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Abstract
Let (X(t),t > —1) and (Y (¢),t > 0) be stochastic processes satisfying
dX(t) = aX(t)dt + bX(t — 1)dt + dW (1),

dY (t) = X (£)dt + dV (1),

where (W (t),t > 0) and (V (¢),t > 0) are standard Wiener processes and ¥ = (a, b)’
is assumed to be an unknown parameter from some subset © of R2.

The 9 is to be estimated based on continuous observation of (Y(¢),¢ > 0).

A strong consistent and sequential estimators for ¥ with preassigned least square
accuracy are constructed. The limit behaviour of the duration of the estimation
procedure with given accuracy is obtained.
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quential analysis; least square accuracy.
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1 Introduction

Let us given a filtered probability space (2, F, (F(t),t > 0), P) and two realvalued
standard Wiener processes W = (W(t), t > 0) and V = (V(¢), ¢t > 0) with respect
to (F(t)). Moreover, assume that Xo = (Xo(¢), t € [—1,0]) and Y} are a realval-
ued cadlag process and a realvalued random variable on (2, F, (F(t),t > 0),P)
respectively with

0
E/ XZ(s)ds < oo and EY{ < oc.
-1

Futhermore, let Y5 and X,(s) be Fo—measurable for every s from [—1,0], W, V, X,
and Y, are assumed to be mutually independent.

Consider a two—dimensional random process (X,Y) = (X(¢), Y (t)) described by the
system of stochastic differential equations

dX(t) = aX (t)dt + bX (t — 1)dt + dW (1), ¢t > 0, (1)

dY (t) = X (t)dt + dV (t), ¢t > 0. (2)

and the initial conditions X (t) = Xy(¢), t € [-1,0] and Y (0) = Y.

The parameter ¥ = (a,b)’ with a,b € R' is supposed to be unknown and shall be
estimated on the base of the observation of Y.

The equation (1) is a very special case of stochastic differential equations with time
delay, which occur in modelising phenomenas e.g. in economics, technics, biology
and medicine, which are influenced by time delayed effects, see [Kol/My] and [Mo]
for examples.

The question of estimation of ¥ based on the observations of Y arises in a modified
form e.g. in [Vas/Ko].

Here we shall construct sequential plans (7;,9}) for estimation of the parameter 9
which has a preassigned least square accuracy and shall derive asymptotic properties
of the duration 7} of these plans.

The method used below is to reduce the equations (1) and (2) to a single equa-
tion (see (4) below) for the process (Y (t),¢t > 0), which can be treated similar to
[Vas/Ko]. To do this we have to restrict the set of possible parameter ©. This
is because we use the matrix-valued Fisher information process related to (1), the
asymptotic properties of which heavily depend on ¥ € R2. It is shown, that in two
cases for the choice of © the used construction works.

The organisation of this paper is as follows. In Section 2 some known properties
of the equation (1) are summarized which are necessary in the sequel. The two
mentioned cases for © namely ©; and ©, are established and the equations (1), (2)
are transformed in a new one for the one-dimensional process (Y (¢),¢ > 0) (see (4))
carrying all information of the original ones. In Section 3 the results are formulated,
and Section 4 includes the proof. Two examples close the considerations.



2 Preliminaries

The equation (1) was studied in detail e.g. in [Gu/Ku]. Together with the described
initial condition the equation (1) has a uniquely determined solution X which can
be represented as follows:

X (1) = 20(t) Xo(t) —|—b/_01 Tolt — 5 — 1) Xo(s)ds + /Otazo(t— AW (s), t > 0,

and wich has the property F [ X?(s)ds < oo for every T > 0. Here 2o = (xo(t), >
—1) denotes the so-called fundamental solution of the deterministic equation

z(t) = ax(t) + bx(t — 1), t > 0 almost everywhere,
i.e. xo(-) is absolutely continuous on [0, c0) and
z(t) =0, t € [-1,0); z(0) =1.

The limit behavior of X (t) for ¢ — oo is very connected with the properties of the
set A = {\ € K|\ =a+be *} (K denotes the set of complex numbers). It is well
known, that A is nonvoid, denumberable infinite, has the finite accumulation points
and has the property
vo(¥9) := sup{ReA|\ € A} < 0.
Define
v1(¥) := sup{ReA|A € A, ReX < vp(9)}.

We assume that 9 belongs to some fixed © C R? (which will be specified later)
and we shall construct a sequential estimator for ¥ = (a,b)’ having a preassigned
accuracy in the mean square sense. Fix a positive real ¥ > 0. Our construction
works in two cases for O.

Case L.

Assume L is an arbitrary line in the —plane:

L={d=(a b)|ad+ 8b=c}.

Let O be the segment LN{|[J|| < 9} (I is choosen in such a way, that © is nonvoid).
Now we introduce the finite set .S by

S={9€b|v®) v(®)=0V(a>1b=—e"")}

and put ©; =0\ S. )
Remark 1. The exclusion of the elements of S from © is necessary because of the
unappropriate behaviour of X (¢) for t — oo if ¥ € S, see [Gu/Ku] for details.

Case II.
Define

0, = {¥ € R?| ||| <7, vo(¥) < 0 or (ve(®) > 0 and vo(¥9) & A)}.
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In this case the information matrix Gx(7") given by

I X2(t)dt I XX (t = 1)dt
Gx(T)=1| % T
JXOX(t—1)dt [X*t—1)dt

has the asymptotic property [Gu/Ku], [Ku/Vas]

Tim [ (T)Gx(T) — I(T)| = 0 Py - as. (3)
—00
where
_ T, Zf Vg < 0,
(1) = { el fuy >0, vy &A.

