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Kernel Estimation of Functional Coefficients in
Nonparametric ARX Time Series Models*

Woocheol Kimf

Institut fiir Statistik und Okonometrie, Humboldt-Universitit zu Berlin

Abstract

This paper suggests a general functional-coefficient regression model in a form of
ARX time series model. Contrast to the common threshold variable in the previous
works, our model allows each coefficient to possess a different threshold variable and
can cover a wide range of nonlinear dynamic processes. The estimation procedure
consists of two steps; local linear smoothing and marginal integration. The asymptotic
normality of the proposed estimator is derived with the explicit form of bias and
variance.

1 Introduction

While the classical ARMA models (Box and Jenkins, 1970) are popular among practi-
tioners due to easy interpretation and simple implmentability, some nonstandard dynamic
features of economic data often require a more sophisticated approach than a linear scheme.
For example, motivated by a model of noisy trading and arbitrage, the recent studies on
exchange rates (Taylor, Peel and Sarno, 2001; Kilian and Taylor, 2001) show that the spot
exchange rate adjusts toward economic fundamentals in a nonlinear fashion. Both works
used smooth transition models of Granger and Terdsvirta (1993) and Terasvirta (1994)
to capture the nonlinear mean reversion in the deviation of nominal exchange rate from
equilibrium. As another example, Liitkepohl, Terasvirta and Wolters (1998) augmented a
standard error correction model with a smooth transition function to investigate the sta-
bility and linearity of the German money demand. Once one goes beyond linear domain,
there are infinitely many nonlinear form of functions. Thus, unless supported by economic
theory, a given parametric form is prone to misspecification. Without a priori knowledge
on model structure, a data-driven method would be desirable to explore a proper func-
tional specification. The general flexibility of nonparametric method, however, is delimited
by a severe problem of slower convergence rate which is a cost of high-dimensional smooth-
ing; see Silverman (1986). To avoid the curse of dimensionality, the variety of restrictive
structures have been incorporated with general nonparametric models. Additive models
of Breiman and Friedman (1985) is one well-known example.
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This paper follows an alternative line, assuming varying-coefficient models where the
coefficients are a unknown function of random variables. In the previous works, the
varying-coefficient models mostly focus on i.i.d. case of cross-section data. We con-
sider a general class of autoregressive time series models with exogenous variables (ARX)
which are of interest for economic data. More importantly, multiple threshold variables
are allowed; that is, each coefficient can be a function of a different threshold. Let
{ye, Xe, Wi }32 _ o be jointly strictly stationary with X, taking values in R?and W; in
RPT4, The specific model in the paper takes the form of

