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1 Introduction

Least trimmed squares (LTS) is a statistical technique for estimation of unknown parameters
of a linear regression model. It was proposed by Rousseeuw (1985) as a robust alternative to
the classical regression method based on minimizing the sum of squared residuals, which, while
being frequently used in regression analysis, is quite sensitive to data contamination and model
misspecification. Although the asymptotic and robust properties of this estimators were already
studied by Rousseeuw and Leroy (1987), at least in the case of regression with one explanatory
variable, LTS was not widely used until recently. There are several reason for this, but the main
one is computational: it is possible to compute LTS only approximately and even obtaining an
approximation was relatively time consuming; moreover, a good approximation algorithm did
not previously exist. However, availability of a good and fast approximation algorithm (see, for
example, Rousseeuw and Van Driessen (1999)) and faster computers make LTS more attractive
recently, of course, hand in hand with the presence of these algorithm in some widely-spread
statistical packages. In addition, a general proof of consistency, asymptotic normality of LTS
appeared as well as some sensitivity studies of this estimator (Visek (1999a)).



Still, the LTS estimator has several shortcomings, concerning especially its applicability. There
are several classes of regression models in which such a robust estimator cannot be used right now,
partly because its properties are not known in such models, partly because it is not adapted
to suit such models. This concerns estimation with discrete explanatory variables, estimation
of nonlinear model, and more generally, limited-dependent-variable and discrete-choice models
and their variants. In this paper, I aim to make a first step concerning the LTS estimation of
nonlinear regression models, namely to prove consistency and asymptotic normality of LTS when
used in nonlinear regression models. Moreover, the techniques used and developed for these proofs
are supposed to suit well a subsequent analysis of LTS in more complicated models such as, for
example, limited-dependent-variable models.

Why is it useful to think about nonlinear models at all? Let me exemplify this. It is sometimes
not clear, for instance, which functional form describes best the dependence on an explanatory
variable. To resolve this point, the Box-Cox transformation can be used (see Box and Cox (1964)),
that is a transformation of a random variable Z parameterized by A € R of the following form:

Zr -1
ZW = A
InZ for A=0.

for A#0,

Its advantage is that Z(») represents various functions of Z for different values of A: linear (A = 1),
square root (A = 1/2), logarithmic (A = 0), inversely proportional (A = —1), and so on. Applying
the transformation both to the dependent and independent variables provides then parameterized
choice between different regression models (linear, log-linear, semi-logarithmic, reciprocal, etc.).
Another example of an intrinsically nonlinear model can be a model with an exponential regression
function but an additive error term (instead of a multiplicative one). Finally, time series models
with state-dependent regression function are becoming more widely used (see Tong (1990) for
summary of these models) and they are typically estimated with nonlinear least squares as well.
Thus, they represent another class where nonlinear LTS can be applied.

Let me now precise the goal of the work. In this paper, I study the behavior of the LTS
estimator applied in the nonlinear regression model

yizh(miaﬂ)+6i; 7:=1,...,TL, (1)

where y; € R represents the dependent variable and h(z, () is a function of z; € R¥, a vector
of explanatory variables, and of 3 € RP, a vector of unknown parameters. The error terms
€; are assumed to form a sequence of independent and identically distributed random variables
that possess an absolutely continuous distribution function. The LTS estimator used within this
framework is further referred to as the nonlinear least trimmed squares estimator (NLTS) in order
to differentiate it from the LTS estimator used within the linear-regression framework.

The analysis is carried out along the same lines as recent proofs of the LTS asymptotic prop-
erties in Visek (1999a). This means that, starting from a very similar basic assertions, I derive
asymptotic linearity of NLTS, and based on this result, consistency and asymptotic normality of
this estimator are proved. However, the theoretical tools and results used in these proofs are quite
different from the strategy used by Juretkova and Sen (1989), Visek (1996a) or Visek (1999a)—I
use relatively simple and more direct techniques instead of elegant, but very advanced theoret-
ical results, such as Skorohod embedding in Wiener process, that could eventually be hard to
use once we turn our attention to models with more complicated error structure, for example,
limited-dependent-variable models. Thus, this simplification of the methodology should render
a generalization to these more complicated models. In addition to that, I provide here a most
general set of assumption required for the consistency of NLTS estimator.

In the rest of the paper, I first review important facts about LTS that are related to NLTS
(Section 2.1), later I discuss necessary assumptions for the asymptotic properties of NLTS (Sec-
tion 3.2), and finally, I derive asymptotic linearity, consistency, and asymptotic normality of the
proposed estimator (Sections 3.4 and 3.5).



2 Definition of nonlinear least trimmed squares

To assure easy understanding, it is beneficial to describe first the least trimmed squares estimator
(LTS), introduced by Rousseeuw (1985), and its properties.

2.1 Least trimmed squares

Let us consider a linear regression model for a sample (y;, z;) with a dependent variable y; € R
and a vector of explanatory variables z; € RP:

yi = Bz + &, i=1,...,n. (2)

)

The least trimmed squares estimator B,(lLTS is defined as

h
BLTS) — argmin'y 72 , 3
B ﬁgeRP ; [z](ﬁ) (3)
where rfi](ﬂ) represents the ith order statistics of squared residuals r?(8),...,72(8); r:i(8) =

yi — BTz; and B € RP (p denotes the number of estimated parameters). The trimming constant
h have to satisfy § < h < n. This constant determines robustness of the LTS estimator, since
definition (3) implies that n — h observations with the largest residuals do not have a direct
influence on the estimator. The highest level of robustness is achieved for h = [n/2] + [(p + 1) /2]
(Theorem 6, Rousseeuw and Leroy (1987)), whereas the LTS robustness is lowest for h = n, which
corresponds to the least squares estimator. There is, of course, a trade-off: lower values of h lead
to a higher degree of robustness, while higher values of h improve efficiency (if the data are not
too contaminated) since more (presumably correct) information in the data is utilized. The most
robust choice of h is often employed when the LTS is used for diagnostic purposes. It may also be
favored when LTS is used for comparison with some less robust estimator, e.g., the least squares,
because a comparison of these two estimators can serve as a simple check of data and a model—if
the estimates are not similar to each other, special care should be taken throughout the analysis.
On the other hand, it may be sensible to evaluate LTS for a wide range of trimming-constant values
and to observe how the estimate behaves with increasing h, because this dependence can provide
hints about the amount of contamination and possibly about suspicious structures in studied data
(for example, that the data contain actually a mixture of two different populations, see Visek
(1999a)).

Before proceeding further, it seems to be useful to discussed several issues, namely, the existence
of this estimator and its statistical properties. First, the existence of the optimum in (3) under some
reasonable assumptions can be justified in the following way: the minimization of the objective
function in (3) can be viewed as a process in which we choose every time a subsample of h
observations and find some § minimizing the sum of squared residuals for the selected subsample.
Doing this for every subsample, we get (;‘) candidates for the LTS estimate and the one that
commands the smallest value of the objective function is the final estimate. Therefore, the existence
of the LTS estimator is basically equivalent to the existence of the least squares estimator for
subsamples of size h.

2.2 Definition of nonlinear least trimmed squares

The nonlinear least trimmed squares estimator is defined in this section. Before a definition is
given, let me first clarify for which regression models I aim to define NLTS. Let us assume that
there is a regression model of the form®

yi = h(=z, B) + €, (4)

! Although the regression function h(-,-) uses the same symbol as the trimming constant h (both represent
traditional notation), no confusion should arise—the regression function is always used with its parameters enclosed
in brackets.




where y; is the dependent variable, h(z;, ) is a known (regression) function of the data z; and a
vector 3 of p unknown parameters; (z;,&;) € R¥ x R,i = 1,...,n, are is a sequence of independent
identically distributed random vectors.? Random variables x; and ¢; are assumed to be mutually
independent. Now, having specified the regression model (4), we attempt to define the nonlinear
least squares estimator (NLTS), i.e., the estimator based on minimizing the trimmed sum of
squared residuals in regression model (4). Given a sample (y;,z;) € Rx R¥ i =1,... n, the NLTS

estimate ﬂ(NLTS M) is defined by

ﬂ(NLTS h) = argmin y 7 (5)
BeB Zz; a

where

e 8 € B C RP is a p-dimensional vector of unknown parameters and B C RP is the corre-
sponding parameter space,

o r[z] (B) represents the ordered sample of squared residuals 72 (8) = (yi—h(z;, 8))%,i =1,...,n,
for any 8 € B,

e he {[%],...,n} is the trimming constant (see Section 2.1).

Apparently, this estimator shares its robustness properties with the already reviewed LTS (see
Section 2.1) and the same is true for many of its finite sample and asymptotic properties as
will become gradually evident in what follows. For instance, the computation of NLTS could
be theoretically done by performing the nonlinear least squares method (NLS) for each of (2‘)
subsamples of size h and taking as the final estimate the NLS estimate corresponding to the
subsample at which the sum of squared residuals reaches its minimum. Therefore, if the NLS
estimator exists for all (Z) subsamples of (y;,x;),i = 1,...,n, NLTS also exists (it is just the
minimum of a finite number of values). Consistency of NLS and NLTS estimators are related in
a similar way—see Section 3.4 for further information.

3 Consistency and asymptotic linearity of NLTS

In this section I present the main asymptotic results concerning NLTS, namely, its asymptotic
linearity, consistency, and asymptotic normality. Before proving these properties, an alternative
definition of NLTS and some notational conventions used in the rest of the paper are mentioned
as well as the assumptions necessary for the mentioned asymptotic results.

3.1 Alternative definition of NLTS, notation

Given a sample (y;, z;), the NLTS estimator of unknown parameter vector g is defined for model
(4) by equation (5). The dependent variable is denoted y; € R, the vector of explanatory variables
z; € R¥ and e; represents the error term. In addition, €, and €. refer to probability spaces on
which z; and e; are defined, so Q = Q, x Q. is the probability space of the random vector (z;,€;)-
The true underlying value of the vector 8 in (4) will be referred to by 3°. The nonlinear least

BgNLTS,n)

squares estimator, which naturally coincides with , is denoted

ﬂA(NLS) = arg min r2 (/8) = arg min 7'2( = arg min — h .CE ,,B )
" gen ; 8 gen ; ‘ gen 2; ,

Here and in definition (5), rﬁ](ﬁ) stands for the ith order statistics of squared residuals 7?(8) =
(y; — h(z;,8))?. In other words, it holds that 0 < r[zl] Bw) < --- < rfn] (B,w) for any B € B

2In general, the dimensions of x; and B do not have to be the same, i.e., k # p.




and w € Q.° Given an w € €, we understand by symbol r;;(8,w) the value of residual 7 (3, w)
such that r3(8,w) = rﬁ] (8,w); hence, |r[z-] (ﬂ)| =, /r[%.] (8). If it is necessary to refer to the order

statistics of sample 71 (8),...,7,(8), then notation r; () would be used.
Next, an alternative definition of NLTS employed in the theoretical part of this paper instead
of (5) is given by*

(INLTS,h)  _  oromin - 200 . 2 2
B¢ argmin 3 (6) 1(r2(8) <r5(8)) (6)
= argmin ;<y,~ — (wi, ) 1(r2(8) < rfy(8))- (7)

To obtain this formula, one has to realize that for a given value of 8 € B, the minimization of the
h smallest squared residuals means that we include in the objective function only those residuals
that satisfy 7?(8) < r[zh (8).5 One additional note concerns the trimming constant: whenever
asymptotic properties of] NLTS are studied, that is n — +00, we have to work with a sequence of
trimming constants h,, (for every sample size n, there has to be a corresponding choice of h). As
this constant determines the robustness properties of NLTS, we want to prescribe asymptotically
a fixed fraction A of observations that are considered to be correct, % < A <1, or alternatively, a
fraction 1—\ of observations that are excluded from the objective function of NLTS (0 < 1-X < 3).
The trimming constant for a given n € N can be then defined by h,, = [An], where [z] represents
the integer part of z, and hence h,/n — A. From now on, we assume that there is such a number
A € (4,1) for a sequence hy, of trimming constants defining the NLTS estimator.6

To close this section, we discuss some purely mathematical notation. As observations and pa-
rameters considered here always belong to an Euclidean space R!, we shall need to define a neigh-
borhood of a point z € R': an open neighborhood (open ball) U(z,d) = {z € R : ||z — z|| < &}
and a closed neighborhood (closed ball) U(z,8) = {z € R : ||z — z|| < §}. Moreover, let us denote
a convex span of z1,...,2n, € R by [21,...,2y],, . Finally, several symbols from linear algebra
are introduced: 1, represents n-dimensional vector of ones, by, ..., b, are standard basis vectors
in R” i.e., by =(0,...,0,1,0,...,0), and Z, is the identity matrix of dimension n.

3.2 Assumptions

Now, I specify all the assumptions necessary to prove the asymptotic linearity of NLTS. They
form two groups—distributional assumptions D for random variables in (4) and assumptions H
concerning properties of function h(z, 5).

First of all, let me discuss the distributional assumptions D dealing with the random variables
used in model (4). All of these conditions that are applicable in linear regression models are
analogous to assumptions A in Vigek (1999a) or to the assumption of the standard linear regression
model. Moreover, we argue in a number of remarks that the following assumptions do not restrict
us in any way in real applications.

Assumptions D.

3Since y; = h(wzs, 8) + &; and 3 = y; — h(z;, B) = h(wzs, B°) — h(zi, B) + €, regression residuals can be written
as a function of 8 and w € @ = O, X Q..

4By I(property describing a set A) we denote the indicator of the set A.

5In general, this definition is not equivalent to the first one. They are exactly equivalent if and only if all
the residuals are different from each other. Under the assumptions given in Section 3.2, this happens with zero
probability and definitions (5) and (6) are equivalent almost surely as the cumulative distribution function of r;(8)
is assumed to be absolutely continuous. Therefore, we further use definition (6) for convenience.

6The case of A = 1 will be excluded for the sake of simplicity from some proofs. This case corresponds, indeed,
to the usual nonlinear least squares estimator, which is extensively studied in the literature anyway. All the
propositions given later are valid for A = 1 too, but their proofs are slightly different or trivial in this case.



D1 Let (z;,&;) € R¥ xR, i = 1,...,n, be a sequence of independent identically distributed random
vectors with finite fourth moments and let z; and ¢; be mutually independent. Moreover,

n~ ! max |z = Op(1). (8)
l’]

Remark 1 The necessity to include restriction (8) is caused by the discontinuity of the objective
function of NLTS. A nonrandom version of this assumption was used for the first time by Jureckovd
(1984) and the presented version was introduced by Visek (1999a). Using Proposition 1, we can say
that equation (8) holds even for some distribution functions with polynomial tails, namely for those
that have finite second moments. This becomes apparent once we realize that o distribution with
tails behaving like one over a polynomial of the third (or lower) order does not have finite second
moments. As the existence of finite second moments is almost always utilized, and moreover, it is
one of the necessary conditions here, assumption (8) should not pose a considerable restriction on
the explanatory variables. You can also notice that random variables with a finite support are not
restrained by this assumption in any way.

Proposition 1 Let xy,%s, ... be a sequence of independent identically distributed random variables
with a distribution function F(x). Let b(z) be a lower bound for F(z) in a neighborhood Uy of
+oo. If b(x) can be chosen as 1 — %, where Py(z) is a polynomial of the fourth order, then it

holds that n—1 maxi—1,..n%; = Op(l) as n = +o0o0. Analogously, let c(x) be an upper bound for
F(z) in a neighborhood Us of —oo. If ¢(z) can be chosen as %(m), where Py(x) is a polynomial of

the fourth order, then it holds that n—i min—; .., ¢; = Op(1l) as n — +o0.

D2 We assume Ez;z] = @, where @ is a nonsingular matrix, and

E (giI(r? (8°) <7, (50)) ‘ mz) =0, E (6?1(7‘? (8°) <1ty (ﬂo)) ‘ xz) =0,
where o2 € (0, +00).

