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riedle@mathematik.hu-berlin.de

October 19, 2001

Abstract

A stochastic delay differential equation is considered which is of the
form dX(t) = f(foo,o] v(ds)X (t + s)dt + dW (t), t > 0, with the initial
condition X (u) = Y(u) for u < 0. As it is successfully done in the deter-
ministic theory for delay equations, an axiomatic approach describing the
set of admissible initial functions is utilized to treat the stochastic equa-
tion, which permits the use of semi-group and spectral theory. Moreover,
it is obtained a representation of the solution in the abstract setting and
for a certain class of measures v one can give sufficient and necessary
conditions for the existence of a stationary solution.

1 Introduction

In a large variety of applications stochastic delay differential equations are
used for modeling purposes. In contrast to ordinary stochastic differential
equation the past of the process is taken into account. In discrete time there
is a well-developed theory for modeling such effects, e.g. ARMA, ARCH and
GARCH-processes. However, in many applications continuous time models
seem to be more adequate, e.g. in economy or biology, but the theory is much
less covered. The time delays arise from effects which are well-known as “time
to build”,“time to maturity”, “gestation lag” and others, see e.g. [BeRu91],
[Mac89], [MDo78].

Let (Q, F, P) be a probability space with filtration {F;};>o. On this probabil-
ity space let {W(t), F;,t > 0} be a Brownian motion with values in R%. We
consider the affine stochastic differential equation with infinite delay, that is

X (2) :/ V(ds)X (¢ + s)dt + dW (), >0, (1.1)
(700701
X(t)=7(), t<0,

where v is a d X d-matrix with real-valued locally finite measures as entries.
The initial condition is given by a stochastic process {Y(¢),¢ € (—o0,0]}, which
is supposed to be measurable with respect to Fy. The trajectories of the initial
process T are assumed to be P-a.s. elements of a linear function space B, the
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so—called phase space, which is a subset of the set of all measurable R%valued
functions on the negative half-line.

Equation (1.1) includes equation with a finite delay, that is the measure v is
concentrated on an interval [—r, 0] for fixed 7 > 0. In this case it is sufficient to
consider initial functions with support in [—r,0]. With regard to applications
it is quite natural to choose the phase space B as the set of continuous functions
on [—r,0]. But in the case of an infinite delay it is not sufficient to assume
the continuity of the initial function. Assume there is a process {X(t),t > 0}
satisfying equation (1.1) and fulfilling the initial condition. Then the integral
in (1.1) should be finite which yields in the demand

/ lv|(ds)|T(t+s)| < oo forall ¢ > 0.
(—00,—t]

Obviously that is not necessarily fulfilled by initial functions which are only
assumed to be continuous. Even for v—integrable initial functions Y the con-
dition is not necessarily satisfied because the shifted function Y(¢+-) may not
to be v—integrable. What is the proper choice for the set of initial functions?
There is a large variety of appropriate phase spaces but none of them seems
to be a “canonical choice”. Hence, building up a theory of the deterministic
analogue of equation (1.1) (see the following section), it became desirable to
approach the problem purely axiomatically. In the deterministic theory it is
successfully done in several contributions which are summarized in [HaKa78],
[Ka90] and [HiMuNa91]. The main aim of this article is to establish for the
stochastic differential equation (1.1) the axiomatic approach and to answer in
the abstract setting some questions which are motivated by the occurence of
a noise term as that on the existence of a stationary solution.

For the first time, equations of the form (1.1) and in a more general kind
are considered in [ItNi64]. But the above mentioned well-definedness of the
integral over the shifted initial function is neglected there.

If the functions ¢(s) = alf(s), s < 0, for all a € R? are elements of the
phase space B, also Volterra integrodifferential equations can be treated by
equation (1.1). These are equations of the form

X (1) :/[_to]u(ds)X(t-l—s)dt-l—dW(t), £>0, X(0)=T(0).

More general, equation (1.1) is included in that of the form
dX(t) = a(t, Xy)dt + b(t, Xy )dW(t), t>0, X(t)=7(), t<0, (1.2)

where X; := {X (t+u),u < 0} and a and b are functionals from R x B to R?
and R4*4, respectively. Equations of the form (1.2) can also be handled by
describing the phase space B in the abstract way. For a concrete phase space
B the existence and uniqueness and some stability aspects of the solution of
equation (1.2) are treated in [MiTru84]. The non-autonomous case of equation

(1.1),

X (1) = /(_ PBAIX AW, 120, X(0)=T0), 1£0



can also be treated in the proposed axiomatic way, one can even obtain a rep-
resentation of the solution. By rewriting such equations as Volterra equations
a representation of the solution is given in [Di89]. However, the representation
is no longer coupled in a direct way with the initial condition.