q p+q
v = B;(Widv—j+ > Bp(Wit) Xex + €1, (1.1)
j=1 k=g+1

where ¢ is iid (0,02), B;(-) is a (unknown) smooth function, and {X}} are exogenous
variables. By letting X; = 1, a varying intercept term can be included in (1.1). Since,
unlike the parametric linear models, the coefficients 3;’s now are allowed to depend on
W;, our model can cover a wide range of nonlinear time series processes, significantly
reducing modeling bias. At the same time, the curse of dimensionality can be avoided
by estimating only one-dimensional functions. The main theorem in section 3 shows that
each unknown functional coefficient can be consistently estimated at the one-dimensional
optimal rate. Also, the results from estimating (1.1) are now easily interpreted, providing
how the regression coeflicients change over different economic states denoted by W. When
W is some lagged variable of y; and Xy; = 0, for allk = ¢+1, .., p+q, the smooth transition
models used in the aforementioned empirical works fall within our model with 3,(-) being
specified as an exponential function. In the early time series literature, (1.1) was studied by
several authors, at least, in a parametric framework. The threshold autoregressive model
(TAR) of Tong (1990) assumed 3;(-) to be a step function of W, while the exponential
autoregressive model (EXPAR) of Haggan and Ozaki (1981) used a more complicated
form of nonlinear continuous functions for AR coefficients. In a nonparametric context,
the study of varying-coefficient models was initiated by the seminal works of Hastie and
Tibshirani (1993) and Chen and Tsay (1993) where the unknown functions were estimated
by the data-driven methods of smoothing spline or running window procedure. More close
to our approach is the recent work of Fan and Zhang (1999) and Cai, Fan and Yao (2000)
which suggested a kernel smoothing method to estimate the coefficient functions. For i.i.d.
samples, Fan and Zhang (1999) developed a new two-step method of local linear regression
and Cai, Fan and Yao (2000) extended the similar technique to the case of autoregressive
time series models. However, the nonparametric models assumed in those works are more
restrictive than (1.1) in the sense that the varying coefficients are determined by only a
single set of variables. In real applications, it often arises that one needs to weaken the
somewhat strong assumption of ‘common’ threshold variables, in order to allow for more
rich dynamic relationship between economic variables. For example, when considering
the relation between the growth rates of nominal income and money stock, it is possible
that the effects of the lagged income and the money stock on the current growth rate of
income are governed by different variables, say, another lagged income and interest rates,
respectively. The varying-coefficient model in (1.1) can easily handle such case and provide
an interesting way of policy evaluation. Although allowing for multiple threshold variables
can increase the flexibility of dynamic modeling, it necessarily complicates the estimation
procedure. This paper proposes a two-step kernel smoothing method to estimate (3,(-)’s



in (1.1). The first step is to obtain consistent estimates for 8,(-), via the local linear
smoothing as in Fan and Zhang (1999) or Cai, Fan and Yao (2000). In the second step,
the preliminary estimates are marginally integrated to achieve the optimal convergence
rate. Note that all the asymptotic results developed in the paper can be applied to cross-
section case, since i.i.d. random samples are a special case of stationary processes.

The rest of the paper is organized as follows. Section 2 defines the two-step kernel
estimator for (1.1). In section 3, we derive the main results including the asymptotic

normality of our estimators. Section 4 concludes and the proofs are contained in Section
5.

2 Estimation

Local linear fitting has been widely used in nonparametric regression due to its simple
procedure and nice properties, since the basic idea was originated by Cleveland, Grosse and
Shyu (1991). Some of its advantages, among others, include the high asymptotic minimax
efficiency (Fan, 1993) and automatic correction of edge effects (Fan and Gijbels, 1992).
Fan and Zhang (1999) and Cai, Fan and Yao (2000) showed the asymptotic properties of
local linear smoothing in varying-coefficient models based on i.i.d. and time series data,
respectively. To estimate ﬁj(-), we define the two-step kernel method based on local linear
regression. Assuming that the second order derivative of 3;(Wj;) exists and is continuous
at W), we can approximate Bj(th) locally by a linear function at point wj :

B;i(Wijt) = Bjo + (Wit — wj)Bj1,

where 3,0 = 8;(w;) and B;; = B;(w;). Let K(-) and L(-) be a kernel function on R'and
R4~ respectively, with d = p 4+ ¢ and h, g be a bandwidth parameter. In what follows,
we adopt the notation W; = (Wj;, W_j;) to highlight a direction of interest Wj; for all
1 < j <d, while W_j; is the (d — 1) dimensional vector that consists of all the rest Wy,’s
1 <k<d,k+# j. Also, for a compact expression, we define X; = (Xi¢,.., Xpt)'; ¥z =
W 1,975 Ze = (XL, Y5)T. Given the observation {y;, X;, Wi}, we get the pilot
estimator of 8,(w;) by considering the following multivariate weighted least squares,

n—+p

q
min Y Ky (Wi — wj) Ly (W_jo —w—3) {ys = > _[bjo + bj1 (Wjs — w)) ]y
{bjobin} 27 j=1
p+q

— Y [bko + brr (Wit — wie) | Xit}, (2.2)
k=1+q

where Kp(w;) = K(wj/h)/h and Ly(w_;) = L(w—_;/h)/h%"t. Minimizing (2.2) with
respect to bjo’s and bj1’s, one obtains the preliminary estimates of ;,’s and 3,;’s, respec-
tively;

