or bad ex post-satisfaction is assumed to be determined by a
utility function u(x, y). Much of the analysis holds for any non-satiated,
continuous, strictly quasi-concave utility function1.

For the sake of exposition, however, we will introduce the framework
via a Cobb-Douglas utility function

u(x, y) = xα · y1−α with 0 < α < 1. (1)

Here x, y ≥ 0 denote the consumption amounts of the two commodities

1For an introduction and discussion of these properties see Mas-Colell, Whinston & Green (1993).



Heuristics as Decision Rules 5

0.2 0.4 0.6 0.8 1
budget share

0.2

0.4

0.6

0.8

1

loss

Figure 1: Welfare Loss for a-heuristics with α = .3

and u(x, y) the satisfaction, generated by the consumption vector (x, y).
Our idea is that the consumer may be quite uncertain how u(·) depends on
her choices. In the spirit of boundedly rational behavior the function u(·)
only guides her when judging whether or not previous behavioral changes
were encouraging or not. Fully rational behavior according to classical
consumer’s theory for this utility function u(·) would require

x∗(p) =
α

p
and y∗(p) = 1 − α, (2)

and yield a utility level of

(
α

p
)α(1 − α)1−α. (3)

Clearly, every price p would require a specific amount x∗(p), i.e. the house-
hold would have to adjust to any change in the price p.

Our approach is that the household, being more or less unaware of u(·),
does not optimize, but rather relies on decision heuristics, e.g. by spending
a chosen share a with 0 < a < 1 of the unit income for the consumption of
commodity 1 or by consuming a chosen amount z of commodity 1 satisfying
0 ≤ z and zpu < 1, where pu is the upper bound of the price p.

In the case of a constant budget share a, commodity 1 could be the
percentage of a family’s disposable income set aside for the yearly vaca-
tion. The quantity of commodity 1 would then measure the length of the
recreation or (with appropriate interpretation) the quality of the holiday
resort chosen. Constant consumption amounts z are rather typical for food



6 W. Güth and W. Neuefeind

0.2 0.4 0.6 0.8 1
budget share

0.2

0.4

0.6

0.8

1

loss

Figure 2: Welfare Loss for z-heuristics with α = .3 and p = .5

products for which the assumption zpu < 1 imposes hardly any restriction.
We will call the first approach a-heuristics/-dynamics while the latter will
be referred to as z-heuristics/-dynamics. Now the a-heuristics yield the
purchased quantities

x(a, p) =
a

p
and y(a, p) = 1 − a (4)

with a utility level, depending on a, of

V (a) = (
a

p
)α(1 − a)1−α. (5)

We will use the term “indirect utility” for V . Thus the relative loss in
well-being over the whole period is measured by

L(a) = 1 − V (a)/V (α) = 1 − (
a

p
)α(1 − a)1−α/(

α

p
)α(1 − α)1−α. (6)

For the z-heuristics the corresponding purchased quantities are

x(z, p) = z and y(z, p) = 1 − pz. (7)

The corresponding indirect utility will be denoted W and the relative loss
in well-being is

M(z) = 1 − zα(1 − pz)1−α/(
α

p
)α(1 − α)1−α. (8)

From Figure 1 and Figure 2 it becomes clear that the choice of a = α
reduces the welfare loss to zero for all prices p. For the z-heuristics, the
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choice of z = α/p does the same trick for the fixed price p, but we would
expect persistent welfare losses if prices change. As long as the agent’s
utility function shows standard features (as being derived from a strictly
convex preference relation) both heuristics will lead to optimal behavior.2

Thus the loss in well-being would get smaller if a or z converges over time
to α or α/p, respectively since L(α) = M(α/p) = 0. For the special case
of the Cobb-Douglas utility function with α = .3, p = .5, Figure 1 offers
the graph of L(a), while Figure 2 presents the graph of M(z). Note that
in Figure 1 the function attains its minumum at the argument α, while
in Figure 2 the argument, at which the minumum is attained, equals α/p,
thus it depends on p.