If vy < 0 then (1) admits a stationary solution and I.(7T) = I is a constant posi-
tive definite 2 x 2—matrix (further — stationary case); if vy > 0 and vy(9) &€ A, then
1(T) is periodic with the period A = w/ImMy, where )y is the unique element of
A with Re)y = vo(¥) and ImAy > 0 [Gu/Ku] (further — periodic case).
The problem of sequential estimation ¥ by observation without noises by the con-
dition (3) was considered in [Ku/Vas].
Now we shall reduce the system (1), (2) to the form

dY (t) =9 A(t)dt + &(t)dt + dV (t), (4)

where the observable process (A(t), ¢ > 0) and the noise £ = (£(t), ¢t > 0) are
some (F(t)) - measured processes. The problem of guaranteed estimation of 9 in
the model of type (4) was considered in [Vas/Ko].

Putting X (¢)dt from (2) into the first one in system (1)—(2) we obtain

dX (t) = adY (t) + bdY (t — 1) — adV (t) — bdV (t — 1) + dW (8), ¢ > 1.

Using the integrated form of this equation and putting Y'(¢) in the equation (2) we
get the equation for the process under observation Y

dY (£) = [aY (£)+bY (t—1)]dt+[X (1)—aY (1)=bY (0)+aV (1) =W (1) —aV (£)—bV (t—1)+
FW ()]t +dV (), t> 1.

From here it follows the equation of form (4) for process Y with
() = (V(2), Y(t— 1)),
Et)=X(1)—aY (1) =bY(0) +aV (1) —aV(t) = W(1) = bV (t—1) + W(L).

Let us introduce for any continuous function f the increments operator Af(t) =
f(t)— f(t—1). The functions A(t) and &(t) are F(t)-measurable for every ¢ > 1 and
all the conditions of type (3) in [Vas/Ko]

B [ (IA@Ih + et < o0, T>1,
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E[AE()|F(t—2)] =0, E[(Ag)*|F(t—2)] <5 t>2, (5)
P =1+7, |4l =X |4

hold.
Taking into account the statistical properties (5) of the noise & we obtain the equa-
tion for increments of the process Y

dAY (t) = aAY (t)dt + bAY (t — 1)dt + AE(t)dt +dV (t) —dV(t — 1), t > 2. (6)

We have reduced the system (1)-(2) to a single differential equation (6) for the ob-
served process (AY (t),t > 2) including the unknown parameters a and b. The term
A£(t) also contains a and b, but is controllable in some sence by using (5).
Nevertheless, a and b cannot be estimated from (6) by asymptotic or sequential
maximum likelihood method as in [Gu/Ku] or [Ku/Vas] because of the appearance
of A£(t)dt and dV (t — 1). Another way is necessary. We will follow to the idea of
the method of [Vas/Ko].

3 Results

3.1 Sequential estimation procedure I

Consider the estimation problem of a linear combination § = I'Yd, ¥ € ©;, where
I = (l1,12)" is a some known constant vector such that o = {13 — lra # 0.
Let us introduce the processes Z;, Zs and ¥ by formulae

dZ,(t) = 0 Y(BAAY (t) — cAY (t — 1)dt),

dZ,y(t) = —o HadAY (t) — cAY (t)dt),

[ oY BAY (t) — aAY (t — 1)), t>2,
V) = { 0, t<2.

From (6) and by the definition of ©; we can get for ¢ > 2 the system of equations
dZy(t) = aW(t)dt + Bo L (AE(t)dt + dAV (1)),

dZ,(t) = b¥(t)dt — ao H(AE(t)dt + dAV (1)), t > 2.
From here we obtain the equation for the scalar process Z(t) = 11.Z,(t) + loZ5(t) :

dZ(t) = 0V (t)dt + A&(t)dt + dAV (), t > 2 (7)

with unknown parameter 6. Put Z(t) = 0, ¢t < 2. Similar to [Vas/Ko] we can define
a sequential plan for estimation of # with mean square deviation less than a given
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positive €.
The sequential estimation plans of # have been constructed in [Vas/Ko| on the bases
of estimators of the form

0*(T) = G~1(T, u)®(T, u), 8)

G(T,u) = /OT U(t— ) U(B)dt, (T, u) = /OT U(t—u)dZ(t), u> 2.

By the condition u > 2 the function ¥(¢ — u) and the noises in the equation (7)
are uncorrelated. Note that these estimators may be obtained from general criteria
LSE [Vas/Ko].

From (7) and (8) we find the deviation of the estimator 6*(7) :

0*(T) — 0 = G (T, u)((T, u), 9)

T
C(T,u) = C(T,u, 1)+ C(T,u,2) + C(T,u,3), C(T,u,1) /\1; (t — w)AE(t)dt,
0

(T, u,2) = /\I!(t —w)dV(t), ((T,u,3) /xp (t —w)dV(t —1).

As we can see from the proof of Theorem 1 (Section 4), there are some increasing
functions ¢(T') corresponding to the various regions for the parameter 9 such that
asymptotically on T the function g(T,u) = ¢~ (T)G(T,u) is
a) nonrandom with mes{u € (2,3] : g(u) = 71im 9(T,u) = 0} = 0 and ¢(0) > 0
—00
(mes{B} is the Lebesque measure of the set B),
b) random with Py{g(u) = Tlim 9(T,u) =0} =0, u>0,
—00
c¢) random periodic on 7" with the period A > 1 :
for some random periodic function §(7,u) the next relationship

Pﬂ{jlilglo‘g(Tau) —g(T,u)| =0} =1, u>0,

holds.

Besides in the periodic case ¢) the limit function §(7,u) have for every u > 0 two
roots as a maximum on every interval of the lenght A. Then the normalized matrix
G(T,u) and as follows the deviation 6*(7') — # may be unbounded.

To exclude this effect we need in a discretization of the observation time. Note that
in the case of observations without noises we also need in similar discretization (by
using A) for the investigation of an asymptotic properties of maximum likelihood
estimators [Gu/Ku|. Our procedure is nonasymptotic and we can not use the un-
known value A in construction of estimators.

