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ABSTRACT. The testing of a computing model for a stationary time series is a standard
task in statistics. When a parametric approach is used to model the time series, the question
of goodness-of-fit arises. In this paper, we employ the empirical likelihood for an a-mixing
process and formulate a statistic that measures the goodness-of-fit of a parametric model.
The technique is based on comparison with kernel smoothing estimators. The goodness-
of-fit test proposed is based on the asymptotics of the empirical likelihood, which has two
attractive features. One is its automatic consideration of the variation associated with the
nonparametric fit due to the empirical likelihood’s ability to studentise internally. The other
one is that the asymptotic distributions of the test statistic are free of unknown parameters
which avoids secondary plug-in estimation. We apply the empirical likelihood based test to

a discretised diffusion model which has been recently considered in financial market analysis.

KEY WORDS: Empirical likelihood; Goodness-of-Fit Test; Nadaraya-Watson Estimator;

Parametric Models; Power of Test; Square Root Processes; a-mixing; Weakly Dependence.



1 Introduction

The analysis and prediction of time series is standard work in statistics. The techniques
employed though rely on the actual model assumed to represent and generate the dynamics
of the time series. Mismodelling might result in biased prediction and incorrect parameter
specification. The aim of this paper is to show how the empirical likelihood technique
(Owen, 1988, 1990) may be used to construct simple test procedures for the goodness-of-fit

of standard time series models.

We assume that {(X;, Y;)}™, is a strictly stationary time series with ¥; € R and X; € R?.
The explanatory variable X might be the lagged d-dimensional past of a one dimensional
time series for example. The conditional mean for an AR modelled process is in this case a
linear function of X. In a financial time series setting, the explanatory variables X might
control the conditional volatility of an ARCH type process. Standard parametric approaches
assume a linear structure in the squares of the past values. This specific form however in-
troduces symmetric shocks as a reaction to recent return values (a so called news impact).
Empirical observations though indicate that volatility shocks are more pronounced after
negative returns in the period before, see e.g. Engle and Gonzalez-Rivera (1991), Zakoian
(1991), Gouriéroux and Monfort (1992) and Gouriéroux (1997). Diffusion models are impor-
tant in mathematical finance. Interest rates, stock and other financial products are modelled
by discretised diffusion processes with specific parametric assumptions on the drift and scale
functions, see e.g. Karatzas and Shreve (1998) and Platen (1999). Genon-Catalot, Jeantheau
and Laredo (2000) model the stochastic volatility as a diffusion process. They use hidden
markov model techniques for the statistical analysis. These three types of time series models,
along with many others, may be evaluated and tested for their specific form by the proposed

empirical likelihood test.

Figure 1 shows the daily closing value of the S&P 500 share index from the 31st December
1976 to the 31st December 1997, which covers 5479 trading days. In the upper panel, the
index series shows a trend of exponential form which is estimated using the method given
in Hardle et al. (2000). The lower panel is a residual series after removing the exponential

trend. In mathematical finance, one assumes a specific dynamic form of this residual series.



More precisely, Hardle et al. (2000) assume the following model for an index process S(t)

S(t) = S(0)X (t) exp ( /0 tn(s)ds) (1.1)

S& P 500 with exponential trend
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Figure 1. The S&P 500 Data.

with a diffusion component X () solving the stochastic differential equation
dX (t) = of1 — X (t)}dt + o X2(t)dW (t) (1.2)

where W (t) is a Brownian motion and « and ¢ are parameters. Discretising this series

with a sampling interval A leads to the observations (X;,Y;) with ¥; = X;;1)a — X;a and



X; = X;a, which will be a-mixing and fulfill all the other conditions assumed in the paper
based on the results given in Genon-Catalot, Jeantheau and Laredo (2000). Note that this

series has a mean function as in Cox, Ingersol and Ross (1985).

Let m(z) = E(Y|X = z) be the conditional mean function, f be the density of the
design points X, and o?(x) = Var(Y|X = z) be the conditional variance function of Y
given X = x € S, a set to be specified later. Suppose that {my|f € O} is a parametric
model for the mean function m and that 6 is an estimator of 8 under this parametric model.

The interest is to test the null hypothesis:
Hy : m(z) = my(x) forallz e S
against a series of local smooth nonparametric alternatives:
Hy :m(z) = myp(x) + cnAn(z),

where ¢, is a non-random sequence tending to zero as n — oo and A, (z) is a sequence of

bounded functions.

The problem of testing against a nonparametric alternative is not new for an independent
and identically distributed setting, see e.g. Hérdle and Mammen (1993), Hart (1997) and
Horowitz (1997). In a time series context the testing procedure for functional form has
been considered in Kreiss, Neumann and Yao (1998) and Herwartz (2000) for example.
Development here is somewhat slower since theoretical results on kernel estimators for time
series have appeared only very recently, see e.g. Bosq (1998). This is surprising given the

interests in time series for financial engineering.

The device we consider here to formulate goodness-of-fit tests for H, against H; is the
empirical likelihood. The empirical likelihood is a computer intensive nonparametric statis-
tical method of inference introduced by Owen (1988,1990) as an alternative to the bootstrap.
Instead of resampling with an equal probability weight for all data values like the bootstrap,
the empirical likelihood chooses the weights by profiling a multinomial likelihood under a
set of constraints which reflect characteristics of the parameters of interest. The empirical
likelihood has been shown to share some key properties with the parametric likelihood, for

instance Wilks’ theorem and the Bartlett correction; see Hall and La Scala (1990) and Qin
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and Lawless (1994) for details. The empirical likelihood literature which is related to the
topic of this paper are Chen (1994) on testing hypothesis; Chen (1996) and Chen and Qin
(2000) on confidence intervals in nonparametric curve estimation; Kitamura (1997) on in-
ference for parameters associated with weakly dependent processes; and Baggerly (1998) for

using empirical likelihood as a goodness-of-fit measure associated with a parameter.