In section 1 we summarize some known results for the deterministic equation
corresponding to the stochastic one, which are necessary for the sequel. This
part is mainly based on [HiMuNa91] where one can also find a more compre-
hensive discussion of the results and many references. Some of the results can
be derived by the general theory of semi-groups for linear evolution equation
such as it is introduced in [EnNa00]. In addition the deterministic Volterra
integro—differential equation is considered and some new properties of its so-
lution are proved.

Without specifying the phase space B we obtain a representation of the so-
lution of the stochastic equation (1.1) in section 2. In the case of a finite
delay the question of the existence of a stationary solution is sophisticatedly
answered, see [GuKu00]. In the second part of this section we generalize the
results on stationarity to equation (1.1) with infinite delay in the abstract
setting, for that we have to impose a condition on the considered measure v.

2 The deterministic case

In the deterministic context consider the homogeneous linear equation

z(t) = v(ds)x(t+s), t>0, 2.3
0=, vss) (2.3
o(t) = olt), <0,

where v is a d x d-matrix with IK—valued locally finite measures as entries,
where K = R or K = C. The initial condition z(t) = ¢(t) for ¢t < 0 is given
by the function ¢, which is an element of a phase space B. The phase space
B is a linear space equipped with a semi-norm |-||z consisting of functions
mapping (—oc, 0] into K¢

peBC{n:(—o0,0] = K%: 7 is measurable}.

For any function z : (—oco,a) — K%, a > 0, denote the segment by z; =
{z(t + u),u < 0} for fixed t < a, which is a function on the negative line.
Such a function z is called admissible with respect to B on the interval [0, a),
if zp € B holds and z is continuous on [0,a). We may rewrite equation (2.3)
in operator notation by

z(t) = Lz, t>0, z0=¢ with g € B, (2.4)

where the linear operator L maps B into K¢ and is given by

L:B—KY ILn= / v(ds)n(s). (2.5)
(—00,0]



Obviously it has to be guaranteed that the linear operator L is bounded on
B, which is always assumed in this article. The results mentioned below holds
more generally for any bounded linear map on B into K¢ not only for an inte-
gral operator as specified above. Since we are mainly interested in expanding
the theory of affine stochastic differential equation with finite delay we are
focusing on the case, where L is the integral operator (2.5).

We denote the Euclidean metric on K¢ by |-| and the semi-norm on B by ||-|| 5.
The total variation of the matrix—valued measure v on a set F C IR_ is denoted
by [v] (F)-

The following definition postulates first conditions on the phase space B. The
same notation as in [HiMuNa91] is used.

Definition 2.1

A) The phase space B satisfies condition (A) if for all functions z : (—oo,a) —
K% a > 0, which are admissible with respect to B, it holds:

(a) z € B for every t € [0,a);

(b) it exists H > 0, such that |z(t)| < H ||z4||g  for every t € [0,a);

(c) it exists K : [0,00) — [0,00), continuous, independent of x
it exists M : [0,00) — [0,00), locally bounded, independent of x :
el 5 < K(2) Oiupt\l‘(u)\ + M(t)||zollg  for every t € [0,a).

_u_
A1) The phase space B satisfies condition (A1) if for all functions x : (—o0,a) —
E, a > 0, which are admissible with respect to B, it holds:

t — z; is a B-valued continuous function for t € [0,a).

It is quite easy to establish that a phase space B satisfying condition A and Al
includes all continuous functions on the negative line with compact support.

Example 2.2 Ezamples for phase spaces B satisfying conditions A and Al
are the following ones:
1) Fiz a constant T € R and set

m ef%p(u) ezists },

O = L (— d : Lo
B:=Cy:={p:(—00,0] = K continuous : ug_oo

lplle, == sup eX “p(u)] ;
u<0

2) Suppose that 1 < p < o0 and 0 < p < 0. Let g : (—oo,—p) = Ry be a
locally integrable function satisfying the following condition:
3G : (—00,0] = Ry locally bounded:

g(u+ s) < G(u)g(s) for every u <0 and every s € (—oo, —p) \ Ny,
where N, has Lebesgue measure 0. Define



B:=C[-p,0] x LP(g) := {@ : (—00,0] = K% : ¢ continuous on [— p,0]

and [ o) gls)ds < oo}

—p 1/p

lellsi=sup_ ot + ([ “lePatas)
— p<u<0 —00

A solution of equation (2.3) is a function z : R — K% such that z; is in B

and that z is locally absolutely continuous on R, and satisfies equation (2.3)

(Lebesgue) almost everywhere on R .

Theorem 2.3
Let the function space B satisfy condition A and A1. Then for any function
@ € B, there exists a unique solution x of equation (2.8) with o = ¢.