Put for some h € (0,1/3]

= argmaX|G(nh kh,2 + 3h)]|.

k=1,



Such choise of the value of h implies that for every n > 1 and 7" > 0 there is one or
more values nh — kh, k =1, 3, where g(nh — kh,T) # 0. In such a way (see proof of
Theorem 1) the normalized sequence {G(nh —r,h,2+3h), n > 1} is nondegenerate
in the case c¢) for any h € (0,1/3] in asymptotic.

To construct the estimators with preassigned accuracy we change firstly the value
n in the argument of G' on the markovian stopping times. As we can see later
(the inequalities (11)) this substitution gives us the possibility to control the second
moments of the noise (.

Let (¢, m > 1) is some unboundedly increasing sequence of positive numbers.

We shall define the stopping times (7.(n),n > 1) from the discrete sequence {kh, k >
1} with the known step h by formula

kh
.(n) = hinf{k > 1: / W2t — 2~ 3R)dt > e le,), n> 1 (10)
0

and put for k=1,3, n>1
G:(n,k) = G(1(n) — kh,2 4+ 3h), ®.(n,k) = ®.(7.(n) — kh,2 + 3h),

C(n, k) = ((7-(n) — kh,2 + 3h);
k, = argmax{|G.(n,k)|}, n > 1.
k=13

Now we introduce the sequence of estimators

0=(n) = GZ'(n)®:(n), n > 1,

Ge(n) = Ga(n: kn)a Qe(n) = (bs(n7 kn)a

which have the deviation
f.(n) — 0 = G;l(n)g}(n), C(n) =C(n, k), n > 1.

Further for some hy € (0,1/3) we put a random F(0)-measurable value h from
some continue distribution on the interval [hg,1/3]. We need in such randomiza-
tion in the case a) for the almost surely nondegeneration of the limit ¢g(2 + 3h) =
lim o7 (7 (n) — knh)Ge(n, kn).

Let us show that the second moments of the noise { calculated at times 7.(n) —
knh, n > 1 have known upper bounds. Note that the processes (¢(7,1), F(T)), i =
1,3 are square integrable martingales and times 7.(n) — kh, n > 1, k = 1,3 are
markovian with respect to the system (F(7 — 2)). By the properties of martingales
[Li/Shi] and by the definition of 7.(n) we can obtain for all ¥ € R?, k = 1,3 and
n > 1 the inequalities

Te(n)—kh
EgC*(1.(n) — kh,2 4 3h,1) < §2E19/ W2(t — 2 — 3h)dt < 5% ¢y,
0



Ey(*(7(n) — kh,2 4 3h,i) < 7'y, i =2,3.
Then for all € > 0 and n > 1 the sequence (((n), n > 1) satisfies the inequalities

3
EyC3(n Z EyC?*(1.(n) — kh,2 + 3h) <
<3 Z ZEﬂg 7.(n) — kh,2 4+ 3h,1) < 9(2+ 35 . (11)
k=11:i=1

The asymptotic properties of the sequence (G¢(n),n > 1) and the inequalities (11)
imply that the estimation of the parameter 6 should be perfomed at times 7.(n) —
knh, n > 1. Note that the estimators 6.(n) are strong consistent (see Theorem 1).
In order to obtain the estimators with fixed least square deviation, taking into
account the representation for the deviation of estimators 6.(n), one should control
the behaviour of the sequence of random values G.(n), n > 1. It can be achieved
by conducting the observation up to the time 7.(n) — k,h with a specially chosen
number 7.
Let (kn, n > 1) is some unboundedly increasing sequence of positive numbers. Put
the stopping time

=inf{n > 1:|G.(n)| > p*2c Ky},

where

p=902+3") cn/k.

n>1

We define the sequential plan (7'(¢), 6%) of estimation 6 by formulae
T(e) = 7.(ve), 0F = 0.(v.) = GZ' (v.)®. (ve)- (12)

It should be pointed out that the estimator (12) coincides with the sequential esti-
mator which is obtained from general least square criteria [Vas/Ko].

The following theorem presents the conditions under which 7'(¢) and 6 are well-
defined and have the wanted property of preassigned mean square accuracy.

First we divide the parameter set ©; into nine subsets, according to definitions of
Section I.

Define the functions u(a), a < 1 and w(a),a € R* similar to [Gu/Ku]: consider a
parametric curve (a(£),b(§)), € >0, £ #7,27,...,in R? by

a(§) = Ecot &, b(§) = —¢/sin¢,

then b = u(a) and b = w(a) are the branches of this curve corresponding to & € (0, )

and (m,27) respectively. Put also v(a) = —e% ! and introduce the indices
[0 a#pen,
11, a=pgev,



190 < ]., U(’lg()) < ’191 < —’190,

—ty < < w(190),

Yy > 1, U(’l90) <t < —190,

Yo >1, 9 = U(’lgo),

Y > ’U)(ﬂo),

Yy < 1, Y < U(T?()) or 9oy > 1, < ’U(190),
Yo < 1, Y = —190, Yo 75 0,

Yo > 1, 91 = =1,

191 = w(ﬁo)

Note that sets, corresponds to various values of j are disjoint and the union of all
the cases corresponds to j = 1,9 is the whole plane R? minus some one-dimensional
smooth curve. Besides we know, that v < 0if j =1; vo =0if j =7 and vy > 0 in
all other cases; v; < 0if j =1,2,7; v1 =0if j = 8,9 and v; > 0if j = 3,5 [Gu/Ku].
Introduce the sets

<
I
N
0 =1 O O W N

©

\

L ={(0,1),(1,1),(1,2), (1,7},
I, ={(0,2),(0,3),(0,5),(0,8),(0,9), (1,4)},
I3y ={(1,3)}, L={(0,4)}, I,={(0,6),(1,5),(1,6)},
Is=LUI;\{(1,5)}, I=1I3U{(1,5)}.

