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Abstract

A systems cointegration rank test is proposed which is applicable for vector autoregressive
(VAR) processes with a structural shift at unknown time. The structural shift is modeled as
a simple shift in the mean of the process. It is proposed to estimate the break date first on
the basis of a full unrestricted VAR model. Two alternative estimators are considered and
their asymptotic properties are derived. In the next step the deterministic part of the process
including the shift size is estimated with a GLS procedure. Then the series are adjusted by
subtracting the estimated deterministic part and a Johansen type test for the cointegrating
rank is applied to the adjusted series. The test statistic is shown to have a well-known
asymptotic null distribution which does not depend on the break date. The performance
of the procedure in small samples is investigated by simulations. Finally, the procedure is
applied for two sets of example series to illustrate its virtue for econometric analyses.
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1 Introduction

The unit root literature has reacted to the observation that many economic time series have
level shifts by developing unit root tests that take such shifts into account. A range of tests
suitable for various kinds of shifts and alternative assumptions regarding the shift date are
available. For example, there may be a simple one time shift in the mean, a break in the
slope of a time trend or a smooth transition to a new level (see, e.g., Perron (1989, 1990),
Lanne, Liitkepohl & Saikkonen (2001)). Moreover, the shift date may be known or it may
be assumed to be endogenous (e.g., Evans (1989), Christiano (1992), Perron & Vogelsang
(1992), Banerjee, Lumsdaine & Stock (1992), Zivot & Andrews (1992)). If these features are
observed in univariate time series, they also have to be taken into account in multiple time
series analyses. In particular, they have to be allowed for in testing for cointegration.

A number of articles address testing for cointegration in the presence of structural shifts
(e.g., Hansen (1992), Gregory & Hansen (1996), Campos, Ericsson & Hendry (1996), Quintos
(1998), Seo (1998), Inoue (1999), Johansen & Nielsen (1993), Johansen, Mosconi & Nielsen
(2000), Saikkonen & Liitkepohl (2000a) and Liitkepohl, Saikkonen & Trenkler (2000)). In
these studies, single equation as well as systems cointegration tests are considered. None of
the proposed tests is suitable for testing the cointegrating rank of a system when the break
date is unknown, however. Because it has been argued in the unit root literature that the
case of an unknown break date is of particular importance, we will present a cointegration
rank test in the following which works in this situation. The shift is assumed to be a simple
shift in the mean.

The test generalizes the one proposed by Saikkonen & Liitkepohl (2000a) (henceforth
S&L) for the case of a known break date. It proceeds by estimating the break date in a first
step based on a full vector autoregressive (VAR) process in levels of the variables. Then the
parameters of the deterministic part of the data generation process (DGP) are estimated by
a feasible generalized least squares (GLS) procedure. Using these estimators, the original
series is adjusted for deterministic terms including the structural shift and a cointegrating
rank test of the Johansen likelihood ratio (LR) type is applied to the adjusted series. The
advantage of this procedure is that the asymptotic distribution of the test statistic under
the null hypothesis is the same as in the case of a known break date and does not depend

on the break date. Clearly, this property is very convenient in practice because it allows



to use critical values readily available in the literature. Notice, that even in the univariate
unit root testing literature some procedures for dealing with an unknown break date have a
considerable effect on the properties of the corresponding unit root tests (see, e.g., Zivot &
Andrews (1992)). Therefore, being able to estimate the break date such that the asymptotic
properties of the cointegration tests are unaffected is a major advantage.

It may be worth mentioning that dealing with an unknown shift date in a cointegrated
system is considerably more difficult than in unit root testing for single time series. If our
approach is used in the latter context, a one time shift in the mean reduces to a single outlier
for the differenced series if the unit root null hypothesis holds (see Saikkonen & Liitkepohl
(2001)). In contrast, for a nonzero cointegrating rank, the shift cannot be eliminated easily
even under the null hypothesis. Unlike in the univariate case, a consistent estimator of the
break date is therefore required in our procedure for testing for the cointegrating rank.

Estimating the break date in a system of I(1) variables has also been considered by Bai,
Lumsdaine & Stock (1998). These authors consider the asymptotic distribution of a pseudo
maximum likelihood (ML) estimator of the break date. Although we use a similar estimator,
for our purposes it is sufficient to have a consistent estimator for the shift date because in
that case we can show that estimating the shift date does not affect the asymptotic null
distribution of the test statistic for the cointegrating rank. Hence, the same tables with
critical values may be used as in the case of a known break date.

The structure of this study is as follows. In Section 2, the DGP is specified and our
basic assumptions are presented. Section 3 deals with the estimation of the break date and
the deterministic part of the DGP and the convergence rates of two different break date
estimators are given. Section 4 considers the tests for the cointegrating rank. Simulation
results in Section 5 support the virtue of the tests for applied work and applications are
presented in Section 6. A summary and conclusions are given in Section 7. All proofs are
deferred to Appendix A and data sources are provided in Appendix B.

We will use the following general notation. The differencing and lag operators are denoted
by A and L, respectively, that is, for a time series or stochastic process 3; we define Ay, =
ys — ys—1 and Ly; = y;_1. The symbol I(d) denotes an integrated process of order d, that is,
the stochastic part of the process is stationary or asymptotically stationary after differencing

d times while it is still nonstationary after differencing just d — 1 times. Convergence in



distribution is signified by % and ii.d. stands for independently, identically distributed.
The symbols for boundedness and convergence in probability are as usual O,(-) and o,(-),
respectively. Moreover, || - || denotes the Euclidean norm. The trace and the rank of the
matrix A are denoted by tr(A) and rk(A), respectively. If A is an (nxm) matrix of full column
rank (n > m), we denote an orthogonal complement by A, so that A, is an (n x (n —m))
matrix of full column rank and such that A’A;, = 0. The orthogonal complement of a
nonsingular square matrix is zero and the orthogonal complement of a zero matrix is an
identity matrix of suitable dimension. An (n X n) identity matrix is denoted by I,,. For
matrices Ai,..., A, diag[A; : --- : A,] is the block-diagonal matrix with A;,..., A; on the
diagonal. LS, GLS and RR are used to abbreviate least squares, generalized least squares and
reduced rank, respectively. LR is short for likelihood ratio, DGP stands for data generation
process and VAR and VECM abbreviate vector autoregressive and vector error correction
model, respectively. If the lower bound of the summation index of a sum exceeds the upper

bound, the sum is defined to be zero.

2 Basic Assumptions and Data Generation Process

We use the setup of S&L except that the shift date is unknown and an impulse dummy
variable is not included. Hence, y; = (y1t,...,ynt)’ (t =1,...,T) is assumed to be generated

by a process with constant, linear trend and level shift terms,
Ye = o + pat +0dy + 1, t=1,2,..., (2.1)

where p; (1 = 0,1) and § are unknown (n x 1) parameter vectors and dy, is a dummy variable

defined by
0, t<m,
dtT = (22)
]'7 t Z 7-7
that is, d;, is a step dummy variable representing a shift in period 7. It is assumed that the
actual value of 7 is unknown and depends on the sample size such that the shift occurs at a

fixed fraction of the sample size. More precisely, it is assumed that
T=[TA with 0<A<A<A<I, (2.3)

where )\ and ) are specified real numbers and [-] denotes the integer part of the argument.

In other words, the shift date may not be at the very beginning or at the very end of the
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sample. Note that A and )\ may be arbitrarily close to zero and one, respectively. Therefore
our assumption regarding the break date is not very restrictive. The condition has also been
employed by Bai et al. (1998) in models containing I(1) variables.

If it is known that the DGP does not have a linear trend term, that is, yu; = 0, this
term may be dropped in (2.1). The necessary adjustments in the following analysis are
straightforward and we will comment on this situation as we go along. Also seasonal dummies
may be added. They leave the asymptotics of the cointegration tests unaffected and are not
included in our basic model to avoid more complex notation.

The process x; is assumed to have a VAR(p) representation,
Tt :Alxt—1+"'+Apxt—p+5t; t= 1,2,..., (24)

where the A; are (nxn) coefficient matrices. For simplicity, it is assumed that z; = 0 for
t <0 and g ~ 1.i.d.(0,9), that is, the ¢; are i.i.d. vectors with zero mean and covariance
matrix 2. We also assume that all moments of ¢; of order b exist, where b is a number
greater than 4. The initial value assumption could be replaced by the assumption that the
initial values are from a fixed probability distribution which does not depend on the sample
size.

The VECM form of the process z; is

p—1

AQ?t = H.’L't_l + ZPijt—j + &4, t= ]_, 2, ey (25)
7j=1
where Il = —(I, —A; —---—Ap) and I'; = —(Aj1 +---+4p) (=1,...,p—1) are (nxn)

matrices.
The process z; is assumed to be at most I(1) and cointegrated with cointegrating rank

r. Hence, the matrix II can be written as
II=af, (2.6)

where o and 8 are (nxr) matrices of full column rank. As is well-known, 'z; and Az, are
then zero mean I(0) processes. Defining V. =1, —-T'y —--- =T,y = I, + Z?;i JAj+1 and

C =B.(a,¥B3,) 1|, we have
t
$t2025j+§t, t=1,2,..., (2.7)
j=1
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where & is a zero mean I(0) process.

In the following we use the lag polynomial

AL) = I,-AL—---—ALP
(2.8)
= LLA-TIL-T1AL—---—T, ;ALF
Notice that the relation between the two different parameterizations is given by
A =1, +af + T,
Aj:Fj_Fj—h j:2,...,p—1, (29)
Ap - _Fp—l-
Multiplying (2.1) by A(L) yields
p—1 p—1
Ayt =v+ a(ﬁ'yt_l — ¢(t — 1) — Gdt_lﬂ—) + Z PjAyt_j + Z ’}’;Adt_jﬂ— + &g,
j=1 j=0 (2.10)

t=p+1,p+2,...,
where v = =TIy + Yy, ¢ = 'uy, 6 = B0 and

o, Jj=0,

-6, 5=1,...,p—1.
Here Ad; ;. is an impulse dummy with value one in period ¢t = 7 + j and zero elsewhere.

For given values of the VAR order p and the shift date 7, our formulation of the model
allows to estimate the deterministic part of the DGP. In that procedure, first stage estimators
for the parameters of the error process z;, that is, for o, 5, T'; (j =1,... ,p—1) and Q will be
based on (2.10). A conventional RR regression will be used although that procedure does not
provide exact ML estimators because there are nonlinear restrictions between the parameters
in (2.10). Given that the restrictions occur in coefficient vectors of impulse dummies only,
ignoring them should not cause any great loss of efficiency. The observations will then be
adjusted for deterministic terms and cointegration tests are based on the adjusted series.
They will be discussed in Section 4. In the next section estimation of the parameters of the

deterministic part as well as p and 7 will be considered.

3 Estimation

We will begin by discussing estimators for the break date and the choice of the VAR order

and then consider estimation of the parameters of the deterministic terms.



3.1 Choice of 7 and p

Suppose for the moment that the VAR order p is known. Then 7 can be estimated on the
basis of the levels VAR form, that is, on the basis of the least restricted model with respect
to the cointegrating rank,

p—1
Ye = Vo + it + 01dyr + Z’yjAdt,j,T + Ay 1+ F Ay ten, t=p+1,...,T, (3.1)
j=0

which is obtained from (2.10) by imposing no rank restriction on Il and rearranging terms.
Here vy = v+ u1, v1 = —Ilpy, 6, = =116, vy =0 —d1 and v; =7} (j=1,...,p—1). Thus,
a linear trend, a step dummy variable and p impulse dummies are included as deterministic
terms. The error term in (3.1) is furnished with a subscript 7 because 7 may be any value
from the parameter space 7 = [T\, T\]. For a given VAR order p, the shift date is estimated

as

T
? = arg m17n_ det ( > étTé;T) : (3.2)

TE t=p+1

where the &;, are the LS residuals from (3.1).

It is possible that the p impulse dummies in (3.1) make it difficult to determine the true
break date in this way because they eliminate the information in the observations associated
with the periods where they assume a value of one. Therefore one may consider estimating

the shift date from a VAR model without impulse dummy variables,
Y=o+ it +0dy + Aty 1+ + Ay ptep, t=p+ 1.7, (3.3)

where ;. = Z?;é v;Ady_j; ; + €. The resulting estimator of the shift date will be denoted

by 7, that is,

T
7T = arg m%rldet ( Z é;éj;) (3.4)

and the &}, are LS residuals from (3.3). It turns out that both ways of estimating the shift
date result in consistent estimators of the sample fraction A where the shift occurs, provided
01 # 0. More precisely, the following result is shown in Appendix A.

Theorem 3.1. If §; # 0, then

(i) 7 —7 = 0,(T?") for some n with 3 <n < ; and



(i) 7 —7 = 0,(1).

Here 7 denotes the true shift date. d

Obviously, the theorem implies that 7/7 and 7/T are consistent estimators of the sample
fraction A. Interestingly, even though the estimator 7 is based on a misspecified model, its
convergence rate is better than that of 7 which is based on a correctly specified model
under our assumptions. Admittedly, this may be an artefact of the proof used to establish
Theorem 3.1. On the other hand, the relatively poor performance of 7 has also some intuitive
plausibility. The impulse dummy variables in (3.4) may react to exceptional observations or
‘outliers’ which may occur in periods close to the true break date. If only low order moments
of the innovation process ¢; exist, so that the value of 7 is only slightly smaller than i, the
probability of exceptional observations can be rather large and thus there is some chance of
capturing an outlier with an impulse dummy instead of finding the level shift. Thereby a
value of 7 away from the shift date 7 may be obtained and the convergence rate of 7 may
suffer. In contrast, the estimator 7 is not likely to be sensitive to outliers because the impulse
dummies are omitted.