Eo(w) = (ElO(wl)’E20(w2)7"7/ﬂ\(p+q)0(wp+q))Ta
Bl(w) = (311(w1)7321(w2)5"7ﬁ(p+q)1(wp+q))T'

In a more compact form, the solution to minimizing (2.2) can be written as

Blw) = ( g(ﬂ; ) — (z707) 770y, (2.3)



where

ZT = (Zp+1, .y Zn—|—p)a Wt = Wt —w, WT = (Wp+1, --aWn—Fp)
A ZOW, Z= (Z7 ZW)a y = (yp-f—la"ayn-f-p)Ta

and

Q = diag{EKn (Wj(ps1) — wj) Lg (W_jpi1) — w—5) s Kn (Wjtng1) — wj) Lg (W_j(nyp) — w—j) }-

Now, focusing only on the level estimates, we define ﬁj (w) = Bjo (w).

Note that Ej(w) depends on w, although the true ;(:) is a function of only w;. This
is because in the kernel regression in (2.2) we simply smooth the data around at the
point of w. That is, our pilot estimates are obtained by high-dimensional smoothing and
their convergence rate is not optimal. To attain the optimal rate, we, in the second step,
marginally integrate the pilot estimates B(wj, W_j1) over W_j;

n+
1 4

> Bj(wy, W_j). (2.4)

t=p+1

5]' (wj )= n
A similar idea has been used extensively in the study of additive models, called marginal
integration; see Linton and Nielsen (1995).

3 Main Results

Before deriving the asymptotic properties of the two-step estimators, we introduce the
necessary technical conditions.

3.1 Conditions

Let a (k) be the strong mixing coefficient of the joint process {y;, X¢, Wi};> ., defined
by

a(k) = sup |P(ANB)—-P(A)P(B),
AeF? , BeFE

where F be the o-algebra of events generated by {yx, X, Wk}zza. Ifa(k) > 0ask — oo,

the process {y:, X¢, Wi}io _ . is strongly mixing.

Al {y, Xy, Wi} is stationary and strongly mixing, and e; is i.i.d. with E (e Z;, W) =
0 and
E (e2|2, = 2, W} = w) =02 (z,w) < .

A2. The functions 3,(-)’s have bounded Lipschitz continuous second order derivatives
foralll1 <j<d.

A3. The stationary distribution function F'(-) has a density p(-). The function p(-),together
with the densities p;(:) of Fj(-) and p_;(-) of F_;(-) are all uniformly bounded away
from zero and infinity and have bounded Lipschitz continuous second order deriva-
tives, for all 1 < 5 < d.



A4. The matrix E (WTW|Z) is of full rank, and E(WTW|Z,)~! is bounded element-

wise.

A5. Both kernels K(-) and L(-) are symmetric bounded, compactly supported, and
Lipschitz continuous with [ K (w;) dw; = [ L(w_;)dw_; = 1.

A6. g,h | 0 and nhg® ! 1 .

A7. g% /h? = oo, nhg®4=1) /In?n — oo, g?/h? — 0, and h = hons .

Most of the assumptions above are standard in kernel regression. The additional
bandwidth condition in A7 is assumed to apply the approximation argument of Lemma
4.2 and 4.3 in Yang, Hérdle, and Nielsen (1999).

3.2 Asymptotic Properties

To facilitate the asymptotic derivation, we begin with rewriting the estimates in terms of
second moments. For notational convenience, define
th — Wy W_jt - w_])

h, ? g ?