Theorem 1. Let the conditions

c
Y S <o (13)
a1 b
and
dim K, /c, =0 (14)

on the sequences (¢,) and (ky) hold . Then

I. For any € > 0 and every 0 € Oy the sequential plan (T (), 0F) defined by (12) is
closed (T'(e) < oo Py — a.s.) and has the following properties:

1°. for any e > 0
sup Ey(6; — 0)” <e;
©1

2°. for every 6 € ©4 the following relationships with vy > vy > 0 hold:
- fO’/' (Za]) € Il

0<lime-T() < lime-T(e) < oo Py —a.s.,

e—0 e—0



—for (’L,j) € IQUIgUIE,

1 _— 1
0 < lim [T'(e) — 5 Ine™'] < Tim [T'(g) — Tln el < 00 Py—as.,

=0 U; e—0 Vi
- fO?" (Za]) € I4
0 < lim eT?(e)e?T®) < Tim eT?%(¢)e®*T® < 00 Py — a.s.
=0 e—0
II. For any e > 0 and every 0 € O the estimator 6.(n) is strong consistent:

Jim 0.(n) =0 Py— a.s.

The proofs of this and subsequent theorem are given in Section 4.

3.2 Sequential estimation procedure 11

Consider the estimation problem of ¥ € ©,. Now we define on the basis of equation
(6) the estimation procedure by the way of Section 1.

Let the value kg € (0,1/5) and put A € [ho, 1/5] as a known F(0)-measured positive
random value with continuous distribution.

Put the functions

= o [ (AY(),AY(t—=s)), t > 1+s,
o(t) = { 0,0, t<1+s;

the sequence of stopping times
- kh -
7.(n) = hinf{k > 1: / 1 (£ — 2 — 5R)||dt > e}, n > 1;
0
the matrices

- ’Fs(n)—kﬁ - . - ’7'5(77,)—]671 - - ~
G.(n,k) = / b: (t—2-5h) T, (t)dt, ®.(n,k) = / U (t—2-5h)dAY (1);
0 0

the times 5 )
k, = arg min |G- (n, k)|, n > 1;
k=1
the estimators . . 5
Je(n) = G;1(n)®:(n), n>1,
és(n) = éa(na ]:/'n)a é[i(n) = és(n; i{;n)a

and the stopping time

7. = inf{n > 1: |Gt (n)|| < e(p?kn)™"}, p=15(2+3%) Y cu/kl.

10



We take the discretisation step A in such a way, because the determinant of the
matrix G has on every interval of the lenght A > 1 asymptotically four roots as a
maximum in the periodic case (see proof of Theorem 2).

Define the sequential estimation plan of 9 by formulae

T(g) = 7o (V%) 1§(5) = 1§5(17€) = és_l(ﬁE)ée(ﬁe)- (15)
We will state the results on the estimation of the parameter ¥ € ©, in the following
theorem.
Theorem 2. Let the conditions (13) and (14) on the sequences (¢,) and (ky) hold and
let the parameter ¥ = (a,b)" in (1) is such that we have the stationary or periodic
case. Then

1. For any € > 0 and every 9 € ©, the sequential plan (T (€),9(€)) defined by (15) is
closed and possesses the following properties:

1°. for any e > 0 3
sup Eg|[9(e) — J||* < &
(O]

2°. for every 0 € ©, the limiting inequalities
- in stationary case (vy < 0)

0<lime-T() < lime-T(e) < oo Py— a.s.,

e—0 =0

- in periodic case (vg > 0, vy € A)

o 1 - 1.
. < - — a.s.
0< ilné [T(e) 20r Ine 7| llné [T(e) S0n Ine "] < oo Py—a.s

are fulfilled.

II. For any e > 0 and every 9 € Oy the estimator 9.(n) is strong consistent:

Jim Ye(n) =19 Py— a.s.

4 Proofs

Proof of Theorem 1. Firstly we establish the finiteness of stopping times 7T'(¢).
Put

T7 (17]) € Ila
pi(T) = q e, (i,5) € LUL U,
T?e*T (4,7) € 1.
Now we establish the auxiliary equalities for v =0 and u > 2 :
— for (’L,]) € Il UIQUI3UI4
T
I /\Ilt— U(t)dt = fi7y Py— as., 16
i g B RO = o P (19

11



where f;;, are some constants or random values;
—for (4,7) € I5

lim
T—=o0 | ©ij(T)

/OT Wt — W) U(0)dt — fira(T) =0 Py—as., (17)

where f;;,,(T) are periodic random functions with the period A = 27 /&,, & € (0,7)
if (i,7) = {(0,6), (1,6)} and A = 27 /€., & € (m,27) if (i, ) = (1, 5).

According to [Gu/Ku] (1997) by ¥ € O; the solution X (¢) of (1) has the represen-
tation

X (t) = zo(t) Xo(0) + b / zo(t — s — 1) Xo(s)ds + /Ot zo(t — s)dW(s), t >0, (18)

-1

where z¢(t) =0, t € [-1,0), 29(0) =1 and by t — o0

( o(e), v<0, j=1,
1)0—10,—|—1 eUOt + O(evt)7 ’7 < Oa ] = 27
’UO-tH-leUOt + a—’l}11—1ev1t + 0(671t)’ a1 < U1, ] = 3:
(2t + 2)e"" + o(e™), Yo < Vo, J =4,
Zo(t) = < Wﬁevot + ¢1(t)e" +o(e™),  y<w, j=35,
Bo(t)ev°t + o(et), Yo < vo, J =6,
= +ole”), 7<0, j=1,
e o), 9<0, j=8
\ vo—a—HeUO + ¢1(t) + 0(67 )a v¥<0, j=09,
¢i(t) = A;cos&;t + B;sinéit,

2(v; —a+1) 26 ,
Ai = ) BZ = ) = 0; 1.

-t +& 7T —ar1prg

By the definition of ¥ we have
U(t) =V(t)+V (), t > —1, (19)
= o N BX(t) —aX(t—1)), t>2
. t
X(t) = / X(s)ds,
t-1
V(1) = o Y BAV(t) — aAV(t — 1)), t>2,
0, te[-1,2].