Although the result in Theorem 3.1 and the foregoing discussion may suggest a preference
for the shift date estimator 7, it is worth emphasizing that the result in the theorem relies
on the condition §; # 0. Note, however, that 4; = 0 may hold even if § # 0. In that case,
neither 7/7T nor 7/T are consistent estimators of the sample fraction A\. However, at least
when the level shift is relatively large, the chances for the impulse dummies to react to it
may be quite large and, hence, there is at least a possibility for 7 to find the shift date. In
contrast, the estimator 7 can find the shift date by accident only in this situation. Thus,
unless the case §; = 0 can be ruled out, using only the estimator 7 may be problematic. In
this context it may be worth noting that J; = 0 always holds if the cointegrating rank is
ZETo.

So far we have assumed a given VAR order p. In practice p is also unknown, of course.
In that case one may estimate the shift date first on the basis of some VAR order possibly
greater than the true one. Alternatively, a shift date may be estimated for a range of orders,
say p =1,..., Pmax, Where pmax is some prespecified upper bound for the VAR order and the

VAR order to be used in the tests is chosen such that a standard model selection criterion



like AIC applied to model (3.1) is minimized.
Of course, if the DGP is known to have no linear trend, the corresponding terms in (3.1)

and (3.3) may be dropped.

3.2 Estimating the Parameters of the Deterministic Part

Once the VAR order is specified and the break date is estimated, the parameters of the
deterministic part of the process may be considered. We present the procedure for some
VAR order p and break date estimator 7 which may be those obtained in the procedure
described in the foregoing, of course. However, instead of 7, the estimator 7 or any other
estimator satisfying Theorem 3.1(i) could be used. We shall estimate the parameters pu;
(+ = 0,1) and § in (2.1) by using a feasible GLS approach as in Saikkonen & Liitkepohl
(2000b). Defining

1 for t>1 t for t>1
Qo = and a1y =
0 for t<0 0 for t<0

and multiplying (2.1) from the left by A(L) gives
A(L)yy = Hogpro + Hygpr + Ky + 4, t=1,2,.... (3.5)
Here the y; are set to zero for t <0, H;y = A(L)a; (i =0,1) and K3, = A(L)dy,;. The matrix
Q=[0"a(@Q ) V2 ay () Qay) (3.6)

has the property QQ' = Q~!. Therefore we premultiply (3.5) by @' to transform the covari-
ance matrix of the error term to an identity matrix, as required in GLS estimation. Thereby
we have a transformation which results in a (multivariate) regression model with standard
properties of the error term.

Of course, the above transformation is not feasible because it involves unknown param-
eters. For a feasible transformation we need suitable estimators of the parameters «, 3, I';
(j=1,...,p—1) and Q which can be obtained by a RR regression of (2.10) using the rank
which is specified in the null hypothesis to be tested in the next section. These estimators are
denoted by &, 3, lN“j and €. Substituting them for the corresponding theoretical parameters
in (2.10) gives estimators for the coefficient matrices A;. These estimators will be denoted

by A;. We define A(L) = I, — A L—---— A, L?, Hyy = A(L)ay (i = 0,1) and Ky = A(L)dy;.
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A suitable estimator of () can be obtained by forming &, from & and replacing 2, o and |
in the definition of @ by their estimators. Denoting by @ the resulting estimator of Q leads

to the multivariate auxiliary regression model
QIA(L)yt = Qlﬁ()t/,to + Qlﬁlt/,lll + Qlkﬁ—é + M7, t= 1, cen ,T. (37)

The LS estimators of the parameters y; (i = 0,1) and § from this auxiliary model, denoted
by fi; (i = 0,1) and 5, respectively, are used in the next section to obtain tests for the

cointegrating rank.

4 Cointegrating Rank Tests
We wish to test the null hypothesis
Ho(ro) : tk(II) = 7o ws. Hi(ro) : tk(II) > 7. (4.1)

Once the estimators fi; (i = 0,1) and 5 are determined as described in the previous section,

a sample analog of the series z; can be obtained as
Ty =y — flo — fint — Odys

or, alternatively, with 7 replaced by 7. The series Z; can be used to compute LR type test
statistics for the null hypothesis Hy(rp) in the same way as the usual LR test statistic based
on the VECM (2.5). More precisely, the test statistic can be determined from

p—1
Agy =T34+ Y TAG j+en, t=p+1,....T, (4.2)

j=1
by solving the generalized eigenvalue problem det(IIM;IT' — AQ) = 0, where II is the LS

estimator of IT obtained from (4.2), Q is the corresponding residual covariance matrix and

T T T -1
~ R ~t “ St A~ 50 A~ ~t
t=p+1 t=p+1 t=p+1 t=p+1

with AX,_; = [A&]_, - : A%y ,.,]. Denoting the resulting ordered eigenvalues by
M >e> 5\n, the LR type statistic for the pair of hypotheses in (4.1) becomes

n
~

LR(ry) = Z log(1+ A;). (4.3)

j=ro+1

10



The limiting distribution is given in the following theorem where B(s) is an (n — rg)-

dimensional standard Brownian motion.

Theorem 4.1. If Hy(ry) in (4.1) is true and the assumptions of the previous section hold,

LR(TO)LMr{( /0 lB*(s)dB*(s)’> ( /0 lB*(s)B*(s)'ds> ( /0 lB*(s)dB*(s)’>},

where B,(s) = B(s) — sB(1) is an (n — r)-dimensional Brownian bridge and dB.(s) =
dB(s) — dsB(1), that is, [, B.(s)dB.(s)" abbreviates [, B(s)dB(s)' — B(1) [ sdB(s)' —
[ B(s)dsB(1)' + 1B(1)B(1)". O

! -1

Notice that the result of this theorem holds even if § = 0 in (2.10) so that the shift
dummy does not appear in the model. In that case the shift date cannot be estimated
consistently. This situation occurs, e.g., whenever » = 0. The limiting distribution obtained
in Theorem 4.1 is free of unknown nuisance parameters. It is actually the same as the one
obtained by S&L in a model with a shift at a known point in time 7. Critical values are
given in Table 1 of Liitkepohl & Saikkonen (2000). Thus, in our framework, including a step
dummy in the model and estimating its coefficients and the shift date has no effect on the
limiting distribution of the cointegration tests.

It is also possible to extend our results by including more than one shift dummy or
other dummy variables in model (2.1). In fact, an additional impulse dummy and seasonal
dummies were considered by S&L. The result in Theorem 4.1 remains valid with additional
dummies. If additional shift dummies are included and the shift date is unknown, it may
be more difficult to construct suitable shift date estimators. We leave this issue for future
research.

The preceding discussion also suggests that if the a priori restriction p; = 0 is employed
in (2.1) and the GLS estimation of Section 3 as well as the above test procedure are modified
accordingly, the limiting distribution of the resulting test statistic is the same as in a model
without any deterministic terms, that is, the limiting distribution is obtained by replacing
the Brownian bridge B,(s) in Theorem 4.1 by the Brownian motion B(s). This situation
was also studied by S&L and, from the proofs given in Appendix A and in that paper, it can
be seen that the above conclusion actually holds. In the next section we will discuss small

sample properties of the tests.
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5 Monte Carlo Simulations

A small Monte Carlo experiment was performed to explore the finite sample properties of
our procedures and to compare the two break date estimators 7 and 7. The simulations
are based on the following z; process from Toda (1994, 1995) which was also used by some
other authors for investigating the properties of cointegrating rank tests (see, e.g., Hubrich,

Liitkepohl & Saikkonen (2001)):

Ty = v 0 T 46, & ~ 1id. N 0 , L ® , (5.1)
0 I, 0 e I,

where ¢ = diag(¢4,...,%,) and © are (r x r) and (r X (n — r)) matrices, respectively. As
shown by Toda, this type of process may be regarded as a canonical form for investigating the
properties of LR tests for the cointegrating rank because other VAR(1) processes of interest
can be obtained from (5.1) by linear transformations which leave such tests invariant. We
have used two-, three- and four-dimensional processes for simulations and report some of the
results from the three-dimensional DGPs in more detail here because they are representative
for other cases as well. We will analyze processes with cointegrating rank r =0 and r =1
because they allow over- as well as under-estimation of r. If r = 1, ¢ = ¢; with |[¢1] <
1 and © = (#y,0,) represents the instantaneous dependency between the stationary and
nonstationary components. For given VAR order p and break date 7, the test results are
invariant to the parameter values of the deterministic component. Therefore we use p; = 0
(1 = 0,1) throughout. In other words, the intercept and trend terms are actually zero.
Hence, y; = dd;, + z; and we have performed simulations with different § vectors because
the sizes of the shifts are expected to have an impact on the estimators 7 and 7 which in

turn may affect the small sample properties of the tests for the cointegrating rank.
Samples are simulated starting with initial values of zero and discarding the first 50
values as presample observations. Thereby we average out the effects of initial values in our
simulation results. Sample sizes of 7' = 100 and 7" = 200 are considered, but in general we

focus on the results for 7 = 100. The number of replications is 1000. Thus the standard error

of an estimator of a true rejection probability P is sp = /P(1 — P)/1000, e.g., 9,05 = 0.007.
Linear trend terms are included in the test regressions although they are actually zero, that
is, we pretend that this information is not available to the analyst. Moreover, we use different

VAR orders p, although the true order is p = 1, to explore the impact of this quantity on
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the estimation and testing results.

Table 1 and Figures 1-3 contain results for 77 = 100 and a shift date 7 = 50, that is,
the shift occurs roughly in the middle of the sample. The search procedures are applied
to all possible break points between the 5th and the 96th observation. Results are shown
for different values of the shift parameters 6 = (0,0, d3)’, alternative VAR orders p, different
values of ©, and both shift date estimators 7 and 7. For comparison purposes, we also report
test results for the case where the true shift date is assumed to be known. The tests are
based on asymptotic critical values for a nominal significance level of 5%.

We first consider the VAR order p = 1. Clearly, the actual shift date is found with greater
reliability if an impulse dummy is included in addition to a shift dummy. For example, for
P = 0.9, © = (0,0) and 6 = (0,0,5)", 7 finds the true shift date in 19% of the cases,
whereas the relative frequency of 7 = 50 is 75% (see Table 1). Obviously, it is easier for
both procedures to find the correct break date if the parameter d3 is larger or if strong
instantaneous correlation between the components is present ((6;,6,) = (0.4,0.8)) (compare
Figure 1).

The properties of the cointegrating rank tests do not deteriorate substantially if the shift
date has to be estimated relative to the situation where it is assumed to be known. In
general we observe an increase in the sizes of the tests if the break date is estimated (see
Table 1). Using 7, the tests are more affected by this increase. In case of strong instantaneous
correlation (0; = 0.4, 6, = 0.8) the power is slightly lower if the shift date is estimated by 7
compared to the power obtained with 7, whereas the reverse result follows if correlation is
absent (6, = 0y = 0) (see Figure 1). The sizes of the cointegration tests have a tendency to
decrease for increasing d3. For large values of d3, the search procedure finds more often the
correct shift point and thus, the sizes of the tests resemble the lower size in case of a known
shift date. As a consequence, the power of the tests also decreases with larger values of Js.