3 Adjusting to Past Success

For the a- and z-heuristics let at and zt, respectively, denote the value cho-
sen in period t. Adaptation takes the form of changing at or zt, respectively,
in the light of earlier experiences. At time t, when our consumer has to
choose at, she recalls at−1 and at−2, which also allows her to recognize her
well-being in the corresponding time periods, and consequently the change
thereof. We have thus restricted ourselves to the most recent experiences.
We find it convenient to introduce

∆ta = at − at−1 (9)

as the a-change from period t− 1 to period t and similarly

∆tz = zt − zt−1. (10)

The state (of knowledge) of the consumer at time t is given by the pair
(at−1,∆t−1a). How does a household judge whether a previous adjustment
∆t−1a or ∆t−1z has been successful or not? The consumer will react to the
change in indirect utility as caused by her previous change:3

∆V (at−1,∆t−1a) = V (at−1) − V (at−2) and (11)

∆W (zt−1,∆t−1z) = W (zt−1) −W (zt−2), respectively. (12)

Adaptation is understood here as systematic and intuitive behavioral
changes in the light of previous experiences with such changes. When
adapting behavior we consumers usually do not jump from one extreme to

2subject to minor qualifications
3Because p is fixed here, we suppress the dependence of ∆V and ∆W on p.
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another. We mimic this real life behavior by restricting adaptations to the
choice of a neighboring value. Let g (a positive number) denote the size of
this smallest step. Thus

a ∈ G = {g, 2g, . . . Gg} with Gg < 1. (13)

In the same way let denote h the step size for z-changes, i.e.

z ∈ H = {h, 2h, . . . Hh} with Hh < p−1
u . (14)

If ∆t−1a = 0 or ∆t−1z = 0, one has not recently experimented with
behavioral changes so that adaptation in the light of recent experiences
is impossible. Similarly, when ∆t−1a = 0, but ∆V (at−1,∆t−1a) = 0 or
∆t−1z = 0, but ∆W (zt−1,∆t−1z) = 0, experimentation does not provide a
clue whether to change further in the previous direction or to move back.
In order to prevent that learning then stops, we assume that households
switch to a neighboring parameter value with small, but positive mutation
probability ε, where in the literature one is typically interested in limit
results for ε → 0. We will put the emphasis on small but finite ε, but will
discuss limit behavior as well. Formally, it is assumed that in case of

∆V (at−1,∆t−1a) · ∆t−1a = 0 (15)

mutation is governed by ε as follows:

∆ta = (+g|ε
2
, 0|1 − ε, −g|ε

2
). (16)

The notational convention here is that our consumer “mutates” up or down
by g with probability ε/2 each and keeps the old level of a with probability
1 − ε . In the same way for

∆W (zt−1,∆t−1z) · ∆t−1z = 0 (17)

we assume

∆tz = (+h|ε
2
, 0|1 − ε, −h|ε

2
). (18)

If (15) respectively (17), does not hold, experimentation has been informa-
tive. Recall that even in this case, the consumer adapts by a rate short
of 1. Let δ with 0 < δ < 1 denote this adaptation rate, i.e. the typically
(compared to ε) large probability of adapting in the light of one’s recent
experiences. It is an obvious idea in the case of a positive (∆V (·, ·) > 0
or ∆W (·, ·) > 0) recent change in well-being to move further in the previ-
ously experienced direction. Similarly, in case of a negative (∆V (·, ·) < 0
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or ∆W (·, ·) < 0) recent change, one will want to switch back, i.e. to choose
the previous parameter value at = at−2 and zt = zt−2, respectively. More
formally,

∆ta =

{
(+g|δ, 0|1 − δ) if ∆V (at−1,∆t−1a) · ∆t−1a > 0
(−g|δ, 0|1 − δ) if ∆V (at−1,∆t−1a) · ∆t−1a < 0

(19)

and

∆tz =

{
(+h|δ, 0|1 − δ) if ∆W (zt−1,∆t−1z) · ∆t−1z > 0
(−h|δ, 0|1 − δ) if ∆W (zt−1,∆t−1z) · ∆t−1z < 0.

(20)

Of course, in a world, in which a consumer cannot sell short of any com-
modity, the non-negativity of a, and 1 − a, or z and 1 − pz, respectively,
requires some changes for the border levels of a and z. In our simulations
of the a-heuristics, however, we prefer to rely on the self-healing aspect
of the adaptation dynamics: whenever a or 1 − a becomes negative, the
consumer’s well-being suffers so much that she automatically increases the
corresponding number sooner or later. For the z-heuristics this approach
turns out to be somewhat problematic in the case of stochastic prices.
Therefore we will choose the obvious modification of not allowing the con-
sumer to choose a z being negative or larger than 1/pu. This completely
describes the dynamics of at and zt, respectively, as influenced by muta-
tion (where the switching probability ε should be small) and by adaptation
(where the switching probability δ should be large). In the following we
want to study both,

• the long run-results of such behavioral dynamics, and

• the processes leading to them

to assess the losses in well-being by not adjusting or by adjusting too slowly.