Proof: See theorem 4.1.2 in [HiMuNa91]. O

For the use of the condition A and A1 in the proof of this theorem we refer to
[HiMuNa91].

Example 2.4 Let us consider the following scalar example at this point:

0

z(t) = a/ z(t+s)e’ds, t>0, z(u)=¢u), u<0, ¢ebB, (2.6)
—0oQ

where a,v € R. An appropriate choice of the phase space B is given by

B = CxL!(g), the one introduced in Example 2.2.2 with g(u) = exp(yu),

u < 0, and p = 0. By the so—called chain trick, see e.g. [MDo78], one can

derive the solution as

o), £<0, 27)

where \; and Ay are the complex zeros of the polynomial p(\) := A2 + Ay — a,
assuming that the zeros are distinct. The complex constants ¢; and ¢, depend
on a,7 and the values of ¢(0) and [ €"*¢(s)ds.

At Aot
cre™t 4+ coe™?t, >0,
(t) = {

In the sequel we shall always assume that the phase space B satisfies condition
A and Al. One can define the solution operators for ¢ > 0 by

T(t): B— B, T(t)p =1z ),

where z(-, ) : R — K% s the solution of equation (2.3) with zo(-, ¢) = ¢. The
uniqueness of the solution and the condition Al on B imply that {T'(t)}s>¢ is a
strongly continuous semi-group of bounded linear operators on B. Further let
{S(t)}+>0 be the strongly continuous semi-group of solution operators defined
by the trivial equation £ = 0. To benefit from the theory of semi-groups one
requires that the quotient space B/|-||z is a Banach space which motivates
the first of the following conditions on the phase space B.



Definition 2.5
B) The phase space B satisfies condition (B) if B is complete.

C) The phase space B satisfies condition (C) if for every Cauchy sequence
{¢n} C B with respect to the semi-norm ||-||g, the following implication
holds:

Vo :R. = K?: ¢, = ¢ uniformly on every compact subsets of R._
=>peB and |pn—¢llg—0, n—oo.

The examples C,, and C[— p, 0] x L?(g) of phase spaces B introduced in example
2.2, which fulfill the condition A and A1, satisfy also the conditions B and C.
For the following discussion suppose that the phase space B satisfies conditions
A,A1, B and C. For ¢ in B, the symbol ¢ denotes the equivalence class {¢ :
| — ¢ll5 = 0}. Hence, the quotient space B := B/||-||; is a Banach space
with the norm [|3|| 5 = [|¢||5- Let T'(t) and S(t) be the operators on B induced
by T'(t) and S(t), respectively.

Call the generator A and its induced operator A. Obviously A is the generator
of the strongly continuous semi-group {T'(¢)};>0 on the Banach space B.

In [Ha74] the essential spectra of the operators S(t) and T'(t) are investigated
for the first time. Let 7' : X D D(T) — X be a linear operator on a Banach
space X. We denote by p(T'), o(T') and op(T) the resolvent set, spectrum
and point spectrum of the operator T', respectively. The essential spectrum is
defined by

0e(T) :={\ € o(T) : rank(AId —T') is not closed or A is a limit point of o(T")

or Ug>1 kern((AId —7)*) is infinite dimensional }

Furthermore, let «(F') be the Kuratowski measure of non—compactness of a
bounded set F' of the Banach space X, that is

a(F) =inf{d > 0 : F has a finite cover of diameter < d}.

Now, let the operator 7' : X — X be bounded. Then the Kuratowski measure
of the operator 7T is defined by

aT) :=inf{s > 0: a(TF) < sa(F) for all bounded sets F' C X}.

By Nussbaum’s theorem, see [Ha74], the essential spectral radius of the bounded
linear operator 1" is given by

Te(T) : = sup{|A| : A € 0o(T)} = lim (a(T™))'/™.

n—oo
Now, define a parameter € [—o00, 0] by the following relation

B := lim M :infw

2.8
00 t >0 t ’ (2:8)



where the second identity is a consequence of the sub-additivity of the function

~

t— a(S(t)).

The constant 8 depends on the operator L only by the condition that L has
to be bounded on B. Apart from that the constant £ is only defined by the
solution semi-group {S(t) };>¢ of the trivial equation on B which is independent
of the operator L. In this sense we refer to the constant § as the constant of
the phase space B.

In the case of a finite delay with the phase space B as the set of continuous
functions on the interval [—r, 0], the semi-group {S(¢)};>¢ is eventually com-
pact. Hence, because the Kuratowski measure of a compact operator equals
zero, the constant is derived as 8 = —oo.

Example 2.4 cont. The parameter 5 of the phase space B = C xL(g),
chosen in example 2.4, can be derived as 8 = — 7.