Generally, although the search procedure including a shift dummy only is less successful
in estimating the shift date (7), the properties of the cointegration tests based on this
estimation method do not differ much from the approach which includes an impulse dummy
in addition (7). Hence, in the presently considered case where p = 1, if the cointegrating rank

of the process is the only quantity of interest, using 7 may not lead to significant distortions.
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Table 1: Estimated Frequency Distributions for Three-Dimensional DGP with Cointegrat-
ing Rank r =1, 6, = 6, = 0, ¢ = 0.9, Sample Size T" = 100, Break Point 7 = 50 and
Nominal Significance Level 5% in each Individual Test Based on 1000 Replications

VAR true
order shift

P date | 6=112|0=20|0=30]|d=50]|d=Tc|d=10s

1 shift date estimator 7 (without impulse dummies)
< 50 0.456 | 0.455 | 0.450 | 0.407 | 0.328 | 0.184
=50 0.013 | 0.035 | 0.061 | 0.193 | 0.384 | 0.692
> 50 0.531 | 0.510 | 0.489 | 0.400 | 0.288 | 0.124
r= 0.078 | 0.116 | 0.113 | 0.113 | 0.107 | 0.102 | 0.095
r= 0.009 | 0.018 | 0.018 | 0.020 | 0.019 | 0.018 | 0.016
r>210.005| 0.009 | 0.008 | 0.008 | 0.007 | 0.009 | 0.005

3 shift date estimator 7 (without impulse dummies)
< 30 0.455 | 0.455 | 0.444 | 0.383 | 0.301 | 0.164
= 50 0.021 | 0.034 | 0.064 | 0.199 | 0.396 | 0.684
> 50 0.524 | 0.511 | 0.492 | 0.418 | 0.303 | 0.152
r=01]0.082| 0.141 | 0.138 | 0.142 | 0.128 | 0.119 | 0.106
r= 0.010 | 0.020 | 0.020 | 0.020 | 0.022 | 0.015 | 0.014
r>210.003] 0.005 | 0.009 | 0.009 | 0.005 | 0.005 | 0.006

1 shift date estimator 7 (with impulse dummies)
< 50 0.472 | 0.450 | 0.373 | 0.132 | 0.010 | 0.000
=50 0.021 | 0.083 | 0.238 | 0.748 | 0.982 | 1.000
> 30 0.507 | 0.467 | 0.389 | 0.120 | 0.008 | 0.000
r= 0.078 | 0.097 | 0.093 | 0.087 | 0.081 | 0.079 | 0.078
r= 0.009 | 0.017 | 0.018 | 0.019 | 0.012 | 0.009 | 0.009
r>210.005| 0.005 | 0.006 | 0.079 | 0.005 | 0.005 | 0.005

3 shift date estimator 7 (with impulse dummies)
< 50 0.470 | 0.481 | 0.510 | 0.610 | 0.634 | 0.643
=30 0.014 | 0.043 | 0.098 | 0.243 | 0.348 | 0.357
> 50 0.516 | 0.476 | 0.392 | 0.147 | 0.018 | 0.000
r=01]0.082| 0.138 | 0.131 | 0.125 | 0.105 | 0.091 | 0.092
r=1/0.010 | 0.025 | 0.020 | 0.017 | 0.017 | 0.013 | 0.014
r>210.003| 0.009 | 0.006 | 0.006 | 0.003 | 0.002 | 0.004

a, = (0,0,1)
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Obviously, the VAR order has some impact on estimating the break point if impulse
dummies are included. For p = 3, the shift date is found too early compared to the true
break date (see Table 1 and Figure 2). Most of the wrong estimations are located within the
p — 1 periods before the actual break as can be seen in Figure 2. This fact can be explained
by the inclusion of the lagged impulse dummies according to (3.1). The impulse dummies
delete the impact of the observations corresponding to the periods where they are nonzero
so that the shift dummy becomes effective only p periods after date 7. In contrast, if just a
shift dummy is included (7), the higher VAR order does not make it more difficult to find
the actual shift date. This also means that 7 is more reliable for larger values of d; if the
VAR order is p = 3.

In line with the findings in other studies, overstating the VAR order leads to a loss of
power (e.g., Liitkepohl & Saikkonen (1999)). Surprisingly, the poor performance of 7 when
p = 3, affects the power only for strong error term correlation (6; = 0.4, f; = 0.8) if ¢ = 0.9
(r = 1) (see Figure 2). In these situations we observe a lower small sample power for large
values of d3 compared to the cases where the true shift date or the estimator 7 is used.
However, for ¢, = 0.9 and #; = 6, = 0 the power for p = 3 is in fact slightly larger than
the power for the true order p = 1 (see Table 1 or Figure 1). Concerning the sizes of the
cointegration tests, it is also interesting to note that overstating the VAR order leads to
some size distortion (overrejection) if the true cointegrating rank r is zero (Figure 3). This
behavior is observed for both shift date estimators. Again, 7 clearly finds the true break
date more often if p = 3, whereas 7 is preferable for p = 1.

We have studied several other issues related to our DGP as well. In the following we
comment on some of the results without providing detailed figures or tables. Variations
in the parameter ¢, have a similar impact on the sizes and powers of the cointegration
tests for both break date estimators. For instance, setting ¢; = 0.7 increases the power of
the tests and improves the size properties in a similar way for both break date estimators.
Moreover, setting ¢; = 0.7 does not change the frequencies of finding the true break date in
any important way.

We have also considered a sample length of 7' = 200 and a shift date 7 = 100. The
frequency of finding the correct break date drops somewhat compared to the sample length

T =100 if 7 and p = 1 is used because the relative importance of the shift declines and
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there are more alternative periods over which the search is performed. In contrast, using
7 produces similar figures as for 7' = 100. However, the small sample properties of the
cointegration tests improve for both break date estimators. Again, the overall performance
of the tests is almost invariant to the choice of break date estimator.

We further studied different shift dates. Using a sample size 7' = 100 and setting 7 = 80,
we obtained virtually the same results as for 7 = 50. However, if the break date was close
to the beginning or the end of the sample, say in the first or last 10% of the observations,
it was much more difficult to detect the correct shift date. Nevertheless, the small sample
power of the cointegration tests deteriorated only slightly.

Finally, we have allowed for breaks in all three components of the process, that is, all
three components of § were nonzero. In the absence of innovation correlation the correct
shift date was found much more often compared to the case of a shift in only one component.
By contrast, in case of high innovation correlation (© = (0.4, 0.8)) the frequency of finding
the correct break point was clearly lower. However, this did not affect the small sample
properties of the cointegration tests.

Summarizing our simulation results, we can conclude that having to estimate the shift
date does not lead to substantial changes in the properties of the cointegration tests. There-
fore, both estimators, 7 and 7, may be used and our procedure appears to be suitable for

empirical work. We will discuss applications in the next section.

6 Applications

We have applied our testing procedure to two different systems of economic time series. The
first one consists of exchange rates of the Polish zloty versus a set of currencies. In this
system the shift date is actually known. We still consider this system here to check that our
procedure works for real data sets. For this purpose we compare the results for known break
dates to those obtained from our method without assuming knowledge of the shift date. The
second system describes the price-wage dynamics in the Polish economy for which a break
is likely at the time when the socialist system changed to a market economy. In this case it
is not quite clear where the shift actually has occurred. We begin with the exchange rate

system.
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Table 2: Cointegration Tests for Polish Crawling Peg System

H, LR:_193 LR:_195 LRgrs critical values
10% 5% 1%
ro =20 81.57** 125.15% 39.72 61.81 65.69 73.57
o =1 27.85 28.74 27.76 42.03 45.12 51.27
T = 2 10.62 10.63 11.26 25.90 28.47 33.54
ro =3 4.52 5.67 5.50 13.89 15.92 20.37
ro =4 0.25 1.65 2.44 543 6.83 10.19

Note: *** denotes significance at a 1% level. Critical values are taken from Liitkepohl

& Saikkonen (2000, Table 1).

6.1 Polish Crawling Peg System

Trenkler (2000) has analyzed the relationship between the Polish zloty and the basket curren-
cies within the crawling peg system Poland established on October 15, 1991. In this system
the zloty is tied to a currency basket and devalued with a preannounced monthly rate (rate
of crawl). The currencies comprising the basket were the U.S. dollar (45% weight), German
mark (35%), British pound (10%), French franc (5%) and Swiss franc (5%). Assuming that
the monetary authorities can keep the actual zloty rate in line with the theoretical rate
determined by the crawling peg, Trenkler (2000) derives a long-run relationship between the
logarithms of the zloty - U.S. dollar rate (zl;) and the basket currencies denominated in U.S.
dollars (gmy, bpy, ffi, sf:), where the variables denote the logarithms of the exchange rates
of the German mark, the British pound, the French franc and the Swiss franc to the U.S.
dollar, respectively. He tests for this relationship within the cointegration framework using
daily data from March 1, 1993 to February 28, 1994. This period includes a discrete step
devaluation of the Polish zloty by 7.4% against the basket on August 27, 1993, which can
be seen in Figure 4. This level shift is modeled with a shift dummy within a VAR system
of order p = 3 consisting of zl;, gmy, bp:, fft, sft, a constant and a linear trend. Applying the
test suggested by S&L for the case of a known break date and a cointegration test suggested
by Johansen & Nielsen (1993), Trenkler (2000) finds a cointegrating rank of one confirming

the existence of the postulated long-run relationship.
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Figure 4: Zloty per unit of currency basket

We estimated the break date although it is actually known to see how our procedure
works in practice. Hence, we fit a VAR process of order p = 3 with the same variables and
deterministic terms as in Trenkler (2000). In this case we get a break date estimate 7 = 123
which corresponds to August 25, 1993, two days before the devaluation, whereas 7 = 125
estimates the break date correctly. This outcome is in line with our simulation evidence and
asymptotic theory, which suggest that 7 may find the true break date more often for VAR
orders greater than 1. Notice, however, that the cointegration test finds one cointegrating
vector at a 1% level for both break dates, although the values of the test statistics differ (see
Table 2). In Table 2 we also report a cointegration test (LRgs) suggested by Saikkonen &
Liitkepohl (2000b) which does not allow for structural shifts but proceeds otherwise in the
same way as the tests presented in the current study. It also has the same asymptotic null
distribution so that the critical values in the table may be used. Clearly, this test does not
find a cointegration relation, which shows the benefit of applying tests accommodating level

shifts.
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6.2 Price-Wage Dynamics in Poland

In a series of papers Golinelli & Orsi (1994, 1998, 2000) have studied the price-wage dynamics
of economies in transition from a centrally planned to a market economy. Poland is one of
the countries under consideration. Marcellino & Mizon (2000) also studied the wage-price
relationship in Poland and other European countries.

Referring to Golinelli & Orsi (1998) we have built a model for Poland consisting of cpiy,
the consumer price index, w;, the nominal wage, ex;, the exchange rate against the U.S.
dollar, Ip;, labor productivity, and epop,;, the employment-population ratio. All variables are
in natural logs. By including the exchange rate, the impact of this variable on inflation and
employment can be captured. From an economic point of view, at least two cointegrating
relationships describing a price and a wage equation are expected to exist. The theoretical
basis for these equations is a simple mark-up pricing system where price movements are
linked to cost movements (Golinelli & Orsi, 1994). Also, a third cointegrating relationship
explaining the labor productivity may exist (Golinelli & Orsi, 1998). In our analysis we used

quarterly, seasonally non-adjusted data for the period 1970:1 - 1998:4 (see Figure 5).

22



cpi;

7.0

- T-866T

- T-966T

- T-¥66T

- 1-¢66T

- T-066T

- 1T-886T

- T-986T

- T-¥86T

- 1-¢86T

- T-086T

- T-8.6T

- T-9.6T

- T-V.6T

- T-¢L6T

T-0.6T

5.0
3.0
1.0 4
-1.0 +

-3.0

L 1T-866T L T-8661T
| 1-966T L T-966T
L T-v66T L T-v66T
L T-266T L T-266T
| T-066T L T-0661
L 1T-886T | 1-886T
| 1-9861T L T-9861T
- L TvgeT | o L T-v86T
3 o
| T-zeeT | @ L T-2861
| T-086T | T-0861T
| 1-826T L 1-8/6T
| T-926T | T-926T
| T-v26T L T-v16T
L T-226T | T-226T
‘ ‘ T-026T —_— T-0L6T
R & ¥ 8 EEEIR IR
L 1-866T L T-8661T
L 1-966T | T-966T
L T-v66T L T-v66T
L 1-2661 L T-2661
L T-066T - T-066T
| T-886T - 1T-886T
L T-086T L 1-986T
- L T-v86T - L T-v86T
= =
| T-286T - T-¢86T
| T-086T - 1-086T
L 1-826T - 18461
L T-9261 - 1961
L T-¥/6T - T-v.6T
| T-z261 - eL6l
————————— T-0.61
pespprpyreti N LFEEERER
oMo OMONAO FI| (\Il ' ' v v 1 v i g qu

23

Figure 5: Time series used in wage-price model for Poland




Table 3: Dependence of Break Date Estimations on the VAR Order p

shift estimation without seasonals | shift estimation with seasonals
T 7 Ts Ts
p=1] 79 (1989:3) 79 (1989:3) 80 (1989:4) 79 (1989:3)
p=21| 79 (1989:3) 79 (1989:3) 79 (1989:3) 79 (1989:3)
p=3| 79 (1989:3) 79 (1989:3) 79 (1989:3) 79 (1989:3)
p=4] 79 (1989:3) 82 (1990:2) 79 (1989:3) 79 (1989:3)
p=>5| 77 (1989:1) 80 (1989:4) 77 (1989:1) 80 (1989:4)
p==6| 73 (1988:1) 80 (1989:4) 73 (1988:1) 80 (1989:4)
p=7| 73 (1988:1) 80 (1989:4) 73 (1988:1) 80 (1989:3)
p=238]| 73 (1988:1) 80 (1989:4) 73 (1988:1) 79 (1989:3)

One of the main problems in the econometric modeling process is the occurrence of
structural breaks in the Polish time series. As can be seen in Figure 5, there exist two
potential periods of changes, a first one in the early 1980s and a second one during 1989 and
1990, the beginning of the transition process. Marcellino & Mizon (2000) used annual data
until 1989 for a similar system and assumed a break after 1980. Obviously, the exact time
points of the breaks are difficult to see from the graphs. Therefore we have applied our shift
date estimation procedures.

In Table 3 we present the shift date estimates for different VAR orders. We obtained
7 =179 (1989:3) for VAR orders p=1,...,4, 7 = 77 (1989:1) for p = 5, and 7 = 73 (1988:1)
for p =6,...,8. If 7 is used, we obtained an estimate 7 = 79 (1989:3) for an order up to
p=3,7=282(1990:2) for p = 4, and 7 = 80 (1989:4) for p = 5, ..., 8. The differences in the
break date estimates with respect to the higher VAR orders are in line with our simulation
evidence. Our simulations in the previous section have shown that 7 tends to estimate the
break date too early if higher values of p are applied. The results in Table 3 reflect this
property of the break date estimator 7.