4 Dynamic Analysis

Whether our consumer’s starting situation is certain or a probability distri-
bution, in all subsequent time periods, her situation can only be described
by a vector of probabilities over all possible states (at,∆ta). For (at,∆ta) let
r(at,∆ta) denote the probability of being in that state. Similarly s(zt,∆tz)
is the probability of being in state (zt,∆tz). The probability of all possible
states (at,∆ta), respectively (zt,∆tz), can be described by vectors with
2 + 3(G− 2) + 2 = (3G− 2) and 3H − 2 components, respectively:

r(t) = (r(at,∆ta)) all states (at,∆ta)
, and (21)
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s(t) = (s(zt,∆tz)) all states (zt,∆tz)
. (22)

Now (13), (15), (16), (19), and (21) imply a stochastic process which can
be described with help of a (3G− 2) by (3G− 2) transition matrix R; i.e.
our process is a Markov chain. The probabilities r(t) then are generated
from r(t− 1) by

r(t) = r(t− 1)R. (23)

Similarly, (14), (17), (18), (20), and (22) determine the stochastic dynamics

s(t) = s(t− 1)S (24)

where S is a (3H − 2) by (3H − 2) transition matrix.
Important information on the dynamics of the a- and z-heuristics, re-

spectively, is given by the existence and properties of the corresponding
stationary vectors r and s satisfying

r = rR and (25)

s = sS, respectively. (26)

Such a vector is collinear to a stationary distribution and may have to be
normalized before its components add up to 1 and, thus, is a stationary
distribution.

For such an analytic treatment of the behavioral model we will take care
of the boundary cases in the manner alluded to earlier for the z-heuristics.
It is simply assumed that she mutates in the only possible direction with
full mutation probability ε and that an impossible adaptation step does
not take place.

It is not difficult to compute the transition matrix for any of the cases
included in our analysis. It consists of G small block matrices (their di-
mensions not exceeding 3×5) on the diagonal. For illustration, we give the
matrix for the least complicated case G = 3. Let c = .5 and g = .25. With
G = {c− g, c, c+ g} symmetrically written, our state space is, conveniently
ordered:

{(c− g, 0), (c− g,−g), (c, g), (c, 0), (c,−g), (c + g, g), (c + g, 0)}.

The 7 x 7 transition matrix R then is given as follows:
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1 − ε 0 ε 0 0 0 0
1 − δP(c−g,−g) 0 δP(c−g,−g) 0 0 0 0

0 δP(c,g) 0 1 − δ 0 δP (c,g) 0
0 ε/2 0 1 − ε 0 ε/2 0
0 δP (c,−g) 0 1 − δ 0 δP(c,−g) 0
0 0 0 0 δP(c+g,g) 0 1 − δP(c+g,g)

0 0 0 0 ε 0 1 − ε




The zero entries are evident from the definition of the process as well
as the entries concerning ε−mutation in rows 1, 4, and 7. The entries in
the other rows require some explanation. The symbol P(c−g,−g) denotes
the probability that a previous move from at−2 = c − g − (−g) = c to
at−1 = c − g led to V (c − g) < V (c); i.e. a lower well-being, thus the
subscript. In this case, the previous move would be reversed; i.e ∆ta = g
and at = c − g + g = c. For the other superscripted P ’s which apply in
case of a higher well-being, the meaning of the symbol P (·,·) is clear, too.

In the case of fixed prices, we are currently presenting, the probabilities
P(·,·) and P (·,·) are degenerate: they only take on the values 1 and 0. In
the case of price uncertainty, which will be presented in the next section,
these probabilities are non-degenerate. The derivation of the probabilities
is somewhat technical and will be relegated to an Appendix.

There are some standard theoretical results about Markov chains (see
e.g. Kemeny-Snell (1960)) which indicate that the sequence of state vectors
r(t) from (23) converges. For any combination of (ε, δ) with ε > 0 and
δ < 1, a stationary distribution r (see (25)) exists. The distributions are
unique. For ε = 1−δ = 0 the distributions also exist but are not necessarily
unique.

Due to the simple structure of the transition matrix, say R, the sta-
tionary distributions can be explicitly computed – even for general utility
functions and more general state spaces.4 While the points in G do not
have to be equi-distant for this computation to be valid, we will consider
our special G – for notational convenience only.