Remark 2 This is nothing but a natural analogy of usual orthogonality condition E(c|z) = 0
and spheriality condition E(ec”|z) = 0®Z in the case of the linear regression model. For further
discussion, see Visek (1999a).

D3 The distribution function F of ¢; is absolutely continuous. Let f denote the probability
density of F', which is assumed to be positive, bounded by M; > 0 and differentiable on the
whole support of the distribution function F. Let f' denote the first derivative of f.

Furthermore, a piece of notation is added. Let G(z) represents the distribution function of 7.
It follows that G(z) = F(/z) — F(—+/x) for x > 0, G(z) = 0 otherwise, and hence, it is also
absolutely continuous. Therefore, we can define g(x) to be the corresponding probability density
function. It is positive on the support of G(z), zero elsewhere, and g(z) = ﬁ (W) + f(—=V7x))

for > 0. Consequently, g(x) is bounded on any interval (K, +00), K > 0 by My/ VK. Moreover,
sometimes it is necessary to refer to the distribution function of r;(8) and r?(8); in such a case,
Fg and Gg are used for the cumulative distribution functions and fg and gg for the corresponding
probability densities. It follows that F' = Fjgo and G = G o, and similarly, f = fgo and g = ggo.

Remark 3 Note that Assumption D3 implies the following property of the distribution function
F(z) and its density f(z): for any 0 < a < 1 we can find e > 0 such that inf,c(p-1(a)—c,F1(a)4<)
min {F(z), f(x)} > 0. The same is true for G(z)and g(z).

Remark 4 In the last assumption, D3, the existence of the probability density function f and its
derivative is required. Once we go through the proof of the asymptotic linearity, it will become
obvious that if the explanatory variables are uniformly bounded

sup |zi;| = O(1),
iEN,j=1,....k



then it is sufficient for these densities and their derivatives to exist only in a meighborhood of
—+/G~1(A) and \/G~1()\). The same applies for the assumption that the probability densities are
bounded.

As we aim to apply NLTS to nonlinear models, several conditions on the regression function
h(z,B) have to be specified. Most of them are just regularity conditions that are employed in
almost any work concerning nonlinear regression models. For example, the regression function of
a nonlinear regression model is almost always assumed to be twice continuously differentiable; see,
for example, Amemiya (1983).

As the assumptions stated below rely on the value of f and I do not have to require their
validity over the whole parametric space, I restrict 3 to a neighborhood U(3°,4) in these cases
and suppose that there exists a positive constant § such that all the assumptions are valid.

Assumptions H.

H1 Let h(z;,3) be a continuous (uniformly over any compact subset of the support of (x,y)) in
B € B and twice differentiable function in 8 on U(8°,6) almost surely:

Oh(z, B) 52h($,ﬂ))
oB; * 0B0Bk )

wﬂevw%&wmeAzgRﬂP@h)=n$keuwumn(3

The first derivative is continuous in 3 € U(8°, ).

H2 Furthermore, let us assume that the second derivatives hgj Bi (z, B) satisty locally the Lipschitz

property in a neighborhood of 9, i.e., for any compact subsets of suppz there exists a
constant L, > 0 such that for all 8,' € U(8°,6), and j,k=1,...,p

Ny, 5, (@, B) = W3, 5, (@, 8)| < Ly 118 = B'Il.
H3 Let
_1/4 1 ) _
w1 o a1, (a1, 8)] = 051 o)
and
_1/2 ” ) N
no max | max hﬂjﬁk(%ﬂ)H = 0,(1) (10)

as n — oo uniformly over 8 € B.

Remark 5 This assumption depicts another regularity condition that is going to be fulfilled in
most cases. For example, for a function of the form h(zI ), where h is twice differentiable with
bounded derivatives, we can immediately observe that hlﬁj (z,8) = W (2] B)zij, and analogously,
hlﬁ;jﬁk (z,8) = h"(z] B)xijzi,. Hence, assumptions (9) and (10) are a direct consequence of (8) as
long as the first two derivatives of h(z, ) are bounded on any compact subset of the support of
random variable x.

H4 To proceed further, we have to postulate some assumptions about the following expectations:

e Let E[h(z;,8)]™ and E [r;(8)]™ = E [&; + h(xi, 8°) — h(xi, B)]™ exist and are finite for
m=1,2 and any g € B.

" !

o Tet E [k (2:,89)] " E by 5, (20,8) |, E B, (21,8°) - b, (2:,8°)], and
E [hlﬁz (zi,8°%) 'h;jﬁk (xi,ﬂo)] exist and are finite for m = 1,2, and for all j,k,I =
1,...,p.

o Moreover, we assume that Eh;i (iL‘i,,BO)h;i (:Ui,,BO)T = Qp, where @}, is a nonsingular
positive definite matrix.



Remark 6 It is important to remember that these assumptions correspond in our nonlinear model
to the existence of finite fourth moments (see assumption D1). Moreover, the second part of
Assumption HJ is a natural analogy to assumption D2 in the linear regression model.

3.3 Asymptotic linearity
3.3.1 Normal equations

In order to analyze the behavior of the NLTS estimator, we use normal equations as the starting
point, i.e., instead of minimizing the objective function

p(8) = " (ui — hlwi ) - 1(13(8) < 1y(8))

i=1

over all B € B, we consider a solution of ag_(;@ = (. The normal equations (for 8 € U(B°,6)) can

be written as
0= 62_? - g [Q(yz’ = h(wi, B)) - hy(ai, B) - 1(r3(8) < 18y(8))

i=1

= han 8 1 (1) <y (8))

Now, let us show that the continuity of residuals r? (3) and order statistics r[zh] (B) in B (assumptions

H) guarantees that the second term is almost everywhere zero. Consider j = 1,...,p and an
arbitrary, but fixed w € Q:

%I(r?(ﬂ,w) <1y (B,w)) = lim % [I(r?(ﬂm),w) <l (g(A),w)) — I(rf(ﬂ,w) < r[zh](ﬂ),w)] ,

where (%) = (B1,...,8-1,8; + A, Bj+1,---,Bp)- As the ordering of residuals is constant in a
neighborhood of 3 for all w € Qy, where P(Q;) = 1 (see Lemma 1), the limit is equal to zero
jointly for all ¢ =1,...,n and j = 1,...,n with probability 1. Consequently, it is enough to study
the behavior of

ag(;) _ Z(yi — h(zs, B)) - h (@i, B) - 1(r2(B) < 13y(B)) as., (11)

as the NLTS estimator is a solution of 8‘5—(‘@ =0.

Lemma 1 Letn € N and kp(8) : RP — {1,...,n} be a function that represents an index of an
observation such that Tﬁh(ﬁ) B) = r[zh] (8), he {1,...,n}. Under conditions D and H, there ezists

a set O, P(Q1) = 1, such that for every w € Q there is some neighborhood U(B°,e(w)) of °
such that the function kn(B) is constant on U(B%,e(w)) for all h € {1,...,n}.

Proof: See Appendix A.1. O

3.3.2 Asymptotic linearity of the derivative of objective function p(3) at g = 3°

Analogously as for M-estimators or LTS (see Juretkova and Sen (1989), Visek (1996a) or Visek

-1
(1999a)), we shall investigate the term S, (t) = 8"('Bogﬁ" 28 _ apégo)’ ie.,

Sn(t) = i [(4 = 1,80 = n=58) ) - iy (2, 8° = n38) - 1 (v2 (8° = n=3¢) <3, 1 (8° —n~P1))

— (i = h(w0, 8°)) - B (w5, 8°) - 1 (13 (8%) < 7, 1(8%)]



forte Ty ={teRP:||t| < M}; 0 < M < oo is an arbitrary, but fixed constant throughout this
section. More precisely, we show that S, (t) behaves asymptotically as a linear function of nt
over the whole set T3s.

Theorem 1 Let assumptions D and H hold. Then for a given \ € (%, 1), it holds that

Sp(t) +nb - Qut - [)\ /G0 - {f(—\/G—l()\)) n f(\/G—l()\)> }] H = 0,(1)

_1
n~% sup
te€Tm

as n — +00.
Before we actually prove this theorem in Section 3.3.4, it is beneficial to study behavior of indicators

I (rf (B) < rfh] (,6’)) since they determine which observations enter the objective function of NLTS,

and thus, determine the main characteristics of S, (¢). In addition, this allows us to make the
proof itself more transparent.

3.3.3 Auxiliary propositions and lemmas

In this section, several useful propositions intended to make the proof of Theorem 1 more trans-
parent are shown. First, several lemmas that characterize behavior of order statistics of squared
residuals and their distribution functions are introduced.

Lemma 2 P({w = (Wi, ywn) €Q" 12 (Bw;) = rfh](ﬂ,w)}) =L foranyn €N, i,h € {1,...,n},
and B € B.

Proof: See Appendix A.1. O

Lemma 3 Let 1/2 < A< 1and 0 < ¢ < GEI()\) be a real constant, where Gg represents the
distribution function of r2(8), B € B. Then, under Assumptions D, P(rfhn](ﬂ) < c) = O(n—k)
for any k € N as n — +o0.

Proof: See Appendix A.1. O

Corollary 1 Analogously, it is possible under Assumptions D to show that for real constants
1/2 < A < 1 and G5 (A) < ¢ < oo it holds that P(rfh"](ﬂ) > c) = O(n=F) for any k € N as
n — +00.

Lemma 3 actually says that the probability that the order statistics does not lie in a given neigh-
borhood of the corresponding quantile of the underlying distribution function converges to zero
faster than any polynomial. This assertion can be generalized to the set of all 3 € U(5°, n~zM ).
This neighborhood actually corresponds to the set of all 3 = 3% — n_%t, where t € Ty —

U3, n=%M) = {5 — B0 —ntite M}.

Corollary 2 Let 1/2 <A <1 and 0 < c < G71(A) < ¢ < 0o be real constants. Under Assump-
tions D, it holds that

P(38 € UB,n~5 M) 13, 1(8) ¢ (e¢)) = O(n ")
for any k € N as n — +o00.

Proof: See Appendix A.1. O

To study asymptotic properties of NLTS, we need to know how small the probability that
I(rf (B°) < T[th] (60)) and I(r?(8°) < G='())) differ is, that is, the probability that replacing the

order statistics 1§, | (B°) by the corresponding quantile G=*()) in the indicator I (rf (8°) < Thh] (ﬂo))
changes its value. A generalized statement follows.



Lemma 4 Under Assumptions D and H,
P(38 € U, n~ M) 1(r3(8) <rfy 1 (8)) #1(r3(8) <G5 (V) ) = O(n73)
as n — +00.
Proof: See appendix A.1. O
Corollary 4 Under Assumptions D and H,
P(38 €U, n M) 1(r2(8) < r,1(8)) £ 1(r2(8) < G5* (V)
as n — +00.

Proof: See Appendix A.1. O

In order to study S,(t), we also need to know how small the probability of I (rf (B) <7y (,6’))

being different at some 8 € U(8°,n~2 M) and at 8° is and the expected value of this difference,
respectively. We find out that the mentioned probability is proportional to the distance of 8 and
B° multiplied by a function of z;. The following lemma analyzes this probability conditionally on
x; and also unconditionally; moreover, it does so for a certain 8 € U(S°, n":M ) and all possible
BeUB,n zM) as well.

Lemma 5 Let Assumptions D and H hold and B € U(,Bo,n_%M). Then it holds
1. For the conditional probability

P( ( (8%) <rh] )#I(r (B) < r )) xi)
- o] VETE) (5] 0o )

0, (n—%)

E (sgnra(8) - (1(r2(8°) <7, (87) = 1(r2(8) < 15,,1(8)) )| @i
= (2, 8%) (5~ 8°) - { (-G 1(A))+f(x/ ( )} +o

as n — +oo.

and

S|
~~
:\

ol
—

2. For the corresponding unconditional probability
P(1(r2(8°) <13, (8%) # 1(r2(8) <15.1(®))
i (w:,8°)" (8= 87| - {#(-VGTO) + £(VETW) } + 0(n7?)
= (’)(n_ )
3. For the conditional probability of supremum over [
P(3 e UE M) 1(s3(8°) <1%,9(8%) # 1(2(8) < rfi (8)) | 1)
= Y By (5 87)- (£ (VETD) + £ (VET) } + 0, (n72)
j=1
= 0, (n*%)

= E,

N[

as n — +00.
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4. For the corresponding unconditional probability of supremum over 3
P(38 € U, n~ M) 1(r2(8°) <1, 1 (8%) #1(r3(8) < 15,1(8)))
= n M. 2,,: E, )‘ : {f(— G*l()\)) + f(\/Gfl(A))} + O(Tf%)
j=1

- o(nf%)

as n — o0.

Proof: See Appendix A.1. O
Finally, there is a simple, but useful corollary of the previous lemma, which describes behavior

of 7;(8°) in all cases when I(r?(,@) < rfhn](ﬂ)) differs at some 8 € U(8°,n~2 M) and at 4°.
Corollary 6 Assume that \ € (%, 1) and there exists B € U(ﬂo,n_%M) such that Corollary

1(r2(8°) <13,1(8°)) # 1(r3(8) < 7,,1(8))-
Then for any € > 0 we can find a constant K > 0 such that
[[rs(8%)] = G V)] = [ri(8°) — sgnri(8°) - G (V)| <K
for all n high enough with probability greater than 1 — ¢, that is 7;(8°) — sgnr;(8°) - G71(\) =
Op(n_%) as n — +o0o.

Proof: See Appendix A.1. O

3.3.4 Proof of asymptotic linearity

o_, -1 0
The main focus moves now to the term S, (t) = 22 a8 28 _ 8”5’2 ) ie.,

0= 3 (=2 —m20)) 1 s =) (3 (37 =) <y (7 =)
= (i = h(wi, 8°)) - by (w0, 8°) - T (13 (8%) < 7y (8%)]

fort € Toy = {t € RP : ||t|| < M}. There is apparently a ng € N such that for all n > ng and
t € T it holds that 8% — n— 2t € U(B°, ). Therefore, for all n > ng and t € Ty

h(;v,,BO — n*%t) = h(x,BO) - hlﬁ(x,g)Tn*%t

and
1

b (. 8° = n”3t) =y (@, 8°) — g (. €)n 3,

1

where £, &' € [,80, B0 — n_it} . Consequently, we may write S,, in the following form:

NE

Sat) =

[{( yi — h(zi, 8°)) - h;3 (zi,8°) -I(rz2 (50 —n75t) < Tin ]<,80 — n_%t))
1
(v e 8)) -y (%) - 1(72(68%) < 720 (67) 0
- (yi - h(xi,ﬂo)) : h;;g(xi,g’)n*%t . I(r? (,30 - n*%t)
—hlﬁ(ﬂfi,ﬁ)Tn_%t : hlg (zi,8°) 'I(Tf (,30 - n_%t) <riy(B8° -
+ hlﬁ(mi,f)Tn*%t . hgﬁ(mi,g')n*%t . I(T,2 (ﬂo - n*%t) < T[2h] (ﬂo - nfﬁt))] (15)

-~
Il

11



= S [{ = na ) - B (o)

i=1

x [1(r2 (80 = n=3t) <oy (82 —n3e)) =1 (2 (8°) <oBy(8%)]} (1)
(

= (i — h(wi,8°)) - B i, € )n ¥t 1(r2(8%) <12, (8)) (17)
—( h(x , B3 )) -hﬁﬁ(:ci,f)n_itx (18)
X [I(r? (BO - n_%t) < 7y (,80 - n_%t)> - I(rf (8°) <7y (BO))]
—hiy(ws,€) bt by (i, 8°) - 1 (r2(8°) < By (8)) (19)
~hig (i, €)' Et - hg (i, B) x

X [I r2 <,B° - n*%t) < r[zh] (,BO — n*%t)) - I(r,2 (8% < rfh] (BO))] (20)
+ hﬁ(x,-,f)Tn_ét . hgﬁ(mi,ﬁ')n_%t . I(ri2 (ﬂo - n_%t) < r[2h] (ﬂo - n_%t))] (21)

Let us now analyze parts of the previous expression one by one. We will show that parts (17),
(18), (20), and (21) behave like O,, (ni), and therefore, are asymptotically negligible with respect

to parts (16) and (19), which behave like O, (n%) Moreover, we find asymptotic representations
of (16) and (19).