The proposed goodness-of-fit test is based on a joint ” pseudo” empirical likelihood statis-
tic over a grid of points within S, the domain of the design density f. It is shown that the
empirical likelihood test statistic is asymptotically equivalent to a studentised version of the
L, measure of goodness-of-fit considered in Hardle and Mammen (1993). In the case of het-
eroscedasticity, when the variance function o?(x) is not constant, it is crucial to studentise
the Ly distance in constructing the goodness-of-fit test in order to put the L, distance in the
context of its variation. An unique feature of the proposed test is that the studentisation
comes automatically due to the empirical likelihood’s ability to studentise internally, which
means that no estimation of unknown quantities such as o%(z) and f(x) is required. It is
shown that the proposed test statistic converges to an integral of a squared normal process,
which leads to several test procedures including those based on the asymptotic normal and

chi-square distributions.

The paper is structured as follows. An empirical likelihood test statistic is established
for the testing purpose and its properties are studied in Section 2. The goodness-of-fit
test procedures are proposed in Section 3. The proposed tests are applied to evaluate a
parametric diffusion model for S&P 500 index data in Section 4, which also include results

from a simulation study. All proofs and conditions assumed are given in the appendix.

2 Kernel Estimator and Empirical Likelihood

We first introduce a nonparametric kernel estimator for m. Let S = {z € R¢|f(z) > C;}
for some C; > 0 be a compact set. Without loss of generality we assume that S is the

d-dimensional unit cube, S = [0, 1]¢.

Let K be a d-dimensional bounded probability density function with a compact support



on the d-dimensional cube [—1,1]¢ that satisfies moment conditions:

/uK(u)du =0, /uuTK(u)du =031y

where Z, is the d-dimension unit matrix and 0% is a positive constant. Let h be a positive
smoothing bandwidth which will be used to smooth in every component of X implying
that the scale in each component is roughly the same. When the scale of the variables are
different, they can be standardised by their standard deviation. We may also use a general

bandwidth matrix without altering the main results of the paper.

Let Kj(u) = h~@K(h~'u). The nonparametric estimator considered is the Nadaraya-

Watson (NW) estimator
_ i YilK(z — X)

e S I AT A

(2.1)

Let
i () = 2. Kz — Xi)my(Xi)
’ > i Kn(z — X3)

be the smoothed parametric model. The test statistics we are going to consider are based

on the difference between m; and m, rather than directly between m and my, in order to

avoid the issue of bias associated with the nonparametric fit.

The local linear estimator can be used to replace the NW estimator in estimating m.
However, as we compare 7 with my; in formulating the goodness-of-fit test, the possible
bias associated with the NW estimator is not an issue here. In addition, the NW estimator
provides a better handling of sparse design for multivariate data and it has a simpler analytic
form. Extension of the results to the local linear estimator based test can be derived in a

similar fashion, although the proof will be more involved in the multivariate case.

Let us now as in Owen (1988, 1990) introduce the empirical likelihood concept for the
testing problem that we consider here. At an arbitrary z € S, let p;(x) be nonnegative
numbers representing weights allocated to each (X;,Y;). The empirical likelihood (EL) for
my(x) is

L{ing(z)} = max [ [ i(x) (2.2)

subject to Y- pi(z) =1 and Y . pi(z)K (z_hX’) {Y; —my(z)} = 0.



By introducing the Lagrange multipliers, we obtain as a solution to (2.2) the optimal

weights
pi(z) =n~t [1 + AMz)K (x —th> {Y; — mg(x)}} (2.3)
where A(z) is the root of
- 7o) Y —my(e)}
;H/\ (5 [V, me(x)}_o. (2.4)

-1

The maximum EL is achieved at p;(x) = n~' corresponding to the nonparametric curve

estimate m(x). The log-EL ratio is
H{my(x)} = —2log[L{my(z)}n"].

To study properties of the empirical likelihood based test statistic we need to evaluate
¢{my(x)} at an arbitrary x first, which requires the following lemma on A(z) whose proof is

given in the appendix.

Lemma 1. Under the assumptions (i)-(vi),

sup [A(z)| = 0,{(nh?)"1/* log(n)}.

TEeS

Let y(x) be a random process with z € S. Throughout this paper we use the notation
Y(x) = Oy(6n) (6,(5,)) to denote the facts that sup,.q |y(z)| = Op(6,) (0,(6,)) for asequence
On.-

Let 0;(x) = (nh) ™ Sp, [ K (252

expansion from (2.4) yields

ZKG ){Y Myl [Z” ( hXi>{Y;—T~ng(m)}j —0

Inverting the above expansion, we have

J
i) {Y; — mé(x)}] for j =1,2,.... From Lemma 1, an

ANz) = Uy Hz) Uy (x) + 6,{(nh?) 'log?(n)}. (2.5)
This together with (2.3) and Lemma 1 implies that

Hitg(a)} = ~2loglLimg(o)}a] =2 logl1 + M)k (15) (8, - gl




= 2(nhNA(2)T;, — (nh)N2(2)Ty + 6,{(nh%)~/?1og®(n)}
= (nh)'U;*(2)U% () + G,{(nh?) ™"/ log*(n) }. (2.6)

For any = € S, let v(z;h) = hdfy€SK2 x — y)dy and b(z; h) = hdfy Ky (x — y)dy be the
variance and the bias coefficient functions associated with the NW estimator, respectively.
Let S; = {x = (z1,...,74) € R min; (Jz; — 1|, |z;]) > h} be the set of interior points in
S, and Sp = S — S; be the boundary set. When z € S, v(z;h) = R(K) =: [ K*(z)dz
and b(x; h) = 1. Define V (x; h) = v(z; h)o?(x)/{f(z)b?(x; h)}. Clearly, V(z;h)/(nh?) is the

asymptotic variance of /m(x) when nh® — oo which is one of the conditions we assumed.