Because of a decomposition of T'(t) into a sum of a compact operator and
the operator S(t), see [HaKa78], one obtains for the essential spectral radius
re(T'(t)) = Pt

For fixed A € C define the function

e(\): C = {4 : R. = C% continuous }, (e(A\)b)(u) := b, u <0.

In the case that the phase space B is a complex linear space, that means
K = C, it is shown in [HiMuNa91] that for ReA > 8 the functions e()\)b are
elements of B for every b € C% and é(\)b is a B-valued analytic function. By
defining B¢ := B @i B one obtains a complex phase space, if the original one
is real, and note that B¢ fulfills all the conditions which the original space B
does.

The point spectrum of the generator A is given by the following theorem:

Theorem 2.6
Let the phase space B be a complex space satisfying the conditions A, A1, C
and D and let A be the generator of the semi-group T(t). Then:

op(A)={AeC: Ibe CI\{0}: e(A)be B and \b— L(e(\)b) = 0}

Proof: See theorem 5.2.1 in [HiMuNa91]. 0

Define the d x d matrix A()), the characteristic matrix of equation (2.3), by
A(X) := M — L(e(A\)I) for A € C with ReX > 83,

where 3 :=inf{z e R : Jr_ € v (ds) < oo} and I denotes the d x d-identity
matrix. Recall that 8 < 8. All the entries of A()) are analytic functions for
Re) > B and by the previous theorem

{AM€eop(A):ReXx > B} ={A € C:ReX > 8 and det[A(N)] = 0}.

Because the operator L is assumed to be the integral operator (2.5), the func-
tion A — L(e(A)I) is the Laplace transform of the measure v. Hence, the



entries of the matrix A(:) are analytic functions even in ReX > f. Define the
set A(c) = {A € C:ReX > c and det [A(A)] = 0} for a constant ¢ > (. For all
A € A(c) it holds

Al < / R || (du) < / e |v] (du) < K
R_ R._

for a constant K > 0. Hence, the set A(c) is bounded and because the function
A — det[A(N)] is analytic for ReX > 3, the set A(c) is finite for ¢ > 8 and it
contains for ¢ > 3 the eigenvalues of the generator A.

In the case of a finite delay, the function A — A(A) is an entire function,
because it holds § = —oo. In general for an infinite delay the function A())

is not defined on the half plane ReX < 3.

Theorem 2.7
Let B be a complex phase space with parameter 3 satisfying the conditions A,
A1, C and D and let ¢ > 8 be a constant. Then B is decomposed by A(c):

B = pA @ QA’
where Pn and Qy are T(t)fz'nvariant subspaces of B and Py is of finite di-

mension. Furthermore, for sufficiently small € > 0 there exists a constant
k := k(e) > 0 such that

|7®e|, < kel

5 Joreveryt <0, ¢ € Py,

g Joreveryt>0, ¢ € Qn,

|7, < kel

where the semigroup {T(-)} can be extended to the whole line R on Py as a
solution of a differential equation.

Proof: See theorem 5.3.1 in [HiMuNa91]. O

Remark 2.8 In the special case of B < 0 and det[A(N)] # 0 for all A € C
with Re\ > 0 the estimate can be strengthened:

Tt)¢| . <ke™|@lz, t>0, ¢€B,

B
for some constants k > 0 and v > 0.

The representation of the solution of the stochastic equation (1.1) strongly
bases on the so-called differential resolvent of the locally finite measure v.
That is a function 7 : Ry — K94 solving the deterministic matrix equation

P(t) = /[—t,m V(ds)r(t +s) = /[_t,o]r(t—l—s)z/(ds), 120 ae, o

r(0) =1,



where I is the d x d—identity matrix. There exists a unique locally absolutely
continuous solution of equation (2.9) for almost all ¢ € R, see theorem 3.3.1
in [GrLoSt90].

In the case of a finite delay the differential resolvent is nothing else than the
so—called fundamental solution, that is the solution of the equation

i:(t):/[ a9, 120, o) =1 @1, w0l

Example 2.4 cont. Because the function ¢(u) = Ly (u), u < 0, is an
element of the phase space B = C xL(g) in example 2.4, the differential-
resolvent of the measure v(ds) = aexp(ys)ds in equation (2.6) is also of the
form (2.7) with special chosen parameters ¢; and co.

Theorem 2.9
Let the measure v be finite and let A(c) = {X € C: ReX > ¢ and det[A(N)] =
0} be given by A(c) = {A1,...,An} for a constant ¢ > . Then it holds:

sz Yt + F(t)  fort >0,

where p; are some polynomials over K¢ fori=1,...n and F : Ry — Kdxd
is a continuous function with F(t) = o(e) for t — oo.