First of all, the last part (21) can be bounded from above in the following way (see assumptions
H1 and H3):

t€TMm
3 "
< 0Oy(n~4) sup |h z;, H
p< )tETMZ:Z:l 5Bk( Zé-)
_3 - !
< Op(n 4) Z | hag, (m,,ﬂ )H +0,(1) ],
where the last result follows from assumption H2 (the Lipschitz property for h;; B( . Once we

realize that assumption H4 and the law of large numbers guarantees Y . ; Hhﬂ 5(zi, B H =
as n — 400, we get immediately

o iHh;’(wi’g):r"_%t'h;ﬂ(wiaé“)n_%t'l(r?(ﬂ —nHt) < [h](ﬂo—n‘%t))HZOp(n%)

teTm ;-

as n — +00.
Next, we are going to analyze part (20), i.e.,

sup i thﬁ(wi,g)Tn_%t . hlﬂ (wi,ﬁo) . Vi(n,t)H )

t€TM 54
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where v;(n,t) = I(r? <,80 - n—%t) < 1 (60 - n_%t)) - I<r§(50) < 1 (,80)). As
sup Z hg(xi,f)Tn*%t-hIB(mi,ﬂo) -I/i(n,t)H

= sup Z (hlﬁ(m,-,BO)Tn_%t-hlﬂ(xi,ﬂo) +n*%tT-h;5(a:,~,.£) -n*%t-h’ﬁ,(xi,ﬂo» -V,'(n,t)H

teTu ;4
< sup 3o | (e ) " Ee - (0, 8°)| - s, 1) (22)
teTm ;4
+Op(1) sup > [t (i )| - it 0 (23)
teTm ;4

(see condition H3), we need to analyze these two summands. This can be done in the same
way for both of them, so we will do it here just for (22). To do this, we employ the Chebyshev
inequality for non-negative random variables: for any non-negative random variable X it holds
that P(X > K) < EX. Therefore,

N

(sup Z Hhﬂ z;, B n_%t-hlﬁlc (zi,8°) -Vz-(n,t)H > Kn

teTm ;4

< mre(ap Bt )
_§
4 ! . 0 T . ! . 0 . ]

< K {tsel%\)/l th(:v“ﬂ) t-hg(zi, )H tseggllw(n,t)l}

and by the Schwartz 1nequa11ty and Lemma 5

n: ZE{sup thﬁ(wi,ﬂO)Tt-h'ﬂ(a:i,,BO)H . sup lvi(m, t)|}

—1 teETm teTa
< % (sup Hh (zi,8°) tH | (x4, 8° H) -E sup |vi(n,t)]
t€Tm t€Tm
2
s J o] o)
< ( ) C(}IE—St (24

Apparently, for any £ > 0 there is a K > 0 such that the constant term (24), which is proportional
to %, is smaller than €. Thus, we have shown that

sup ZHhﬁ zi,6) n 3t hﬁ(w,,ﬁo)

teTm

x (I(ri (8° = nde) <oy (80— n2e)) = 1(r2(8%) < 13,(89) ) | = 0u(n?)

as n — +o00. Please, note that (18) can be estimated in the same way, so we have also shown how
to prove

yi — h(zi, %)) - higp (@i, € )Tt x

x (I(n- (80— n2t) <oy (80 —n3¢)) = 1(r2(8%) <rfy(8Y))|| = Op(n?)

13



as n — +o0.
The next summand to be analyzed is (17):

n

sup 3 (s = (i, B°)) - Wy (e, €2 112 (8°) <y (5°) ).

t€Tm ;=

This can be rewritten as (assumption H2)

n

_ -3, 2(R0 2 0
fg;ng h(ws, B)) - Hgg (ws 80)n3e-1(r2(8%) < vty (8°)) (25)
Op(n™) + 3 s = lais 8)) -1 (12 () < 16y (87)) (26)
i=1

Assumption D2 implies that the expectation of (25) conditional on x; is equal to zero, thus the
unconditional expectation is zero as well. Moreover, the variance of (25) equals (Assumptions D2
and H4 are used)

var [(4: — bz, )) By (@0, 8t (12 (8%) < 1y (6%))]
= var, {ty 0, (06, 8%) 10 - E [ (s — h(ai, 8°)) - 112 (8°) < 75y (8%))

{
+ E, {(hﬂjﬁk z;, B )2 -var [(yZ — h(z;, 8°)) 'I(T? (8°) < (ﬁo))
= var, {hﬁ Ba ;v,, 0} +E, {(hll;jﬁk (wi,ﬂo)tl)z .02}

- a2t?-E(hgmk(z,~,ﬂ°))2,

S0 it exists and is finite, and we can employ the central limit theorem for the sum (25). Hence,

nfé Z — h .’1,‘,, hﬁ B (-7317/3 )tl (rf(/BO) < r[2h] (ﬂo))

i=1
converges in distribution to a normally distributed random variable with variance bounded in

t € Ty for all 4, k,1 =1,...,p. Because (26) is apparently bounded in probability, it holds that

n

sup > (i — h(wi, ) - has(ai, € m 2t 1(r2(8°) <1(8°)) = O,(1)

teTm ;4

as n — oo.
The last but one term to be estimated is (19), i.e.,

> plwa, & n= e hy(as, ) - 1(r3 (8°) < 1y (8°)) (27)
=1

= > b2, 8) e b (a, 80) - 1(r2(8°) <y (8°)) (28)
=1

+ 3 0T B (@i, €Y 03t - iy, (24, 8°) -1(7«3 (8°) < riy (50)). (29)
=1

The supremum of the second part (29) over t € Tar behaves like Op(1) by the same kind of
argument as the one used before: since by means of assumption H2 (Lipschitz condition for the
second derivative) and H3

14



e 30 o) bt ) 1 (20) < 20

< MY E W) By )|
i=1

< nTiMm? .ilE(thﬂ(m,ﬂ ) - hﬁ z;, B H + HhB x;, B H
= 0(1), -

the Chebyshev inequality for nonnegative random variables implies boundedness of (29) in prob-
ability.
Let us look now at (28):

> (w0 B%) e Ee b (0, 8°) - 1(1F (8°) < 17y (87)) (30)
= D ohglwa ) R g (wn 0) - (1(r3(8°) <1y (8)) — 103 (8°) < €7 (N)) (31)

n

o E Y ( 8°) - h (e 80) 1 (8°) < G () (32)
—E (h;;(a:i,ﬂ") (2, 87) - 1(F(8°) <G (V)) e
+ %znje(hﬁ (i, 8°) - i3 (2, 8°) " T(r2(8°) < G (V) ) t. (33)

The supremum of the first part, i.e., sum (31), over ¢ € Tar behaves again like Op(1) for n — .
This can be proved in the same manner as we did in the previous paragraph, this time utilizing
Lemma 4. Next, using the central limit theorem, each element of (32) converges in distribution to a
normally distributed random variable with zero mean and a finite variance (both the expectation
and variance of the term exist and are finite due to assumption H3 and ¢t < M). Hence, it is
bounded in probability as well. Finally, the last element (33) can be rewritten as nz-\- @nt since

E (i (s, 8°) - (0 8%) - T2 (8°) <G (V))
E, (I (i ) - by (i, 8°) - E(1(r2(8°) < G (V) | ) )
- AE (h},(xi,ﬂo) -hlﬁ(xi,ﬂo)T) =X Qp

We can conclude that

Sy (s, %) He - By (e, 87) - 1(72(8°) < r(8°)) —n? - X Qut| =

i=1

sup
teETMm

Op(1)

as n — +o0o.
Finally, let us move our attention to the term (16). Using once again notation

viln,t) = (1(r3(8° = n=3¢) <oy (8 —n~5¢)) = 1(r3(8) < 13y(87))

15



we can rewrite (16) as

Z - h xza ) hB (muﬂo) : I/@‘(’I’L,t) (34)
oD D CIRAE (59)
= Z( ) = sgnri(8°) - VGO - b (3, 8°) - vi(n, 1) (36)

+ ngnn (8% - /G hﬁ(x@, %) - vi(n,t). (37)

For the simplicity of notation, let gy = v/G~1()\). The first part (36) multiplied by n~1 is bounded
in probability. This can be shown as follows: Corollary 6 implies

n

3 (ri(8%) — sgnri(8°) - an) - hy (4, 8°) - wi(n, 1)

i=1

3

>K ) (38)

_1
n 4 sup
t€ETMm

1 1 /
< xE (n 4 sup (i(ﬂo) —sgnri(8%) - qn) - hg (i, B°) - vin,t) )
teTm i:
ni
< — ) —sgnr; (8 0- -Hh’ x,-,OH-su Vz-n,t>
< S (o) = senrs(8) - |- [ (o )| - sup It 0
ni
< — ‘h i, H sup |v; n,t>
e (0p(n ) s8] sup oo
and by Lemma 5 (r;(8°) = ¢; and z; are independent random variables)

1

e (Jaten ] € on(t) s e

te€Tm

)

< %E(O(n—é).ﬂh;(%ﬂ |- [i g, (i, 8°) | + O,(1) )
=1

< O(1) _ const. ]

- K K

Therefore, the probability (38) can be made smaller than ¢ by an appropriate choice of K, and
hence, (36) multiplied by n~# is bounded in probability. In other words, it holds for (36)

n

sup | (ri(8%) —sgnri(8°) - qn) g (@i, 8°) x

teTm ||i

[r(r2 (80 7o) <oy (80 = n7he) ) - 1(208) < g ()] = 0 (1)

as n — oo. All we have to do now is to treat

_ngn ri(8°) - VGI(N) - hg (2, 8°) - vi(n, t). (39)

This is done again in two steps—first, we show that the sum less its expectation is Op(1), and
second, the expectation of the sum is evaluated. For the first part, we have shown in Lemma 5

that the probability of v;(n, t) = [ ( (,30 —n 2t) <3 (50 - n*%t)) —1I (r? (8°) <72, (BO))]
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being non-zero conditional on z; (and thus the conditional expectation of this term in absolute

value) is equal to ‘h:@ (:Ui,,BO)T(B - ,BO)‘ . {f(— G—l()\)) + f(\/GT()\))} + O, (n_%) asn —

400, and that the expectation of this conditional probability behaves like O(n 4). Therefore,

the random variable u,(n t) multiplied by nz will have its expectation conditional on z; behaving
like |h (z:,8°) H ) + O,(1) in absolute value. Consequently,

{1 sgnri(8°) - hiy (w0, 8°) - wi(n, )}
= E {n*1/4 -sgnri(8%) - hg (24, 8°) - n E[Vi(nat”mz']}
<

IN

4 g i, 8 - [[| s (218%) || - 00 + 0, 1]} = 0(1)

var {n!/4 - sgnri(8°) - b (s, 8°) - vi(m, 1)}
= var {n!/ - sgnri(8°) - by (i, 8°) - E [va(n, t)|i] }
+ E {n1/2 - g (wi, 8°) - var [vi(n, t)|s] - by (wi,BO)T}
< var {n 4 g (20, 8°) | - [|[15 (10 8) | o) + 0, 0] }

+ E { Hh’ﬁ (w1, 8°) H2 : [Hh;a (21, 8°) H O(1) + 0y(1)] }
- o).

Hence, the central limit theorem can be applied to the random variable
pi =n'’* - sgnri(8°) - gy - hlg (zi,8°) - vi(n,t)

and we obtain that n—2 Zi":l nt/ 4(u; — E ;) is asymptotically normally distributed around zero
with a finite variance. As a direct consequence, it follows that

S senr5) -y o ) - 0

n

_ZE{sgnrZ g - hﬂ(aj“ﬂo).yz.(n,t)} _ Op(n1/4)

=1

as n — +o00.
Finally, the expectation of (39)

Engn ri(8°) - VGI(N) - hy (i, 8°) - vi(n, t) = (40)

{qu hg (2, 8%) - E (sgnri(8°) - z/i(n,t)\xi)} (41)
can be proved to be a linear function of ¢ by means of Lemma 5. Since

E (sguri(8°) - vi(n, )les) = by (2, 8°) 't {f(=an) + Flan)} + Op(n72),
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(41) can be rewritten as

E. {i qA-hIB(mz’;,BO) . [hlﬁ(miJﬂO)Tn_%t'{f(_q/\) +f(qx)}+(9p<n—é)]} _

=g - {f(—an) + f(an)} {ZE (hﬂ i, B )'h’ﬁ(-’L'i,,BO)T)_{_(’)(n%)}-n%t
= VG - {f(—an) + f(an)} - Qu - n2t + O(1).

Therefore, we can conclude that

n

> (i = h(zi,8°)) - b (i, B°) - vilm, t)—

=1
—n} VGO - f(-an) + fla)} - Qui]| = 0y(n?)

as n — 4o00. This closes the proof. O

sup
t€ETMm

3.4 /n consistency

In Sections 2.1 and 2.2, I provided a sort of an argument why consistency and asymptotic normality
of (N)LTS and (N)LS are equivalent. In this section, I will prove the consistency of NLTS properly.

First, let me precise the previous wordy argumentation. The main idea of the following rea-
soning comes from Visek (1999a). Correctly, we should write r;(8) = r;(8,w;) as the residuals are
both functions of parameters § € B and realizations w; € Q. As we have already argued, the NLTS
estimate for a given sample realization w € 2" can be obtained by means of a simple process:
taking all subsamples of size h one after another and applying for each of them the nonlinear least
squares estimator, we get (Z) candidates for the estimate and the one that governs the smallest
value of the sum of squares residuals in its subpopulation is the final estimate. For an arbitrary
w € Q" let us take all h-tuples from {1,...,n} and apply the NLS estimator on the corresponding
subpopulations. To formalize this procedure, let us define a mapping a : @ — {1,.. .,n}h by

expression “a(w) = (i1,...,in)T is the point for which mingep Yica(w) 7?(B,w) is attained.” More
precisely, a(w) is an element of {1,...,n}" such that
h
mm Z glelg 1“1]
zEa(w) i=1

Furthermore, let X (a) = X(a(w)) be the h-dimensional submatrix of X containing all rows of X
with indices belonging to a(w) (this can be done for any w € Q). In the same way, let us define
Y(a) = Y(a(w)) as a subvector of Y and ¢(a) = e(a(w)) as a subvector of €. Then it is obvious
that

ngNLS,n)(Y(a(w))’X(a(w))) — BSLNLTS’H)(QJ)’vw € Q, (42)

where ,BA’&NLTS’") (w) represents the value of the NLTS estimate at the realization w. This confirms
that the nonlinear least trimmed squares estimate is consistent under similar conditions as the
nonlinear least squares.

Second, to provide as complete picture as possible about the consistency of NLTS, I specify
two sets of assumptions. The first group, Assumptions NC, is as general as possible and is
sufficient just for proving consistency of NLTS; the second group, Assumptions NN, allows us to
derive /n-consistency and asymptotic normality of NLTS. In the presented form, Assumptions NC
correspond mostly to the assumptions required for the uniform law of large numbers in nonlinear
models, which is in a very general form presented in Andrews (1987).
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Assumptions NC. Let the following assumptions are satisfied for function g(z;,e:; 8) = r?(8) -

1(r2(8) < G3'(N), where r4(8) = i + h(zs, 8°) — h(z:, B)
NC1 The parameter space B be a compact metric space (or a compact subset of RP).