The shift date estimations reported in the first two columns of Table 3 were conducted
without including seasonal dummy variables in (3.1) or (3.3) although the time series are not

seasonally adjusted. Therefore, we also incorporated seasonal dummy variables into both
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Table 4: Joint Determination of the Break Date and the VAR Order p

criteria | 7 (without seasonals) | 7 (without seasonals)
AIC p=8and 7 =173 p=8and 7 = 80
SC p=2and 7 =79 p=2and 7 =79
HQ p=T7and 7 =73 p=2and 7 =79

75 (with seasonals) 7s (with seasonals)
AIC p=8and 7, =73 p="Tand 7, = 80
SC p=1and 7, = 80 p=2and 7, = 79
HQ p=28and 7, =73 p=2and 7, = 79

estimation procedures and obtained the estimates shown in the last two columns of Table
3. Obviously, the inclusion of seasonal dummies does not have an important impact on the
break date estimation.

So far, we have not discussed the choice of the VAR order p. As suggested in Section 3.1,
one possible approach is to use the VAR order that minimizes a standard model selection
criterion given the estimated break date for the respective order p. Specifically, we computed
the values of information criteria for each order p = 1,...,8, applying the respective break
date that has been estimated for the considered order. This was done for the break date
estimates emerging from both estimation procedures with and without seasonal dummy
variables, that is, the computations are conducted for the four sets of break date estimates
given in Table 3. Thus, we may obtain different pairs of VAR orders and break dates
depending on the estimation procedure used to determine the shift date. The computations
of the information criteria were performed on the basis of the model (3.1) augmented by
seasonal dummy variables because this is the model underlying the cointegration tests applied
later. We used the information criteria AIC, SC and HQ (see Liitkepohl (1991, Chapter 4)
for definitions). The results are shown in Table 4.

Whether or not seasonal dummies are included in estimating the break dates does not
make much difference whereas the choice of information criterion is important. As usual, the
SC criterion prefers smaller lag orders than AIC and HQ. We also applied single equation

LM tests for autocorrelated residuals and a vector error autocorrelation test (see Doornik &
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Table 5: Cointegration Tests for the Polish Price-Wage Model

H, p=2_8 p="7 p==6 critical values
LR:_73 | LRs—go | LR+—73 | LR7—go | LR:;—73 | LRs—go | 10% 5% 1%
ro =0 || 74.06™* | 80.97** | 56.86 | 90.35"** | 69.41** | 67.74* | 61.81 65.69 73.57
ro =11 42.13* 41.40 39.86 | 45.33* | 57.04*™* | 45.46** | 42.03 45.12 51.27
ro =21 26.27* 13.77 19.48 15.09 26.45* 20.93 | 25.90 28.47 33.54
ro =3 5.76 5.50 5.64 4.65 9.87 491 |13.89 15.92 20.37
ro =4 0.13 0.05 0.00 0.02 0.63 0.10 543 6.83 10.19

Note: *, ** *** denote significance at a 10%, 5% and 1% level respectively. Critical values are taken from

Liitkepohl & Saikkonen (2000, Table 1).

Hendry, 1997). These tests indicated that p = 2 leaves some autocorrelation in the estimation
residuals. Therefore higher VAR orders are used in the following analysis.

In Table 5 we have collected the results of the cointegration tests using different VAR
orders and corresponding break date estimates. Obviously, there is some evidence for at
least two cointegrating relations. According to our simulation results, estimating the break
date by 7 and thereby dating the break date possibly too early does not necessarily lead to
a loss of power of the cointegrating rank tests. In fact, for p = 6 and p = 8, using a break
date estimate 7 = 73 leads to stronger evidence for two or, depending on the significance
level, three cointegrating relations than with 7 = 80. Only for p = 7, the cointegration tests
based on 7 = 73 do not even reject a zero cointegrating rank whereas 7 = 80 leads to clear
evidence for two cointegrating relations.

Golinelli & Orsi (1998) used data for the period 1970:1-1995:3 and applied Johansen
LR tests including shift and impulse dummies but using critical values for the case without
level shifts, that is, they have used inadequate critical values. In their specification they
implemented breaks in 1981:1 and 1989:4. Golinelli & Orsi do not explain how they find
these shift dates. Our previous analysis has shown that modeling of a shift in 1981 is not
necessary to get rid of error term autocorrelation. Also, the residuals of our higher order
models used in the cointegration tests do not show a break in the early 1980s. Nevertheless,
we have explored the possibility of an additional break by including a second shift term and

searching over the whole sample again. Due to multicollinearity of the dummy variables one
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has to exclude the observation of the first break date estimate, of course. In case of 7 the
preceding p periods also have to be excluded because of the use of impulse dummy variables.
We have applied our search procedures with and without seasonal dummies. The search
procedures suggested shift dates in the late 1980s close to the ones modeled already. This
result supports the visual impression from Figure 5 that the first period at the beginning of

the 1980s is less likely to contain a shift.

7 Conclusions

We have proposed a procedure for testing the cointegrating rank of VAR processes with a
structural shift in the mean at unknown time. In this procedure the shift date is estimated
in a first step. Then the deterministic terms are estimated and finally a cointegration test
is performed on the series which is adjusted for deterministic terms.

Two possible estimators of the break date based on a full unrestricted VAR model are
explored. One estimator takes into account a set of impulse dummies which results from
rewriting the DGP in levels VAR form whereas the other estimator ignores the impulse
dummies and is therefore actually based on a misspecified model. It is found that ignoring
the impulse dummies has still advantages in small samples and may therefore be useful in
practice.

Once the break date has been estimated and a suitable lag order is determined on the
basis of standard model selection criteria, the deterministic part of the process including
the shift size is estimated with a feasible GLS procedure. Then the series are adjusted
by subtracting the estimated deterministic part and it is proposed to use a Johansen LR
type test for the cointegrating rank applied to the adjusted series. The test statistic is
shown to have a limiting null distribution for which critical values exist in the literature.
It does not depend on the break date. Therefore it is not necessary to get new critical
values, e.g., if new data become available for an extended sample period. As usual in unit
root and cointegration tests, the asymptotic distributions of the test statistics depend on
whether or not a deterministic trend term is present in the DGP, however. We have derived
asymptotic results for DGPs with and without deterministic linear trend terms and we have

also discussed the consequences of including seasonal dummy variables.
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In addition to providing asymptotic results we have also investigated the small sample
properties of the procedure using a Monte Carlo simulation experiment. It turns out that,
although the break date estimator which ignores the impulse dummies is more successful in
locating the true break date, the choice of break date estimator does not have a substantial
impact on the properties of the performance of the cointegrating rank tests. We have also
applied the procedure to two sets of example series to illustrate its performance in practice.

There are a number of possible extensions which may be of interest in applied work.
For example, as shown in one of the examples, it may be useful to allow for more than one
shift and it may also be of interest to include further impulse dummy variables. Moreover,
dummies which take on a value of one for a specified number of periods and are zero otherwise
may be of interest to accommodate special effects that have been of importance for a limited
time only. In principle, additional shift, impulse and other dummy variables can be treated
in a similar way as in our theoretical derivations if break date estimators with suitable
properties can be found. The derivation of such estimators is likely to cause theoretical as
well as practical problems, however. Nevertheless, the framework developed in the foregoing

may be a useful point of departure for overcoming such problems.

Appendix A. Proofs

In the proofs it is assumed for convenience that the initial values of the DGP are such
that 'z, and Az, are stationary. Also, it is occasionally helpful to be more explicit about
the true parameter values. In these cases they will be indicated with a subscript ‘o’ (e.g.,
Voo, V1o, To €tc.). Moreover, we use the following notation. Right hand side and left hand
side will be abbreviated by r.h.s. and 1.h.s., respectively. The effective sample size used for
estimation is denoted by N, i.e., N = T — p, and Apin(-) denotes the smallest eigenvalue
of a matrix. The symbol = signifies weak convergence in a product space of D([A, \])
or D([0,1]). The former is relevant for random functions depending on the parameter A,
whereas the latter is used when the weak limit is a Brownian motion. Unless otherwise
stated, all limits assume that 7" — oco. When obtaining weak convergences in a product
space of D([), A]) we frequently make use of results given in Appendix A.1 of Gregory &
Hansen (1996). It is straightforward to check that these results are applicable despite the
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differences in assumptions. The subsequent results assume that ¢; ~ i.i.d.(0,Q) with the
components of €; having finite moments of order b, where b > 4, as set out in Section 2. We

will now first prove Theorem 3.1 and then turn to Theorem 4.1.

A.1 Proof of Theorem 3.1

We begin by establishing the result for the estimator 7. Instead of the representation (3.1)

it will be convenient to use the corresponding VECM form

p—1 p—1
Ay = vy + vt +01dy, + Z’YjAdt—j,r + 1y +Z DjAy_j+ey, t=p+1,...,T. (A1)
=0 =0

Using an (infeasible) linear reparameterization we can transform y; to y; — fi00 — p1ot- This
means that we can proceed by assuming that ug, = 11, = 0 and, consequently, y; = 0,d;,, + 2+

and vy, = 11, = 0. A further (infeasible) reparameterization is obtained by writing
Hy;—1 = aus—1 + pvp—1,

where u; = 8'y;, vy = By, and p = I3, (B8 B.) *. Notice that here parameters refer to their
true values so that p, = 0. Thus, instead of the preceding error correction form we employ

its infeasible counterpart

p—1 p—1
Ay; = vo +vit + 01dyr + Z ViAdyjr +aug 1+ pvg1 + Z UjAy j+én, t=p+1,...,T.
j=0 Jj=0
(A.2)
To write (A.2) in a more compact form, denote w; = [1,¢,v; j,ui 1, Ay; 1,..., Ay, 1],
Qtr = [dtr, Adyyr, ..., Ady_pi1 7] and set 2z, = [w}, q;,]". Then (A.2) can be written as
Ay =Sz + 64, t=p+1,...,T, (A.3)
where ® = [(I)l . @2] with (Pl = [V() ipla Pl D Fp—l] and (I)Q = [51,’}/0,...,’71,_1].

For every 7 € T we can estimate the parameter matrix ® in (A.3) by LS. The corre-
sponding estimator obtained for the error covariance matrix is obviously the same as in the
case of the original model (3.1). Thus, we can use the infeasible model (A.3) for theoretical
purposes. Since the regressors in the levels VAR form (3.1) are the same in each of the n
equations the shift date estimator defined by (3.2) can equivalently be defined by

T
7 = arg min tr ( Z 51:7527) . (A.4)
t

TET =p+1
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In what follows this definition of the estimator 7 is used because it appears convenient for
mathematical derivations. In our analysis we employ a theoretical counterpart of the sum
in (A.4) and express it as a sum whose components depend on the specified break date 7
and its true value 7,. An explicit treatment will only be given in the case 7 < 7, because
the case 7 > 7, can be treated similarly (cf. Bai et al. (1998), proof of Theorem 3).

The relevant theoretical counterpart of the trace in (A.4) is defined by

Qr(r,®) = tr ( > gtT(cb)gtT(@)') : (A.5)

t=p+1
where €4, (®) = Ay, — ®z,;. Roughly speaking, we will first show that in large samples
the infimum of Qr (7, ®) is obtained for 7 = 7, with probability approaching one. For this
purpose, assuming 7 < 7,, we split the function Qr (7, ®) into a sum of four components, the

first one is defined in terms of

Et(\lfl) :Ayt—\Illwt, t=p+1,...,7’—1, (AG)
where ¥y = [y : vy :p:a: Ty :---: Ty ). The true value of ¥y is U1, = [0:0:0: a, :
[io:-++:Tpo1,] and, obviously, ;(V1,) =& (t=p+1,...,7—1).

Next set d¢r = [Adtr, ..., Adi—pi1q], ¥ = [Y0,- - > Vp—1] and define
er(Uo) = Ay, — Wozy,, t=1,...,7,— 1, (A7)

where z;, = [w} : d},]' and ¥y = [y +6; : vy i p:a: Ty -+ :Tpy: 4] Here the
corresponding true parameter value is defined as Wy, = [¥y, : 0] because then ey, (¥s,) = &4
forallt=7,...,7,— 1.

For ¢t > 7, > 7 the vectors d;; and d;,, are nonzero only when 7, <t <74 p—1 and
T, <t <T1,+p—1, respectively. Thus, we consider the time points t = 7,,..., 7, +p—1

separately. For these time points it is still relevant to consider
eir(Wo) = Ay — Wozyy, t=7p...,To+p— 1. (A.8)

However, unlike in (A.7) and with a slight abuse of notation, it is now reasonable to define
the true parameter value as Wy, = [01, : 0 : 02 : ['p:--- : Tp1, 2 7,]. Then we have
6‘tT(\IIQo) =&+ ’Yo(dt’r - dtTO)’ t="To...,To+p— 1

For the remaining values of ¢ we define
er(W3) = Ay, — Vawy, t=7,+p,...,T, (4.9)
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where s = [vg+ 61t vy :pra: Ty oo 0 Tpyq] with the true value W3, = [01,:0:0: ap :
I'ip e+ :Tpo1,]. Obviously, we again have e,(V3,) = ¢, t =7, +p,...,T.
Using (A.6) — (A.9) we can now decompose the function Q7(7, ®) defined in (A.5) as

Qr(r,®) = tr( tT:_lerlet(\I!l)et(\Ill)')—i-tr( ol e (Wa)err (T,))

i (77 e (Ba)eer(B2)) + tr (S, 20l Ta)er(Ts))

de
2 Q1,7-1(¥1) + Q2,7,—1(7, Vo) + Qa7 4p—1(T, ¥2) + Qa7 (¥3).