Wthz(

and

Q = diag{[’£+q’ga -9, hagﬂg}

Then, the pilot estimates in (2.3) can be expressed as

Blw) = ( 2lw) ) — Q7157 (w)tn (w), (3.5)
where
_ _ SOn(w) Sj;L(w) _ tOn(w)
S = Sn(w) = [ S1n(w) Slgn(W) ] ) tn(w) = [ tin(w) ]

with

SOn(w) ~ZtZ,;T

Sln(w) n+p ~ZWt~Z;‘F

Son(w) | = Z Kn (Wit —wj) Lg (W je —w-j5) | ZweZy, |,

ton (w) " ispt Zys

tin(w) Zwiyt

Since we are only interested in the level estimates, we can separate them out by premul-
tiplying B(w) with e]T =[o0,..,0,1,0,..,0]. From eTQ 1= eT the local linear estimator of
/Bj(wj) is

~ ~ ~

Bj(w) = Bjo(w) = €] B(w) = €] S, (w)tn (w). (3.6)



Our first lemma concerns the decomposition of the estimation errors into two parts of
bias and stochastic terms. For the following lemma, we only need the differentiability of
coefficient functions. See section 5 for proof.

Lemma 1 Under A.2,
2

i) B (g w5) — B, y) = Fulow) + o Buow) + 0, (2), (37)

where 7, (w) = e]TS;l(w)Tn(w) and Bp(w) = e;‘-r’S;l(w)B;l with

1 n+p
To(w) = ” Z Kp (Wje —wy) L (W—Jt_w—J)(ZtTaZ{/llz:t) Ets
t=p+1
1 o W~t—w-
B (w) = n Z Kp (Wit — wj) Lg (W_j — *])(ZtTZ]t’Z 1Zjt) (%)2 ;‘I(wj)-
t=p+1
s h?
i) B;(wj) = Bj(ws) = T (w;) + 5 Br(wj) + 0p(h%),
where
n—+p
Ta(wy) = — Z TS (wj, W_ji)Tn(wj, W_j1),
sl
n+p
B (wj) = - Z ef Syt (wj, W_j1) By, (wj, W_j).
"

Now, applying the mean square convergence for the bias term, B} (w;) and the asymp-
totic normality of the stochastic term, 7, (w;), in Lemma 5.1 and 5.3 of section 5, we obtain
the main theorem. Henceforth, let I'(w;, W_j1) = Ejw =(w;,w_,,) (Z1Z1), with Tj(w;, W_;;)
being the j-th row of I'(w;, W_j;;), and 0%(w, z) = E(e2|W = w, Z = 2).

Theorem 2. Assume that A.1 through A.2 hold. Then,
R U .1 d
nh[B;(w;) — B;(w;) — Bias] = N(0, ||K‘|27j(wj))a

where
h2
Bias = = 9-'(wj)/K(u)u2du,

r Piv_;(3)

ds.
pw (wj, )

v (w;) = / T (w5, 9) Bl —(uy )02 (05, 5, Z1) 20 2205wy, )7

Theorem 2 shows that the two-step estimator achieves the one-dimensional optimal
convergence rate, and, as in Fan (1992), its asymptotic bias is of a simple form, consisting

of only the second order derivative. If we further assume that E(e2|W,Z) = o(W),

) ) B Py () .
the asymptotic variance reduces to ||K||3 fI‘j l(wj,s)ag(wj,s)]#mds. In this case,

Theorem 2 coincides with the results on the marginal integration estimator for additive
models, see Linton and Nielsen (1995).



4 Conclusion

Varying-coefficient models are a useful tool which allows the flexibility of nonparametric
method, while still preserving the estimability and interpretability of the model. In this
paper, the previous results on varying-coefficient models are generalized in two directions.
Instead of commonality condition on the threshold variables, the regression coefficients in
our model possibly possess a different threshold variable. Also, in order to capture the
variety of nonlinear dynamic relations, we assume a very general form of data generating
process based on a stationary autoregressive model with exogenous variable. To estimate
the unknown coefficient functions, a new two-step procedure is proposed by combining the
local linear fit and marginal integration method. The new procedure is shown to attain
the optimal convergence rate. Although the model in the paper confines the interest to
estimating conditional mean relation, we may extend the idea of functional-coefficient
models into the study of conditional volatility. For example, some empirical findings such
as Schwert(1989) indicate that stock market volatility rises sharply during recessions and
drops during expansions. To study such an issue, one can think of replacing the ARX
setting with a functional-coefficient ARCH model.