NC2 Let q(xiagi;ﬂ)a q*(xiasi;ﬂap) = sup {q(w,,az,ﬂ) : ﬂl € U(ﬁ)p)}a and
4(wi €68, p) = inf{q(xi,e558) : 8/ € U(B,p)}, where U(B,p) = {#' € B:[|f' - Bl < p},
be measurable random variables for all 8 € B,i € N, and for all p > 0 sufficiently small.

NC3 Let E {supgcp |q(xi,5i;,6’)|}1+6 < oo for some § > 0.

Remark 7 Assumptions NC1-NC3 are necessary (together with the assumption concerning the
differentiability of function h(xz, ) with respect to B) for the uniform law of large number. As-
sumption NC3 is actually a standard condition used in this context to ensure that functions
{¢*(zi,e4;8,p)} and {q.(x;,€:;8,p)} satisfy pointwise the strong law of large numbers for any
B € B and all p sufficiently small; see Andrews (1987), for instance. Moreover, note that

ri(B) = &; + h(zi, B°) — M(zi, B) = &5 + h:@(xz';f(ﬂ)) (B - 8%, (43)

where h'ﬁ (z;,&) is bounded independently of B (under Assumption H3) and 3—B° is bounded as well

(B is compact space)—hence, the existence of an upper bound for r?(3) follows from Assumptions
H and NC1 and Assumption NC3 just requires existence of a certain expectation of this upper
bound.

NC4 For any € > 0 and U(B°,¢) such that B — U(B°,¢) is compact, there exists a(e) > 0 such
that it holds

i Lo _ o ~.. 0 —
BEBEHI}?BO,E)E(I(J"“EMﬂ) E(I("L'ME’MB ) -

E[r28)-1(r2(8) < G5' )] —E[2(8) - 1(2(8°) < Gt V)] > ale).

min
ﬁEB—U(ﬁO,E)

Remark 8 This is nothing but an analogy of the identification condition for the nonlinear least
squares, see for example White (1980).

NC5 Assume that I = infgep GEI()\) > 0 and

. . 1
Mgy = ﬁnelg zezr—lf(;,d) 98 (Gg (A + Z) >0,

where Gz and gg are the cumulative distribution function and the probability density func-
tion of rZ(8).

NC6 Let gg(z) is bounded on (I, +oc) uniformly in § € B, that is, there is My, > 0 such that
SUPge B SUPz¢(Ig,+00) 98(2) < Mgy,

Remark 9 Although Assumption NC5 and NC6 might look unfamiliar at the first sight, they
just guarantee that the distribution functions of random variables rZ(3) do not converge to some
extreme cases for some B € B. Namely, these conditions exclude cases when the expectation or
variance of r2(B) converge to infinite values for some 3 € B or when the distribution function
Gp converges to a discrete distribution function for some 3 € B. This does not restrict us in
commonly used regression models, because the parametric space B is compact.

The following theorem confirms that assumptions NC are sufficient for consistency of NLTS.

7For the case of nonlinear least squares, A = 1 and GEI (A) = oo. Therefore, this case corresponds to g(z;,e:;8) =

r2(B).
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Theorem 2 Let Assumptions D, H, and NC hold. Then the nonlinear least trimmed squares
estimator defined for model ({) by

BOETSI) — axgmin 3" r2(8)1(r2(8) < 13y(6)) = argmin , S 2E-1(76) <23 (@)
i=1

BeEB = BeB
is consistent, i.e., B — B9 in probability as n — +oo.

To prove this theorem, we need one additional lemma showing that we can use the uniform law
of large numbers for sum (44) and that weak dependence among I (rf B) < r[Qh] (6)),1’ € N, does
not spoil the result.

Lemma 7 Let Assumptions D and H hold and assume that t(x,e;0) is a real-valued function
continuous in 8 uniformly in © and € over any compact subset of the support of (x,€). Moreover,
assume that Assumptions NC hold for t(z,; 8). Furthermore, let ri(8) = &; + h(=;, 8°) — h(z;, B)
and Gg denote the distribution function of r2(B) (for any B € B). Finally, let hy/n — X € (1,1).
Then

n

> [tz ) 1(23) <ty ()]~ [t6w0255) - 1(12(6) < G;(A))]‘ 0

i=1

sup
BEB

as n — +0o in probability.

Proof: See Appendix A.1. O

Let us continue with the proof of Theorem 2 now.

Proof: The principle of the proof is actually the same as of the proof of the SLS consistency done
by Ichimura (1993), and employs the theorem about uniform consistency in nonlinear models that
is due to Andrews (1987) by means of Lemma 6. Let us denote (r7 () are independent identically
distributed random variables)

By the definition of NLTS, P(J, (8¢"*"%") < J, (8°)) = 1. For any § > 0 and an open
neighborhood U (%, 6) of 5°

1= P(Jn (IéT(LNLTS,hn)) <J, (/80)) _
_ P(Jn (B%NLTS,hn)) <J, (/30) and B%NLTS,hn) c U(ﬂo,é))

+ P(J, (BNETSE) < T, (8%)  and BNETSI) € B-U(8,5))

IN

P(B;NLTSM € U(,BO,(S)) + P( Jn (B) < Jn (5°)>.

inf
BEB-U(BY,9)
Therefore, P (infsep_y(g0.5) Jn (8) < Jn (8°)) = 0asn — +oo implies P(ﬁ,&NLTS’”") € U(50,5)) -

(NLTS,hy)
n (

1 as n — +o0, that is, the consistency of B 0 was an arbitrary positive number). To
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verify P(infgep_u(g,5) Jn (B) < Jn (8°)) — 0 note that

P( inf Jn(6)<Jn(50)>:

/3€B*U(ﬂ0,6)

= P (BEBi%f(go,é) [T, (B) = J(B) + J(B)] < Ty, (,80)>

P(,pint,  Fn (B =TT < 1) - nt 7(9))

IA

P(Sup |Jn (B) = J(B)] >

inf
BEB BEB-U(B%,9)

J(B) — Jn(ﬂ°)>-

Since J,(38%) — J(B°) almost surely for n — oo (see Assumption NC4 and remark 7) and the
identification condition NC4 implies

(V8 > 0) (3 > 0) ( inf
BEB-U(BY,5)

J(8) - J(8°) > a) ,

it immediately follows that

(V6 > 0) (3a > 0) ( lim [ inf  J(B)— Jn(ﬂo)] > a)

n—oo |BeB-U(B°,5)

almost surely for n — oco. Thus, it is enough to show that for all a > 0

P(sup |Jn (B) — J(B)| > a) —0asn— +oo.
BEB

This is indeed the result stated in Lemma 7 for function t(z;,e;; 8) = r2(8) (r?(B) is uniformly
continuous in # on any compact subset of supp(z, ) because of Assumption H1, and moreover, it
satisfies Assumptions NC1-NC3). O

Next, let us recall that Assumptions NC are the sufficient conditions for the consistency of
NLTS. However, if we enrich Assumptions NC to below stated Assumptions NN, we are able to
prove even +/n-consistence and asymptotic normality of NLTS. Also Assumptions NN correspond
mostly to the assumptions required for the uniform law of large numbers in nonlinear models due

to Andrews (1987), because key assumptions for asymptotic normality of NLS (and thus NLTS) are

! ! " n 2
that sums £ S0, hiy (@i, B)hi, (@i, B), £ 0y hlwis ARG 5, (i, B) and L0, (R, (00, )
converge to their expectations uniformly in 8 over § € B for all j,k = 1,..., p; see, for example,
Chapter 12 in Seber (1989).

Assumptions NN. Let Assumptions NC hold, and additionally, Assumptions NC1-NC3 are
satisfied for functions

o alaiei ) =13(8) - 1(r2(8) < G5' V),
o q(@iii B) = ri(B) - By, (@i, B) - T(3(8) < G5' V),

o (i e ) = hig, (@i, B) - b, (@i, B) - I(12(8) < G5 (V)
where j,k=1,...,p.

Remark 10 The only assumption that seems to be more restrictive here, is the moment condition
NC3 used for these functions. However, this does not limit us significantly since this assumption
actually coincides with Assumptions H3 (boundedness of these functions with respect to ) and
H) (existence of certain moments of h(x,8) and its derivatives). Hence, these are just additional
regularity conditions.
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Finally, combining all the conditions stated so far, namely, D, H, and NN, we can prove the
\/n-consistence of NLTS.

Theorem 3 Let Assumptions D, H, and NN hold. Then BT(LNLTS’h") s v/n-consistent, i.e.,

Vi (BVETS — 87) = 0,(1)
as n — +00.

To prove this theorem, we need again one additional assertion.

Proposition 2 Let x; and x> be (mutually) independent random wvariables and ¢ > 0. Then
z1 - I(|z1] < ¢) and x4 - I(|z2| < ¢) are independent random variables as well.

Proof: See Visek (1999a), Assertion 1. [J
Let us prove Theorem 3 now.

Proof: We already know that
normal equations to derive y/n-consistency.
First, take a look at the derivatives of the objective function that form the normal equations.

Let us denote the objective function of NLTS by Sn(zi,e5;8) = = >, r7(8) -I( (B) <, ](ﬂ))
We showed in Section 3.3.1 (see equation (11)) that

BT(LNLTS’h") is consistent (Theorem 2). Now, we shall use the

65(2756/3 Zn hig(@i, 8) - 1(r2(8) <1y (8))

almost surely, and by the same argument (Lemma, 1), it follows that

0% Sn (@i, €33
Phlencsd) _Zhﬁxz, Hig(wi, ) - 1(r2(8) <75(8))

- = Z"‘z hgﬁ (zi, B) I(Tf(ﬁ) < 7'[2h] (ﬂ))

almost surely. Using Assumptions NN and Lemma 7, we obtain for all three functions, S, (x;, £;; 8)
and its first two derivatives, that

w@iei /) —E[28)- 1(r8) <G5 W)]| = o,

BEB
0 Sn(wi,ei5 B) ' ' -
sup | = — 2E [Wa(es 5) (e )T -1 (rH9) < 65" ) |

+2E [ri(8) - hs(ai ) - 1(r3®) < G5 )] = 0

in probability for n — oco.
Next, 5£LNLTS’h") is a solution of the normal equations Mggs—“ﬁl = 0. Thus, using Taylor’s
expansion theorem

8Sn(wi,e5 AETIMY 88, (wi,64;8°) | 02Sn(wi, €4 n) 0
B = 33 + = gegr (BB, (45)

where &, € [ﬂo, BT(LNLTS”L")] . Since BVETShn) _y 50 the same holds for &, — B in probability.

0=

Moreover, % converges uniformly to a nonstochastic function in 3:

E [h3(i, 8) - hig(ai, B) - 1(r2(8) < G5 () =7i(B) - By (wis ) - 1(r2(8) < G5' V)|
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which is continuous (see the verification of Assumption A3 in Lemma 6) and equals to
E [h (@i B) - s (i ) - 1(r2(8) < G5 (V) ]

at B° because

E [ri(8%) - hizg (3, 8°) - T(r3(8°) < Gz (V)| = E[e - hpp i, 8°) - I(F < G2 )] =0
(see Assumption D2). Therefore,

3”8y (@i,€46n)
9popT

in probability as n — oo, where @}, is a non-singular positive definite matrix. Now, after rewriting
(45) as

= E [ (w0, 8°) - his (25, 8°) " - 1(eF <G N) | = Q- A

R 2 e -1 . ~..70
\/ﬁ(ﬂSLNLTS’hn) —,30) I [8 Sgggg;zwg)] [ﬂasn(méi;zyﬁ ):| ,

e ~
it is clearly sufficient to verify only that \/n %ﬁf“ﬁ) = Op(1) in order to prove that /n( (NLTS,hn) _

B%) = 0,(1) as n — oo.
So, let us analyze

e 30 = '
Vi EM = —%an")-hg(xi,ﬂ")-I(T?(ﬂ")srfw(ﬂ(’))

op
= ——25, hB zi, B (5 <5[h])

and show that it behaves as O, (1) for n — +00. Apparently,

10Sn(@iessBY)  _ 1 S~ i g0y (2 2
) i (354

= in zn:s (e 8) - [1(2 < b)) —I(EE <G N)] (49)

+ Zez hg (i, %) - I(e2 < GT1(N). (47)
First, keeping in mind that e? = r7(3°), we can employ once again the Chebyshev inequality for
nonnegative random varlables and write for the first term (46) and j=1,...,p
1 /
P(T (w0, B0 [1(e2 < ef,p) - I(2 <G )] | > K)
< (@i, 8% [1(e < ehy) —I(Estl(/\))]‘
f : ]
< = E 4(xz-,ﬂ0)e,-- [I(ef < 5[2,1"]) —I(e} <G 1(/\))”
n 1
= % E l(mi,ﬂo)‘ Ele; - [I(ef < s[zhn]) —I(e < G_l()\))] ‘ .

Because E ‘hlﬁj (wi, ﬂo)‘ exists and is finite (see Assumption H4), we only have to prove that

\/E-Eei-[I(e <e[h])—1(5 <G ”—
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Using Corollary 1 and Lemma 4, we can write

IA
B
m

]
| )|

= 267'(\) -V P(|I(ef < afhn]) —I(2 < G‘l()\))He[Zhn] < 2G_1()\)) + o(n—%)

< 2G7'(\) -va P(I(ef <et ) #I(e2 < G*I(A)))/P(e[h | <26~ (A)) + O(n’%)

< 267'(\) -vm o(n—%) +0(n ) - 0Q1)

as n — oo. Hence, we can conclude that (46) is O, (1) as n — +00. Second, term (47) is bounded
in probability as well: Lemma 2 allows us to use the Feller-Lindenberg central limit theorem for

(47) since E [si chg(z:,8°) - I(e? < G_l()\))] =0 and

var [e: - hiy (i, %) - 1(e2 < G (V)| = E e+ b (w3, %) - 1(e3 < G—l(,\))]2 = o (hj (a:,-,ﬂo))2

(see Assumption D2 and H4). This in turn implies that (47) converges in distribution to a normally
distributed random variable, and is, therefore, bounded in probability.

Thus, we have proved that \/ﬁ%[’f’ﬁo) = 0,(1), % — MA@y, and consequently,
VR(BNETS ) _ goy — 0,(1) as n = +o0. O

3.5 Asymptotic normality

Finally, the main result concerning the asymptotic normality of NLTS can be derived.