It is easily to show that the process (X (t)) may be represented in the form

(1) = 0 (&(£) Xo(0) + b / Fo(t — s — 1) Xo(s)ds + /0 Folt — 8)dW (s))
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fort > 1, X(t) = [, Xo(s)ds+ [ X (s)ds for t € [0,1) and X (¢) = 0 for t € [—1,0).
Here function (t) = [ | 2o(s)ds may be defined as Z(t) = 0, ¢ € [-1,0] and by
t — o0

[ o(e™), <0, j=1,
(e oL, 7<0, j=2,
—e~v0 t —e1 t t .
vo(voe—a+1) e + v1(a—ev1—1) 6"_1U +o(e™), M <wv, J=3,
el —e)t + e — =22 ]e™t + o(e7"), v < vy, j =4,
Bo(t) = paeare™ T A1(t)e +o(e™), m<wi, j=5,
o(t)et + o(e!), Yo < Vo, J =6,
g +o(¢"), 7<0, j=T,
vo%v_oefail)e%t — ﬁ + 0(€7t), Y < O, ] = 8,
—e—?0 .
| wlear e + 1(t) +o(e™), 7<0, j=09,
where . . .
(ﬁz(t) = Az COS fzt -+ Bz sin fit,
~ . 1 . s
Aj = —— (e sin§—ve " cos fﬁ—UZ]AZ—{— 5 [vie” " sin §+ve” " cos &—&;] B;,
v} +§ v; — &

1 1
B, = 2 5[&i—vie " sin§;—&eT " cos §] A Z+ 2 [€ie7 " sin &—v;e " cos &+, B;.
+&;

Z

Analogiously we can get the representation for the process W(t) with zy(t) =
ﬂiﬁo(t) - Ckff}()(t - ].) :

W(t) =0 (ou(%o(0) + 5 [ walt =5 = 1)Xo(s)ds + [ wult = )W (s)) (20

fort > 2; zy(t) =0 fort € [-1,0]; by t = o0

[ o(e™), <0, j=1,
(1- eﬂ;zzg(ﬂaﬁe) ) "t + o(eM), <0, j=2,
ety e e o), <y, =3,

21 e ™)t +e ™ — S0 ap )
relt) = { Wbyt e o) <t g =4
vo(vo—a+1) o+ QST(t)evlt + 0(671t)’ v <y, J=09,
B4 (t)e”t + o(et), Yo < vo, j = 6.
f:—g—i—o(eﬁ) v<0, j=17,
‘lﬁﬂiﬁw)m o=F +ole™), v<0, j=8
| Ui lemt 1 gi(1) + o(e™), y<0, j=9.

Here

#; (t) = A cos &t + B sin;t,

13



Ar = BA; — aAje™ cos & — aBje Vi sin g,
B! = 3B; — aA;e isin&; — aBe i cos&;, i =0, 1.

Processes U(t) and V(t) are mutually independent and process ¥(t) is the process
of type (18). Then we can get the following limiting relationships by the way of
[Gu/Ku] and [Ku/Vas]:
—for (4,5) € I
oA 2 (t)dt + 1), u =0,
Jiju = o 2 [ ry(t+ u)zg(t)dt, u>2;

—for (i,7) € LU I; )
lim e "W (t) = ¢,;U; Py —as

t—00
U; = Xo(0) + b / (1) X (5)ds + / s (s
~ l—e™)(f—ae™) _; _ 1—e™)(1 —e"o™ _
T R (Sl )50 )
vo(vg —a+1) vi(a—v — 1)
N 2(1 —e™¥ _
Cl4 = 7( )50 !
Vo
and as follows
GU?
fz'ju:;—vie ou > 0;
—for (i,7) € 14
limt e ”Otllf( ) =¢cUy Py — as.,
(1 — e
Co = 21—em™) )(ﬁ —ae ")o !
Vo
and 272
CO 0 —viu
= @ >
fz]u 4/1)0 , U 0,
—for (i,§) € I
Jim le Ut (t) — Uy(t)| =0 Py — as.,
where by (i,7) € Is \ {(1,6)}
Uy,(t) = £)+b / *(t—s—1)e~" 6+ X, (5)ds+ / e~ AW (5)),

Us(t) = o7 (Xo(0) () +b /_01 ¢3(t—s—1)e_”i(5+l)Xo(s)ds—i—/ooo dy(t—s)e " *dW (s))

and - A
fiju(T) = 02" / e 2t U(T — ) Uy (T — t)dt, u > 0,
0

14



A

Us(t) = Xo(0)d(t) + b /_ 01 bi(t — s — 1)e "D X (s)ds + /O T bt — e dW (s),

QASZ' (t) = Az COS fzt -+ Bz sin fzt,
A; = A7 cos &u — B sinu, B; = —A7sin&u + B cos&u, © =0, 1.

Note that U;(t) = Ui(t) by u = 0.

The relationships (16), (17) are proved.

Because the function zy(t) is defined similar to the function zq(¢) (its structure
and properties have been investigated, for example, in [Gu/Ku]), we can see that
mes{u € (2,3] : fiju = 0} = 0 in the cases (¢,j) € I, and it is obviously that
fiju #0 Py —as. for (4,7) € [, U I3 U I,.