5 Proof

Proof of Lemma 1. We first separate out the leading stochastic term of the estimation
€rrors;

*

B(wjyw ) — By(wy) = €7 S w)rn(w) + [T 57 W)ty (w) — By(wp)] . (58)

where % (w) = [t (w), ] (w)]T with

i 1 n+p q p+q

ton(w) = - D Ky (W —wy) Ly (Weju —w_) Z>_ B;(Withyr—j + Y, Br(Wie) X,
t=p+1 Jj=1 k=g¢+1
1 n+p q p+q

mw) = —~ > Ky (Wi —wj) Ly(Wje —w ) Zign > Bi(Widye 5+, Br(Wie) Xir)-
t=p+1 j=1 k=q+1

Observe that

Bi(w)) = e QN (Q'z"0zQ™) 'Q~'z"0zB
= eI'S, Y(w)Q ' ZTQ[ZB, + hZlyBy),

using the identity 3, (w;) = ej(ZTQZ)_IZTQZEa where 3 = (B?,Eg)T, B = (B (wj),B_; W_)]",
By =10,., B (w;), .,0]7. Under the twice differentiability of B;(:) in A.2, we use Taylor
expansions to get

B;(Wj) = B(ws) + h(Wjs — wj)/hp(wy)
+(h?/2) (W) — w;)/h)? B} (w;) + op(h?).

If we plug in this in the expression for ¢ (w),

*

to(w) = Q7 ZTQIZB, + hZjy By + (B /2)(Wje — w)) /) B} (w;) Ze; + op(h?)).



This implies that the second term in (5.8) is
TS_l( )t (w) — B (w))
= (W) {tn (w) — Q7' ZTQZB, + hZj, By]}

_ h TSy ()Q_1ZTQZ6]-[(TU)J) " (w;) + op(h?)]

h2 o 2
= 7 Sn ! (w) By (w) + op(h?),
where
n+p Wt w
S K (Wi = wy) Ly (W = w3) (2] Zy, 2250 (202 B wy).
_p+1
The decomposition result for a two-step estimator now follows directly by (3.6). =

Lemma 5.1.

(i) Under A.1 through A.5,

Ejw—uw(Z:Z}) Optq)x(p+a)

here S = ;
where 5(w) = pw(w) Oprgxpre  Bw=w(Z1Z]) © diagpq{ni.}]

(ii) Under A.1 through A.6,
By (wj) 5 B (w))uk-
Proof . By the standard law of large numbers on stationary time series, we get
Son(w) = B(Ky, (Wje —wj) Ly (W-jt —w-j) ZZ}),

and, applying the integration with substitution of variable and Taylor expansion, we can
show the expectation term is equal to

/Kh (uj —w;) Ly (u_j — w_j) vo" pw, z(u, v)dudv
/K 57) Lg (s—j) vo" pw, z(w + hs,v)dsdv

= () [ oz w,v)dsds = pu(w) Bl Z2F).
Using the same argument, it follows that

Sin(w) & E(Kp (Wje — wj) Ly (W_jo — w_;) Zw1 Z]")
Wi —w; W_ip —w_;
- / i (1 = 05) Ly - = w5 o © (P24, BT u,v)dud

i) [0 © slolpw z(w, v)dsdv

1R
—
.

_ /[U o /K(sj) L (s—;) sds]oT pw. 2 (w, v)dv = 0,

8



and

Son(w) B B(Kp (Wit —wj) Ly (W-jt — w_;) Zw: Zjy,)
— /Kh uj —wj) Ly (u—j —w_j) v © (Wﬁh_wja thg_ —
Wit —wj Wjr —w;
h g

/K (s7) L (s—j) [v @ s][v ® s]" pw.z(w,v)dsdv

1)) x

[v o ( )]pr,z(u,'u)dud’u

1R

= pW(w)/(vaG/K(Sj)L(s_j) SSTdS)pz|W(’U),’U)d’U

= pw(w)[Ew=yw(Z:2]) © diagyq{ni}],

where u%{ 1 is a (p+¢q) x 1 column vector whose j-th element is ,u%{ with others being ;z%
and p?% = [ K(u)u’du.