Strictly speaking, six different cases would have to be considered. To
see this, note that a maximum can be interior or one of two boundary
maxima. Recall that our assumptions on the consumer’s utility function u
assure a unique maximum on any budget line generated by positive prices.
Denote by vi the utility of the consumption bundle generated by the choice
of ig as budget share. Then (vi, i = 1, . . ., G) has not more than two
maxima. The cases involving two maxima are non-generic and can be

4We thank Reinhardt Selten whose insistence that this could be done for more general functions
induced us to derive these results.
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omitted without loss of generality. Of the remaining three cases, the case
of the unique “interior” maximum is the most important. We will present
this case in some detail. The other two cases of one “boundary” maximum
are less important. In addition, the modifications of the computations and
formulae are straightforward. Thus these cases will be omitted, too.

Let i := arg maxG
j=1 vj. Since the maximum is interior, 1 < i < G.

Because G (almost) is a product space, we can use a convenient notation
for the entries of the stationary vector r: for any i = 1, . . ., G, let ri,k be
the probability (possibly after normalisation) of being in state (ig, kg) ∈ S
with k ∈ {−1, 0,+1}. Note that the two index pairs 1, 1 and G,−1 are
excluded.

We normalize ri,0 to equal 1. Then, for any ε > 0 and δ < 1, we recur-
sively compute the other entries of r “from the inside out.” The following
result holds whether i = G/2 or not.

Result: The unique stationary distribution for R is collinear with r where
r is computed as follows

1. ri,0 = 1.

2. ri,+1 = ri,−1 = ε/(2(1 − δ)).

3. For j in the increasing utility range 0 < j < i,

rj,k = rj+1,+1 ·




1 for k = −1
2(1 − δ)/(ε(1 + δ)) for k = 0

(1 − δ)/(1 + δ) for k = +1.

4. And symmetrically, for j in the decreasing utility range i < j < G,

rj,k = rj−1,−1 ·




1 for k = +1
2(1 − δ)/(ε(1 + δ)) for k = 0

(1 − δ)/(1 + δ) for k = −1.

5. Finally, we obtain

r1,k = r2,+1 ·
{

(1 − δ)/ε for k = 0
1 for k = −1.

and

rG,k = rG−1,−1 ·
{

1 for k = +1
(1 − δ)/ε for k = 0.
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The proof of this statement simply consists of verifying the equality
r = rR. Because the recursive definition of r makes this verification a
cumbersome task for general or large G, we will omit this verification. The
reader, however, will find it easy to verify it for the case G = 3. r is collinear
to the distribution (4(1 - δ + ε))−1(1− δ, ε, ε, 2(1− δ), ε, ε, 1− δ). Because
there is no price uncertainty, P(c−g,−g) = P(c+g,g) = P (c,g) = P (c,−g) = 1,
and the two other probabilities P(·,·) both are zero. Thus the matrix R
simplifies to




1 − ε 0 ε 0 0 0 0
1 − δ 0 δ 0 0 0 0

0 0 0 1 − δ 0 δ 0
0 ε/2 0 1 − ε 0 ε/2 0
0 δ 0 1 − δ 0 0 0
0 0 0 0 δ 0 1 − δ
0 0 0 0 ε 0 1 − ε




.

The verification of equation (25) now is straightforward.

The economically more relevant information consists of the probabilities
of ending up in particular states in G as opposed in S. We thus collaps
the state space to its natural old self G = {c− g, c, c+ g} and compute the
G−dimensional vector of probabilities q by adding up the probabilities in r
belonging to each state in G. For our example this is simple and yields the
vector (0.25, 0.5, 0.25) which seems surprising because it does not depend
on ε or δ. Upon reflection however, one notices that the data which enter
the process are in fact symmetric and independent of ε and δ.

For the general situation, the task is tedious but not particularly diffi-
cult. The result is that the stable distribution on G is collinear with the
vector q defined relative to the maximizing point i:

For j = 1, · · · , G, we obtain as the “probability” to be in state i + j,

qi+j =




1 for j = 0

((1 − δ)/(1 + δ))|j|−1/(1 − δ) for j ∈ {−i + 2, · · · ,−1,
+1, · · · , G− i− 2}

((1 − δ)/(1 + δ))|j|−1/2 for j ∈ {−i + 1, G− i}.

Note that for the “interior” maximum case the stable distribution on G
is independent of ε. For the “boundary” maximum cases, this is no longer
true as can be seen from Table 4.2 and Table 4.3.