Proof: The proof is given in theorem 7.2.1 in [GrLoSt90] beside the estimation
of the remaining term F. The proof of the asymptotic behavior of F requires
the estimation of an integral given in the proof in [GrLoSt90]. That can be
easily done by using the Neumann series expansion and some calculus estab-
lishes the result. g

In the case of a measure with compact support, the equivalence of the inte-
grability of z and z? is well-known, where z is the fundamental solution. We
will show, that, if 3 < 0, this and other properties of the fundamental solution
carry over to the differential resolvent of an arbitrary measure with support
R.. Observe that the space C_ of example 2.4.1 is a proper choice for the
phase space for every b > B, if B < 00. One has to show only the boundness
of the integral operator L on C_y:

/ [o(s)] v (ds) < ||90||c_,,/ e v|ds < M |llle_,
(—O0,0] (_0050]

for every ¢ € C_4 and a constant M > 0.

Theorem 2.10

Let r be the differential resolvent of the measure v and suppose v € LP(R),
p € [1,00), and B < 0. Let = be the solution of equation (2.3) with zo = ¢,
where ¢ € C_y for a fized b € (3,0). Then it holds: =z € LP(Ry).



Proof: Rewriting equation (2.3) to a inhomogeneous Volterra equation yields
in

@(t) = /( , v(ds)z(t + s)
- /[_t,o]u(ds):z:(t +8) + / v(ds)p(t + s)

(—o0,-1)
:;/[tm V(ds)z(t+ )+ f(2), fort>0, 2(0)=@(0).  (2.10)

By the variation of constants formula, see e.g. theorem 3.3.5 in [GrLoSt90],
the solution of equation (2.10) is given by

z(t) = r(t)p(0) + (r* f)(t) fort >0, (2.11)

where the convolution is defined as (r * f)(t fo r(t — s) f(s)ds. We have to
show, that f € L' (R4 ):

o< o0
/ F(s)|ds < / / (s 4 w)| & X+ ) |y (du)ds
0 0 (700775)

o0

<lgle / & / e ] (du)ds
0 (—00,0]

< 00

Hence it holds r x f € LP(R4), see e.g. theorem 2.2.2 in [GrLoSt90], and in
account of (2.11), the assertion is proved. O

Theorem 2.11
Let r be the differential-resolvent of the measure v and let B < 0. Then it is
equivalent:

1. det[A(N)] #0 for all X € C with ReX > 0;
2. r(t) = O(e) for t — oo and some ¢ < 0;
3. re LY (Ry);

4. € LA(Ry).

Proof: The equivalence of 1 and 3 is given in theorem 3.3.5 in [GrLoSt90].
Obviously, 2 implies 3 and 4 and theorem 2.9 establishes the implication from
1 to 2. It remains to prove that 4 implies 1. Suppose there are some \; € C,
i =1,---,n, with Re\; > 0 and det [A()\;)] = 0. Then there exists ¢; €
C?\{0} for every i = 1,...,n, such that z;(t) := etifc; is a solution of

i(t) = / v(ds)zi(t+s), t>0, zi(u)=gi(u) =N, u<0.
(—=00,0]

10



Since for a fixed b € (B, 0), the functions ¢; are elements of the phase space
C_p, theorem 2.10 implies z; € L?(R). But this does not hold for every \;
with Re)\; > 0. O

3 The Stochastic Case

By means of the results of the deterministic case we establish existence and
uniqueness of a solution of equation (1.1). We assume always that the operator
L defined in (2.5) is bounded on B. Let the differential resolvent r of the
locally finite measure v be continued on the negative line by r(¢t) = 0 for
t < 0. Further on, the proof requires an integral equation which is already
used in the case of a measure with compact support in [MoSch90].

Lemma 3.1

Let & : Gy — R2, Gy C R2, be given by ®(s,u) := (s+u,u) with G1 := ®(Gy)
and let f : G1 — R? be a function with fGo |f(s+wu,s)||v|(du)ds < co. Then
it holds

f(S + u, U)H‘O(dsa du) = f(‘Ia y)Ho(d.’IJ, dy)a
Go Gy

where po(ds,du) := ds x v(du) for each locally finite measure v.

Proof: Define the measure
p1(H) == po(® 1(H)) for all H € o(R?) NGy,
and let R := [a,b] X [¢,d] C G be a rectangle in G;. For that we get

b—u
i (R) = io(@ 1 (R)) = /[ ) [ dsutan) = 0~ apwlle.d) = ().

This implies

/ Lo (5, u) f (s + u, u)v(du)ds 2,1) (@) (4, dy)

fio
= / ]]'Gl

which completes the proof. O

(z,9)f(
(z,9)f(z,y)po(dz, dy),

In contrast to the case of a measure with compact support the assumption
fGo |f(s+u,s)||v|(du)ds < oo in the Lemma above is essential, if the measure
v is not finite and the set G is unbounded.