It can be shown from Condition (iii) and the proof of Lemma 1 given in the appendix

that
Uy(z) = n_lthl“— Y — g}

- ZKh-T— Vi = mo(Xi)} + Op(n 1)

= (x){m(ﬂv) — mg(z)} + Oy(n/?)
= f(z)b(z; h){m(z) — me(x)} + Op{n_l/2 + (nh%)~'log*(n)}. (2.7)

From the proof of Lemma 1, we have sup,.q |Us(z) — f(z)v(z; h)o?(z)| = O,(h). These and
(2.6) mean that

Himg(x)} = Uy 'UF +6,{(nh?) *log*(n)}
= Vs h){(z) — 1ig(2)}? + O{(nh®) 'hlog’(n)} (2.8)

Therefore, ¢{mn;(x)} is asymptotically equivalent to a studentised L, distance between 1m;(x)
and 7 (x). It is this property that leads us to use ¢{r ()} as the basic building block in the
construction of a global test statistic for distinction between m; and 7 in the next section.
The use of the empirical likelihood as a distance measure and its comparison with other

distance measures have been discussed in Owen (1991) and Baggerly (1998).



3 Empirical Likelihood Goodness-of-fit Statistic

To extend the EL ratio statistic to a global measure of goodness-of-fit, we choose k,-equally
spaced lattice points ¢y, s, - -, g, in [0, 1]% where ¢; = (0,---,0), t, = (1,---,1) and ||t;|| <
|[¢;]] for 1 <4 < j < k. Here || - || is the Euclidian distance in R, We let k, — oo and
kn/mn — 0 as n — oo. This essentially divides S into k, small bins (hypercubes) of size
(k,)~. A simple choice is to let k, = [(2h)7¢] where [a] is the largest integer less than a.
This choice as justified later ensures asymptotic independence among ¢{mm;(t;)} at different
t;s. Bins of different size can be adopted to suit situations where there are areas of low
design density. This corresponds to the use of different bandwidth values in adaptive kernel
smoothing. The main results of the paper is not affected by un-equal bins. For the purpose

of easy presentation, we will treat bins of equal size.

As ¢{m;(t;)} measures the goodness-of-fit at a fixed ¢;, an empirical likelihood based

statistic that measures the global goodness-of-fit is defined as

= Y gt}

by combining ¢{m;(t;)} at each t;. It will be the statistic we use to derive the goodness-of-fit
test.

Theorem 1. Under the assumptions (i) - (vi),

2
k=10, () = (nh?) /{m @Y 4 1+ 0, (k=" 1og2(n) + hlog?(n))}- (3.1)
Hérdle and Mammen (1993) proposed the Ly distance

T, = nh'/? / (1) — 1y () V() de

as a measure of goodness-of-fit where 7(z) is a given weight function. Theorem 1 indicates
that the leading term of k¢, (1m;) is h%/?T, with 7(z) = V~!(z). The differences between
the two test statistics are (a) the empirical likelihood test statistic automatically studentises
via its internal algorithm conducted at the background, so that there is no need to explicitly

estimate V' (x); (b) the empirical likelihood statistic is able to capture other features such as



skewness and kurtosis exhibited in the data without using the bootstrap resampling which
involves more technical details when data are dependent. If we choose k, = (2h)™¢
prescribed, then the remainder term in (3.1) becomes O,{hlog*(n)}.

Theorem 2. Suppose assumptions (i) - (vi), then k4, (1) £ Js N?(s)ds where N is
a normal process on S = [0, 1] with mean E{N(s)} = h¥/*A,(s)/ \/7 and covariance

8 8

Q(s, t) = Cov{N(s) t t\/W T (t )

where
WD (s,t) = / . h=K{(s — y)/h}K{(t — y)/h}dy. (3.2)

As K is a compact kernel on [—1,1]¢, when both s and ¢ are in S; (the interior part of

S),

W2 (s, 1) = / Kw)K{u— (s —t)/h}du= K? (8 ; t) (3.3)

where K is the convolution of K. The compactness of K also means that WO(Q)(S, t) =0if
|s —t| > 2h which implies Q(s,t) = 0 if |s — t| > 2h. Hence N (s) and N (t) are independent
if |s — t| > 2h. As f(s)o?(s) = f(s)o?(t) + O(h) when |s — t| < 2h,

Wy (s, 1)
VW (s, WP (1,1
So, the leading order of the covariance function is free of 02 and f and is completely known.