Theorem 4 Let assumptions D, H, NCA, and NN are fulfilled and

Cx=A—aqx-{f(GT'N) + F(G'(N) } #0.
Then

n

Vi (BNETS ) — ) = = QO -3 (i — h(wi, %)) - b (w0, 8°) - I(€3 < G (N) + 0p(1)

i=1

and BSINLTS’h") is asymptotically normal with its expectation equal to B°:

Vi (BNETSE — g) B N (O, V),
where V = C5? - Q; " var [€i 'hlg(ﬂfiaﬂo) I(ef < G_l()‘))] Qr'-

Proof: Due to Theorem 3, t,, = \/E(AT(LNLTS"L") - ﬂo) = O,(1) as n — +o00. Therefore, using

Theorem 1, we can also write (once again, g, = +/G~1()) is used for the simplicity of notation)

n

N

(Sn(ta) +nE Qutn - A = ar - {F(=0) + F(@)}])
— % (Sn (\/ﬁ (ngNLTS,hn) _ﬂo)) +

nd Quvi (BNVETSID — 50) - A= ga - {f(=a2) + Fan)}])
= 0,(1).
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Substituting for S, (t) yields

n—% 2": [(yz _ h(m“ﬁ(NLTS hn))) 'hlg (.,L,Z_’ﬁsbNLTS,hn)) -I(rf (BgLNLTS,hn)) < 7'[2hn] (BgNLTS,hn)))

= (i = (i, 8°)) - by (22, 8°) - 1 (r2(8°) < v, (8%)) ] +
+ nEQuv/n (BVETSH) — 80) - [\ — g {F(=ax) + Flan))]

= o0p(1)
and since the first summand in the previous equation is by definition of ﬂAéNLTS’h")

and Cx = A —qx - {f(—aqn) + fan)}

equal to zero

n

Vi (BRSO — 50) = 0Tt Crt Y (g — i, ) - (i, 8°) - T (r2(8%) < 1 (8%))

+op(1) -
e [relon Z“ ) - hig (2, 8°) - I(r2(8°) < G 1(N)) + 0p(1)
+ n 2Qh10_ Zrz hﬁ(m,,ﬂ) (48)

x [I(r%(ﬂO) <1%,1(89) = 1(2(8%) <G )] -
First, we will show that term (48) is negligible in probability. As
E{niri(8%) - hy (i, 8°) - [1(r2(8°) < v 1(8) = T1(r2(8) <G~ (W)] }
= E{ndn(8) - hy (i, 8°) - E(|1(r3(8%) < vy (87) — 1(3(8) < 67 (V)|
- 0( ) Eri(8°) - Ehj(wi,8°) = o(1)

3

(ei = r;(8°) and z; are independent random variables) and
var {nri(8%) - s (i, 8°) - [1(r2(8°) < 7%,9(8%) = 1(3(8) < G (V) |}
n%E{ i(B°) - hig (w4, 8°) var(‘ (rf ) <7 (B )—I(r
n%var{r (B°) - hﬁ SUZ,,BO (‘ (rf <r[h 1 )—I(r

O(1) {E [ri(8%) - b (s, 8°)] +var [rs(8%) - s (21, 6°) |}
o),

IA

IN +

(see Lemma 6), we can conclude that
Y (80 - hip (i, 8°) - [1(r208%) < 1 (BY)) — T(r2(8%) < G (V)]
i=1

is asymptotically normally distributed. Hence, term (48) is negligible in probability o,(1). Given
this result,

Vi (BNETSI) — 50) = n=hQ, 10y 12 i = h(wi, 8°)) g (i, 8°) -1 (r (8°) < G7H(N) +op(1),
i=1 (49)
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which is the first assertion of the theorem. Using the Feller-Lindenberg central limit theorem
for the right hand side of equation (49), we obtain the second assertion of the theorem, namely,

asymptotic linearity of ﬂAéNLTS’h"). d

4 Conclusion

In this paper, I have introduced the nonlinear least trimmed squares estimator and derived its
asymptotic properties. Thus, the applicability of the LTS procedure is extended to various intrin-
sically nonlinear models. Maybe more important is the adaptation of the methodology used in
proofs, which should presumably allow us an extension of the trimmed-estimation procedures in
the area of nonlinear models with a more complicated error structure, such as limited-dependent-
variable models. Finally, given the rather theoretical character of the paper, it remains to be seen
whether the existing computational procedures designed for LTS in the linear regression model
suit well various nonlinear settings.
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A Proofs of lemmas and other auxiliary propositions

In this appendix, I present first the proofs of all lemmas used in this paper, see Section A.1. Some
fundamental results needed to prove these lemmas are formulated and derived in Section A.2.

A.1 Proofs of lemmas and propositions

Proposition 1 Let x1, 2, ... be a sequence of independent identically distributed random variables
with an absolutely continuous distribution function F(z). Let b(z) be a lower bound for F(z) in
a neighborhood Uy of +00. If b(z) can be chosen as 1 — %, where Py(z) is a polynomial of the

fourth order, then it holds that n—1 max;—1,..n, & = Op(1) as n — +o0. Analogously, let c(x) be
an upper bound for F(z) in a neighborhood Us of —oc. If ¢(x) can be chosen as %(w), where Py(x)

s a polynomial of the fourth order, then it holds that noi min;—q,..., «; = Op(1) as n = +oo.

Proof: We prove the lemma, just for the case of the lower bound, b(x), the other case can be derived
similarly. The cumulative distribution function of ey = maxi—1,. ., 2; is Fp(z) = F™(z). We
want to show that for any e > 0 there is K > 0 such that P(ze, > K¥¢/n) =1 — F,(K{/n) < e.
This is equivalent to the assertion that F, (K /n) = 1 as K — +oo uniformly for n > ny and some
ng. Because b(z) < F(z), it also holds b™(x) < F™(x) = F,(z) and thus it is enough to verify that
b (K /n) — 1 as K — +oo uniformly for n > no. In general, Py(z) = a12*+a22® +a32? +asz+as
and its leading coefficient a; has to be positive—otherwise, b(xz) > 1 for z large enough and it
could not be a lower bound to a distribution function, which is at most equal to one. So, let us
assume without loss of generality that P;(z) = z* and b(z) = 1 — ;. Hence,

- (1) = (=) T+ () - A2

b™ (K {/n) converges monotonically to a positive number smaller than one for a fixed K > 0;
moreover, this number K%/E as well as b" (K /n) increase with K. Therefore, we can find ny > 0

such that b™ (K /n) > ’{/g for all n > ng and K > 1. Since ’{/g — 1 for K — o0, also
b"(K+/n) — 1 as K — 400 uniformly for n > ng. This closes the proof. O

Lemma 1 Letn € N and kp(8) : RP — {1,...,n} be a function that represents an index of an
observation such that rih(ﬁ) B) = rfh](ﬂ), h € {1,...,n}. Under Assumptions D and H, there
erists a set 1, P(Q1) = 1, such that for every w € ) there is some neighborhood U (B°,e(w)) of
B such that the function kj,(B) is constant on U(B°,e(w)) for all h € {1,...,n}.

Proof: Given our distributional assumptions about 7;(3°) = &; and an arbitrary fixed n, the
probability that any two of residuals r;(3°),i = 1,...,n, have the same value is equal to zero
(residuals 71(8°),...,7,(8°) are independent identically distributed random variables that are
continuously distributed). In other words, the set of events w € Q" for which some residuals
are equal at 8% has probability zero—P(Qy = {w € Q" : 3i,j € {1,...,n},i # j,r:(8% w) =
r;(8% w)}) = 0. Moreover, there is a ' > 0 such that r;(8) is continuous on U(8°,4"), and
therefore also uniformly continuous on U(f°,4'). Therefore, for any given w ¢ Qg and k(w) =
sming j—1 n |75 (8% w) — ri(8% w)| > 0 we can find an e(w) > 0 such that, for any 8 € U(8°,£(w)),
it holds that |r,~(ﬂ,w) -7 (Bo,w)| < k(w) for all 4 = 1,...,n. Consequently, mapping k(8) is con-
stant on U(B°,e(w)) for any w & Qg because the ordering of residuals r?() is independent of
on this set. The set 2, = Q — Qy. O

Lemma 2 P({w = (w1,...,wn) € Q" :7(B,w;) = rfh](ﬁ,w)}) =L foranyn €N, i,he{1,...,n},
and B € B.
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Proof: As r?(B,w;),i = 1,...,n, form a vector of independent identically distributed random
variables for given n and S,

P({w = (Wi, wn) € Q" 117 (B, wi) = Tfh](ﬂ,w)}) =
= P({w = (w1,...,wp) € Q" r?(ﬂ,wj) = rfh](ﬂ,w)})

for any 4,5 € {1,...,n} and a fixed h € {1,...,n}. Moreover,

n

ZP({W =(wi,...,w,) €EQ" :T?(ﬁawi) ZT[Zh](ﬂ’w)}) =1

i=1

since P{w € Q™ : 3 # j € {1,...,n},r(B,w;) = 7;(B,w;)}) = 0. Putting the last two equations
together, we immediately get for any i = 1,...,n

1
P({o= o, wn) € 026,00 =y (B,0)}) = 1,
which closes the proof. O

Lemma 3 Let 1/2 < A< 1and 0 < ¢ < GEI(/\) be a real constant, where Gg represents the

distribution function of r2(B), B € B. Then, under Assumptions D, P(rfh"](ﬂ) < c) = 0O(n7*)
for any k € N as n — +o0.

Proof: As 8 € B is afixed parameter vector, let us for the sake of simplicity denote the distribution
function Gg(z) by G(x) throughout the proof (overshadowing the till now used definition G =
Go). The distribution function of Tfhn](ﬂ) is then given by

G (@)= 30 Pla), Pil@)= () 6@ a-Ca@)" (50)

n
i=hn

Let ' = G(¢) < A < 1 and let M}, be an upper bound for G}, (z) on the interval (0, ¢). We show
that lim,,_, o, n* M}, =0 for any k € N.

First, let us bring attention to one fundamental property of G(z)!(1 — G(z))"~%, the main
element of P;(x) in (50). For any a € (\, 1)

!

aG(2)*g(z)(1 - G()'™* = (1 - a)G(2)*(1 - G(2)) g ()

G(z)" 'g(z)(1 - G(z)) " (a(1 - G(2)) - (1 - a)G(2))
> 0, Yo<z<c<G ') <G (a)

(6@ -GE)'™)

l1—a a l1—a

a 1-a N\ a N\ 1—a

(G(x) is monotonic). Therefore, (@) (i(z)) < ()‘—) (@) =Cla) <lasz €
N\ @ N\ 1—a

(0,¢). Since X' < a, the derivative of (%) (ﬁ) with respect to a is negative:

1—a

7

)\I a 1 _ )\l 1—a ) )\I+ 1! ! !
N — aln 2-+(1—a)In =% — |p—alna—(1—a)In(l-a)
[( a ) ( 1-— a) ] [e ' ] [e ]
(~lna—1+1In(1 —a)+1)-e2ma-(1-a)in(i-a)
_ I\ @ RV 1—a
wioe (X) (120
a a 1-a
because a € (A,1) C (3,1) and 0 < 12 < 1. Hence, C(a) < C(3(A+ X)) = C < 1. We show the
usefulness of this result in a moment.
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Now, we analyze the function Gp,, () itself. Taking into account h,/n — X (h, is defined
as [An]), it follows that we can write hn/n = X + an, where |a,| < L. Moreover, notice that
L > X' = £(A+X) for any n sufficiently high and i > hy,,. Let us take some 0 < z < ¢ (therefore,

G(z) # 1). Using the Stirling formula

nl = V2 (g)" (1+0(ﬁ)) ,

we get for n*+1/2. Gy, (z)

. k+1/2 = ) s k+1/2 - n irq n—1i
lim n _zh: Pi(z) = lim n ; (i—l) G(z) (1 - G(z))

_ . k+1/2 = n! i n—i
= JHmn ; i —gi @1 = @]

Y Vo (2)" - (14 0(55)) x Gl@)'ll = G)" ™
el S VAR (E) (14 0() x Ve —1) (229" (14 0(i))
a2V (1+0()) X Gl = G
RS ford (B) (14 0() x 2 (35)" T (140
_ hmnki(Ggm)i(l—ng(w))”"] | LV (1+0(k))
=R z 2ri - (14+0(ch)) x \/2r2 - (14 0(57))
_ P (G (1-G@))"
- £ () (5E2) oo

i=hn
= lim n**'C™ - 0(1)
n—oo
= 0.

Therefore, we have proved that lim,_,., n* - SUPg e (0,c) Gh, (x) = 0, which closes the proof as
P2, 1(8) < ¢) = G, (0). O

Corollary 1 Analogously, it is possible under Assumptions D and H to show that for real constants
1/2 < A <1 and G5'(N) < ¢ < oo it holds under conditions D that P(r[zhn](/g’) > c) = O(n7%)
for any k € N as n = +o0.

Corollary 2 Let 1/2 < A< 1 and 0 < ¢ < G 1()\) < ¢ < oo be real constants. Under assump-
tions D and H, it holds that

P(38 € U, n~ M) 13, 1(8) ¢ (c,)) = O(n") (51)
for any k € N as n — +oo0.

Proof: First, note that r?(8,w) — r2(8° w) for 3 — B° and any w € Q (convergence almost
surely). So, for 3 — 8% and Gz(z) being the cumulative distribution function of r?(3), it holds
that Gg(x) = Gpo(x) = G(x) for all x € R (convergence in distribution) because G(z) is an
absolutely continuous distribution function. The same is valid about convergence of r;(3,w) to
r;(8°,w) and their corresponding distribution functions Fj(z) and Fjgo(z) = F(z). Now, we show
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that this convergence of distribution functions Fg(x) — Fgo(x) = F(z) (and consequently of
Ga(z) = Gpo(z) = G(z)—Gp(z) = Fz(/z) — Fz(—+/z)) is uniform over all sequences S, — °
such that 8, € U(8°,n~2 M). The reason is that r;(8,w) = r;(8°,w) — h;a(a:i,é) - (B = B°), where
the second term h'ﬁ (z4,8) - (ﬂ - ,80) can be bounded by a random variable h;(z;) - K - (,8 — 50) =

1

O, (ni) . O(n_%) =0, (n‘i) independently of 8 (see Assumption H3).

Now, let € > 0 be chosen so that (A—2¢, A\+2¢) C (G(c),G(c")) and (G~ (A\)—2¢,G"1(N\)+2¢) C
(¢, ') (remember, G(c) < A < G(c') ). Moreover, because of the mentioned uniform convergence,
there exists no € N such that G5! (A) € (G7*(A) —&,G™*(A) +¢) for any 8, € U(B° n=2M) and
n > ng. Hence, (ngl()\) —€,Gﬂ_n1()\) +¢) C (¢,¢), and |G, (¢c) — A\| > € and |Gg, (c') — A| > ¢ for
all 3, € U(3°, n":M ) and n > ng. Hence, the constant )\’ in the proof of Lemma 3 can be chosen
equal to A — € independently of g € U (,Bo,n_%M ). Thus, we can follow the same steps as in the
proof of Lemma 3 to derive (51). O

Corollary 3 Let1/2 < A <1 ande > 0 be a sufficiently small real constants. Under Assumptions
D and NC, it holds that

p(a,a €B:1%1(8) ¢ (G;l()\) —e,G5 V) + a)) = 0(n*) (52)
for any k € N as n = +o0.

Proof: Let \; = G (Ggl(A) —5) < Xanda € (\1). We know that (M) (%)H <

l1-a

a l1-a

’ a ’ l1—a
(A—") (1/\"> =C(a,B)<lasz € <0,G§1(/\) - E> (see Lemma 3). Furthermore, C(a, ) <

C(3(\+ )\;3)) = C < 1. To prove the result of this corollary, we can follow the same steps as in
Lemma 3 as long as we show that supgep C(a, ) < 1, which is equivalent to

A:sup)\':squ G7;'(\) —¢) < A
BeBBBEBﬁ(B() )

Then we can choose C(a,8) < C(3(A+A)) = C < 1 and complete the proof in the same way as
the proof of Lemma 3. Because

Gp (G5 (N =) = X = ga(©)e,
it is sufficient to know that there is some ¢ > 0 such that

. . -1
/;relfB ze%r—lg,é) 93 (GB (A + z) > 0.

However, this is one of Assumptions NC, which closes the proof of the corollary. O

Lemma 4 Under Assumptions D and H, for any fired i € N and n > i
P(38 € UEn ) 1(r2(8) <78, 1(8)) £1(r2(8) <G5'(N) ) = O(n~})

as n — +00, or analogously

P( swp |1(r28) < 1%,1(8) — 1(r3(8) < G5' )| #o) =0(n"?)
BeU(

1

as n — +00.
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Proof: Let us introduce a bit of notation first: v, (3) = I(rf (B) < r[zh"](ﬂ)) —I(rf (B) < Ggl()\)).
We have to derive, in fact, an upper bound for

E sup |Um(18)| = P( sup |Uzn(ﬂ)| = 1) .
)

BEU(80,n™ 3 M) Beu(E ntm
For the sake of simplicity, we will omit in what follows the specification of the set across which
the supremum is considered and write simply P(3 : |[vin (8)] = 1) = P(supg |[vin(B)| = 1) keeping
_1 .
BeU(3o.m— 4 1) lvin(B)] = 1) and 3 € U(B%°, n=2M). Without loss of
generality, we derive only P(30 : v, (8) = —1), i.e.,

P(38 € U ,n=iM)  1(r(8) <1%,1(8)) = 0AI(r3(8) < G5' (V) = 1);

the other case can be analyzed analogously.
Before we start with the derivation, notice that the distribution function of an order statistics
un (B) for a given h,1 < h < n, is given by (presuming that Gz and gg are the c.d.f. and p.d.f. of

r7(B))

in mind that we mean P(sup

Gon(e) = S Pi(e.B), Pye,f) = (j) Ga(2)i (1 — Ga(z))™
i=h

and the corresponding probability density function is given by (for n > 2)

n—1

(@) =n (3~ 1) 05@)Gata) 1 - Galo)

Throughout this proof, we use notation Ggo and Ggo j, instead of G and G, to make it consistent
with frequent use of Gz and Gpg,,. The same applies for ggo.