For the definition of a unique strong solution of the equation (1.1), we refer
to definition 5.2.1 in [Ma097], with the obvious completion for the case of an
unbounded delay.
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Theorem 3.2
Assume that the phase space B satisfies the conditions A and A1. Then for any

stochastic process T with P(Y € B) = 1 there exists a unique strong solution
{X(t),t € R} of the differential equation (1.1) and it holds for t > 0:

¢
Xi(u) = (T(t) T)(u) +/0 r(t—s+u)dW(s), u<0,
X; € B P-a.s.

Proof: For v < 0 and ¢ > 0 the process

t
Zy(u) = /O r(t — s + u)dW (s)

0 ou < —t,
N g+ur(t—|—u—s)dW(s) : —t<u<0,

has P-a.s. continuous paths with compact support. Hence Z; is in B P-a.s. for
all ¢ > 0 and so it holds also X; € B. The family {X;};>¢ corresponds to a
function on R, since for ¢t > 0 and u < 0:

YTt+u) : t+u<0,

Xt(u):X(t+u)={Xt+u(0) : t+u>0.

Since the process {X(¢),t € R} has P-a.s. continuous paths for ¢ > 0 and
fulfills Xy = Y, the process X is an admissible function with respect to B for
P-a.e. w € Q. Condition A2 implies that ¢ — X; is continuous for ¢ > 0 and
as the functional L is also continuous, it holds:

[

To show uniqueness let X 1) and X be two solutions of equation (1.1).Then
X = XM — X gatisfies for t > 0:

/ v(du)X (s +u)|ds = / |L(Xs)|ds < oo.
(—00,0] 0

X(t) :/OtL(Xs(l))ds—/OtL(Xs(Z))ds:/OtL(f(s)ds,

Since equation (2.3) has a unique solution, it follows X = 0. By using Lemma,
3.1 we show that X;(0) is a solution of equation (1.1):

12



X(t) = T(0) — W(t) — /Ot LX,ds
= (T() T)(0) — T(0) + /0 “i i — )W (s)ds — /0 " L(T(s) T)ds
/tLW ds — /OtL (/Osf(s—v+ -)W(v)dv) ds
/Otrt—s ds—/OtLWSds—/OtL(/Osf(s—v—ir-)W(v)dv)ds
/Ot £~ )W (s)ds — /Oty([s 4, 0)W (s)ds
_ /0 ( /[MO] v(du) / :vf(s o +u)ds) W (v)dv

= [t = wWis - [ wlls - 10D (s
0 0

t
_ / (/ v(du)(r(t —v+u) — I)) W (v)dv =0,
0 [v—t,0]

which completes the proof. O

Now we establish the existence and representation of a stationary solution of
equation (1.1) under the assumption 8 < 0, that is

db<0: / e? |v| (ds) < oo. (3.12)
—00,0]

The constant B indicates the half plane Rez > B , where the Laplace transform
fR v(ds)Ie?® exists, and depends only on the measure v. In contrast
the constant ﬁ is determined by the phase space B under consideration. In
account of the relation B < B, the condition 8 < 0 guarantees that condition
(3.12) is satisfied. The assumption (3.12) allows to prove the existence of
a stationary solution in a similar way as in the case of a finite delay. The
assumption (3.12) and some more weak hypothesis admit the formulation of
equivalent conditions for the existence for a stationary solution, see remark
3.8.1, similar to the case of a finite delay, see [GuKu00].
Let {W(t),t € R} be a R% valued Brownian motion on the whole real line,
defined by W(t) = 1(_co,0())W1(—t) + Ljp,00)(t)W (t), where W and W; are
independent Brownian motions on the positive line. Assume that the differ-
ential resolvent r of the measure v satisfies |r(t)] = O(e) for t — co and a
constant ¢ < 0. On account of theorem 2.11 this is equivalent to r € L?(R.y).
In this case one can define the following integral as in [GuKu00]:

¢
/ r(t —s)dW(s) foreveryteR.

—0o0
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Because of (3.12), |r(t)| = O(e) for t — oo implies for a.e. t >0

il<a [

ec(t+s) |V| (du) < Cle(ch)t/ ebs |V‘ (du) < Ce(ch)t
[77550]

R.

for some constants C,C; > 0. Hence, the formula of partial integration holds
for the integral

t t
/ r(t — 8)dW () = 7(2) +/ #(t— $)W(s)ds forall £ € Ry .
— o0 — 00

Using the formula we obtain a representation of the stationary solution:
Theorem 3.3

Let condition (3.12) be satisfied by the measure v and assume that the differ-

ential resolvent T of the measure v fulfills r € L>(Ry).
Then the process

t
(X ::/_ r(t— $)dW(s), ¢ € R}

is a stationary solution of equation (1.1) with the initial condition

T (u) = /u r(u—s)dW(s), foru<O0.