(ii) By the strong convergence theorems for stationary time series (with strong mixing
condition) in Masory (1996), it holds that, uniformly in (w;, W_j;),

cov(Dy, Dy) = p'=*{O0p(h + Inn/v/nhg®=1)}?,
where
Dy = S5 (wj, W) — 87 (w;, W-j1).
Let

Iny = Kn (Wje — wj) Ly (W_ju — W_3) (Z{ Zjv, Z{y}, Zj1) (%)2 i (w;).
Then, it follows from Lemma 4.2 in Yang at al (1999) that
E(IyIgq) = pm b=k O(1/hg™ 1),

uniformly, for s,¢,1, and k. Thus, under the bandwidth conditions in A.6 and A.7,

n+p n—+p
LS At Y I
l =p+1 _p+1

1
= WOp(h +1Inn/v/nhgi-1)

h Inn 1 h? Inn
- 0 + -0 N
vl nhgd=1 ”hgdfl] p[\/nh( gt nth(dfl))]
1

= Op(\/ﬁ)’
which implies
By (wj) = — ej S~ Hwj, W_ji) By (wj, W_j1) + 0p(—=).
" nh



Now, it is straightforward to calculate the probability limit of bias term.

n-+p

Bh(w;) =~ — Z pw (wj, W_) [T (wj, W_j1) O1x(p1q) Br(wj, W_j1)
l p+1
n—+p

= - Z Py w]aw—]l) (wJaW—gl)
l p+1

n+p
W. — W;
— Z Kn (Wit —wj) Lg W_je = W_j) Ztht(%)Zﬁ;’(wj)

_p—|—1
n+p n+p
= Z Kh ]t_wg Z pW wga )F l(wJ’W*jl)Lg (W—jt_W*jl)]
t p+1 l p+1
Wi — w;
xztzjt(iﬂh 2)?
n+p oy
=~ Z Ky, (Wi —w;) py (wi, W_j)pw_; (W)U (wj, Weje) Ze Zje (—F—
t p+1

D B (wy)) E{Kp (Wj1 — wy) piyt (wj, Wego)pw_; (W) T (wj, W 1) Zo Zji

D wi, W_s4, Z.
;!(wj)ﬂ%(/ j w], —jt {/Zt jt WZ . Z t)dZt}PW,j(ijt)dW—jt
w(w;, W-jt)

1R

= ;-'(wj)/ﬁ(/rj (wj,W_jt)[Pj(wj,W—jt)] pW_j(W—jt)dW—jt
= B (w))pk-

The last equality comes from the fact that '(w;j, W_;;) is symmetric and [T (wj, W_;;)]T =
T7(wj, W_j;), where I'V is jth column of T. m

Next we proceed to asymptotic normality of the main stochastic term. Our proof for
asymptotic normality is based on the central limit theorem of Lipster and Shirjaev (1980).

Lemma 5.2. (CLT for martingale differences: Lipster and Shirjaev, 1980, Corollary
6) Let, for every n > 0, the sequence n™ = (Wnk,Fk) be a square integrable martingale
difference, i.e.,

E(NpilFr—1) =0, E(n}y) < oo, L<k<m (5.9)
and let
n
> E(n2) =1, Yn>ne>0. (5.10)
k=1

10

Wji — w;



The conditions

n

ZE(n%M}—k—l) P31, asn = oo, (5.11)
k=1
n
ZE(n%kI [0kl > €)|Fro1]) =2 0,as n — o0, Ve >0, (5.12)

k=1

are sufficient for convergence

n
Z nk
k=1

LN N(0,1),as n — oo.