Now, let us consider an w = (wy,...,w,) € Q™ and assume without loss of generality that
i =1. Given w' = (ws,...,w,) € W and (r3(8,w2),...,m2(8,wn))

rzhfl] (Bawl) if r%(ﬂawl) < TA[thl] (B;wl)
T‘[Zh](,B,CU) = ,rl (ﬂ?wl) lf T2h,_1](ﬁ7wl) S T%(ﬁﬂ”l) S T[2h] (Bawl) (53)
rhy(B,0") iy (B,w') < ri(B,w1)

Denoting 24, Q5, and Q3 subsets of Q™ corresponding to the three (disjoint) cases in (53), we can
write

P({w € Q38 vin(8) = -1}) = P{w € M[3B:via(B) = -1})
+ P({w € Q)36 :vin(8) = —1})
+ P({w € Q3]38 : vin(B) = -1})

and analyze this sum one by one.

1 P({w € [38 : vin(8) = ~1}) < P(38 73, (8,w) < r2(B,01) <13, 1(B.) ) = 0.

2. P({w € W[ s v1n(B) = —1}) = P(I 173, _1(8,0) <r3(B,01) =12, 1(B,w) < G5 (V)
can be analyzed in exactly the same way as P({w € Q3|36 : v1, = —1}), see point 3.

3. P({w € Q|38 vin(8) = —1}) = P(I8: 72, 1(B,0) =12, 1(B,w) < r3(B,w1) < G5'(N)). We

can structure this last term in the following way (1 > ¢ > 0 is an arbitrary, but fixed real
number; the choice of € will be discussed later):

P(rf, ) (8.0) <13(B,w1) <G5'(N) < P(rf,1(8,6) <G (N —¢/2)

(54)

+ P(GB‘OI(,\) —e/2 <13 | (B,w) <r}(Bwn) < Gﬂ_l(A)).
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Please note that GEI()\) € (G[;ol(/\) - 5/4,G501(/\) + €/4) for n larger than a certain ng
because Gg(x) = Gpgo(x) for all z € R (remember, G = Gpo). Since Corollary 2 implies

P(T[Qh"](ﬁ,w) < Ggl( ) — 5/2) = o(%) as n — 400, we have to analyze just the second term
on the right hand side of the equality:

P(Gat - s/2<r 18, ><r‘f‘(ﬂ,w1)5G*1<A))= (55)

/ . 1/ o Gao () —e/2 <rfy 1 (B,0") < ri(B,01) < Ggl(/\))dP(wl)dP(w').

Let 1> ¢ > 0 be a fixed real number small enough and n > ng large enough so that (see
Assumption D3 and related notation in Section 3.2 for the definition of functions Gg and

9s)

(a) GEOI()\) —2¢ > 0, and consequently G;l()\) —g& > 0 for n > ng; hence, the boundedness
of f(x) (and thus fz(z) as well) indicates that there is a M, > 0 such that gg(z) < M,
for all GEol()\) —e<uz,

(b) Gﬁo(Gﬂ_ol()\) —¢g)=<>0and Gg(Ggol()\) —€)>v/2>0,

(c) gs(x) > mgy > 0 almost surely for all Glgol()\) —2e<z< G[;ol (A) + 2¢, where m, > 0 is
a real constant (this is possible because gg(GEl( )) > 0 for any A € (0,1), and hence
95(G g0 L(A)) > 0 for any 8 € U(8°,n~2 M) and n > ng),

(d) Mge/X<1and Mge/(1-A) <1,

(&) m2/2 > [ 251 (1 = Mye/N N 2M3e + | 25| Me + | 25| |25L] (1 = Mye/ N 2Me?,

(F) Gs(x) = Gp(G5' N)+95() (@G5 ' (V) = A+g5()(z—G5' (V) for all z € (G0 (A)—
2¢,G0 (A) + 2¢), where € € (z,G5" (V).

Suppose further that n > ng, where ng is defined above. Then we can write (see equation (55))

P(38: G50 - 5/2 <13 (8,0) <73(B,w1) < GZE(N) <

[ 1(G5 0 = ez < g (6,0) < r2(B.0) < G5 () dPn)dP()
w'eQr=1 Ju1eQ

/weQ" 1

-sgp{‘Ggl( — 71 (B,W)] -

IA

(G5 N —e/2 < v, )(8,0") < G5' (V) } dP (W)

= M, / e sup { |5 (N) =2 - g, (2) } do (56)

GoW-e/2 B
G;l(z\)—G;ol(/\)+s/2 .

- u- sup {Ju1 - 95, (G5 (V) = 9) } dy
0 B

M, - / y - sup {gﬁ,hn (G5' () - y)} dy.
0 B

IA

To see how this integral behaves, it is necessary to analyze function gg 4, (-) in a neighborhood of
GEI()\) given by 2¢ for n — +o00. As for z € (G71(A\) —e,G71(N))

220 _ i (" 1) 006l 1-Gato) < My (1) Galo (-Gt
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it suffices to analyze the latter term. Using the Stirling formula

nl = 27rn(g) (1+(9(12 ))

and hyn/n = X + a,, where |a,| < £, we can arrange the expression in question in the following
way (notice that Gg(z) # 0 and Gg(z) # 1 for z € (G;l()\) - E,GEI()\))):

VA (Z T4 ) G - Gate) =

_ o 1/2 (”_1) -1 n—hn+1

o VIR (2 - 1-(1+0(m))
n hn—1 X
2 (hy, — 1) (B2t)™ '(1+0(m))
Ga(z)h =11 — Gg(z)|"~hnt?
2m(n — b + 1) (22220) " (140 (i )
WVor-Ga(a) 11 —Gﬂ(ﬂﬂ)]"_"“rl -(1+0(1))

1 I —
/5 h 71 (hnfl hn . ,,+1 (nfh,,+1)” hnt
n—1

)
_ l—l—o ( s(z ) (iﬁ(@)n_hnﬂ
i ()2 () )
_ 1+o0(1 Gs(z) hn—1 1-Gs() n—hp+1
B e\/m ( A ) (ﬁ) :
it .
.(1+%> (1+(12__;\)%)
(G (1=t

: (1 + ﬁ) T (1 N m) —(1=2)(n—1)

< ey () (RS

s () (55 ] @) (55
eb (12:/\0((11)_) N [(Gﬁ)fx))A (1 ;Cjﬁ;x))l_A] "‘

Similarly, an upper bound for M\/’;—L(z) can be derived:

98,h., () < M,y(1+0(1)) (Gﬁ(g;)>>‘ (1—G/3(;c)>1—>\
Vi Svamay [\a ) Uoes

In the next step, we employ Taylor’s expansion of functions Gs(z) and (1 + z)* to analyze the
behavior of gg i, (z) is a neighborhood of GEI(/\). The Taylor expansions Gg(GEl(/\) —z) =
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A—gs@zand A+z)* =1+ Az +IAA-1)C (E € (GEI(/\) - x,GEl (A)) and ¢ € (0,2)) allow
us to modify the bounds for w as follows (z € (GEI()\) - &‘,GEI()\)), 1<A<):

n

(GB(G?(A) —w>>* (1 ~Gs(G5' ) - )) _

A 1-X

- (20 (120,

(1- 0500+ 37570 = 02630 ) (14 95002 + 5250+ ) M (a2
A-—1

1= O + 5302 [ A= 072 4 250+ O + 06

3 1 .
> 1- 9,(23(5)-%2 + O($3) >1- 59/_23(5)-%2 >1- EMng"z
because of assumptions on €, and similarly

(GB(GEI()\) — x)>A (1 ~ GG (N — @

1-X\
) 1. 1
<1—-g%82? <1—--m2z?

where £ € (GEI()\) -, Ggl(/\)) and A¢, (1 —A)¢' € (0,9p(€)x). Having these results in hand, we
can estimate the last integral in (56) from above

(1+0(1)) :

1
I S S . 1__m2 2nd
S y- (1= gmgy”)"dy

M, - / 80D g5, (G5 () = )y < VA
0

and similarly from below. As

c 1 2 2
/0 y-(l—gmgy )"dy

I
3=
Y
N
| A
=
3
[N
)
(M
S
3
o,
<

it follows that
P({w € Q3|38 : vin(B) = —1})

I
=

P(Hﬂ : 7"[2hn]( w') = T[zhn](ﬂ,w) <ri(B,wi) < Ggl(/\))

= o(n7}).

P({w € 2[38 : vin () = —1})
P({w € %[38 : vin(8) = —1}) + P({w € 0%s[38 : vin(8) = ~1})

- o)

Corollary 4 Under Assumptions D and H,
P(38 €U, n~ M) I(r2(8) < r%,1(8)) £ 1(r2(8) < G5* (V)

as n — +00.

Thus, we finally get the result
P({w € Q"3 : vin(B) = —1})

+

as n — +oo. O
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Proof: Since the distribution functions of y; and r?(3) conditional on z; are absolutely continuous,
the proof proceeds along the same lines as the proof of the previous Lemma 4. O

Corollary 5 Under Assumptions D, H, and NC, for any fixed i € N and n > i

P(3pe B 1(r3(8) <131(8) £1(r3(8) <G5')) = O(n~})

as n — +00, or analogously

P(sup 1(r2(8) < 5,1(8) ~1(r3(8) < G5 (V) | # o) = 0(n"})

BEB
as n — +00.

Proof: To prove this result, we can follow the proof of the previous Lemma 4, but we have to
make sure that all steps are uniformly valid for all 8 € B.
First, equation (54) can be written as

P(rf (8,0) <13 (B.w1) <G5' V) < P(r}1(8.6) <G5 (N —¢/2)
+ P(G5 N —e/2<rh(B,6) < ri(Bw1) <G5t (V).

Then we have to find out more about two probabilities on the right side of the inequality. Due to
Corollary 3, the first probability

P(Tfhn](ﬂ,w’) <Gz (N - 5/2) =0(n™)

uniformly over 8 € B for n — 0o. Next, the second probability can be expressed as

P(38:G5' N —2/2 <13, 1(B,w) < ri(B,w1) < G5'(N) <

= /wlem_1 /meQ I(GEI(/\) —g/2< rfhn](ﬂ,w') <7 (B,wr) < GEI(/\))dP(wl)dP(w')
M, -

S /
wleQn—l

sup {[G5 00 =1 5)

: I(Ggl(/\) —e/2< 1 (B < Ggl(A)) } dP(W')

—1

G5l B

= Mg-/ . sup{‘Gﬁ ()\)—x‘-gg7hn(a:)}dm
G3'(N-e/2 B

e/2

= Mg-/ sup{lyl-gﬁ,hn(Ggl(/\)—y)}dy
o B

< My~ [ yesup {gan. (G510 - ) fdy.
0 B

This second term can be treated in the same way as in the proof of Lemma 4 as long as we are
able to find € > 0 and ng € N such that the requirements (a)—(f) on page 32 in Lemma 4 are
satisfied uniformly for all g € B.

1. Requirement (a) follows from Assumption NC5—Ig = infzep G;l()\) > 0—and NC6—gp(2)
is bounded by My, on (Ig,o0) uniformly in § over B.

2. Requirement (b) follows from Assumption NC5—myg, = infgepinf.c(_s5) g5 (Ggl \) + z) >
0—because Gz (GEI()\) - 5) =X —gp(§e.
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3. Requirement (c) is equivalent to Assumption NC5—I, = infgepinf.c(_55) 95 (GEI()\) + z) >
0.

4. Requirement (d) and (e) are independent of §, only M, and m, are replaced by My, and
Myg.

5. Requirement (f) just requires the existence of the probability density function for any 83, so
it is satisfied as well.

Hence, the proof can follow along the same lines for all § € B and because the bounds are chosen
independently of 3, the result holds uniformly in g € B. O

Lemma 5 Let Assumptions D and H hold and 3 € U(ﬂo,n_%M). Then it holds
1. For the conditional probability

P(I(rZ <rh] )#I(r B) < r )a:,)
o0~ {1 (/) (ST} 0, )

- op(n 4)

and

e 3= 9)-(/ET) (V) 0, o)
as n — +00.

2. For the corresponding unconditional probability
P(1(r2(8°) <r8,1(89) # I(r3(8) <13,.1(8) )
s (26,8°) " (8 = )] - {7 (~VGTO) + £(VETO) } + 0 ()

as n — +0o0.

3. For the conditional probability of supremum over [

P(38 € U, n~ M) 1(r2(8°) < 1§, 1(8%) # I(13(8) < 75,,1(8)) | =)
w03 )| {5 (V) 1 (VTTN) 00 ()
= 0(n?)

as n — +0o0.

4. For the corresponding unconditional probability of supremum over 3

P(38 € U@, n= M) s 1(r3(8°) < 18,18 # I(r3(8) < 1,.1(8)))
n—éM-zp:Ez b, (08| - {£(-VGTT) + 1 (VGT) } + 0o (n7})

- o(n—%)

as n — +00.
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Proof: Let us define
vi(8) = 1(r2(8) <3, 1(8)) = 1(r3(8°) <r8.,1(89)-
We have to compute

P(|1(r(8°) <13,4(87) = 1(r3(8) < 13,.1(8))| = 1] 2:) = P(0i(8)] = 1lay)

and to prove that the corresponding unconditional probability is (asymptotically) linear in 3 — 3°.
In addition to that, we shall estimate

.)

(these two probabilities are equivalent because the supremum is always attained—|v;(8)| can be
only zero or one).