—0oQ

Proof: One has to show
t
X(t) = T(0) — / L(X,)ds — W(t) =0 for all £ > 0.
0

By partial integration this is equivalent to

/t f(t—s)W(s)ds—/O (—s)W(s)ds—/Ot/(oo,O]V(dU)W(5+“)d3

T
—00 -0

t s+u
- / (/ V(du)/ (s +u— 'U)W(’U)d’l)) ds =0 forallt>0.
0 (—00,0] —00
(3.13)

In contrast to the case of a finite delay the finiteness of the integrals requires
a justification. Since |7*(¢)| = O(e'?) holds for t — oo with ¢; = ¢V b, the first
two integrals in (3.13) are P-a.s. finite. For the third one choose —b > € > 0
then it holds P-a.s. for every s > 0 due to the law of the iterated logarithm
and the condition (3.12)

/ W (s + )| || (du) < Ce“/ Ml (du) <00 (3.14)
R. R._
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For —c¢; > € > 0 one obtains
st+u
/ / 1#(s + u — 0)W ()| do || (du)
R.J—-
st+u
< C/ ecl(s"'“)/ ey || (du)
R. —00

= C'e_es/ e ““v| (du)
R.
< oo for every s > 0 P-a.s.

Due to (3.14) the assumptions of Lemma 3.1 are satisfied such that the third
integral in (3.13) yields

t t
/ / V(du)W (s + u)ds = / (v — 0V O) W (v)dv, (3.15)
0 /R. —o0
where the assumptions are satisfied, because of condition (3.12) the inner
integral on the right hand side in (3.15) exists and is continuous in s.

Since the last iterated integral in (3.13) exists for the absolute value of the
integrand we get by Fubini’s theorem

/Ot (/]R v(du) /S:f«(s +u— v)W(v)dv) ds
_ /R v(du) /_to /Otf(s +u— v)dsW (v)do

+ v(du) e 7(s +u — v)dsW (v)dv
R- U v—u
= /lR I/(d'u,) \/_’::“ T(t +u— ’U)W(’U)d’v — /]R V(du) /j:o T(u - U)W(U)dv
— /]R_V(du) ut-i-u W (v)dv. (3.16)

In a similar way as above all the integrals in (3.16) exist even for the absolute
value of the integrands. By using Fubini’s theorem again we obtain

/Ot (/R v(du) /_S;uf(s+u—v)W(v)dv> ds
t

t 0
:/ f-(t—v)W(v)dv-{-/ f(—'u)W('u)dv-l—/ v([v = £, 0 A O)W (0)dv.

—00 —00 —00

By the last equality and (3.15) the equation (3.13) is established. O

Remark 3.4 Under the conditions of the previous theorem the stationary so-
lution X (t) = ffoo r(t — s)dW (s) is a Gaussian process with

EX(t) =0, Cov(X(t),X(t+h))= /oor(s)r(s + h)ds, for allt,h > 0.
0
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The spectral density of the process is given by
1 - w—\T
f(s) = 5-(A(=is)) H((AaGs) ), seR.
To prove the last assertion, observe, that the Laplace transform 7 of the differ-
ential resolvent can be derived as #(z) = (A(2)) ! for all z € C with Rez > 0.
An application of the inverse Laplace transform and of Parseval’s equality
finishes the proof.

In theorem 3.3 we do not specify a phase space B but ensure the existence
of the integrals by the assumptions (3.12) and |r(t)| = O(e®), ¢ < 0, for
t — oo instead of requiring Y(-) = [*_7(- — s)dW(s) € B P-a.s. and using
the condition A to conclude the existence of the integrals. On the other
hand the phase space C_; is an appropriate choice for every b > B under
the assumption (3.12), as it is established before theorem 2.10. By assuming
in addition |r(t)] = O(e®), ¢ < 0, for t — oo, one obtains, that the initial
condition Y(-) = [~ 7(- — s)dW(s) is P-a.s. an element of C_.

Theorem 3.5
Let B be a phase space satisfying conditions A, A1, C and D with parameter
B < 0. Further on assume det[A(X)] # 0 for all A € C with Re\ > 0. Then
for each solution {X(t) := (X1(t),...,Xa(t))T,t € R} of equation (1.1) with
initial condition Xo = T € B P-a.s. it holds for arbitrary 0 <t; <ty < --- <
t, and n € N:

(Xp(t+t),...,. Xet+t) " BU, t—oo00, k=1,...d,

o
whereUgN(O,E) and ¥ = (/ <rp(s),ri(|ts —t;| +s) >ds> ,
0

%,j=1,..n

where D denotes in distribution and 1 denotes the k-th row of r for k =
1,...,d.