Put for (i,7) € I5

fz]u, tes(l()l,lo)o) ‘f] ( )‘ imo tel(gl,oo) ‘f]O( )|

It is clear that for u = 0 and u > 2 these values are positive and finite. From here
and (16), (17) follows, in particular, the finiteness of the stopping times 7.(n), n > 1
defined by (10), because for all (4, j) € I U Iy U I3 U I, the limits f;0 > 0 Py — a.s.
By using (16) and the definition of 7.(n) we have the next limiting equalities:
—for (4,5) € I

lim —Ts(ln) = lim Tg(n)
n—oo g=le, em0e71e,

= fz;(} Py —as; (21)
take into account the inequalities for all the cases
Te(n)—2—4h Te(n)—2—3h
/ V2(t)dt < e le, < / U2 (t)dt,
0 0

we obtain:
—for (i,7) € LUI;

e?virg (n)

¢ fijo < nh—>—nolo ele, — nh_)rglo ele, € fijo Py —as., (22)
(243h) p1 20,7 (n) e2ViTe (n) sos(142h) p1
20;(2+43h) £— . — i (14 _
eV —1 < lim < lim < g™V 0 Py — a.s. 23
fijo < =0 € l¢, ~ 20 g7le, — 1o =9 ’ (23)

and as follows

1 1 1
24 3h — Q—UiInfijo + 2—UZ.ln5_1 < lim [7.(n) — Q—Uilncn] <

n—oo

_ 1 1 1
< lim [ (n) — S Inc,] < 2(1+ 2h) — o In fijo + 5 Ine ! Py—as., (24)

n—o0 V;

15



1 1 1
2+ 3h— lnf”o + — 5 Ine¢, < hm[Tg( ) — 2—ln5_1] <

z e—0 UZ

1 1
< hm[TE( ) — 2—lne_1] < 2(1+2h) — o —1In fijo+ — 5 Inc, Py —as;  (25)

e—0 i Z

—for (i,5) € Iy

2 2057 (1) 2 20;Te(n)
4 -~ . TZ(n)e — 7. (N)e
(202430 p 1 < iy # < Tim Te (n)e* ™ < i42h) g1 Py a5, (26)
=00 o Cn n—o0 8710,’1 J
2 2v;7¢(n) 2 20;7e(n)
, _ . T7(n)e Te\n)e
62111(2+3h)fij(} < lim 2(n) < im L < il 1+2h)fjo Py —a.s. (27)

£50 e 1le, e=0 g lg,
From (17) and by the definition (10) of moments 7.(n) for all (i, j) € I5 we have

2v; 7 (n) 2v; 7 (n)

—€

20i(2+3h) - 4v;(142h) _
fi 30 < nh_)rgo = < nh_)no]o p=y <e fZJO Py — as. (28)
and
20;7e () _ o2v0;7e(n)
(i L < lim ¢ < Tim* < Mi(420) -1 o o g (29)
=0 £ ey =0 g7 1¢, =430
From (28) we can obtain for every € > 0
2+3h 117 +11*1<1' 11 <
%, n fio %, ne - < nir&[Tg(n) %, ne,| <
1 1
< lim [r.(n) — 2 Inc,] <2(1+2h) — ln Fiso +o lne Py —as.  (30)

and from (29) for n > 1

1 1 1
24+3h— — lnfzjo—i-2 lncnghm[TE( )—2—lne_1] <

2 e—0 U;

1, 1 1
< ll_l;[(l)[TE( n) — Q—Uilne ] <2(1+2h) — 20, Inf o+ Tln ¢, Py — as. (31)

Note that in cases Io U I3 U I5

. Te(n) me(n) _ 1

1 = lim =— Py —as. 32
n1_>120 Inec, E%O Ine1 2v; 9 — a8 ( )

Put 6.(n) = 7.(n) — knh.

Now we can show the finiteness of the stopping time v,. From (16), (21), (22) and
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(26) we have:
—for (i,7) € I

L1 e )
lim — / Tt — 2 — 3R)T(E)dt = (cfijo) " fiieean) Py — a5 (33)

n—o0 Cp J2

— for (’L,_]) € IQUI?,UI4

, de(n)
(e fgo) Mfuronl < Jim | [ w2 - 3n)yw @) <

n—oo Cp

. 0c(n) , _
S lim |—/2 \IJ(t -2 3h)\I/(t)dt‘ S 621}1(2—'—3’1) (6fij0) l‘fij(g_}_:;h)‘ Pﬁ — a.S. (34)

Consider the cases (i,7) € I5. For all w > 2 and (¢,j) € I5 functions f;,(T) are
periodic with corresponding periods A > 1 and each of them has maximum two
roots.

Denote these roots for v = 2+ 3h as t,,(7,5), m = 1,2 on the set (0, A]. Then define
V;j the union of open disjoint neighbourhoods with the radius less then 1/6 for all
roots ty,(i,7) + NA, m =1,2, N > 0 and put

Rij = (0,00) \ Vy5.

Define
* = 1nf iiu t 5
fz]u tert+ ‘f] ()|

i
Quli,j) ={k =1,3:nh — kh € R}}},

rij(n) = arg mQagc | fij@+an) (nh — kh)|.

By the definition f, > 0 for u = 0 and u > 2. Note that for any h € (0,1/3] and
(1,7) € I5 the sets Q,(i,7) are not empty and for sufficiently large n from (17) we
have

nh—kh
rij(n) = argkerg%(j) |~ 2vi(nh—kh) /0 U(t—2—3h)¥(t)dt|,

besides by the definition of @, (i, 7)

fiiarany < |fije+any(nh —rij(n)R)| < fijorany, n>>1

and
20s (hetis (1) nh—ri;(n)h o
fz;'(2+3h) S |e— ’l}z(’n —Tl](n) )/ \I[(t - 2 - 3h)‘1’(t)dt‘ S fij(2+3h)’ n >> 1
0
Then for (i,7) € I5 we obtain

nh—rp,h
Tim |e” 2vmh/ T(t—2— 3h)U()dt| =
0

n—0o0
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nh—rnph _
= Tim e 2imnh|g 2vi(nh-rah) /0 U(t —2—3h)¥(t)dt| < 672vihfij(2+3h)=

n—00

nh—rnh
lim |~ %mh/ U(t—2—30)U(t)dt| >
0

n—oo

: —2v;r;;(n)h| ,—2v;(nh—r;;(n)h) nh—rij(m)h —6v;h £x
> lim e 20 (Wh|g—2vi(nh=ri; / U(t—2 = BR)U (D)t > e foan
0

and as follows for all e > 0

~6uih < im [ 2 [F7 " g o Zspyw(ar <
2 1j(243h) lim |€ A (t—2—3h)¥(t)dt| <

n—oo

_ Ta(n)*knh _
<<hmwﬂwﬂm/ U(t—2—3h)U(t)dt] < e ™" Fiioam- (35)
0

In such a way for the cases (i,j) € I5 from (28) and (35) we have

O (n) -
AL o) oy < Jim | [ (-2~ 3B (r)a] <

n—00 Cp

_ de(n) . v
< Tim —| /2 B(t — 2 — 3 B(t)dt] < e CH (e f ) Fyoig Po—as. (36)

The finiteness of v, follows from the definition v, (33), (34), (36) and the condition
(14) on the sequences (c,) and (k).