We now compute the stationary distribution for various combinations
of the mutation and adaptation probabilities for the Cobb-Douglas utility



14 W. Güth and W. Neuefeind

function. The results, collected in the following tables, illustrate how the
stable distributions r in the sence of (25) depend on the interaction of
the two parameters ε and δ. For illustration only, in Table 4.1 we give the
stable distributions for α = .5 and δ = .9, for two values of ε. Note that the
numbers in Table 4.1 are consistent with q = (0.25, 0.5, 0.25) independently
of ε.

δ = 0.9

ε = 0.1 (0.125, 0.125, 0.125, 0.250, 0.125, 0.125, 0.125)
ε = 0.00001 (.249975, .000025, .000025, .49995, .000025, .000025, .249975)

Table 4.1: An Example of Stable Distributions for α = 0.5

For the “boundary” maximum case α = 0.2, slightly different computa-
tion formulae (which have been omitted) have to be used. The results are
somewhat more interesting, as indicated in Table 4.2.

ε = 0.1 (0.8326693, 0.1593625, 0.0079681)
δ = 0.9 ε = 0.0001 (0.9003933, 0.0948635, 0.0047432)

ε = 0.1 (0.9165826, 0.0834132, 0.0000042)
δ = 0.9999 ε = 0.0001 (0.9999800, 0.0000200, 0.0000000)

Table 4.2: Stable Distributions in G for α = 0.2

It is interesting to note the lack of continuity at ε = 0 and δ = 1, for which
the set of stable distributions is {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

For fixed δ < 1 and ε → 0 the stable distributions converge to (1, 0, 0),
a fact which can be corroborated by consulting Table 4.2. For fixed ε > 0
an δ → 1 the corresponding stable distributions converge to a distribution
sε, which depends on ε. Such results are collected in Table 4.3.

sε

ε = 10−1 (0.9166667, 0.0833333, 0.0000000)

ε = 10−5 (0.9999900, 0.0000100, 0.0000000)

ε = 10−9 (1.0000000, 0.0000000, 0.0000000)

Table 4.3: Limits of Stable Distributions for α = 0.2 and δ → 1

When analyzing the welfare consequences by computing the expected
utility of each of the stable distributions, one discovers that welfare grows
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with δ and 1 − ε but can be much lower if one happens to end up in one
of the “wrong” stable distributions for ε = 1 − δ = 0.

We conclude this section by giving an indication to what extent the use
of the Cobb-Douglas utility function can ease an analysis. In the special
case of the a-heuristics with fixed prices, we obtain the following identities.

P(c−g,−g) = P (c,g); P(c,−g) = 1 − P (c,−g);

P(c,g) = 1 − P (c,g); P(c+g,g) = P (c,−g).

Using these substitutions, we obtain a matrix of transition probabilities,
whose entries depend on only two parameters possibly varying with α, as
follows:




1 − ε 0 ε 0 0 0 0
1 − δP (c,g) 0 δP (c,g) 0 0 0 0

0 δ(1 − P (c,g)) 0 1 − δ 0 δP (c,g) 0
0 ε/2 0 1 − ε 0 ε/2 0
0 δP (c,−g) 0 1 − δ 0 δ(1 − P (c,−g)) 0
0 0 0 0 δP (c,−g) 0 1 − δP (c,−g)

0 0 0 0 ε 0 1 − ε




The study of the influence of changes in the setting on the behavior of the
consumer would thus be greatly facilitated.

5 Price Uncertainty

A source of consumers’ inability or unwillingness to optimally adjust bud-
get shares or consumption quantities to changing prices lies in the fact that
prices often rapidly and/or randomly change. We will model this volatility
in two different ways. First we consider the case that prices change ran-
domly and frequently in any period between adjustments of budget shares
or quantities and that the consumer buys frequently and is thus exposed to
a large representative sample of prices. If the distribution of prices is given
by a density ψ : R++ → R+, it is reasonable to measure the consumer’s
well-being as the average well-being over all prices

∫
(
a

p
)α · (1 − a)1−αψ(p)dp, and (27)

∫
zα(1 − zp)1−αψ(p)dp, respectively. (28)
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In the case of the a-heuristics we obtain:

V (a) = aα(1 − a)1−α

∫
(
1

p
)αψ(p)dp and (29)

L(a) = 1 − aα(1 − a)1−α/αα(1 − α)1−α. (30)

For the case of the z-heuristics the expressions are not quite as simple but
still straightforward:

W (z) = zα

∫
(1 − zp)1−αψ(p)dp and (31)

M(z) = 1 − zα

∫
(1 − zp)1−αψ(p)dp/(αα(1 − α)1−α

∫
(
1

p
)αψ(p)dp). (32)

For a wide variety of densities, in particular, for the uniform density
between a minimal value pl and a maximal value pu for p, these integrals
are easily computed for our simulations. Interestingly, because the large
sample size conveys a lot of information to the consumer, the consumer
is in the same situation as in the case of a price which does not change
at all over time – at least for the a-heuristics. For the z-heuristics , the
consumer’s optimal choice depends on prices and one would not expect
her to do as well in a world of changing prices as she would do with the
a-heuristics.