Proof: Define the vectors
u = (ul,u2,...,un)T € R4,

X(#) = (Xp(t+t1),..., Xt +t,))T

t+t1 t+tn T
Y(t) = (/ ri(t +t1 — s)dW (s),... ,/ TE(t +tn — s)dW(s)) .
0 0
Because of Remark 2.8 and condition A it holds for ¢ — oo

(T(t+1t;) T)(0)| < H HT(t n tj)YHB <HC HT —(t+) 0 P-as.

e
B
Hence one obtains

lim ‘E [ei<u,X(t)> _ ei<u,Y(t)>] ‘
t—00

n
< lim |E |exp z'z;uj(T(tthj))T)(o) —1||=0.
]:
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On account of

E [ei<u,Y(t)>] _ 6_%uthu

t—l—(ti/\tj)
with Xy = / < ri(s),rk(|ti —tj| +5) > ds
0

1,j=1,...,n
we obtain
lim E [ei<u,X(t)>] — lm E [ei<u,Y(t)>]
t—00 t—00
. 1 7
B tl—lglo eXPp (_ﬁu Etu)
(~usn)
=exp|—=u Xu].
2
Thus the conclusion follows. 0

Remark 3.6 The assertions f < 0 and det[A(X)] # 0 for all ReA > 0
guarantee that the solution semi-group {T(t)};>0 is exponentially stable. It
is sufficient to require that the solution semi—group is only stable, that is
|T(t)p||g = 0 for t — oo for all ¢ € B.

Because of theorem 2.11 the condition det[A(A)] # 0 for all ReA > 0 is
equivalent to 7 € L?(R.), the condition that guarantees the existence of a
stationary solution. The quadratic integrability of the differential resolvent r
is even necessary for that:

Theorem 3.7

Let the phase space B satisfy condition A and Al. For an initial condition
Xo = YT € B P-a.s. assume that there ezists a solution X = {X(t) :=
(X1(t),..., Xq(t))T : t € R} of equation (1.1) converging in distribution.
Then for the differential resolvent r of the locally finite measure v holds:
r € L2(Ry).

Proof: Let ¢f be the characteristic function of the k-th component X} (t) of
the process X at time ¢. Then one obtains

Jd, € (0,1) It >0: ‘(pf(u)‘ >0 Yue€[0,up] and Vit > tp.

Since the initial condition T and the Brownian motion {W(t),t > 0} are
independent one gets for ¢ > ¢y and every u € [0, uo]

5 < ‘IE [exp (iu/otrk(t _ s)dW(s))” ~ exp (-%qﬁ /Ot |Tk(s)|2ds>

where 1 denotes the k-th row of r. O
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Remark 3.8

1. Let the phase space B satisfy the conditions A, A1, C and D with pa-
rameter 8 < 0 Furthermore, assume that [* _ r(- — s)dW(s) € B P-a.s.
As in the case of a finite delay (see [GuKu00]), one obtains equivalence
between:

(a) there exists a stationary solution X = {X(t);t € R} of (1.1) with
Xo € B P-a.5.;

(b) there is a solution X = {X(t);t € R} of (1.1) with Xy € B P-a.s.,
converging in distribution as t — 00;

(c) any solution X = {X(t);t € R} of (1.1) with Xy € B P-a.s. con-
verges in distribution for t — oo;

(d) re L2(R,) .

2. If the measure v does not satisfy the condition (3.12) the question con-
cerning the existence of a stationary solution of equation (1.1) is not
(yet) answered. A possible way to answer may be viewing equation (1.1)
as an equation in the Banach space B and using methods of the theory
of infinite dimensional stochastic differential equations in order to proof
the ezistence of an invariant measure on the Banach space B.

Example 2.4 cont. The stochastic equation corresponding to the determin-
istic one of example 2.4 is given by

AX () = a/ X(t+5)e"ds +dW (1), £>0, Xo=T € CxL(g) P-as.
R.

The differential-resolvent r is square—integrable if and only if the real part
of the zeros of the polynomial p(A\) = A2 + Y\ — a are negative. Hence,
the existence of a stationary solution for this equation requires v > 0 and
a < 0. In the case of a finite delay corresponding to this equation, that is
v(ds) = aexp(ys) 1|, g)(s)ds, the area of stationarity depends much more on
a subtle relation between the parameters a and . The area covers only a part
of the quadrant v > 0 and a < 0, but also a part of the quadrant a < 0 and
v < 0, see [Rei01].
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