Let Ny(s) = N(s) — h¥4A( )/4/V(s). Then Ny(s) is a Normal process with zero

mean and covariance 2. The boundedness of K implies W 2) being bounded, and hence

[sQ(t, t)dt < co. Let T = [( N?(s)ds =: Ty + Ty + T3 where
T, = /Noz(s)ds, Ty, = th/4/ V2(8)A, (s)No(s)ds  and
s s

T, = hi? / V=1(s) A2 (s)ds.
S

From some basic results on stochastic integrals and (3.4),

Q(s,t) = + O(h), (3.4)

E(T) = /SQ(s,s)ds:1 and

10



Var(T) = 2 / / Q2 (s, t)dsdt
= / / (W (s, )2 {W P (s, s)WP(t, 1)} Mdsdt {1 + O(h?)}
From (3.3) and the fact that the size of the boundary region Sg is O(h), we have
/ / W& (5,01 {W (5, )W (1, £)) sl
= KOO [ [IKO{(s =0/ Pdsdt {1+ o(1)
= th<4>( HEPD(0)} 2 + o(h?).

Therefore,
Var(Ty) = 2h¢K™W (0){K®(0)}2 + o(h?*).

It is obvious that E(7,) = 0 and
Var(Ty) = 4h9/2 / / V12(5) A (5)2s, )V -2 (8) Ay (¢) dsdlt.
As A, and V™! are bounded in S, there exist constants C; and C, such that
Var(Ty) < C1h%? / / Q(s, t)dsdt < Coh?Y/2,
As T3 is non-random, we have
B(T) = 1+ h"? / V=1(s)A2(s)ds + o(h%2) and
Var{T} = 2h°K"(0){K®(0)}72+ o(h?)

4 Goodness-of-Fit Test

We now turn our interest to the derivation of the asymptotic distribution of &, £, (). We
do this by discretising [, N?(s)ds as (k,)~ Zk“ N?(t;) where {t ", are the mid-points of
the original bins in formulating ¢, (). If we choose k, = (2h)~¢ such that Ht — || > 2h
for any j # k, then {N(t;)} are independent and each N (t;) ~ N(h'/*A,(t;)/\/V (), 1).

This means that under the alternative H;

ZN2 an (Vi)
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a non-central chi-square random variable with &, degree of freedom and the non-central
component v, = h,d/‘l{z;?ll A2(t;)/V(t;)}/2. Under H,y, ZfllNQ(tj) ~ X;_ . This leads to
a chi-square test which rejects Hy if £,(1y) > X, , where x; , is the upper a-quantile of
X4, The asymptotic power of the chi-square test is Pr{x; (7.) > Xi, o} Which is sensitive

to alternative hypotheses differing from Hj in all directions.

We may also establish the asymptotic normality of (k,)~" S_¥"  N?(t;) by applying the

central limit theorem for a triangular array, which together with (3.5) and (3.6) means that
ko () S N(1 + B2 / A2(s)V"(s)ds, 2hK<4>(0){K<2>(0)}—2).
A test for Hy with an asymptotic significance level « is to reject Hj if
kit () > 1+ 2o {K®(0)} 714 /2RK®(0) (4.1)

where P(Z > z,) = a and Z ~ N(0,1). The asymptotic power of this test is

K®(0) [ A2(s)V "1 (s)ds } (4.2)

1-— (b{za —
2K®(0)

We see from the above that the binning based on the bandwidth value h provides a key
role in the derivation of the asymptotic distributions. However, the binning discretises the
null hypothesis and unavoidably leads to some loss of power as shown in the simulation
reported in the next section. From the point of view of retaining power, we would like to
have the size of the bins smaller than that prescribed by the smoothing bandwidth in order
to increase the resolution of the discretised null hypothesis to the original H,. However,
this will create dependence between the empirical likelihood evaluated at neighbouring bins
and make the above asymptotic distributions invalid. One possibility is to evaluate the
distribution of [( N (s)ds by using the approach of Wood and Chan (1994) by simulating
the normal process N?(s) under Hy. However, this is not our focus here and hence is not

considered in this paper.

12



5 Simulation and Application

We probe our testing procedure in a simulation and in a test on a financial market model.

In the simulation we consider the time series model
Y; =2V /(L + Y2 + caSin(Yia) + o (Yie)mi

where {n;} are independent and identically distributed uniform random variables in [—1, 1],
n; is independent of X; = Y;_; for each ¢, and o(x) = exp(—2?/4). Note that the mean
and the variance functions are both bounded which ensures the series is asymptotically
stationary. To realise the stationarity, we pre-run the series 100 times with an initial value
Y_100 = 0. The sample size considered are n = 500 and 1000 and ¢,, takes value of 0, 0.03 and
0.06. As the simulation shows that the two empirical likelihood tests have very similar power
performance, we will report the results for the test based on the chi-square distribution only.
To gauge on the effect of the smoothing bandwidth A on the power, ten levels of h are used

for each simulated sample to formulate the test statistic.

n =500 n = 1000
L L L oy L L
(=}
o
o
g. cn=0.06
g g 3
— -
o o
Q @
s =
5 o =006 | 5 o
T © T ©
N -
o
. cn=0.03
o7 cn=0.03 B
pull L
o
cn=0.00 cn=0.00
0.2 0.4 0.6 0.8 0.2 0.4 0.6
bandwidth h bandwidth h

Figure 2. Power of the empirical likelihood test. The dotted lines indicate the 5% level.

Figure 2 presents the power of the empirical likelihood test based on 5000 simulation with

a nominal 5% level of significance. We notice that when ¢, = 0 the simulated significance

13



level of the test is very close to the nominal level for large range of h values which is especially
the case for the larger sample size n = 1000. When ¢, increases, for each fixed h the power
increases as the distance between the null and the alternative hypotheses becomes larger.
For each fixed c,, there is a general trend of decreasing power when A increases. This is due
to the discretisation of Hy by binning as discussed at the end of previous section. We also
notice that the power curves for ¢, = 0.06 are a little erratic although they maintain the
same trend as in the case of ¢, = 0.03. This may be due to the fact that when the difference
between H, and H; is large, the difference between the nonparametric and the parametric

fits becomes larger and the test procedure becomes more sensitive to the bandwidths.