For our second, possibly more relevant modeling of the case of stochastic
prices, our consumer encounters a potentially different price pt in each
period t. She bases her decision on the change of the “indirect utility” ∆V
which now depends not just on the variable (at−1,∆t−1a) but also on the
changing prices. The definition of the change, following the definition in
(11), is as follows:

∆V (at−1,∆t−1a, pt−1, pt−2) = V (at−1, pt−1) − V (at−2, pt−2). (33)

The counterpart of (12) reads accordingly.
Note that the consumer does not actually have to remember prices but

only past levels of her well-being which are connected with the underlying
parameters and prices.

While, at first glance, the process has lost its Markovian property, this is
not necessarily the case because, for the Cobb-Douglas utility function, the
prices enter in a particularly simple way. This allows the formulation and
computation of the non-degenerate values of P(·,·) and P (·,·) in the matrices
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of transition probabilities. For the interested reader, we will sketch the
derivation of the probabilities in the Appendix only. Because the simulation
does not require the use of the transition matrix, the case of stochastic
prices will be included in the next section.

6 Simulation Results

For larger sets G and H, analytic results for the stable vectors r, respec-
tively s can be obtained similarly but are cumbersome to present. We
therefore rely on simulations when investigating less coarse grids G and H,
respectively. For α = .5 and the periods t = 1000 and t = 2000, Tables 5.1
to 5.4 present the actual welfare losses

L(at) and M(zt), respectively, (34)

as well as the average welfare losses

AL(at) =
1

t

t∑
q=1

L(aq) and (35)

AM(zt) =
1

t

t∑
q=1

M(zq), respectively, (36)

for various ε, δ-constellations in the range ε ≤ .1 and 1 − δ ≤ .1.

Here Tables 5.1 and 5.2 illustrating the welfare effects of the a-dynamics
are based on {

grid size: g = 1/30 and
initial conditions: a0 = g and ∆0a = g.

(37)

Tables 5.1 and 5.3 are computed for a deterministic price p which is
constant over time.5 For the four tables, τ denotes the actual welfare loss
at the corresponding time period t while the symbol φ denotes the average
welfare loss incurred up to that time period.

δ .9 .999 .99999
ε t = 1000 t = 2000 t = 1000 t = 2000 t = 1000 t = 2000
.1 τ .0022 .0022 .0000 .0022 .0000 .0000

φ .0106 .0061 .0049 .0030 .0049 .0030
.00001 τ .1156 .1156 .0000 .0000 .0000 .0000

φ .1181 .1168 .0041 .0021 .0049 .0030

Table 5.1: a-dynamics for a deterministic price p

5The actual price does not matter. The results do not depend on it.
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For Tables 5.2 and 5.4, the stochastic prices are determined according to
the uniform distribution over a narrow (pl = .9, pu = 1.1) and a wide
(pl = .1, pu = 1.9) price range. The correponding rows in the tables are
labeled n and w respectively.

δ .9 .999 .99999
ε t = 1000 t = 2000 t = 1000 t = 2000 t = 1000 t = 2000
.1 n τ .0022 .0022 .0022 .0089 .0000 .0089

φ .0118 .0129 .0134 .0108 .0128 .0099
w τ .0022 .0022 .0089 .0835 .0089 .0835

φ .0646 .0609 .0699 .0627 .0874 .0734
.00001 n τ .0572 .0572 .0000 .0089 .0000 .0000

φ .0600 .0586 .0143 .0121 .0130 .0120
w τ .5011 .5011 .0835 .0835 .4000 .1541

φ .5014 .5013 .0979 .0907 .0756 .0669

Table 5.2: a-dynamics for stochastic prices with narrow and wide range

Tables 5.3 and 5.4 for the z-dynamics are based on
{

grid size: h = 1/30 and
initial conditions: z0 = h and ∆0z = h.