1. First, let us compute P(v;(8) = —1|z;). In the following derivations, it is necessary to keep
in mind that we consider all 3 € U(°, n zM ) so that most of the results can be used later when

P(EI,B eUB°,n~2M): vi(8) = —1‘ a:,) is estimated. Apparently, v;(8) = —1 if and only if

P( sup wi(B)| =1

BEU(BO,n~3 M)

x> =P(3 €U .nIM): |n(8)] =1

ri(B) > rfy, (B) and  r(8%) <y (87

It holds that
r2(8°) <2y 1(8°) = ri(8%) € (=11 (B%), minn (B)) (57)

and

17 (8) > 15,1(8) = ri(B) € (=00, =7(n,1(8)) U (r(n,1(8), +00) . (58)
By means of the Taylor expansion we can write (for a given w € Q)
riB) = (yi — (=i, B))
= (9= h(2:8°) = hy(@:,©)" (B = B°)
= ri(8°) = hy(i, )" (8 - 8°)
= 7i(B°) — An(zs, B)

where ¢ € [8°, ] and Ap(x;, ) = hlﬁ(a:i, £)T(8—°) are introduced for the simplicity of notation
([-],, denotes a convex span, see Section 3.1). Taking this result into account, assertions (57) and
(58) imply that

ri(B°) € (=rn1(B°), =1 (B) + An(@i, B)) U (7, (B) + An(@is B), 7,1 (B°)) 5 (59)

where the convention (a,b) = 0 if b < a is used. For v;(8) = 1, it is possible to derive analogously

ri(B%) € (=11 (B) + An(xi, ), =173, (B°) U (714,1(B°)s 7(n,) (B) + An(2i, 8)) . (60)
Given results (59) and (60), we can write P(|v;(8)| = 1|z;) as

P(ri(8%) € [~rn1(B%), =rin(B) + An(zs, B)] U [, (B°), (a1 (B) + An(zi, )], | ). (61)

Lemma 10 allows us to simplify this expression even further:

P(ﬁ'(ﬂo) € [—T[hn](ﬁo); —T[hn](ﬂo) + Ah(miaﬂ)]x U [T[h"](ﬁo)#[hn](ﬁo) + Ah(fﬂz‘:ﬁ)],{| $1)+0p (n_
(62)
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as n — +oo. Please, notice that, conditionally on z;, v;(8) # 0 implies sgnr;(3°) - v;(3) =
sgn Ay (z;, ) with probability approaching 1 as 1 — O(%) with n — co. First, Ag(z;, 8) is given
by x; and 3, and for a given z;, it is bounded A (z;,8) = hlﬁ(a:i,§)T(ﬂ - 8% <01)(B—-p° and
converges to zero for 3 — B°. So we can choose, for example, ng € N such that Ay(z;,3) <

1G-1()) for all n > ng (remember, B € U(B°,n~2M)). Second, Lemma 3 implies that
P(r[Zhn](ﬂO) < %G_I(A)) = O(%), and consequently, P(|r[hn](ﬂ0)| < %G*l()\)) = O(%) as
n — oo. Therefore, we can write with probability higher than 1 — O(%) that for Ag(z;, 8) > 0
(see (59) and (60))

e v;(8) =1 corresponds to r;(8°) € ({n,(8°), 7(r.1(B°) + An(xi, B)) C (0,+00), thus v;(8) >
0if Ti(ﬂo) > 0.

e ;(8) = —1 corresponds to r;(8°) € (=r[,1(8%), =7, (B°) + An(zs,8)) C (—00,0), thus
Uz(ﬂ) <0 if Tz'(ﬂo) <0.

Similarly for the case of Ap(x;, ) < 0.
Let us remind that r;(3°) = ;. Moreover, its probability density function f(z) is bounded
from above by a positive constant, let us say My, and is differentiable due to assumption D3.

Therefore, we can write using Lemma 8 (gx = /G~ 1(}) is introduced for the sake of simplicity):

P(H(ﬂo) € [—T[hn](ﬂo); —T[hn](ﬂo) + Ah(xiaﬂ)]u U [T[hn](ﬂo);r[h"](ﬁo) + Ah(mz’,ﬁ)],{| mz)
=P(ri(8°) € [—ar — &1, —an — & + An(@i, )], Ular + &, an + &+ An(@i, B)],.] i)

where & and & are random variables behaving like O, (n_%). Taylor’s expansion for the distri-

bution function of &; further implies (remember, 8 € U(8°,n~2 M))

P(ri(8°) € [=rin,)(B), =7, (B%) + An(wi, B)],, U [rin,1 (B°), 7in,) (B°) + An(zis B)], | 2:)
|An(zi, B)| - {fe (—an) + fe (@r) + f2(63) - (An(s, B) + &) + fi(€a) - (An(zi, B) + &2)}
152,678 = %) - { £ (-VETON) + £ (VGTO) } + 0p ()

i (20, 8°) (8 = %) - { £ (-GN + £ (VETN) } + 0, (n74),

where the last step uses Taylor’s expansion of the first derivative of h(x, ) at point 3°:

hg(i,€) = hig (24, 8°) + higp (s, C) (€ — B°).

Hence, the first assertion of part 1 is proved—the inequality
P(1(r2(8°) < 13,1(8%) # 1(r3(8) <8, 1(8)) | 2:) < Op(n~H)

follows from assumptions D1 (max; ||z;|| = Op (n%)), H3, and the fact that 8 € U(8%,n 2 M). The

second assertion follows immediately from the note explaining that sgn r;(8°)-v;(8) = sgn Ap(z;, 8)
with probability higher than 1 — O(%).
2. Next, we shall evaluate the corresponding unconditional probability, that is the expectation

of P(|v;(B)| = 1|z;) over x;, and check its asymptotic linearity in 3 — 8°. As

P(1(r2(8°) <13, 1(8) # 1(r2(8) < 13,9 )
Ex P(|vi(B)| = 1]z:)

= & [ (@606 5] {F(-VETO) + £(VET) Y+ O(n 1),
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the result is apparent once we take into account that 8 € U(8°, n=2 M).

3. We have derived in part 1 of this proof that

P(wi(B) =1z) = P(ri(8°) € [~1in,1(8%), 7 (8°) + An(wi, B)], U
U [0 (B 7in, 1 (B°) + An(ais B)] | @) +0p(n %) (63)

as n — oo, where o, (n_%) holds uniformly over all 8 € U(ﬂo,n_%M). The length of the
intervals in (63) is a function of 8 — 8°. Further, notice that the lower bound of the interval and
r:(B°) itself does not depend on 3, only the length of the interval is 3-dependent, and this length
converges to zero as 8 — (° with increasing n. Now, the crucial point here is that the set of
events w €  such that a continuously distributed random variable 7;(3°) = &; belongs to such
intervals depends purely on the lower and upper bounds of the intervals, and consequently, only
on their lengths h'ﬂ (zi,6)T (3 — B°) in our case. Therefore, the set of events w € € such that there
exists B € U(B°, n~zM ) for which the continuously distributed random variable ¢; belongs to the
interval specified in (63) and the probability of this set reduce to finding the supremum of the
length of the interval over all 8 € U(8°,n~ 2 M).
Hence, we can write

P (38 € UB 05 M) :7i(8%) € [~rp,1(B), —rpn ) (B°) + An(ai, B)] U
) [T‘[hn](ﬂo)ar[hn](ﬂo) + Ah(xiaﬂ)]x| ﬂfz)
sup (0, 8°) (8= 8| - { £ (-VGT) + H(VGTO) } + 0y (n™

BEU(B,n" 2 M)

32 ) L (VGO0 5 (VETR) + 00 (n)

ol

)

as n — +o0o. Thus, the third assertion is verified using the same argument as in part 1 of the
proof.
4. Finally, we should find the corresponding unconditional probability, that is the expectation

of P(Hﬂ eUB,n~2M): |[(B)| = 1). The assertion is a direct consequence of the fact that
E. P(38 € U(Bn M) : [ni(8)] = 1)

= WY iy () {7 (VETT) + £ (VGTT) } + 0

=1

(note that E; O, (n*%) = O(n*%) because we compute here an expectation of probability, that

is, an expectation of a random variable with a bounded domain). O

Corollary 6 Assume that X € (3,1) and there ezists a 8 € U(B°,n=%M) such that

1(r2(8°) < r8,1(8°)) # I(r3(8) < 7f,,1(8)).
Then for any € > 0 we can find a constant K > 0 such that
1:(8)] = VETO)| = |ra(8) = sgura(8) - VG| <n K

for all n large enough with probability larger than 1 — €, that is r;(8°) — sgnr;(8°) - /G~1(\) =
Op(n_%) asn — +00..

39



Proof: In the proof of Lemma 5 (see (59)—(62)), we have shown that

viB) = I(r2(8) < 1}, 1(8)) = I(r2(8°) <7%.,,(8%)

can be non-zero for a given z; if and only if

Ti(/BO) € [_r[hn](ﬂo)a_T[h (/B) + Ah(xm/B)] |: (ﬂo) ( )+Ah(xz718):|
<:>’f'i(,80) € [_ G—! ( ) §17_q)\_§1+Ah 5817/8] [V +‘£13 )\+€1 +Ah($l7/8)] )

where & and & are random variables behaving like O, (n_%) and Ap(z;, 8 h:,j (zi, &) (B—p°) =
O, (n_%) due to assumption D2 and H3. Hence,

) - V&I = 0, o7}
asn — +oo. O

Lemma 6 Let Assumptions D and H hold and assume that t(x,e;0) is a real-valued function
continuous in 8 uniformly in x and € over any compact subset of the support of (x,€). Moreover,
assume that Assumptions NC hold for t(z,e; 8). Finally, let ri(8) = €; + h(z;i, B°) — h(z;,8) and
Gp denote the distribution function of r(B) (for any B € B). Then

sup
BEB

LS [tawean) - 1(r28) < 65' )] —E [ttenca ) - 1(r2(8) < 65 )] ‘ 70

i=1

as n — +o0o almost surely.

Proof: This result is nothing but an application of the uniform law of large numbers for nonlinear
models and we use here its variant due to Andrews (1987). Therefore, we just have to verify that
the assumptions of the uniform law of large numbers are satisfied. We verify here assumptions
A1, B1, B2, and A3, and employ them together with Corollary 1 (see Andrews (1987)). To do so,
let us follow the notation used in Andrews(1987) and denote

a(@,5;8) = t(z,e:8) - 1(r}(8) < G5' V) = t(a,e:8) - 1([e + h(w, 8°) = bz, H)]” < G5' V)

and
«(z, 858, = inf z,e; '),
a:(z,€; 8, p) B,eu(ﬁ’p)q( B')
q*(z,e;6,p) =  sup q(z,ep),
B'€U(B,p)
q(z,e) = sup|q(z,&P)|.
BEB

Assumption A1 B is compact metric space: this is satisfied because of Assumption NC1.

Assumption B1 (z;,¢;) should be a sequence of strongly mixing random variables with mixing
numbers a(s),s = 1,2,..., that satisfy a(s) = o(s~*/(®=1)) as s — oo for some o > 1:
this condition of asymptotic weak dependence is satisfied for a = 1, because (x;,&;) are
independent random vectors in our case (Assumption D1).

Assumption B2, part a ¢*(z;,¢;; 53, p), 9+ (2, €:; 8, p), and g(x;,e;) are random variables and
qa*(-,-; B, p),a+(-,-; B, p) are measurable functions for all 1 € N, all § € B, and all p sufficiently
small: this follows from Assumption NC2 and the fact that (z;,;),7 =1,...,n, is a sequence
of identically distributed random variables.
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Assumption B2, part b Eg(z;,&;)'*? < oo for some § > 0: this follows from Assumption NC3
and the fact that (x;,¢;) is a sequence of identically distributed random variables.

Assumption A3 For all g € B,

lim |Eq*($17617/87p) - EQ(mlas’uﬂ)l =0 and lim |Eq*(m17617/83p) - Eq(xlaslaﬂﬂ =0.
p—0 p—0
(64)
Without loss of generality, we will prove this result for ¢ = 1 and only for supremum ¢*(the
other part can be proved analogously). By definition of ¢*(z1,e1; 3, p),

¢(@,e8.0) = sup tonei8) - I(r3(8) <G5l (V) (65)
B'EU(B,p)
= tay,en8) - 1(ri(8) <G5' V) (66)
LeuB) - [I(ri(B) < GZH ) —I(ri(B) <G5 (A
+ s tanaid): [1(6) <65'W0) - 1(H6) <6'W)] o0
+sup [tanen B) — tene B T(r(8) < G5OV (68)
B'€U(B,p)

Hence, to verify (64) we just need to show that the expectations of (67) and (68) converge
to zero for p — 0.
1. Let us start with (67). First, observe that

sup {t(on.e1s0) - [1(rH9) < 651 ) ~ 1(+1(8) <G5' W) | } <
< suplene - s (1) <G50) ~1(r0) <65' W),

where supgcp [t(21,€1;8)| is a function independent of 3 and with a finite expectation.
Because the difference ‘I(r% (8" < Gg,l(/\)) - I(rf (B) < GEI(/\))‘ is always lower or equal

to one, (67) has an integrable majorant independent of 3. Therefore, if we show that the
probability

})%P<ﬁlesg(%p) 1(r38) < G5'W) - 1(r3(8) < G5' W) | = 1) =0,

it implies, that the expectation of (67) converges to zero for p — 0 as well.

Second, let us derive an intermediate result regarding the convergence of distribution function
Gp to Gg. Note that r}(8',w) — r7(B8,w) for B’ — B and any w € Q2 (convergence almost
surely). So, for 8 — B and Gs(z) being the cumulative distribution function of r#(3),
it holds that Ggr(z) — Gg(z) for all z € R (convergence in distribution) because Gs(z)
is an absolutely continuous distribution function. The same is valid about convergence of
r1(8',w) to r1(8,w) and their corresponding distribution functions Fj () and Fz(x). Now,
we show that this convergence of distribution functions Fjg/ (2) — Fp(x) (and consequently of
G () = Gg(x)—Gg(x) = Fs(\/z) — F3(—+/x)) is uniform over all sequences 5, — f such
that ﬂ;t € U(B, prn), where p,, is a sequence of positive numbers such that p,, — 0. The reason

!

is that 71 (8',w) = 1(8,w) —hg(z1,€)- (8" — B), where the second term h'ﬁ(ml, £)-(B' — B) can
be bounded by a random variable h;(z1) - K - (8’ — 8) = Op(1) - O(n_%) =0, (n_%) (see
Assumption H3). Because Gg is absolutely continuous, the same is true about convergence

of GE,I()\) to Ggl()\)—it is uniform over all sequences 8, — 8 such that 8, € U(8, pn)-
Third, let us choose now an arbitrary, but fixed € > 0. Then we can find n; € N such that

Gz'(N) -G53 (V)| < gar for any B € U(B,p'), where p' = p,, and M,, is the uniform
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upper bound for the probability density functions of r7(3) over all 3 € B (see Assumption
NC6). Further, r2(8') = r?(8) + r1(B) - hg(z1,€) - (B' — B), where & € [3,'],,. So, we can
find no € N and p? = p,, such that r;(8) -hlﬁ (z1,€)-(8'=PB) < @ with probability greater
than 1 — £ (r1(B) - h;3(.7:1,§) = O,(1)). Hence, setting p° = min {p*, p?},

o(, . o czon) (i <) |-

3 3 g

< S+ P(rz(ﬂ) € (G—l(A) - ,GTTA) + ))
2 ! s 4M,, 4M,,
€ 2e

< 2t ag,, Me =

because My, is the uniform upper bound for the probability density functions of r(3) over
all g € B. Thus, we have shown that for any € > 0 we can find p* > 0 such that

P sup
B'€U(B,p*)

1(r3(8) < G5/ ) — 1(r3(8) <G5' W) | = 1) <e

and thus

Il
e

lim P( sup |1(r3(8) <G5/ ) —1(r3(8) <G5' V)| = 1)

p=0 \ greu(B,p)

We have verified that the expectation of (67) converges to zero for p — 0.
2. We should deal now with (68) and prove that

lim E { sup [t(m1,e1;8") — t(z1,€1; B)] ‘I(T%(ﬁl) < GEII(/\)) H <

=0 | greU(B.p)

lim E sup  |t(z1,e1;8") —t(z1,e138)|p = O.
P20 | preu(s,p)

First, note that the difference

|t($1151;ﬂl) - t(fL’l,El;,B)l < |t($1a51;/81)| + |t($1,€1;ﬂ)| < 2211}) |t($1751;/3)|
€B

can be bounded from above by a function independent of § and having a finite expectation.
Let 2Esupgep [t(z1,€1;8)| = Ug.

Second, for an arbritrary fixed € > 0, we can find a compact subset A. of the support of
(z1,€1) (and its complement A.) such that P((z1,€1) € Ac) > 1— 57— (both 21 and &; are
random variables with finite second moments) and 2 fz—supgep [t(z1,€1; 8)| < 5. Given this
set Ac and 8 € B, we can employ continuity of ¢(z1,e1;8) in 8 (uniform over all (z1,¢;) €
ﬁg) and find an p° > 0 such that sup(,, .,)ea, SUPg cu(s,p) t(T1,€158") — t(z1,€1;8)| < 5.

ence,

A

E{ sup |t(331;€1;5')—t(wl;fl;ﬂﬂ} < /_QSUP|t($1,51;ﬂ)|sz(ml)dFa(El)

B'EU(Bp) A. BeB

+ /A =Py (m1)dF(e1)

€
13
_:&-,

IN

+

N ™
[\]
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and consequently,

limE{ sup |t(:c1,61;5')—t($1,51;ﬂ)|}:0-

p=0 | greu(B,p)

We have verified that the expectation of (68) converges to zero for p — 0. Thus, assumption
A3, Andrews (1987), is valid as well.