We shall analyze the four components of Qr (7, ®) separately. The first one is considered in

the following lemma where
Dr = diag[NV/? : N¥2 : NI,, . : N'2I, : N'2L,, 4.

Lemma A.1. There exists a real number ¢; > 0 such that, with probability approaching

one,

Ql,T—l(\Ifl) - Q1,7—1(\I’1o) > —G1T||(‘I’1 - \I’1o)DT|| + C1||(‘I’1 - \I’1O)DT||2,

where a;7 > 0 and ayr = O,(1) uniformly in [TA] <7 < 7, and 9.

Proof: Because €;(V1,) = &; and €,(V1) — £4(V1,) = —(¥; — ¥y,)w; we have

Ql,T—l(\Ill) - Ql,T—l(qllo)
— _2tr ((xpl — U,,)Dr(D Y wtg;)) (A.10)
tr (@1 = W1) Dr(D7! Sy waw D7) Dr(Wy = W)’ )

Furthermore, 7 > [T'A] implies

7—1 [TA]-1
Amin (D;l > wtw;D;> > Anin | D7' Y ww}D' | > ey, (A.11)
t=p+1 t=p+1

where ¢; > 0 and the latter inequality holds with probability approaching one. To justify
this, note that here we have t < 7, so that y; = x;. Thus, by well-known properties of
stationary and integrated processes, the matrix in the second expression of (A.11) converges
weakly to a limit which is positive definite (a.s.). This implies the latter inequality in (A4.11).
Assuming (A.11) it follows from (A.10) and the Cauchy-Schwarz inequality that

Qur-1(¥1) = Qur-1(¥10) = =2[[(¥1 — ¥3,) Dr| + a| (91 = Wy,) Do,

-1 /
D E Wiey

t=p+1

‘ 7—1
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To complete the proof it suffices to show that

[TA]-1
D' Y wey = 0,(1) (A.12)

t=p+1
uniformly in A < A < A,. For the third block on the Lh.s. defined by v, &} this follows
from Theorem 2.1 of Hansen (1992). For the remaining blocks the desired result is obtained
because an invariance principle holds in these cases. To see that an invariance principle
holds, observe that wye) is a martingale difference sequence and that it is straightforward to
verify that for the considered blocks the conditions required for the application of Theorem

27.14 of Davidson (1994) hold. This completes the proof. O

Of the four components of Q7 (7, ®) the second one requires most effort. Therefore, we
shall first consider the third and fourth components. For the third component we need the

following result.

Lemma A.2.

To+p—1

Q2,r4p-1(T, ¥2) — tr ( Z EtS;:) > —aor||(¥3 — W30) Dr|| — asr||vll — asr,

t=7o
where a;r > 0 (¢ = 2,3,4) and asr = 0,(1), asr = Opy(1) and asr = O,(1) uniformly in
[TA <7 <7,and ®.

Proof: First note that here U5 is defined as in (A.8) so that Wy = [U3 : 4], ¥s, = [¥3, : 7,
and e,(Vq) = &1 — (U3 — U3o)wy — ydsr +7,dsr,. Thus, expanding the difference on the Lh.s.
of the stated inequality in the same way as in (A.10) and omitting the nonnegative terms

on the r.h.s. yields

Qarorp 1(T, U2) — tr( P ere)) > =2t (W — W) Dr(Dy o70? Hwie)))
—2tr ( I":tf 71(’7dt7 — 'yodm)e;) )
Next, write the difference in the last expression as (y — v,)d¢ + v,(dsr — di,) and use the

Cauchy-Schwarz inequality as well as the triangle inequality to conclude that

Q-1 (7, W2) = tr (2007 " ever) 2 =2[|(Us — Vo) Drlll| Dyt 3307 wee|

o+p—1
=27+ oD 2857 deresl
=2y, 1257 (der — dir, ).
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The result of the lemma is easily obtained from this inequality because the sums on the

r.h.s. only contain a fixed finite number of terms. O

Lemma A.3. There exists a real number c; > 0 such that, with probability approaching

one,

Qsr(¥3) — Qar(Vs30) > —asr||(¥s — U3o) Dy || + cof | (T3 — Us,) D%,

where asr > 0 and asy = O,(1) uniformly in [TA] <7 < 7, and ®.

Proof: In the same way as in (A.10) we have

Qur(¥3) = Qur(Wso) > =2tr (W3 = Ws,)Dr(DF* L, wiel))
tr (@ — Wa)) Dr(Dp X1, ., wat D7) Dr(Ws — W)’

Because the r.h.s. is independent of 7, uniformity with respect to this parameter is of no
concern. Moreover, the stated result is obviously obtained by establishing analogs of (A.11)
and (A.12) with the range of summation changed to conform to the present case. This can
be done by using arguments similar to those used for (A.11) and (A.12). Notice, however,
that now the level shift affects and we have y; = d1,dy,, + x;. It is still straightforward to use

well-known results of stationary and integrated processes and establish the desired result. O

For the function Qs ,,_1(¥3) we need two different results. The following lemma contains

the first one.

Lemma A.4. For every A < A < ), there exists a real number ¢3 > 0 such that, with

probability approaching one,

Q270—1 (7, ¥s) — Qo.7y—1(7, ¥ao) > —agr||(Vs — ¥i,)Dr|| — arr |||
+c3]| (U3 — W1,) Dpl|* 4 csllv]%,

where a;r > 0 (i = 6,7), agr = O,(1) and arr = 0,(T"), § < 1 < 7, uniformly in
[TAl <71 <[TA<T,and ®.
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Proof: In the same way as in (A.10) we first have

Q2,7,—1(7, V) — Qa7y—1(T, ¥oo)
= —2tr ((\IIQ — \1120) ( 1 ZTO ! Ztrf‘:;)) (Al?))
+tr (Vg — Wa0)Dp (D7 377 24,2, D7 D (W2 — Wa,)')

where D, = diag[Dy : I,]. We shall show next that

To—1
D' wiAdyi, = 0)(T"'?), i=0,...,p—1, (A.14)

t=r
uniformly in [TA] < 7 < 7,. This implies that the matrix in the middle of the latter expres-
sion on the r.h.s. of (A.13) is asymptotically block diagonal. For the first and second compo-
nents of w; (A.14) is obvious and the order is actually O(N~1/2). For the third component
the order is O,(N~Y/2) because N~Y2 max;<;<r, [|vi-1]| < N7Y2max;cier |8 71-1] = O,(1)
due to the fact that N~/ 2ﬁi:r[Ts] obeys an invariance principle. For the fourth component
of w; we can use an argument similar to that for (A.14) of Saikkonen & Liitkepohl (2001)
and conclude that maxi<;<., ||us—1|| < maxi<i<r ||8'zi—1]| = 0p(T™"), which gives the desired
result. The same reasoning applies to the remaining components of w;, that is, to Ay;_;
(j =1,...,p), and, hence, we have established (A.14).
From (A.14) it follows that

To—1 To—1
D' 2,2, D, = diag | D' Y ww Dy s 1| + 0, (T712). (A.15)
t=T t=T

The next step is to show that

[TAo]—1

D' Y wwDp' = Myw(Xo) — Muw()), A< A<,

t=[T)]
where the matrix M,,,(\) is the weak limit of Dy Zt o1 "wyw) D" which is (a.s.) pos-
itive definite and continuous and such that the difference My, (Ay) — Myw(A) is positive
definite when A < A < A,. First consider the lower right hand corner of the matrix
D;. Zt —pil wtthT which is determined by w;—y = f'z;—1 and Ay ; = Az, (§ =
1,...,p—1). Tt is straightforward to check that, after subtracting expectations, the quanti-
ties in this corner obey an invariance principle, which implies the stated weak convergence
with the limit determined by the expectations. For the upper left hand corner determined

by 1, ¢t and v;_; the stated weak convergence is obtained from an analog of the result in (A.3)
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of Gregory & Hansen (1996) which extends to the case involving the deterministic terms 1
and t. Finally, a combination of (A.4) of Gregory & Hansen (1996) and an application of
the invariance principle shows the remaining weak convergence and that the limit is actu-
ally zero in this case. Because the required continuity and positive definiteness claims are
straightforward to establish, we have completed the proof of this step.

The above discussion implies that, with probability approaching one, the smallest eigen-
value of the matrix on the Lh.s. of (A.15) is bounded away from zero if A < A\ < A,. Thus,
since now Wy = [¥3 : 4] and Uy, = [Uy, : 0], it follows from (A.13) that, with probability

approaching one,

Q2,r0—1(¥2) — Q7,1 (W) > —2tr ((U5 — Uy,) Dr (D! th;l wie}))
—2tr (v 252, dire}) (A.16)
+e3|[(¥3 — W1o) Drl|? + e3l|v]I%,

where ¢3 > 0 is a suitably chosen (small) constant. The argument used to prove (A.14) in
the case of the component u;_; shows that the sum in the second term on the r.h.s. of (A.16)
is of order 0,(7™") uniformly in [T'A] < 7 < 7,. This fact and an application of the Cauchy-
Schwarz inequality implies that the second term on the r.h.s. of (A.16) can be replaced by
arr||7y|| with a;r as stated in the formulation of the lemma. Similar arguments applied to

the first term on the r.h.s. of (A.16) show that the result of the lemma follows if

To—1

D7y " wiel = Oy(1)
t=T1

uniformly in [TA] < 7 < 7,. This, however, can be established in the same way as the

analogous result in the proof of Lemma A.1 (see (A.12)). This completes the proof. O
Now we can prove the following result.

Lemma A.5. If §;, # 0, then 7 — 7, = 0,(T).

Proof: Let € > 0 and define the set

Bip ={(7,®) : [TA| <7 <7, — [T€]}.
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We use Lemmas A.1 - A4 to show that

Pr {( inf  Qr(r,®) — Qr(r, ®,) > O} — 1. (A.17)

7,8)EBT
Because a minimum of the function Qr(r, ®) exists for every 7 larger than some constant
and analogs of Lemmas A.1 - A.4 can be proved for 7 > 7, one can similarly show that
(A.17) holds with the inequalities in the definition of By replaced by 7, + [Te] < 7 < [T)].
The result of the lemma follows from these facts.
Thus, assume that (7,®) € By and note that Qr(7,, ®,) = tr (ZtT:pH et‘s;). From

Lemmas A.1 - A.4 we then find that, with probability approaching one,

QT(Ta (I’) - QT(TO, (I)o) > —01T||(‘I’1 - \Ijlo)DT” + 01||(‘I’1 - \Ijlo)DT||2
—(agr + as7) || (Vs — Ws0) Dr|| + 2| (P53 — ¥3,) Drl|? (4.18)
—agr /(Y5 — W1,) Dr|| + ¢3]| (s — ¥1,) Drl|?

—(asr + arr) ||l + e [|VII” — aar,
where the quantities a;+ (i = 1,...,7) and ¢; (i = 1,2, 3) are independent of 7 and ®.

Next note that, for any ag, a; > 0 and as > 0, we have the elementary inequality
o2
s — iz +ag > ——— +ag, z>0. (A.19)
4@2
Thus, because agr + arr = 0,(T7), asr = Op(1) and ¢z > 0, the sum of the last three terms
on the r.h.s. of (A.18) divided by N can be replaced by 0,(1). Because a17 = O,(1) and
c; > 0, the same argument shows that this is also the case for the sum of the first two terms

on the r.h.s. of (A.18). Thus, with probability approaching one,

N7'Qr(7,®) = N7'Qr(70,®0) > —N*(azr + asr)||(¥3 — U30) DrN 12|
+¢ol| (U5 — W3,) DpN~V/2||2
—N"agr||(¥5 — ¥1,) Dy N2
el (T3 — W1o) D N2 + 0, (1),

(4.20)

where the term o0,(1) is independent of 7 and .

We shall analyze the r.h.s. of (A.20) in two parts and to this end define the sets
1
Bor = Bir N {(T, @) : ||(¥5 — ¥30) Dy N 72| < 5||<51,,||}

and

1
Bsr = Bir N {(r, ®) : [|(¥3 — Ws,) Dp N~ > 5||510||} :
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By (A.19) and agr = Op(1) we can replace the sum of the third and fourth terms on the
r.h.s. of (A.20) by 0,(1) and conclude that, with probability approaching one,

inf(Taq’)EB:iT NﬁlQT(Ta (I)) - N_IQT(TOa (Po)

. _ + asr
> inf Wy — Wy ) DN Y2|2 (1 = dor 1
> (T,‘I})IéBgT o[ (U3 30) Dr I o N12|[(U3 — U3, )Dr N-172| + 0p(1)

Co 9 2((1,2T + CL5T)
> = _— = =7
=4 ||610|| <1 02N1/2||510|| +0p(1)

= 102/|010||* + 0p(1).

Here the inequality follows because asr + asr = Op(1) by Lemmas A.2 and A.3. This shows
that (A.17) holds when the infimum of Q7 (7, ®) is taken over Bsr.
It remains to study the infimum of Qr (7, ®) over Byr. First observe that Uy — W3, =

Wy — WUy, — [0, : 0] and hence
(8 — T )Dr N > (810 — [|(¥5 — Wso) DN

by the triangle inequality. On Byr the square of the r.h.s. is bounded from below by i||(510||2.
This and the inequality ||(U5 — U,)DrN~Y2|| < ||(¥3 — W3,) Dy NY2|| + ||610|| can be used
to show that on Ber we can replace (A.20) by

NﬁlQT(Ta CD) - NﬁlQT(TOa @o)
> —N"Y2(agp + asr + agr) || (Vs — U3,) DN ~12|
+6o|| (U5 — W30) DpN 722 = N7 2047|610 + £[1010]1* + 0p(1).