(38)

δ .9 .999 .99999
ε t = 1000 t = 2000 t = 1000 t = 2000 t = 1000 t = 2000
.1 τ 0.0022 0 0 0 0.0022 0.0022

φ 0.0048 0.0031 0.0039 0.0025 0.0039 0.0025
.00001 τ 0.5011 0.5011 0.0022 0.0022 0.0022 0.0022

φ 0.5013 0.5012 0.0044 0.0033 0.0039 0.0025

Table 5.3: z-dynamics for a deterministic price p

δ .9 .999 .99999
ε t = 1000 t = 2000 t = 1000 t = 2000 t = 1000 t = 2000
.1 n τ 0.0002 0.0096 0.0387 0.0032 0.0002 0.0180

φ 0.0192 0.0162 0.0165 0.0141 0.0203 0.0144
w τ 0.0098 0.1514 0.1692 0.0772 0.0634 0.0904

φ 0.1709 0.1709 0.1486 0.1445 0.1695 0.1580
.00001 n τ 0.1638 0.1980 0.0001 0.0025 0.0010 0.0136

φ 0.1854 0.1845 0.0148 0.0113 0.0136 0.0130
w τ 0.6143 0.5266 0.6589 0.0020 0.0149 0.0007

φ 0.5165 0.5127 0.1874 0.1835 0.2004 0.1902

Table 5.4: z-dynamics for stochastic prices with narrow and wide range

As can be seen from Tables 5.1 and 5.3, for a deterministic and constant
price, actual welfare losses eventually are fairly constant for both kinds of
dynamics. As has to be expected with simulations of stochastic processes,
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there are exceptions. See ε = .1 and 1 − δ = .001 in the case of the a-
dynamics and ε = .1 = 1 − δ for the case of the z-dynamics. Otherwise
the actual welfare loss is the same for t = 1000 and t = 2000 whereas the
average welfare loss decreases with larger t since the initial inefficiencies
(due to starting with the lowest value) average out over a larger number
of periods. The exceptional result for ε = .00001 and δ = .9 with a nearly
constant major welfare loss over time for the z-dynamics illustrates how
rare mutations and adaptation failure (due to 1 − δ = .1) can induce long
stationary phases.

For the stochastic prices, the results in Tables 5.2 and 5.4 suggest that
for the
• narrow price range the actual welfare loss for t = 2000 is often not smaller
than for t = 1000 (exception: ε = .1, 1 − δ = .001 in the case of the z-
dynamics), whereas average welfare losses mostly decrease from t = 1000
to t = 2000 (exception: ε = .1 = 1 − δ for the a-dynamics);
• wide price range the actual welfare losses can increase and decrease (z-
dynamics: 4 decreases, 2 increases, a-dynamics: 1 decrease, 2 increases),
whereas average results generally improve over time with the only excep-
tion: ε = .1 = 1 − δ for the z−dynamics.

Let us say that a constellation looks unambiguously promising if τ =
0 for both t = 1000 and t = 2000 and φ2000 < φ1000 with the notation used
in Tables 5.1 to 5.4. For the deterministic price, only the results for the a-
dynamics with (ε = .1, 1−δ = .00001), (ε = .00001, 1−δ = .001 or .00001)
and for the z-dynamics with ε = .1, 1 − δ = .001 appear in this sense
unambiguously promising. This confirms the intuition that in case of the
z-dynamics a robust inefficiency appears more likely. For stochastic prices,
only the constellation (ε = .00001 = 1 − δ) for the a-dynamics for the
narrow price range looks unambiguously promising. An unambiguous con-
vergence to efficient consumption behavior is thus rather an exception than
the rule in case of stochastic prices, as had to be expected. More generally
this seems to justify the following

Remark: Directional (or in the terminology of Huck et al. (1998): trial and
error) learning will rarely bring about efficiency within a reasonable
time span of behavioral adaptation (after less than 2000 possible steps
of adaptation). A stochastic environment will further hinder quick
convergence to efficiency.

Let us look at the effects of reducing the mutation rate ε from .1 to
.00001. As can be seen from Tables 5.1 to 5.4, there often is no decrease
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of the actual or of the average welfare loss, leading to the next

Remark: If mutations become rare, improving efficiency is usually de-
layed.

Increasing the adaptation rate δ from .9 via .999 to .99999 often but
not always causes a reduction of actual (see, for instance, for ε = .1 and
t = 2000 the change from δ = .9 to δ = .999 for the narrow price range in
Table 5.2 or the corresponding result for δ = .999 to δ = .99999 in Table
5.4) or average (see, for instance, for ε = .00001 and t = 2000 the change
from δ = .999 to δ = .99999 in Table 5.4) welfare losses. Especially the
latter possibility that even average welfare losses increase are somewhat
discouraging. This is stated in the last

Remark: Increasing the adaptation δ beyond .9 does not necessarily en-
hance efficiency.