P-value
04 0.6

0.2

0.03 0.04 0.05 0.06
bandwidth h

Figure 3. P-values of the empirical likelihood test for the S&P 500 data. The dotted line
indicates the 5% level.

We now apply the empirical likelihood test procedure on the S&P 500 data presented in
Figure 1 to test the parametric mean function m(z) = a(1 — z) given in the Cox-Ingersoll-
Ross diffusion model (1.2). The process X is restored from the observed residuals by the
approach introduced in (Hérdle et al. (2000)). The parametric estimate for a is ¢ = 0.00968
by using methods based on the marginal distribution and the autocorrelation structure of

X. For details about the procedure see (Hérdle et al. (2000)). The cross validation is used

14



to find the bandwidth h. However, the score function is monotonic decreasing for A < 0.15
and then become a flat line for A € [0.15,0.8]. This may be caused by the different intensity
level of the design points as revealed in Figure 1. Further investigation shows that a h-
value larger (smaller) than 0.06 (0.02) produces an oversmoothed (undersmoothed) curve
estimate. Therefore, the test is carried out for a set of A values ranging from 0.02 to 0.06.
The P-values of the test as a function of A is plotted in Figure 3. The P-values indicate that

there is insufficient evidence to reject the diffusion model.
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Appendix: Technical Details

Let F} be the o-algebra of events generated by {(X;,Y;),k <4 <1} for | > k. The measure

for dependence between the time series is the a-mixing coefficient

a(k)= sup  |P(AB)— P(4)P(B)

AeF| BEF,
introduced by Rosenblatt (1956).
Assumptions

The assumptions required to establish the results given in the paper are the following:
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(i) The kernel K is Lipschitz continuous in [—1,1]%, that is |K(t;) — K(t2)| < C||t1 — 2|

where || - || is the Euclidean norm, and h = Q{n~t/(44+1)},
(ii) f, m and o2 have continuous derivatives up to the second order in S.

(iii) 0is a parametric estimator of @ within the family of the parametric model, and

sup [my(z) — mo(@)| = Op(n™"1%).
pAS

(iv) An(z), the local shift in the Hi, is uniformly bounded with respect to z and n, and

¢, = n~Y2h~%* which is the order of the difference between Hy and Hj.

(v) The process {(X;, Y;)} is strictly stationary and a-mixing, and a(k) < ap® for some a > 0
and p € [0,1).

(vi) E{exp(ao]Y1 — m(X1)|)} < oo for some ay > 0; The conditional density of X given Y
[xiy < A; < oo, and the joint conditional density of (Xi, X;) given (Y3,Y]) is bounded for
all I > 1.

Assumptions (i) and (ii) are standard in nonparametric curve estimation and are satisfied
for example for bandwidths selected by cross validation, whereas (iii) and (iv) are common in
nonparametric goodness-of-fit tests. Assumption (v) means the data are weakly dependent.
It can be seen from the proof that the geometric the a-mixing condition can be weakened to
a(k) < Ck=*@ where s(d) > 2 and is a monotone function of d. It is convenient technically

to assume geometric the a-mixing. For a univariate linear causal process (which includes
ARMA models)

Y, = Z gt—sé.s
s=0

with independent and identically distributed innovation {&,}52,, Gorodeskii (1977) showed
that the linear process is the a-mixing under certain conditions and established the rate
for the the a-mixing coefficient. Pham and Tran (1985) show that if the each coefficient
g: of the process is O(7%), 0 < v < 1, then the process is geometric the a-mixing. For
the p-Markovian processes Y; = m(X;) + ¢; where € is an i.i.d. process whose marginal
distribution is equivalent to the Lebesgue measure and X; = (Y;_1,...,Yi_,). The geometric
the a-mixing condition is satisfied if m is bounded. It is true also if there is a compact set

where m is bounded and outside of which m(yy,...,y,) < a1|yi]| + ... + a,|y,|, and if the
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roots of the polynomial #” — a;t*~! — ... —a,, lie in the open unit disk. These and other cases

of processes satisfying the condition are available in Doukhan (1994).

Throughout the proof we will use C to denote positive constants which may take different

values.

Proof of Lemma 1:

_ J
Recall that U;(z) = (nh®)™t Y"1, [K (=24) {V; — () }] . Following Owen (1990), we

need to show that:

sup |Us(2)| = 0p{(nh?) =/ log(n)}, (A1)
z€eS

Pr{inf Us(x) > do} =1 for a positive dy > 0, and (A.2)
max sup |gi(z)| = 0,{(nh?)"/?log ™ (n)}. (A.3)
1<j<n peg

To prove (A.1), we define ¢; = Y; — m(X;) and write U, (x) = I1(z) + Ir(z) + I3(z) where
Li=n" ZKh = X;){mg(X;) = mg(2)} = f(2){mg(z) — my(2)},
L=ntY" Kpz—X)eand Iy =n "1, Y o Kp(x — Xi)An(X;). As

sup |n~ ZKh r—X;)— f2)] %0

zeS

as shown in Bosq (1998, p.49), condition (iv) implies,

sup |I1(z)| = Op(n_l/Q) and sup |I3(x)| = O,(cn)- (A.4)
€S €S
Let M,, = by log(n) for some positive constant by. Split I5(x) into two parts:

n

=n" ZK” el(le;| > M,) and I;(z)= n_IZKh(x—Xi)eiI(|ei| < M,).

i=1
As sup,eq |15 (z)| < C(nh®)=1 >0 |elI(Jei] > M,) for some C > 0, the Cauchy-Schwartz
inequality implies that

n

E|sup|IS (z) — B{If (2)}|| <2C(nh")™" Y {E(lel)P(|ei| = My)}2.