By (A.19) and agr + asr = Opy(1) the sum of the first two terms on the r.h.s. can further be

replaced by 0,(1) and hence we can conclude that, with probability approaching one,

40'6T

inf N1 )= N71Qr(r0, ) > 2 b10|I* (1 = i
in Qr(r,®) Qr (7o, ®,) > 1 1610l c3N1/2||61,|]

C3 9
1) > 36, 1).
(1,®)E€Bar )+0p( ) > 1 [|610/|"+0,(1)
Thus (A.17) also holds with the infimum of Qr(7, ®) taken over Byr and we have altogether

established (A.17). This completes the proof of Lemma A.5. O

Lemma A.5 shows that 7/N is a consistent estimator of the break date fraction A. Un-
fortunately, this consistency result is not sufficient to prove Theorem 4.1 although it is
a useful intermediate step for obtaining a sufficient improvement. To this end, we have

to replace Lemma A.4 by another result. In this replacement it will be convenient to also
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consider Q2 +p—1(7, U2) and hence replace both Lemma A.2 and A.4 by the following result.

Lemma A.6.
Q.71 (7, Wo) + Qo ryip1 (1, U2) — tr (7207 et
> —agr||(Ys — U3,) Dr|| — aor||(¥3 — Ws,) Drl|?
— (b + (=72)" barll (s = W) Dl ) (70 = )2 6161 + (70 = 71131012 = aror
where a;7 > 0 (i = 8,9,10), bir > 0 (1 = 1, 2) and agr = 0,(T"), agr = 0,(1), aror = 0,(T*"),
bir = Op(1) and byp = O,(1) uniformly in [TA] <7 < 7, and P.

Proof: First consider Qo 1(7, ¥3) for which Uy — Uy, = [¥3 — Uy, : v]. Thus, we can
write (A.13) as

Qo1 (T, Us) = Qory 1 (7, W) = Qapyr(7,03) —tr (372 £46))
= —2r ((\113 —Uy,) ZTI wtst) — 2tr (7 Yo Ld,,e! )
+tr (W5 — W) Yo7 wowp (W5 — W4,)’)
+2tr (U3 — ¥y,) Zgl wd), ')

+tr (v o7 did), YY) -
Because U3 — Wy, = W3 — W3, + [01, : 0] this yields further

Q2,701 (T, Uy) — tr ( ol E€})
= —2tr (T3 — U3,) ot wiey) — 2tr (81, . &)
—2tr (v 27 durey) + tr (U5 — so) 30727 wyw (U5 — Us,)')
+2tr ((\113 —U3,) Z;;l w0} ) + (15 — 7) |10
+2tr (V3 — U3o) S wpd), y') + 2tr (61 70 diyy') + tr (v 7 dipdl, ')
For simplicity, we assume 7, — 7 > p and note that by redefining ~d;;, the subsequent
analysis can readily be modified to deal with the case 7, — p < 7 < 7,. Then the last term
on the r.h.s. of the above equality is bounded from below by ||7||> whereas the fourth term
is nonnegative. Using these facts and the Cauchy-Schwarz inequality we thus find that
Q21,1 (7, ¥3) — tr ( ot £€})
> —2[|(¥3 — U30) Drl|| D' 3727 weel | + (7 — 7)161?
=281l (I 2272 dll + [1(¥s = Ua0) Dr|l[| D7 3257, i)
=2|lyIl (I 27, deretl] + [1610ll1] 272, derl)
=2||7ll[1(¥5 — 30) Dr[[[| D7 3272, wedi || + |11
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The latter norm in the first term on the r.h.s. is dominated by %CLGT (see the end of the proof

of Lemma A.4). Thus, defining

To—1

bir(T) =2 ||(7, — 7')*1/2 Z €4
t=7

b

N1/2 7170—1
bQT(T) =2 (TO — 7_) DT ;wt
and .
bgT(T) =2 D;l Z wtdtT 5
t=1

we can combine the above inequality with that in Lemma A.2 and obtain

Qa,r—1 (T, W2) + Qa,ryipt (7, ¥a) — tr (372" g4e))

> —(azr + aer)||(¥3 — ¥30) Dr|| + (7o — 7) |61
= (bur(m) + (557) " bar(T)1(¥5 = W) Dr] ) (7, = 7)/2]|0so |
— (bar (1) + bar (T)[|(¥3 — W30) D) VIl + 17II* = s

(A.21)

where
To—1 To—1

Z dtT‘S; Z dtT
T=T t=T1

Notice that here we have asr = 0,(1), asr = O,(1) and asr = Op(1) uniformly in [TA] <

b4T(7') =2 +2||510|| +a3T.

T < 7, and ® (see Lemma A.2).

Now define b;r = max{by7(7) : [TA] <7 < 7,},1=1,...,4. Then, bsr = 0,(1) by (A.14)
and from the arguments used to show that result we also find that the first term in the
definition of byr(7) is of order 0,(T™") uniformly in [T'A] < 7 < 7,. Thus, bsr = 0,(T") whereas
the Hajek-Rényi inequality given in Proposition 1 of Bai (1994) implies that by = O,(1).
From the Héjek-Rényi inequality, the previously used fact that N~Y/2max;<cr, ||vs 1] =
O,(1) and the definition of w; we finally obtain byy = O,(1). Thus, b1z and byr are as stated
in the Lemma.

By the definition of b3z and byr and (A.19) the sum of the last three terms on the r.h.s. of
(A.21) is bounded from below by

1 1 1
— b — =bsrbar|| (U3 — Us,) Dyl — <037 || (U5 — U3, Dp||* — asr.
4 2 4
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Inserting this lower bound into (A.21) yields

Q2,71 (7, W) + Qaryip1 (7, W2) — tr (37217 e4el)
> —(agr + agr + %bsTb4T)||(‘I’3 — V3,)Dr|| - ibgT”(\I’:’, — W3,) Dr||?
_r\1/2
(70 = T)10l12 = (bar + (257)""* borl| (¥ — Wa0) Drll) (7o = 7) 2|60l — (305 + asr)

The stated result in Lemma A.6 follows from this inequality by defining agr, agr and aior

in an obvious way. O

Now we are ready to improve Lemma A.5 and thereby establish the first assertion of

Theorem 3.1.
Lemma A.7. If 6, # 0, then 7 — 7, = 0,(T?").

Proof: As before, we consider the case 7 < 7,. By Lemmas A.1, A.3 and A.6 we have, with

probability approaching one,

N=21Qr(1,®) — N~21Q1(7,, ®,)

> —N""a1p||(¥1 — V1) DpN7| + ¢1|| (¥ — W10) Dp N 7|2
—N"(asy + agr)|| (Y3 — Us3o) Dr N 7| + (ca — agr)||(¥3 — ¥3,) D N7"||2 (A.22)
— (N + (7557) o | (W5 — W) DeN ) (%57) "

N
+ (7}3,5"7) ||510||2 — N™2q4p.

We shall show first that ||(¥5 — ¥3,) Dy N7"|| can be restricted arbitrarily small. To this
end, use (A.19) to conclude that the sum of the first two terms on the r.h.s. of (A4.22) can
be bounded from below by a term which is of order 0,(1) uniformly in [TA] < 7 < 7, and ®.

In the same way, the sum of the last three terms can be bounded from below by

1 To— T 12 ’
1 Ny + ( N ) bor|| (W5 — U3,) Dr N7 | + 0p(1).
Expanding the square we can then replace (A.22) by

N_2WQT(7—7 (I)) - N_ZUQT(Tm (I)o)
> — (N"(asr + asr) + 5N hirbor (%57)"7%) [|(¥5 — Us0) DrN 7|
+ (c2 — agr — (=5=) b31) [1(¥s — Wso) DrN7||> + 0, (1).
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Now, for € > 0, define the set
B4T = {(T, (I)) : ||(\I/3 — \1130)DTN7U|| 2 6*, [TA] S T S To — [TG]}

where, by Lemma A.5, € > 0 can be chosen arbitrarily small. In particular, since agr = 0,(1)
and bor = O,(1), we can choose € such that ¢; — agr — N~' (7, — 7)b3; > 2 with probability
approaching one. Thus, since the term in front of || (V3 —W;,) Dr N 77| in the above inequality
is of order 0,(1) uniformly in [TA] < 7 < 7, and ®, we have, with probability approaching

one, that
inf(T:‘I’)EB4T NﬁQnQT(’ra CD) - NﬁZnQT (Tm cI)o)
> inf [6—2”(‘1;3 — Uy,) DN |2 (1 - %(1) )} +0,(1)
- (1, ®)€Byr 2 CQ“(\IIE; — \Ilgo)DTN_n” (A23)

Co 42 Op(l)
> = 1— === 1) > 0.
> 5€ ( e +0,(1)

Because this holds for every e* > 0 it follows that ||(¥5 — Ws,) Dy N || = 0,(1) and we can
proceed by restricting W3 in the way described above.

Now consider inequality (A.22) again and note that, by (A.19), we can replace the first
four terms by an appropriate uniform lower bound of order o,(1). A similar replacement can

be done for the last term, so that we can replace (A.22) by

N_2nQT(Ta (I)) - N_QnQT(Toa (I)o)

o\ /? o\ /2
> — N_nb1T+< ON ) 52T||(\I’3—\I’30)DTN_77||] ( - ) 11010]|

N2
(A.24)

To— T

) Wl + o400

S (T =T s g2 | = N "oar + bar||(¥s — Wso) DpN 7|
=\ "N ” 10” B To—7\1/2
(Zezr) " ll6oll

Now let € > 0 and suppose that 7, — 7 > [N?7¢]. Since we can assume that ||(¥3 —

+

] + 0,(1).

W3,) D N~"|| is arbitrarily small it follows that, for 7" large enough, the term in the brackets
in the last expression can be replaced by a term which is positive with positive probability.
This implies that asymptotically, the function Qr(7, ®) cannot attain its minimum value in
a set such that 7, — 7 > [N?"¢]. Because a similar analysis can be used to exclude the case

T — T, > [N?"¢], the result of the lemma follows. O
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We still have to prove the second part of Theorem 3.1. Therefore we now consider the

estimator 7 and we shall prove the following result.
Lemma A.8. If 6, # 0, then 7 — 7, = O,(1).

Proof: The break date estimator 7 is based on a model without impulse dummies or on

p—1
Ay = Voo + Vil + 010dir, + oY1 + Z LjoAyj+e, t=p+1,....T, (A.25)

j=1
where e; = &; + Z?;é YioAdi ., = € + v,dir,. Because here parameters refer to their
true values, there is no need to include the break date in the notation e;. Now the break
date estimator 7 is defined by replacing &; in (A.4) by LS residuals from (A.25). The
same residuals can be obtained from the (infeasible) model (A.2) or (A.3) by imposing the
restriction 9 = ++- = 7,_1 = 0. Note that this restriction means that the error term ¢, is
replaced by e;.

The consistency of the estimator 7 can be proven in a straightforward way by making
appropriate modifications to the proof of Lemma A.7 and the preceding lemmas used in its

proof. Instead of the function Qr (7, ®) we now consider

T
Q7 (1, ®1,61) = tr ( Z €tr(¢1,51)€t7((1>1,51)l) :

t=p+1
where e, (®1,0;) = Ay, — ®ywy — 61dy,. Similarly to Qr (7, ®) also QF (7, ®y1,01) can be
expressed as a sum of four components and for each component a counterpart of Lemmas
A.1- A4 and A.6 can be obtained. We shall not go into details because the main points
can be illustrated quite well by looking at the differences between the present case and
the previous one. First recall that in place of the previous error term e; we now have e;.
However, e; differs from ¢; only by additive impulse dummies which take nonzero values
fort = 7,,...,7, + p — 1. Therefore this difference only affects the counterpart of the
function Qs 1+p—1(7, ¥2) and even there the effect is asymptotically of no significance. The
only other feature which makes the present case different from the previous one is that the
parameter v does not appear in the objective function. However, the effect of this can
be illustrated by looking at the Lemmas A.1 - A.4 and A.6 without the parameter v and

quantities due to it. This means that we can treat the present case by modifying Lemmas
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A.2 and A.4 in such a way that the terms —asr||y|| —asr and —azr||vy||+cs3||v||?, respectively,
are removed, whereas the corresponding modification of Lemma A.6 amounts to requiring
that agr = O,(1), agr = 0 and a19r = Op(1). Taking these considerations into account and
checking the proof of Lemma A.5 it can be seen that ¥ — 7, = 0,(T’), that is, an analog of
Lemma A.5 holds for 7.

Now consider the proof of Lemma A.7. Setting n = 0 and modifying the given arguments
based on Lemmas A.1, A.3 and A.6 in the way described above, it can first be seen that
(A.23) holds with n = 0 and the terms o0,(1) replaced by O,(1). Choosing €* large enough
it then follows that the previous result ||(U3 — W3,) DpN~"|| = 0,(1) can be strengthened to
(Y5 — ¥3,)Dr|| = O,(1). Hence, ||(¥5 — ¥3,)Dr|| can be restricted to a bounded set after
which we can consider an analog of (A.24) with n = 0 and o,(1) replaced by O,(1). Since
||(¥3 — ¥3,)Dr|| can be assumed bounded by a (large) constant it now follows that, for T
large enough, the r.h.s. of the analog of (A.24) is positive with positive probability if 7, — 7
is chosen large. The conclusion 7 — 7, = O,(1) of Lemma A.8 then follows in the same way

as that of Lemma A.7.