Then the finiteness of the stopping times T'(¢) is established.

Let us estimate the mean square deviation of #*. From (11) and by definitions of
the stopping time v, and p it follows that for all ¥ € R?

2
Bol0: = 0)* = ByG2 )20 < SFo-Ci0) <

9(2+3%)e 5 G _
P n>1 Ka P n>1 K '
Then the first property of sequential plans (7(¢), 0) is established.
In order to establish the second property note that similar to (33), (34), (36) for all

n > 1 we can obtain
—for (3,5) € I

. de(n) 4
hme/ \I/(t -2 3h)ql(t)dt = fz'jO fij(2+3h)cn Pﬁ — a.S.; (37)
0

e—0

— for (i,j)EIQU13UI4

et Z]O‘fzj 243n)|Cn < 1111(1)5
e—

de(n)
/ T(t—2— 3h)T(t)dt| <
0
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<lim ¢ < e 2+3h)fjo \fzg(2+3h lcn Py —as.;  (38)

e—0

/065(”) T(t—2— 3h)W(t)dt

— for (i,j) € I

de(n)
/ W(t— 2 — 3h)W(t)dt| <
0

4v,
€ lfz]Of’L] 2—|—3h)cn < 11—I>n06
€

<lim ¢
£—0

de(n) _
/o U(t—2-— 3h)\11(t)dt‘ < 62”(2+3h)ii_j(1)fij(2+3h)cn Py —as.  (39)

Similar to [Vas/Ko| by the definition of v, and from (37)-(39) we can see that for
sufficiently small € and (4,j) € [ UL UI3UI4 U5

vi; <ve < Py —as, (40)

where

vi; = max{inf{n > 1: c,/kn > g;;} — 1, 1},

v =inf{n > 1: cu/kn > gjj},

p Zfljo‘fz;12+3h)‘ (4,7) € I,
gl = p1/2 —20;(2+3h) fw0|f”1(2+3h)| (1,7) € LU I3U Iy,
pl/Qe 2vi(2+3h) fZ]sz](Z—I—ESh,)’ (7”]) € I5a
g;ja L (Zaj) EIla
g;; = p1/2€_4vifij0|fi;(2+3h)|, (Z,]) e LU Ig U I4,

01/2@_4%7@50(f{;'(2+3h))_1a (4, 7) € Is.
From (12), (21), (25), (27), (31) and (40) follows the third assertion of Theorem 1:
—for (i,7) € I

fijocy, < lim eT(e) < lim eT(e) < fijocyy, Py —as;

e—0

— for (’L,_]) S IzUIg

£—0

1 1
24+ 3h— lnfzjo + — o Inc,, <lim [T(e) — 2—lns_1] <
Ui

1. 1
<£1_I)I(1)[T()—2—Uzln8 ]§2(1+2h) lnf1]0+2

lncl,u Py —as.;
—for (3,5) € I

€2v0(2+3h)fj(}0,/ < h_m 6T2(€) 2v0T () < im 8T2( ) 20T (¢) <

! e—0 e—0

4dvo(1+2h) £—1 .
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— for (i,7) € I

- 1 : 1 1
2+3h— 2—yilnf,~j0+ 2—Uilnc,,§j < lim[T'(e) — Tlne 1<

e—0 V;
< Iim[T(e) — Llng_l] <2(1+4+2h)——Inf + L Inc,n Py —a.s.
T e—0 2v; - 2u; U0 2, R
Then the second property of sequential plans and as follows the first assertion of
Theorem 1 are established.
In order to proof the second assertion of Theorem 1 note that according to (33),
(34) and (36)

T 6 (n)] < o0
and from (13), (14) follows that
1

Z — < 0.

n>1 Cn
In view of the form for the deviation of the estimators 6. (n) it suffice to establish
the next limiting equality

which follows from (11), as well as Chebychev’s inequality and by the Borel-Cantelli
lemma.

The strong consistency of estimators 6.(n), € > 0 is obtained.

Theorem 1 is proved.

Proof of Theorem 2. Now we establish the finiteness of stopping times 7'(¢).
At first we find for v = 0 and w > 1 the limits

N S A <
711_{20 T/1 AY (t)AY (t — u)dt = f(u) Py — as. (41)
in stationary case and

1
lim
T—o0 | e2voT

/1 "AY(WAY (- u)dt — £u(T)| = 0 Py —as. (42)

in periodic case, where f(u) is random function of v > 0 and f,(T") are periodic
functions of T for all u > 0.
From (2) we have

AY (t) = X (t) + AV (¢t), t > 1.
Processes X (t) and AY (t) are mutually independent. Similar to the proof of Theo-
rem 1 we can get the limiting relationships using the definition of the process X (t) :
— in stationary case

o fea2dt+1, u=0,
flu) = { J& Bt +u)Fo(t)dt, uw > 1;
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— in periodic case

FUT) = e [ e 200 (T — YU (T — t)dt, u > 0,
0 0 u

Us(t) = )+ b/ (t—s—1)e G X (s)ds +/ —s5)e " dW (s),

¢ (t) = A* cos &t + B sin &,
fl; = ;10 cos §ou — Bo sin §ou, Bu = Bo cos ou — ;10 sin &g

By the definition of & we can see, that functions f,(7") are periodic with the period

A > 1. Note that f(0) >0and 0 < f, = iITlffo(T) <sup fo(T) = fo < 0.
- T

The relationships (41), (42) and as follows the finiteness of the moments 7.(n), n >

1, € > 0 are established.