€S i1
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From the Chebyshev inequality and condition (vi), for a positive constant 7,

Pr| M (nh®) Y2 sup | I (z) — E{I; (z)}| > m0)| < 2Cng n' 2= M " exp{—1agb log(n)}.
T€eS
By properly choosing by, the RHS converges to zero as n — oo. This means that
sup |y (z) — E{I3 (2)}| = 0,{(nh?) */*log(n)}. (A.5)

€S

Let ¢i(z) = K(*5 el (lei| < Mn), Zi(z) = ¢i(z) — E{¢i(z)}. Clearly, at each fixed
x, {Z;(x)} has zero mean, is bounded by b = C;M, and geometrical the a-mixing. Put
n = (h*/n)Y2M,n,. From Theorem 1.3 of Bosq (1998),

Pri|l; () = B{I; (@)} > (nh) 2 Mo = P (| 3 Zi(a)| > )
< dexp[-nq/{80*(9)}] + 22(1 + 4C1 My, /n)*qa{[n/ (29)]} (A.6)

where ¢ = noM,QL\/ﬁh_d/Q, p=n/q, v*(q) = :

POQ(Q) + %" and

p

o*(q) = max B{Bi(0)Zyg1(2) + Y Zijg+il) + Be(p) Zpjpa (2) ).

0<5<2¢—-1 -
1=2

In the last equation £ (p) = [jp]+1—jp and Ba2(p) = (j+1)p—[(j +1)p]. By the stationarity
of {(Xza Y;)}:
o*(q) < (p+2)E{Z(z)} + J (A7)

where

T=331- l%)\cov{zl(x), Zia(@)}] + 2Cov{ Z,(2), Zpr (@)}

Condition (vi) implies that E(|¢|°) < oo for some § > 2. Using the Davydov’s lemma,

Cov{Zi(2), Zia ()} < 26(5—2) {BIK(* hX) i’

< Cheat2/%(1). (A.8)

Following the approach used in Fan and Gijbles (1996), we let d,, — oo be a sequence of
integers such that d,h? — 0 and split J as

Ji = 2pnz_: |C’ov{Zl( )y Z111(z)}|  and
Jo = QPZ L) Covt Zi(a), Ziss ()} + 21Cov{ 21 (@), Zpna @)} (A9)
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As Cov{Zy(z), Z111(z)}| < Var{Z(z)} < C, J; < Cpd, = o(ph?). From (A.8) and condi-
tion (v), we have J, = o(ph?) as well. These imply that

J =Ji + Jo = o(ph?) (A.10)
and hence 02(q) < Cph?. The particular forms of ¢, b and 7 mean that v%(q) < Cqh?/n and

exp[—n?q/{8v*(¢)}] < exp (—Ci Mp15) - (A.11)

The geometric the a-mixing condition implies:

1/2

(1+4CHe/n) 2ga{n/(29)} < Co(nh~4) /11220 Mn*(nh) (A.12)

Combining (A.11), (A.12) with (A.6) and noticing that both (A.11) and (A.12) are free of

xr, we have

sup Pr|L; (z) — B{Iy (2)}| > (nh®)™"/log(n)no]

€S

1 -2 —2
< exp (—C’lbglogQ(n)ng)+C’2h_3d/4n3/4M3p§77060 log™*(n) (nh®)!/* (A.13)

Let { By}, be a set of equal volume disjoint hypercubes with centers {sj};~, such that
S = Upsy Bk, vn = [n'0] for some ¢y, > 0 and sup,cp ||z — sl < cv,'. Based on this

partition of S, and let I, *(z) = 2(3:) — E{I; (z)}

sup I () = E{I5 ()} < max |1, (sg)| +sup |, (2) = Iy " (sk(a))|

z€S =1,..un z€S

where k(z) being the index of the hypercube containing z. Note that

P{ max |I;*(si)| > (nh")™?noMy} < n'® sup P{|I; () — E{L;"(«)}] > (nh®)™"/*Muno},

=1,...,vp TES

By properly choosing by, (A.13) implies that

max |I;*(s;)| = 0,{(nh?)~*log(n)}. (A.14)

k=1,...,un

As K is Lipschitz continuous,

sup |17 () — Iy (su(w))| < Ch~'n™" <n S el + E|ez-|) .
=1

TES
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Note that n™' Y |e;| “3" Ele;|, and Ele;| < C. We get with probability one

sup 1, *(z) — Iy *(sk(ey)| < Ch ' .
€S
By choosing ty > 3/{2(d + 1)}, we have
Pr{sup |I;*(z) — I;*(skw)| > (nh) ™ log(n)ne} — 0,
€S
which means that

sup |1, *(2) — Iy *(sk@)| = op{ (nh?) 7/ log(n)}.

€S

Clearly, (A.5), (A.14) and (A.15) imply (A.1).