A.2 Proof of Theorem 4.1

In the following proof we use the break date estimator 7. The same result can be obtained
with any estimator for which Theorem 3.1(i) holds. Because we do not need values from T
other than 7 and the true value in the following, we denote the latter again by 7 and hence
we drop the subscript ‘o’ for convenience.

We shall first show that the RR estimators of the parameters o, 5, T'; (j =1,...,p—1)
and Q discussed in Section 3.2 satisfy appropriate consistency properties (cf. Lemma 2.1
of S&L). These estimators are based on equation (2.10) with the unknown break date 7

replaced by the estimator 7. This replacement changes the error term ¢; to
p—1
Etp =&+ Hd(dt_lﬂ*— — dt—l,T) — Z ’)/;(Adt_jﬂ*— — Adt—j,‘r)- (A26)
§=0

By a linear reparameterization we can transform y; in equation (2.10) to

Ytr = Yt — Mo — /,l,lt — 5dti— = Ty — 5(dt’f' - dtT)' (A27)
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Thus, instead of (2.10), we can consider its infeasible counterpart

p—1 p—1
Ay = V+a(5'yt—1,%—¢(t—1)—9dt—1,%)+z PjAyt—j,%+Z Vi Ady_jiter, t=p+l,p+2,...,
=1 =0

(A.28)
where v =0, ¢ = 0,0 =0and v; =0 (j = 0,...,p — 1). It will be shown that using the
estimator 7 in (A.28) instead of the true break date 7 has no effect on the asymptotic prop-

erties of the RR estimators. When 4, # 0 the proof makes use of the following general results.

Lemma A.9. Let Jir (t =1,...,T) be a (possibly) random vector such that max;<;<r ||Jir|| =
O,(1) and J; a vector valued stochastic process satisfying sup, E||J;|| < oo. Then, if

T=140,(T?), s <n <1,
(i) N~1/2 ZtT:p+1 Jir(diz — dir) = 0p(1)

(i) N7YV2Y L Ti(dis — dir) = 0p(1).

Proof: The first result is an immediate consequence of the assumptions which imply that
the L.h.s. of the equality is dominated by O,(N~'/2)|# — 7| = 0,(1). To prove the second

result, let I(-) stand for the indicator function and, for e > 0, write

N-1/2 zfzpﬂ Ji(dy; — dyy) = N2 z;f:pﬂ Jy(dyr — dy)I(|7 = 7| > T?€)
ANV Tlde — dip)I(|F — 7] < T?e)
et A + Aot

Now, since 7 — 7 = 0,(1?") we have for every € > 0,
Pr{||Ai7]| > €} < Pr{|? — 7| > T*e} — 0.

Thus, Air = 0,(1). As for Ay, notice that for every € > 0,

T
[Azrll < N7Y2 Y illldee — dig[T(17 =7 S T?7€) < NTV2 3 |l

t=p+1 [t—7|<[T?7¢]
Hence,

E||Asr|| < const. T?71/2¢ — 0.

This implies that Asr = 0,(1) and the stated result follows. O
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Lemma A.9 will be used to show that, when §; # 0, the replacement of the true break
date 7 by the estimator 7 has no effect on the asymptotic properties of various second sam-
ple moments. The first result can be used with Jir given by N=Y/28 y, 1 » and N7'(t — 1),
whereas in the second result typical choices of J; are Ay;_; 2, f'y—1,+ and di—;1+ (see (A.27)).

Now we can prove the necessary consistency properties of the RR estimators discussed above.

Lemma A.10. Let Bg = 5(5'5)_1 and d¢ = &5’5 where £ = (#'8)75'. Then, Bg =B+
Op(T7Y), G = a+0,(T~2), T; =T+ 0,(T"V?) (j = 1,...,p—1) and Q = Q+0,(T~/?).

Proof: First we introduce some notation. Define x = [y; ;. : (t — 1) : dy 1] and
P = [1: Ay ;-1 Ay, .y ;). Then equation (A.28) can be expressed as

Ay = ap'xy +Epys + 64, t=p+1,p+2,..., (A.29)
where p,; = [p}; 1 di:], ¥ =8 :—¢p:—0land E=[Z; : v | with Zy = [v: Ty :---: Tp ).

Here d;; = [Ady, ..., Ady pi1,] and v* =[5, ..., 1]- The RR estimators of «, ¢ and Q
can be obtained as follows. Define

T T T Lo
Soor = N7 Z Ay Ay;; — N7 Z Ay P ( Z Pﬁp%) Z P AY;z,

t=p+1 t=p+1 t=p+1 t=p+1

T T T -1 7
S = Sr = N1 Y Mgty ~ NS Ayﬁp;f(z pﬁp;f) ™ pux

t=p+1 t=p+1 t=p+1 t=p+1

and

T T T -y
R IR ED D D S B SRS
t

t=p+1 t=p+1 =p+1 t=p+1

As is well-known, the RR estimator of v is based on the eigenvectors corresponding to the

r largest eigenvalues of the determinantal equation
det(/\Snf— — Slofs&)lmef) =0. (A30)

When the RR estimator of 1 is available, those of o and € can be obtained by replacing
¥ by its estimator in the formulas Sp1:t(1'S112%) ™" and Spos — So1s90 (¥’ S115%) 19" S1o2,
respectively.

First consider the case ; # 0. The idea of the following proof is to show that the

consistency properties of the RR estimators of ¥, o and €2 discussed above are the same as
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in the case where the true value of the break date is used instead of the estimator 7. Once
this has been shown, the desired results follow from S&L.
In the same way as in S&L, we follow the proof of Lemma 13.1 of Johansen (1995) and

transform equation (A.30) to
det()\A}SanT - AlTsl()i—SoiO%fS()H—AT) = 0, (A31)

where

B T HPB(BB)T 0 0

Ar=10 0 T-! 0
0 0 0 (7))
and, consequently, ) -
B'Yi-1
p T2 80 By
TXtr =
Tt —1)
(7)) ?dir

Using (A.14), (A.27) and Lemma A.9 we can now show that

S()()f = SOOT + Op(l), (A32)
SOl%AT = SOerT + Op(l) (A33)

and
A1T8117‘-AT = A,TSHTAT + Op(l). (A34)

Details are straightforward but somewhat tedious and will be omitted.

From (A.32) — (A.34) and the proof of Lemma 2.1 of S&L we can conclude that the
estimators f¢, ¢ and @ are consistent of orders o,(T~'/?), 0,(T~") and o,(1), respectively.
Because 9'x;; = ['y;_1,+, arguments similar to those used to obtain (A.32) and (A.33)
combined with these consistency results also readily show the consistency of the estimators
Qe fj (j=0,...,p—1) and Q.

To obtain the stated orders of consistency, we follow S&L and note that the first order

conditions for v can be expressed as

0 =& (Se1s Br — 6¢UR[T ™" BpS117 Br] — (G — )9/ S112Br) (A.35)

46



where S.1; = So1s — @' Si15,
T35 B
Up = T3/24
(T — 7)Y 2

and

BB 00

Br = 0 T-1/2

Now, notice that By is formed by the last (n — r + 2) columns of T~'/2A; and recall that
Y'x4+ = B'yi_17. Using these facts, (A.14), (A.27) and Lemma A.9, it is straightforward to
proceed in the same way as in the above consistency proof and show that replacing 7 by 7
on the r.h.s. of (A.35) causes an error of order 0,(1). Thus, from the proof of Lemma 2.1 of
S&L we can conclude that Uy = O,(1) and furthermore that 3¢ = 8+ O,(T~).

To obtain the remaining orders of consistency, notice that Uy = O,(1) also implies that
9, the RR estimator of v, satisfies A7'(¢) — 1) = O,(T~/?) (cf. S&L). Using this fact,
the expression for the error term &4 given in (A.26) and arguments used in connection with
equations (A.32) — (A.35) it can be seen that replacing the true break date in (A.11) of S&L
by the estimator 7 has no effect on the orders of consistency obtained for the estimators d,
f’j (j=0,...,p—1), and Q. Thus, the desired result follows from Lemma 2.1 of S&L. This
completes the proof when §; # 0.

Now consider the case d; = 0 for which we cannot use Lemma A.9 because 7 = 7+0,(1?")
does not hold and even 7/N is not a consistent estimator of the sample fraction A. However,
we still have (A.32) and (A.33), as we shall now demonstrate. The former is simple because,
by (A.27) and the definition of p,., the matrix Sy; only depends on the impulse dummies
Ad;_j7 and Ady_j . (j = 0,...,p— 1) but not on the corresponding step dummies. Thus,
because (A.14) still holds, we can proceed in the same way as in the proof of Lemma 2.1 of
S&L and show that replacing p,. in the definition of Syy; first by p,;,; and then further by
Pi;, causes an error of order o,(1). Because in Sy, the vector p,, can similarly be replaced
by py;, (see S&L), (A.32) follows.

Now consider (A.33). Using (A.14) and (A.27) we can again readily show that replacing

p;; and p,, in the definitions of Sy1; Ar and Spi, Az by py4; and py,,, respectively, causes an
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error of order 0,(1). Next, an application of (A.14) and (A.27) gives

T T
N7 Z P1:P1 = N7 Z P1r Py + 0p(1) (4.36)
t=p+1 t=p+1
and
T T
N5 Ageply = N7 DY Ayl +0p(1). (A.37)
t=p+1 t=p+1

In addition to these results, we have

T T
NT" D7 AyuxipAr = N71 ) Ayyx), Ar + 0p(1). (A.38)

t=p+1 t=p+1
To justify this relation, notice that now f'y;_1 » = 'x;—; which shows that (A.38) holds for
the first r columns of the involved matrices. For the next n — r columns the result is simple
because the sums are divided by NT'/2. The same can be said about the (n + 1)th column.

That the stated result holds for the last column can be seen from

Nt ZtT:pH Ay jidi-1, = N ZtT:TH Azyj + 0,(1)
= o0,(1) (j=0,...,p—1)

(A.39)

uniformly in [TA] < 7 < [T)]. Here the former equality is an immediate consequence of
(A.27) and the latter follows because an invariance principle applies to partial sums of Az;.

In addition to (A4.36) - (A.38), we also need to consider the matrix N1 ZtT:p 1 P X Ar.
Arguments used above show that replacing 7 here by 7 causes an error of order o0,(1) except

for the element in the first row and last column which is

T 1/2 T
(T—T> N Z di-17 = Op(1).

t=p+1

However, the contribution of this element to the matrix on the Lh.s. of (A4.33) is of order
0p(1). Because in the definitions of Sp;+ and Sy, we can replace p;; and p,, by py; and
Pis,, respectively, this follows from the following two facts. (i) The first matrix on the r.h.s.
of (A.36) is asymptotically block diagonal with blocks defined after the first row and first
column. (ii) The first column of the first matrix on the r.h.s. of (A.37) is of order o,(1).
Both of these results follow from (A.27) and the fact that Az, obeys a weak law of large
numbers. Taking these results together, we can thus conclude that (A.33) also holds when

(51:0.
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Since (A.32) and (A.33) hold we can write

Y50Z00 X0 O
A Sh0r Sook- Sous Ar = ApSror ook Sons Ar + 0(1) = | 7 . ’ N ECIORNCERY

where the latter equality is justified by (A.5) of S&L and the notation is as explained therein.
The partition is after the first » rows and columns.

Now consider the matrix A/.S11:Ar. In the present case we do not have (A.34) which,
given (A.40), would be sufficient for the consistency of the RR estimator of 1. However,
(A.34) is not necessary. Write
A Ss Ay = ?hﬂ 5:’1%

St Stis
where the partition is after the first 7 rows and columns. Because 8'y,_1; = 8’71 by (A.27),
we can show that S}l. = gz + 0,(1) with Xgs as in S&L and SiZ = 0,(1). The required
arguments are based on (A.14) and (A.27) in the same way as in the case of (A.32), (A4.33)
and (A.39). Without going into the lengthy details we note that, although the estimator 7 in
the last component of A%.x;; cannot be replaced by 7, this feature does not affect the above
results (cf. the above justification of (A.33)). Thus, because we also have S%. = 0,(1), the

above discussion and (A.40) show that equation (A.31) is to order o,(1) identical to
det(A\Xg5 — Y00 Sog) det(ASZ2) = 0. (A.41)

This implies that the consistency proof given in Johansen (1995, pp. 180 - 181) applies if,
with probability approaching one, Apin(S?2.) > € for some € > 0. This, however, is the case
because the argument used below (A.15) shows that S7j;,, converges weakly in D([, A]) to
a (a.s.) positive definite limit. In fact, arguments used to arrive at (A.41) show that 5‘1212[”\]
is to order o0,(1) identical to a demeaned version of the matrix of second sample moments
formed from the last n — r + 2 components of A7xry)-

Thus, in the same way as in the case §; # 0 we can conclude that the estimators ,5’5,(/;
and @ are consistent of orders o0,(T~%2),0,(T~") and o,(1), respectively. After this, the
consistency of the estimators d, fj (j=1,...,p—1) and Q can be proved in the same
way as in S&L. Since the second form in the definition of ;7 in (A.26) now vanishes the

employed arguments consist of similar analyses of second sample moments already carried

out at previous steps of the proof. Details are therefore omitted.
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To obtain the orders of consistency, consider the first order conditions (A.35) and notice
that now ¢'x; = f'z;—;. Using this fact it can be seen that ¢'S11; By = O,(1) and S.1; By =
O,(1). The employed arguments are similar to those used in the above consistency proof
and in the proof of Theorem 3.1. To give an example of the latter, note that in order to

prove ¢'S11: By = O,(1) we need to show that

T T
(T —7)7'/? Z Bluyady_1p= (T —1)71/? Z Bai_1 = O0p(1).

t=p+1 t=F+1

This, however, follows from the relevant part of (4.12). Omitting other details we need
to note that Apmin(77'BrS11:Br) = Amin(S%.), which is asymptotically bounded away from
zero, as noticed after (A.41). From (A.35) and what has been said above we now find that
Ur = O,(1). In the same way as in the case &; # 0 this implies f¢ = 8+ O,(T~') and more
generally A7 (¢ — b)) = O,(T~/?). After this the remaining orders of consistency can be
obtained in the same way as in S&L. Details are again based on arguments already employed

in the foregoing. This completes the proof. O
Next we prove a counterpart of Theorem 2.1 of S&L.