From (41), (42) and by the definition of the stopping times 7.(n) we have the next

limiting relationships:
— in stationary case

i ) ()

n—oo g~le, s—>0 e~ le, (Qf( )) TSy
— in periodic case for any € > 0
e2uo(2+5ﬁ)[8(1+62u0ﬁ)f] < lim c; —1 ;2007 (n) <
n—oo

2up7e (n) 4vo(1+3h) 2uph -1 _
7}1_)110100 e <e [e(1+e ™) f,]7 Py —as.

and forn >1

64110(1-}—371)[(1 + e?voﬁ)fo]—lcn < lim 662110'?5(77,) < 1111(1)8621}0‘?5(”) <
£—0 £—

< e20CH](1 4 e20h)f 171, Py — aus.
From (43), (44) in periodic case for ¢ > 0

~ 1 =
2(1+3h) — 3 In(1 + e?*oh) — i<

—1 —1
" 21}0 nfy+ ne

2vg

1 1 -
< lim [%(n) — =—In¢,] < lim [7(n) — %lncn] <24 T7h—

T~ m—>oo 2vg n—00

1
—2—?}01n(1+62v°h)—2—01nf +2—01n8 P,g—a.s.
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and forn >1

- 1 7 1
2(1 + 3h) - 2—1}0 111(1 + 621}0}1) - 2—1)0 lnfo + 2—0 h'lCn S

1 1
< lim[% (n) — —1 <Tm[%(n) — —Ine™ '] <
< lim[7,(n) Sug E” '] < lim[7(n) oo ] <

- 1 - 1
< S — mohy _ 1 Inc, Py — 4
<2+4+7h 2Uoln(l—|—e ) S0n nf, —|—20nc 9 — &.8. (47)

From (41), (43) we can obtain in stationary case

Fe(n) - _ Te(n) _ ~
lim — / AY (t — u)AY (t)dt = lim — / AY (t — w)AY (t)dt =

n—oo ¢, J1 e=0¢, J1

= (2f(0)) 'f(u), u>1 Py—a.s.

and
lim —G.(n) = lim —G.(n) = G(h) Py — as., (48)

. o f@+5h) f1+h)
G(h) = (2£(0)) <f(2+6;3) f(1+6/3)>'

Similar to the Case I we can see that mes{u € [hy, 1/5] = f(u) = 0} = 0 and

mes{u € [ho,1/5] : det G(u) = 0} = 0. As follows det G/(h) # 0 Py — a.s. From here,
(14), (15) and (48) we have the finiteness of the moments 7, in stationary case.

Put
5 Ty Sorsi(T) e 2 Jiisi(T) )
G(T:h) ( forn(T) e fiian(T) )

The matrix function G(7T') is periodic with the period A > 1 and the equation
det G(T,h) =0

have as a maximum four roots #,,, m = 1,4 on the set (0, A] for any h. Put é.(n) =
7.(n) — knh. Note that in periodic case by the definition of G.(n) (15) and from (42)
by the way of the proof of Theorem 1 we can get the following relationships

lim |%C§'E(n) —G(.(n),R) =0 Py —as. (49)

n—00 ' p2v0de(n
and for some constants g, §o

0 < g = lim ||G(d:(n), h)|| < Tim [|G~*(3:(n), h)l| = G2 < o0, (50)

n—oo
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0 < g1 =lim |G (d:(n), h)|| < Tm(|G™*(3:(n), h)|| = g2 < oo, (51)
e—0 €0

From (14), (15), (44), (49) and (50) follows the finiteness of moments 7. in periodic
case.

Then the finiteness of the stopping times T'(¢) is established.

The second property of sequential estimators (T'(¢),9(¢)) and the strong consistency
of the estimators 9, (n) may be proved similar to the proof of Theorem 1.

Now we fined the limiting low and upper bounds for the time of sequential estimation
T(g). Put for k =1,2

v(k) =inf{n >1: ¢,/kn, > g(k)} — 1,
vi(k) =inf{n >1: c,/kn > g*(k)},
g(1) = g"(1) = 2£(0)"|G (R,

§(2) = i (14 e

g'(2) = 151/2§2672v0(2+ﬁ)(1 + eZ”Oﬁ)TO.

By the definition of 7, and from (43), (45), (48), (49), (51) follows that by small ¢
— in stationary case

(1) <. <v*(1), (52)
— in periodic case

5(2) < 7 < 1 (2). (53)
From (15), (43), (47), (52) and (53) follows the third assertion of Theorem 4:

—in stationary case

(2£(0)) ez < lim €T'(e) < Tim eT'(e) < (2£(0)) " epeqry Py — a.s:;

e—0 e—0
— in periodic case
- 1 .
2(1 4 3h) — — In(1 + 2w —1 — Incyo <
( * ) 2’[)0 n( te ) 2’1)0 nf() 2U0 ne @ =

~ 1 . 1 ~
< Im(T(e) - 5 - Ine '] < lim(T(e) — 5 —1In e <24 Th—
e—0 Vo Vo
1

——In(1+ eQUOh) —lnf +—

Inc,«9y Py — a.s.
2’!}0 2U0 2U0 Har@ o

Theorem 2 is proved.
Remark 2. It should be pointed out that one could obtain the following limiting
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equalities for (i, ) € I; in Problem I
NN RN |
Elg% eT(e) = fijocu;, Py — aus.
and in stationary case in Problem II
. ~ _ -1 .
ll_I)IésT(E) = (2£(0)) "cura) Py — ass.
if the magnitudes p'/?¢~"¢,|G-"(n)| and j'/%¢7'¢,|G="(n)| in the definitions of v,
and 7, correspondingly were replaced by the nearest integer from above and the

sequences (c,) and (k,) were chosen in such a way that the relation ¢,/k, were
fractional for all n > 1.
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