(A.15)

We need to do a few things before proving (A.2). Similar to the derivation of (A.1) and

the proof of Theorem 2.2 of Bosg (1998), it can be shown that for any smooth function g in

R
sup [n” lhdZKh v — X;)9(Xs) = f(@)v(w; h)g(z)
= 0 {(nhd);/;log( ) +h},
sup |n” 1hdZK2 r = Xi)e; — f(z)v(z; h)o® (o)
= Op{(nhd)_lz/;log(n) + h}
and

sup ¢S K2w — X,)ei| = O,{(nh?) " log(n)}

€S i—1

(A.16)

(A.17)

(A.18)

where the h-order terms in the remainders are due to the bias associated with the kernel

estimator. Note that
Uy(z) = ‘1hdZKh z — X;){me(X;) — 1y(z) + € + cnDn(Xi)}>
where, from (A.16) to (A.18),

Ji(z) = ‘1hdZKh z — X;){mg(X;) — my(x)}2 = O, {n~Y? + h}

22
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Jo(z) = *lhdZKQ z — X;)e2 = f(@)v(z; h)o?(z) + O,{(nh%) "/ log(n) + h}
Js(z) = n~'hic ZK%Z(w — Xi)AL(Xi) = Oy(ch)

Ju(z) = anKh 2 — X;){mg(X;) — 1y (2) }A(X;) = Opfea(n™ + h)}
Js(z) = ‘1hdZKh © — Xi){mo(Xi) — 1ig(2)}ei = G,(n""/?)

Js(z) = 2n"'hic, Z K2 (z — Xi)aAn(Xi) = Op{ca(nh?) /2 log(n)}.
In summary of the above results, we have

Sup |Usz(x) = f(z)v(z; h)o™(z)| = Oy(h). (A.19)
As f(z)v(z; h)o?(x) is uniformly bounded below,
iIelgf(x)U(l‘; h)o*(x) > dy for some dgy > 0. (A.20)
Since
inf |Uy(z)| > —sup |Us(z) — f(z)v(z; h)o*(x)| + inf |f(z)v(z; h)o? ()],
zes €S T€S

(A.2) is implied by (A.19) and (A.20).

Let w; = sup,es |[K (2%) {Y; — my(z)}. As K, m and A, are bounded in S, w; <
C1lei| + Cs. From the Chebyshev inequality and Condition (vi)
Pr (w; > (nhd)l/Q{log(n)}’l) < Pr(le| > Cg(nhd)l/Q{log(n)}’l)
< Cyexp{—Cs(nh®)"?log™'(n)}

Thus, > o2, Pr(w; > (nh%)/?{log(n)}~!) < oo. According to the Boreal-Cantelli lemma,
> (nh?)/2{log(n)}~* finitely often with probability 1. This means that Z, = max;<;<, w; >
(nh®)/2{log(n)}~! finitely often, which implies (A.3).

Proof of Theorem 1: From (2.7) and (A.19)

0507 = [n ZWM— e + endn (X} + O, (nh®) "R log(n)} (A.21)
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where Wy (z — X;) = Kp(z — X3)/{f(x)v(z; h)o?(z)}/2. Note that (nh?)!/%¢c, = O(h%/4).
Let

A = knl(nhd)i L tht— Dt + enB( X))

_1ZWht— e + e (X0)}?| d

k,;lz / Ty, (1) To; (t)dt (A.22)
where for t € B;
Ty(t) = ’I/ZZ{Wh (t; — X;) — Wi(t — X)) Hei + caAn (X0},

To(t) = n7'/? Z{Wh(tj — Xi) + Wh(t — Xi) Hei + cndn(Xi) ).
Let M, = bglog(n) for a positive constant by and w; = €; + ¢, A, (X;). Define
O = (et f:{wh(tj - X))~ Walt — XDl ] > M),
T;(t) = —1/2 Z{Wh — Wi(t — X)) Yl (Jwi| < M,,).

Similar definitions apply for T5;(t) and T5;(t). It may be shown similar to the derivation of
(A.5) that for [ =1 and 2

max_sup [T75(t) — E{T35(1)} = o{(nh?) '/* log(n)}. (A.23)

.7 17 7kn tEB

Let ¢Z(t) = hd{Wh(tj - Xz) - Wh(t — X,)}MZI (|wz| < Mn) and Zz(t) = ¢z(t) — E{d)z(t)}

Then, for u, — oo (the exact order of u,, will be decided later)
Pr{|Ty;(t) — E{T;(t)} > u,'n} = Pr{ ZZ )| > nn}

where n = (h?/n)"?uzn,. Note that |Z;(t)] < CM,k;'h~'. Let b = CM,k;'h~" and
q = n*?2M,nou;*h~t. Similar to the derivation of (A.13) and employing again Theorem 1.3
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of Bosq (1998), we have

2

Pr{ ZZ I>mn} < dexp{—o 55} +22(1 + b/m)*qa ([n/(24)])

( )

where v%(q) < Cqh?(nk,)"!. The upper bound for v?(q) can be obtained using the same

approach in deriving a similar bound for the same name quantity as given between (A.6)

and (A.10). By choosing u, = b k' >log~*(n) for some positive by,

2

kn,
eXp{—8;72(qq)} < exp (—C u?“) = exp{—Cby1olog(n)}

n

and
- - - — Myt _1n1/2un
(1 + b/n)1/2qoz([n/(2q)]) < C’n3/4M2/2un1/2h 3/2 d/4kn 1/2,0 n o h.

As the right hand sides of the above two inequalities are free of ¢, we have

sup Pr{|Ty;(t) — E{T;;(1)}] > bik,"/* log(n)no]

teB;

< exp{=Cbinolog(n)} + Cn3/4M7?;/2u7—l1/2h—3/2—d/4k;l/QpM,jlno_lnl/Qunh.