Lemma A.11.

B (i — po) = Op(T7/?), (A.42)

B (fio — po) = Op(1), (A.43)

B'(6 —8) = 0,(T~?), (A.44)
B1(6—8) = 0,(1), (A.45)

B — ) = Op(T72), (A.46)
T3 (ju — ) — N(0, B,CQC"By). (A.47)

Here C = 3, (o/, ¥, ) o/, as before and all quantities converge jointly in distribution upon

appropriate standardization.

Proof: The idea is to show how the stated results can be obtained from the proof of Theorem
2.1 of S&L. In doing this we ignore the fact that S&L had additional impulse dummies in

their model because this feature has no essential effect on the arguments.
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We shall first introduce a reparameterized form of the auxiliary regression model (3.7)

which is a counterpart of equation (A.12) of S&L. To this end, define

ki B's
k 36 k 3
ki = R ?L and ko = 2 = ?MO
k1o B o ko3 B
i koa ] i 51#1 ]

Next transform the regressors in (3.7) accordingly as F = Q’IN{ﬁBL(E’LﬁL)_l, Fly =
Q'ﬁOtBL(BiBL)_l and Fyy; = Q'f{t%B(B'B)_I, Foy = QIﬁOtB(B,B)_la Fyy = Q'ﬁ[uB(B'B)_l
Foy = Q'ﬁuBL(BlBL)_l- Then, setting Fy = [Fllt : Fth] and Fy = [FZIt t Fygy ¢ Fgy F24t],

we can write (3.7) as
Q'A(L)y: = Fuky + Fyks + iz, t=1...,T. (A.48)

As in S&L, F}; takes nonzero values only for a fixed number of time indices .

Because (A.48) is obtained from (2.1) by first replacing d;, by d;; and then premultiplying
by Q' fl(L) the error term 7; differs from its counterpart 7; in S&L by the additive term
—Q'A(L)d(dys — dyr). Thus, using (2.8) we have

M = N+ QaBd(d1z — dio1r) — Q'6(Ady — Adyy)

A (A.49)
+Q' Y0 Ti6(Adyjs — Adyjs),

where 1, = Q'e, — Q'a(S — B) 1121 — Q'(@ — @) w1 — Q' S0~ (I'; — I';) Az, is identical
to 7; defined in (A.13) of S&L.!
Now assume that 6; # 0. Then Lemmas A.9 and A.10 in conjunction with the arguments

used in S&L to justify (A.14) and (A.15) of that paper show that

T T
Z Fiymiz = z Fiyner + Op(1) = Op(1) (A.50)
t=1 t=1
and , ,
7D e = T2 Y Fyier +0p(1) = Op(1), (A.51)
t=1 t=1

where ;' = diag[(T — 7)~Y21, : T2, : T~32I, . T~Y/2I, ,]. Standardizing the moment

matrix of the auxiliary regression model (A.48) to conform to the standardizations of the

"Note that there is a typo in (A.13) of S&L because in the third term on the r.h.s. there is 3 in place of
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sums in (A.50) and (A.51) and using Lemmas A.9 and A.10 shows that the resulting matrix
is asymptotically equivalent to its counterpart obtained when the break date is known. This
combined with (A.50) and (A.51) implies that we have reduced the problem to that treated
in Theorem 2.1 of S&L. Because we can write O,(T~/2) = O,((T — 7)~'/2) in (A.44) this
gives the stated results when &; # 0.

To complete the proof, assume that J; = 0 and observe that in the second term on the
r.hs. of (A.49) we have @f'6 = G¢(fe — B)'0 = O,(T~!) by Lemma A.10. Using this fact, it
is easy to check that (A.50) also holds in the present case. Regarding subsequent derivations
it appears convenient to replace Y7 in (A.51) by Y7 obtained by using 7 in place of 7. This
change does not affect rates of convergence because [TA] < # < [TA] by assumption. The
arguments used to justify (A.50) combined with Lemma A.10 now straightforwardly show
that (A.51) holds with T7! replaced by T7'.

Next consider the standardized moment matrix related to the LS estimation of the pa-
rameters k; and ky in (A.48). Here we use arguments similar to those used in the discussion
paper version of S&L to prove Theorem 2.1 therein. First note that arguments already used
above give Y7! Y°1_, Fi,Fi; = 0,(1) so that the standardized moment matrix is asymptoti-

cally block diagonal. From the definition of th it can further be shown that

!

—(T — )7 2&Qdys —(T - 7)7?a Qdy
T T —T-125/Q _=1/2510)
LTS Pl RN PRy
=1 = N ~T-32(t — 1)d'Q
TRBLA)TIAYQ )\ ~T(ELB)TALYQ

Fr® A, ér®A
= | T TR o). (A.52)
ér ® Ao Agy
Here the notation is defined as follows: Ay, = &/Qa, Ay, = fl’zl = d’Q_llilBL(B’LBL)_l and
Ay = (BQ_BJ_)_lﬁl\ij,@_lquJ_(BiﬂNL)_l = 121211‘11_111412 + B_l, where
B=p (& VB.) & Qay (B Way) B BL = B.CQC'BL
with C' = B, (&, ¥f3,) &, . The matrix Er is defined by

1 (L) rsr eyl (- 1)
Br = (T:F%)l/2 1 T2 Zt:l(t - 1)
T2T - #)7 2 5T(t—1) T2YL (1) Ty (¢ - 1)?
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while the vector ér is the second column of ET, that is,

(T;%>1/2 ‘1 T—ZZT:(t— 1) |

t=1

A~

er =

Because now 7/7" does not converge, the same is true for Er and ér and, consequently, for
the first term in the last expression of (A.52). However, using the definitions and Lemma
A.10, it can be shown that the smallest eigenvalue of this matrix is asymptotically bounded
away from zero. Because it is easy to check that this is also the case for the smallest
eigenvalue of the matrix Y, , F!,F;, we can conclude that the smallest eigenvalue of the
standardized moment matrix related to the LS estimation of k; and k» in (A.48) is similarly
asymptotically bounded away from zero. Thus, because we also have (A.50) and (A.51) with
Y1 replaced by Tr, the LS estimators obtained from (A.48) satisfy k; = k; + O,(1) and
YT(IA@ — ko) = O,(1). Because here Y, can be replaced by Y, without changing rates of
convergence, we can conclude in the same way as in the proof of Theorem 2.1 of S&L that
the results of the lemma hold except for the weak limit in (A.47).

To see that (A.47) holds, notice that, according to our previous derivations, we can write

T -1 T
Yok — ko) = (TTl R, NQtTT1> Yo ) Fyner + op(1).
t=1 t=1
We have to consider the last n — r components of the vector on the r.h.s. and therefore
calculate the last n — r rows of the inverse on the r.h.s.. For this purpose we apply the
well-known formula for the partitioned inverse to the first term in the last expression of

(A.52). Because it is easy to check that é =[0:1:0] and & =1, this yields

o S
T -1

where the blocks denoted by ‘“*’ are not needed and the partition on the r.h.s. conforms to

the four components of the estimator vector ko. Thus, we can write

T T
TP (kys — kos) = =BAy A7 T " e + BT Flyymir + 0p(1).

t=1 t=1
This is asymptotically equivalent to what was obtained in S&L so that (A.45) follows from
that paper. O
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Now we can prove Theorem 4.1. First note that
& =1y — (flo — po) — (B — pa)t — (8 — &)y — (s — dlyr). (4.53)

This expression differs from its counterpart in the proof of Theorem 3.1 of S&L by the last
term if we again ignore the unessential impulse dummies in S&L. This implies that the error

term ey in (4.2) can be written as

p—1
€ip = € — Hd(dﬁ— — dtT) — Z’Yj(Adt,j’»f — Adt,jﬁ), (A54)

§=0
where e;; equals the error term e; defined in the proof of Theorem 3.1 of S&L except that
it is based on different estimators and some unessential impulse dummies are ignored. The
difference in estimators has no consequences, however, because the required asymptotic
properties given in Lemma A.11 and Theorem 2.1 of S&L are the same. Thus, when d; # 0,
we can use Lemmas A.9 and A.11 in conjunction with (A.53) and (A.54) to conclude that
the standardized second sample moments of 5'%;_1, ' 2;—1 and AZ,_; (j = 1,...,p—1)
are asymptotically equivalent to their counterparts in S&L. By similar arguments it can
be further shown that the standardized second sample moments between e;; and (2}, :
Azy y:--o 0 A L] as well as between e;; and 2, 1 are asymptotically equivalent to
their counterparts in S&L. The discussion given at the end of the proof of Theorem 3.1
of S&L then implies that the RR estimators of «, 8 and 2 based on (4.2) have the same
consistency properties as the corresponding estimators in Lemma A.10. This means that
we can proceed in the same way as in the proof of Theorem 3.1 of S&L with &, 8 and
interpreted as the RR estimators based on (4.2).

It can be seen analogously that the same conclusion also holds when §; = 0, except
that instead of Lemma A.9 we now use the fact that 56 = O,(T~/2) by (A.44). In this
case it should be noted that the standardized second sample moments between e;; and
[@3_ 18 :Axy_y -+ Az ,.,]" and between e;; and (' 4,1 are not asymptotically equivalent
to their counterparts in S&L. However, they are of order O,(1) which is sufficient for the
RR estimators of «, 8 and 2 based on (4.2) to have the same consistency properties as the
corresponding estimators in Lemma A.10. Thus we can proceed in the same way as in the
proof of Theorem 3.1 of S&L with &, 8 and Q interpreted as the RR estimators based on
(4.2).
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The proof can be completed by showing that the problem can be reduced to that treated in
the proof of Theorem 3.1 of S&L. This means showing that the last term on the r.h.s. of (A.53)
and the two last terms on the r.h.s. of (A.54) have no effect on the limiting distribution of the
test statistic or on the asymptotic behavior of the counterparts of the quantities defined in
(A.18) - (A.22) of S&L. This can be done by using arguments already used in previous proofs
in conjunction with Lemma A.9 when §; # 0 and the fact BgS = B8+ 0,(T™Y) = 0, (T~/2)

when §; = 0. Details are straightforward but tedious and will be omitted.

Appendix B. Data Sources

B.1 Polish Crawling Peg System

Daily data for the period from March 1, 1993 to February 28, 1994 were used.

Polish zloty-US dollar rate: official exchange rate announced by the National Bank of
Poland (via http://www.nbp.pl/asps/Arch_en.asp). The variable zl; is the logarithm
of the zloty-US dollar rate.

Exchange rates of basket currencies: rates of German mark, British pound, French franc and
Swiss franc against the U.S. dollar are noon buying rates in New York for cable transfers
certified by the Federal Reserve Bank (FRB) of New York (via http://www.federal-
reserve.gov /releases/H10/hist/). The variables gmy, bpy, ff;, and sf; are the logarithms

of these rates, respectively.

In case of holidays at just one exchange market the respective data for the market are

deleted. Therefore 249 observations are available.

B.2 Price-Wage Dynamics in Poland

Quarterly, seasonally non-adjusted data for the period from the first quarter of 1970 to
the fourth quarter of 1998 (116 observations) were used for the following variables. If not
otherwise stated, data have been provided by the Macroeconomic and Financial Data Centre
of the University of Gdansk, Poland (via http://bg.univ.gda.pl/pub/mé&fdc/lam_data/) with

the sources given below.
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Consumer Price Index: base 1985 = 100 (source: Polish Central Statistical Office (CSO)).

The variable cpi; is the logarithm of the Consumer Price Index.

Nominal Wage: gross monthly per capita wage in socialist sector up to fourth quarter
in 1989 and in national economy afterwards (source: CSO). The variable w; is the

logarithm of the nominal wage.

Exchange rate: US dollar market exchange rate against the Polish Zloty (sources: Picks
Currency Yearbook, Currency Alert, Polish newspapers, CSO). The variable ex; is the

logarithm of the exchange rate.
Industrial Production Index: base 1985 = 100 (source: CSO).

Employment: average paid employment in socialist sector up to the fourth quarter in 1989
and in national economy afterwards (source: CSO). The variable Ip; is the difference

of the logarithms of the Industrial Production Index and the employment figures.

Population: in thousands, taken from the International Financial Statistics, IMF. The
variable epop;, is the difference of the logarithms of the employment and the population

figures.
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