7 Conclusion

In the situation analyzed above, an individual decision maker can adapt
to her decision environment which can be a deterministic or stochastic
framework. Although, knowing the true measure of satisfaction, the op-
timal decision behavior could in principle be easily derived, the consumer
is unable to anticipate how satisfaction depends on behavior. Thus she
has to experiment with behavioral changes when ex post it can be judged
whether a behavioral change led to an improvement or not (in case of
stochastic prices one can, of course, be misguided).

Here we were not primarily interested in analytic convergence results
(that there exist asymptotically stable choices or limit cycles) which, in
our finite setup, is obvious. Some results are given in Section 4. What we
wanted to study is rather the adaptation process itself e.g. by investigating
whether early adaptation (t = 1 to 1000) differs substantially from later
one (t = 1001 to 2000) when limiting attention to a reasonable number
(≤ 2000) of possible adaptation steps.

Although our final goal is to study the interaction of individually adapt-
ing agents, which will be included in Part II, it is important to learn first
which welfare losses are caused by the stochastic adaptation alone, both
for the deterministic and the stochastic price environment. In the light
of such results, we will hopefully be able to single out what is due to the
interaction of trading partners who might adjust behavior simultaneously
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as assumed by Huck et al. (1998), or alternatingly as for instance, assumed
by Cournot (1838) in his dynamic justification of the duopoly solution.

Our main finding is a surprising persistency of welfare losses for a sub-
stantial time range (t ≤ 2000) which, not unexpectedly, is much smaller
for deterministic and constant prices than for stochastic prices. For the
a-dynamics, the highest average inefficiency for t = 2000 is .1168 for the
deterministic case and .5013 for the case of stochastic prices in Tables 5.1
and 5.2. Similarly, for the z-dynamics, it is .5012 in the deterministic case
and .5127 in the case of stochastic prices in Tables 5.3 and 5.4. This clearly
confirms the obvious intuition that in a stochastic environment learning will
only slowly improve behavior.

While the individual adjustment is stochastically influenced by the pa-
rameters 0 < ε, δ < 1 and by possibly random prices, the interaction of
trading partners introduces a new type of uncertainty that will be an es-
sential aspect to be studied in Part II. Of course, in a general equilibrium
framework prices cannot be assumed to be exogeneously given (determin-
istic or not) , but will have to be derived from market clearing. This does
not necessarily imply that for given individual behavior prices are deter-
ministic. To generate deterministic and stochastic prices in Part II, similar
to the distinction in Part I, we will rely on deterministic and stochastic
endowments.

Appendix

In determining the probabilities P(at−1,∆t−1a) and P (at−1,∆t−1a) respectively,
the consumer compares her well-being during the two preceding periods.
For the case of the a-heuristics, this comparison, with at−2 = at−1 +∆t−1a,
amounts to evaluating the inequality

aα
t−1(1 − at−1)

1−α

aα
t−2(1 − at−2)1−α

< γ (39)

where γ = 1 in the case of fixed prices p and in the case of large random
sampling and consumption during the preceding periods: In the first case
γ = pα/pα, in the latter it equals

∫
p−αf(p)dp/

∫
p−αf(p)dp . In this case,

at−1 , at−2, and α clearly determine whether this inequality holds or not.
Thus the quantities P(·,·) and P (·,·) are either 1 or 0 .

If prices vary only between the periodic adjustments but not during
the consumption periods, we obtain γ = pα

t−2/p
α
t−1 with pt−1, pt−2 being the

realisations of the random prices. Thus, P(at−1,∆t−1a) = Prob{ pt−2/pt−1 ≤ d}
with d being the left side of (39) raised to the power 1/α . Note that this



22 W. Güth and W. Neuefeind

number is independent of the random prices. These probabilities are well-
defined for all distributions of prices. If the random prices are uniformly
distributed between pl and pu, then is it not hard to compute that

P(at−1,∆t−1a) =

{ 1
2(pu/d− pl)(pu − dpl)/(pu − pl)

2 for d ≤ 1, and
1 − 1

2(pu − pl/d)(dpu − pl)/(pu − pl)
2 for d ≥ 1.

P (·,·) would be computed similarly. Note that the number d and thus
the probabilities depend on (at−1,∆t−1a). While these numbers would be
easy to compute, we are not using them in our simulations because we
are more interested in the intermediate (1 ≤ t ≤ 2000) behavior for large
state spaces which can be treated without explicitly using the matrix of
transition probabilities.
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