(A.24)

Let {B;;},, be a partition of B; of equal size hypercubes Bj;; where v; be an integer tending

to 0o as n — co. Employing similar derivations to those in deriving (A.14) and (A.15) and

utilizing (A.24), it can be shown that

sup |T7;(t) — E{T};(0)}| = Op{k;, "/ log(n)}.

tE[t),tj41]

A similar derivation will show that

sup |Ty;(t) — E{Ty;(t)| = Op{k; " log(n)}.

e[t tj41]

From (A.23), (A.25) and (A.26) we have for [ =1 and 2

sup _|T(t)| = Op{(nh?)~"/? log(n) + k;,'/* log(n) }.

e[ty tj41]

These together with (A.22) complete the proof.

Proof of Theorem 2:
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We first derive the mean and the covariance of m(x) — 7g(z). We use O() and 4() to
denote quantities which are O() and o() uniformly with respect to z € S. It is noted that

E{m(z) —my(z)}

n=t Y Wa(e = Xa){e + caAn(X0)} f(@) = b(z; h) f (2)
B[ b h) f () (a+! bz h
= M@ {1+ O(h)

When z is in the interior of S, the above O(h) term will be O(h?). This means that

E[(nhd)l/2V_l/2(ac){m(x) — 1g(z)}| = (A 2e, Ay (2)VH2(2){1 + 6(1)}. (A.28)
Let w; = € + ¢ Ap(X;)- Then,
V2 (s; ) V2(8; ) Cov{rin(s) — ﬁ%a( ), (t) — g (1)}
— cov{n—lzwh(s— Dwi, 1 ZWh (t — X))w; H{1+6(1)}

= [n_lco’l){Wh(S — Xl)wl, Wh(t — Xl)wl}
+n71Y (1 —1/n)Cov{Wy(s — X)wi, Wi(s — Xl)wl}] {1+4(1)}

=2

Standard derivations show

(s)o?(s) W(2
t t
¢Wo t,1)

where W0 is defined in (3.2) and WO( )(t, t) = v(t;h). Using the same arguments which

Cov{Wh(s — X1)w, Wh(t — X1)wi} = B¢ +o(h™%),

establish (A.10) in the proof of Lemma 1, we can show that

n

Z(l —1/n)Cov{W(s — X1)wi, Wa(s — X;)w;} = 6(h™%).

=2

Thus,
a {r(s) —my(s)} {m(t) —my(t)}
(nh )Cov[ \/Iﬁ , \/Wt)a }
i : {1+6(1)}. (A.29)

\/W(2 (s,s) W(Q) (t,t)



Next we want to show that for k distinct #1, s, - -, t € [0,1]¢,

(nhd)l/z({m(tl)v?tga(tl)}, e {m(tk‘)/(_t:;e(tk)}) £> Ny (e, ). (A.30)

Here Ny (g, ) is a k-dimensional normal distribution with mean vector
e = (nh)Y2eq (D () F2)V Y1), An(te) F2(1)V 2 (1))

and covariance matrix € = (w;;)kxk, Where

/ W (i, 1))
\/Wo (ti, b Wo (tjatj)

From Theorem 3.4 of Bosq (1998), V~1/2(t;){m(t;) — me(t;)} is asymptotically normally
distributed at each ;. Then (A.30) is obtained by applying the Cramér-Wold device.

From Theorem 1.5.4 of van der Vaart and Wellner (1996), we only need to show that
(nh®)/2m()/V~1/2() is asymptotically tight in C([0,1]¢). To simplify the presentation, we
only prove the case for d = 1. From Theorem 8.1 and Theorem 12.3 of Billingsley (1968),

we need only to show that

(nh)Y2V =172(0) {7 (0) — m4(0)} is tight and (A.31)
P{(nh®)'P|V=12 () {(ty) — mg(t1)} — V2 () {(ts) — g (t2)}] > 0}
< C(ti —t2)*/ng, (A.32)

for any ny > 0, some v > 0 and o > 1.

As V=12(0){m(0) — m4(0)} has finite mean and variance, (A.31) is readily established
from the Markov inequality. Note that

(nh?)!/? [V‘” 2(t){mm(t) — mo(t1)} = V2 (t2) {1 (t2) — g (t2)}

= ()P Y (Wit — Xi) — Wit — Xi)Hei + cnA (i)} + 0p(1)

=1

= (nh")'"Pnm Y (Wit — Xi) — Wit — Xi)bei + 0p(1)

=1
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So, it is sufficient to prove for any n > 0,
P{h|Y " Zi| > b} < Clty — 1) /3. (A.33)
i=1

where ZZ = h{Wh(tl — Xz) - W()h(tg - Xz)}GZ Spht ZZ into Zil = Z'LI(|61‘ < Mn) and
Zio = ZI(|e;| > M,) where M, is a larger number slowly tending to co. Clearly, |Z;;| <
b=: C|ty — ta| M, /h. Using again Theorem 1.3 of Bosq (1996),

Pr{| Y Zu| > 5(nh*)"*no} = Pr(| i, Za| > np)
=1
2

< dexp{—g oot + O/ Paadln/ o))

where ¢ = n'/2h=3/2M,n and v?(q) = Cqhlt; — t3|/n. Thus,

n°q

8v%(q)

and condition (v) implies that (b/1)Y?qa{[n/(2¢)]} — 0. Therefore,

exp{— } <exp (=Cnglts — to| ") < Clts — to|m5”

Pr{|> " Za| > L(nh®)*ne} < Clt1 — to/ g . (A.34)

i=1
Standard techniques, similar to those used in studying the properties of I, in the proof of

Lemma 2, show that as n — oo

Pr{|>_ Zn| > 5(nh®)"/*no} — 0.

=1

This and (A.34) prove (A.33), and complete the proof for the tightness.
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