Since we have verified all assumptions needed for the uniform law of large numbers, we can use it
or Ly, [t(xi,si; B) - I(r? B) < GEI()\))] to get the result of the lemma. O

Lemma 7 Let Assumptions D and H hold and assume that t(z,e;8) is a real-valued function
continuous in 8 uniformly in x and € over any compact subset of the support of (x,€). Moreover,
assume that Assumptions NC hold for t(x,e;8). Furthermore, let r;(8) = &; + h(:z:i, ﬂo) — h(z;, B)
and Gg denote the distribution function of r?(8) (for any B € B). Finally, let hy/n — X € (,1).
Then

n

U5 [twnes 8 1(r28) < 7y ®)] ~E [t e ) - 1(r28) < G;w)]‘ 70

i=1

sup
BEB

as n — +0o in probability.

Proof: Using the result of Lemma 6 (the assumptions of this lemma and Lemma 6 are identical)
and

sup }12[ (wir2:8) - 1(r2(8) < 1,1(8) )| —E[t(xi,ei;ﬁ)-f(r?(ﬂ)SG;(A))]‘

sup ! z [ (%i,€4; 0) I(r (B) < _1()\))] —-E [t(mi,si;b’) -I(r-

BEanl

b Yt [1(30) <) - (79 <63 )

BeB

IA

=00
—~
=
~
IN
2
@ |
-
—~
>
Nai?
N——

we just have to prove that

sup
BEB

, Zn; toie B) - [1(r308) <181(8) — 1(3(8) < G5* V)] ‘ S0

in probability for n — co. The Chebyshev inequality for non-negative random variables—P(X >
K) < EX/K—implies for a sequence of non-negative random variables X,, that if expectations
E X,, converges to zero for n — 00, then the sequence X, converges to 0 in probability. So, we
will derive now that

E< sup
BEB

- E{E L sl 110 £7100) - 110 5 65')

n

St B) - [1(0) <) - () < 65" )] ‘}

i=1

BeEB

E {Z‘é‘é [tos,20: 8)] - sup [1(r3(8) < 18,1(8)) - 1(r3(8) < G53* (V) \} =0
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converges to zero for n — co. Since we assume that supgcp |t(1,€1; 8)| has a finite first moment,
all we have to actually prove is

E{sup 1(r3(8) <7,1(8)) — 1(r3(8) scﬁl(»)\} =

BEB

P<sup I(r%(ﬂ)grfhn]w))—I(r%(ﬂ)SG;(A))\:l) - 0

BEB

for n — oo. But this is the claim of Corollary 5:

[N

)

P(;gg 1(r3(8) < rf(8) - 1(1308) < 65 W) | = 1) =0(n"
asn — oo. U

A.2 Fundamental results for order statistics

The assertions presented in this section describe some fundamental properties of order statistics of
regression residuals. The formulation of these assertions and their proofs resulted from personal
communication with the author of Visek (1999a) and I generalized it to the nonlinear setup used
in this paper (the notation is kept close to that of Visek).

Lemma 8 Let A € (%, 1> and put hy, = [An] for n € N. Under assumption D3 on the distribution
function G(z) of r?(B°) and its probability density function g(z), it holds that for some & > 0 there
is Ly > 0 such that
inf >L,>0.
2€(G1(\) 6,61 (A)+6) 9(@) > L,

Then for any € € (0,1) there is K. > 0 and n. € N such that for all n > n.
Pl (8°) -GV <n b K ) > 1-,

1

that is, |rf, 1 (8°) — G_l()\)‘ =0, (n_i) as n — +00.

Proof: First, let us recall that r?(8°%) = €?. Let us take a fixed e € (0,1) and set K. so that
P(X € (-K.,K.)) > 1%, whereby the random variable X has the standard normal distribution.
Then put K; = K. - L, and denote

i = I(rf(ﬁo) <G\ + n—%Kl).

As for all 4, Evy; = P(vn = 1) = P(rg(ﬂo) <G 1)+ n*%Kl) > A—hence, Evy; € (\,1) and
varvy; = Evy;(1—Evi;) = a € (0, A(1 = A)). In case of varvy; =0, .1 v1; =n > hy. In all other
cases, it is easy to verify the Feller-Lindenberg conditions (C2 = Y7, varvy; = an < A(1 = A)n <
In), so we obtain immediately

c {sn pY (”gn_ E o) } - N(0,1).

Moreover, according to the Glivenko theorem, this convergence in distribution is uniform on R
(the distribution function of N(0,1) is everywhere continuous), so there exists ng € N such that
for all n > mg the distance of distribution functions £(S,,) and ® in the supremum norm is lower

than £. Consequently, .
p > ieq (v1i — Ewyy)
Cn

§K5> >1-—e.
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Since C), < % n, it follows that with probability greater or equal to 1 — ¢
1 n n
—5\/5-K5+;Ev1i§i_zlvu. (69)

Taking n1 > mg such that n*%Kl <éforalmn>ny, Evy; > A+ n*%Kl -Lyg=X+ n*%KE. This
result together with equation (69) implies that

1 1 L 3 )
PA+ SVRK =~ Ko +nh+ ViK. < —5\/H-Ks+;Evu S;UM-

But this means that at least An > h,, of residuals 72(8°) are smaller than G~'()\) + n~ 2 K,; in

other words, r (ﬂo) < G~Y(A\) + n~2K.. The corresponding lower inequality can be found by
repeating these steps for

Vai = 1(r§(,30) > G — n*%m).
O

Lemma 9 Let ) € (%, 1) and put hy, = [An] for n € N. Under assumption D3 on the distribution
functions F(z) and G(z) of 7;(8°) and r2(B°), respectively, and their probability density functions
f(z) and g(x), it holds that for some § > 0 there is Ly > 0 and Uy > 0 such that

inf z)>L,>0 and su z) < Uy < 0.
wE(G—l(/\)—d,G—l(/\)M)g( ) I ze(c—l(,\)—al,)a—l(,\)w)f( ) d

Then for any € € (0,1) there is K. and n. € N such that uniformly in t € Tar for all n > n.

P(‘rfh"] (,80 —n_%t) - G_l()\)‘ <n73 -KE) >1—¢,

that is, T[Qh"] (ﬂo — n_%t) ‘ = *% um'formly inteTy={teR :||t|]| < M} as
n — +00.

Proof: The proof of this lemma follow the same lines as the proof of Lemma 8. Thus, we will
explain in details only those parts that are different from the previous proof.

First, let n > ng = [M?-672] and denote K; = supge[ﬁoﬁo_n_%t] EHhB(wi,f)H < 0.

Sticking to the same choice of an arbitrary, but fixed € € (0,1) and K. as in the previous proof,
let Koy = (%KE +M- Ky -Us)- Lg_1 and gx, = G7'()\) + n=3 K. Keeping in mind that (using

Taylor’s expansion)
ri(B° —n=) = ri(8°) + (h(@i, 8 —n~30) = h(@i, 8)) = ri(8) + (00, -n7he, (70)
where ¢ € [ﬂo,ﬂo - n*%t]%, consider now
w; = I(rf(ﬂo —nTEH) <GV + n—%Kl).
Then we find that for all ¢

Ewii = Plwy;=1) = P(r}(8° —n"#1) < g0

P<_ q’\’”_h;i(xiaf)T'"_%tﬁeiS+\/m hB 2:,6)" -n 5t

= & (F(van = Halan " n7ht) = P (= = (e )7 7))
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and the Feller-Lindenberg theorem for w; finally implies an analogy of (69):

1 n n
—Ex/ﬁ-KE+ZEw1i§ZwM (71)
i=1 i=1

with probability higher than 1 — €.
The next step is to estimate the mean value Ew;; = E; E(wi;|z;), once again employing Taylor’s
theorem:

E(wiilz;) = <+\/Q)\—n h (i, € )T-n—%t) -F (—\/m_ h'ﬁ(xi,f)T-n—%t)

> P (V) = Ur iate 7 0 bt = F (—VB = Byle, 7 n )
> Glanm) = Uy - Wyl &) 03 = GG ) + 074 Ko) = Uy - Wp(ai, &) on e
> )\+n‘%-KQLQ—Uf.‘h’B(xi,g)T_n—%t7

hence ) ) ,
Ewy>A+n"% KoL, — Uy -E ‘hﬁ(xi,g)T .

Returning to (71), we get

n 1 1 ) T
;wu > n)\+\/ﬁ{K2Lg—5Ks—Uf'E;E‘hﬁ(miag) t\}

> n,\+\/ﬁ{Kng - %Ke —Uy- %EniM ' Ethﬁ(x"’OH}
=1

ni + \/ﬁ {KQLg
= nA++/nk.,

1
—§K6—Uf-M-K1}

which indicates again that at least An > h,, of residuals r;(3° — n~2t) are smaller than G—1(\) +
n=2K.. The corresponding lower inequality can be found by repeating these steps for

wo; = I(rf (ﬂo - n_%t) >G N —n_%Kl).
O

Lemma 10 Let assumption D3 be satisfied. Moreover, let A € (%, 1>, T E (%, 1), and put h, =
[An] for n € N. Then for any € € (0,1) there is K. > 0 and ne € N such that uniformly int € Ty
for all m > n.

P(‘Tfhn] (50 - n_%t) - rfhn] (ﬂo)‘ <n7T. KE) >1—c¢,

that is, r[2hn] (60 - n—%t) - rfhn] (,80)‘ =o0p (n_%> uniformly in t € Tar as n — +o0.

Proof: As the first and main step, we show that for any € € (0,1) there exist K. and n. such that
uniformly in ¢ € Ty for all n > n,

P(‘r{hn] (ﬂo - n*%t) — Tha] (50)‘ <n’T -Ks) >1—c¢ (72)

(please, remember the convention introduced in Section 3.2 that ry,)(8) = sgnr(5) - r[Qh] 8),

whereas the order statistics of residuals r;(3) is referred by 7(,)(3)). Please, notice also that we
know due to equation (70)

ri(8° — n~Et) = r;(8°) + hg(zi, )" -0, (73)
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where £ € [ﬂo,ﬂo - n—%t]

Now, all assertion in the. following part of the proof are meant conditionally on values of ;. Let
us suppose that h'ﬁ (z;,€)Tt > 0 for a given i (the other case can be analyzed analogously). Then
r:(8°) +hlﬁ(a:,-, &)Tn=3t > r;(8°) which means that all such residuals r;(3° —n~%t) are larger then
residuals 7;(8°) = &;. In other words, some residuals evaluated at point 3° —n"3t compared to 3°
are shifted out of interval (—r;, ) (8°) ,7(h,) (B°)) on its right hand side and some are shifted into
it on its left hand side. The assertlon (72) can be proved in the following way: considering a bit
larger interval (—rp, 1 (8°) —n~"K1,7,) (8°) + n~7Ky), it is to be shown that such an interval

contains at least h,, residuals ;(3° — n_%t) for some sufficiently large constant K;. To do so, we
shall try to find a number m; of indices ¢ = 1,...,n for which (with a probability close to 1)

r2(8°) <1, (8% and ri(B° —n7Et) > 1y, (B°) + KL (74)

Such indices represent the observations that decrease the number of residuals inside the interval
< (50) —n "Ki1,7[,] (ﬂ ) +n” TK1> Similarly, we try to find a number msy of indices
i= 1 ,n for which (with a probability close to 1)

ri(8%) < —rppg(B%) and (8% —n”Et) > —rppy (6°) —n K. (75)

These indices correspond to the observations that were not in the interval (—r, 1 (8°) ,7(n.1 (8°))
before but they move inside the interval (—r, (8°) —n~"K1,rp,) (B°) +n~"K1), and thus,
increase the number of residuals contained in it. Since there are just h, indices among all ¢ =
1,...,n satisfying r?(8°) < rfhn](ﬁo), the number of indices such that r2(8° —n~2t) < r[zhn] (B°) +
n~"K; equals h,, —mj +my. Therefore, all we have to do is to verify that the difference ms —my
is positive with probability close to 1.

Using (73), case (74) is equivalent to

Tin(B%) +n Ky — hla(xz',f)T T3t < e < T(n1(B°)-

Similarly, (75) is valid if and only if
71 (B%) — K1 — hig(4,6)T Tt < e < —rpp,1(89).

Thus, it seems to be helpful to study the probability of the events z £n~"K; — h'ﬂ(a:i, E)T -n~ot <
e; < z for some z € R. This probability can be expressed by means of the distribution function
F(z) (remember, everything till now is conditional on x;):

z

F(z)~ F (20 7K — hy(e, )7 -0 ¥t) = / F(b)dt.

1
z:l:n_"'Klfhlﬁ (zi,{)T-n_ 2t

Expanding the density in the integral, f(t) = f(2) + f'(¢;)t, we get

/ fOdt > ) [0 K~ By &) ] +

1
+n=TKi—hg(2:,€)"-nT 3¢

_ : T _112
—}—Lf [:I:n TKl—hﬂ(.’L'i,é-) -n 2t]

/ , fWdt < f(2) [E0 K = By, 6)" n R+
zin—"'Klfh;i(zi’g)T.n—gt

+Uy [in*TKl — h;g(a:i,g)T -Tfét]2 ,

which results in

N[

F(z)-F (z +n TRy — Wy (2,67 -n’%t) = f(2) [:l:n’TKl — hy(z:,6)" n” t] +0(n ). (76)
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Having these results in hand, the same idea as in the previous Lemmas 8 and 9 can be used.
Let us consider for a fixed z € R

wyi(z) = I(Z +0 TRy — hg(24,6)T n Tt < e < Z)

and , )
wai(2) = I(—z —-n""K; — hﬁ(xi,.f)T nT2t<eg < —z).

Apparently, my —my = Y1 (w2i(z) — wii(2)) for z =7}, 1(8%). Let us denote s;(2) = wa;(2) —
w1i(z). Employing (76), we obtain Es;(2) = n™"K; - (f(2) + f(=2)) + O(n™') and hence also
varsi(z) = n "Ki - (f(2) + f(—=2)) + O(n"!). The Feller-Lindenberg conditions for the central
limit theorem can be easily verified, and thus, two constants K. and n. such that for all n > n,

p(| Bl B 1)

can be found, where C2 = n!="K; - (f(2) + f(—z)) + O(1). Now, this result is independent of z;,
which means that it holds not only conditional on z; but without conditioning as well. Further,
it follows that for n > n. with probability greater than 1 — &

n

Y osi(2) 2 =2 O OVEL - (F(2) + f(=2) K + 0! K - (f(2) + f(=2)) - (77)

i=1

Ast € (%, 1), the last expression increases in n above all limits for a given K; because f(z) is
bounded from above and away from zero as well in a neighborhood of G=1()). Thus, we can find
ne such that for all n > n. the right hand side of (77) is positive, and consequently, the number of
the residuals r? (BO - n_%t) that fall to the interval (—rp,1 (8°) —n~"K1,7n,1 (8°) + n~ K1)
is at least h,, with probability greater than 1 —e. We can conclude that for some co > K2 > 0

r[hn](ﬂo — n*%t) < r[hn](ﬂo) +n"7-Ks,

and analogously, the corresponding lower inequality can be derived.

Finally, Lemmas 8 and 9 imply that both rp, (8% — n~%t) and r(,1(8°) are bounded in
probability. Thus, utilizing equality a® — b*> = (a + b)(a — b), we obtain immediately the assertion
of this lemma. O
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