Lemma 5.3. Assume that A.1 through A.2 hold. Then,

where

Tolws) = —

1R

1

1R

Vnhig (w;) 5 N(0, ||K][2; (w))),

2
pw_-(s)
(wj) = [ T7Hwy, $)Ejw—=(w, 50> VAV AR —7_"_ds.

7](“’9) / J (wj, s) IW—(wJ,)[ 2(wj,8,21) 21 1] ('wj, ) pw (w;, ) S
Proof. Using the same argument in (ii) of Lemma 5.1, it follows that

n—+p 1

T

LS S g, W a0, W) + 0p( )

Lt vnh

n—+p

Z pw WEy_ . w ) (Zi1 21 Ta(wj, W_j)

_p+1

n—+p

Z P (wj, W_i) [T (wj, W_j1) O1x(ps-q))Tn (w5, W_j1)

"

n—+p n+p

Z pW w]aw—Jl)F wjaW—]l Z Ky (W, )L (ijt_W—jl) Zyey

l=p+1 —p+1

n+p n+p

Z Kp (Wit — wj { Z Py wJ,W_Jl) (wjaw—gl) g (Woje = W_j)} Ziey

t p+1 —p+1

n—+p

Z Kpn (Wjs —wj) pyy (wj, Wji)pw (W )T (wj, Wjt) Zuey

t p+1

Let

%‘t(wjaW—jt,Zt) = P'_l(wj,W,jt)

J

o2 (Wi, Z4) Zo Z{ T (wy, W) Ty (wyi, W ji)piy_, (W 1),

Y (wj) = Eﬁjt(wja W_jt, Z)]s
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and
1

= ————EKn (Wi — wy) pyr (Wi Wji)pw (W)U (wy, Weji) Ziev.
1K [Py (w;)

SIS

Note that

vj(wj) = / T (wj, 8)02 (Wi, Z4) ZuZy T H(wjy 8) piy_ (8)p? (w), 8)pw, z(wj, 8, Z1)dZyds

_ wi, W_j, 7. _ _
= [ ol 2w 22z P I ) )Ty (0 )
ja

- /r (wj,s)E (02(Wi, 70) 70 Z0)T; (u; g i)
= j 5> S W =(wj,s)\T ty 4t ) L4147 iy S pW(’IUj,S) .
Let G; = o(vg, v4—1,..,v0) is the o-algebra generated by {v;}y | with vy = (y4, Xyp1, Wig1).
In the following, we show the validity of (5.9) through (5.12). The equality in (5.9) is
obvious, since E (g,|Wy, Z;) = 0.
From

E|gH [\/EKh ( w]) Pw (wja W—]t)pw (W—Jt)r (wja W—Jt)Zt‘ft]
1 ~
= EKZ (Wit — w;i/h) ¥ (wj, W_jt),
it is easy to check that

= 1 o= K? (Wi —wj/h) 3 (wj, W_j1)
E(n2,|Gi1) = — j j 305 Wgt) 513
t_zl (n24]Gs-1) nh; K, (w;)] (5.13)
and
1 ~
E[EK2 (Wit —w;/h) ¥ (wj, W-j1)]

1
= E{3 K> (Wi = w;/h) py (wj, Wojo)piy_, (W o) U5 (wy, Woju) ot 224 T3 (wj, Woje) '}
= |IKIPE{py’ (wj, W jt)ply_, (W )05 (wj, W i) [0 Z:Z{ 05 (wy, W j1) T}
= [1K[[*y;(w))-

Hence, by the law of iterations and the stationarity condition, (5.10) holds;

> E(ny) ZE (Mt Ge—1)) = 1.
t=1
To show (5.11), we just consider (5.13) and
1 n
" D K (Wi —wj/h) 7 (wj, W_j1)
t=1
1 ~
S E[EKQ (Wit — w;/h) ¥ (wj, W_ji)]-

12



It remains to show (5.12). Using the conditions that K(-) is bounded and compactly
supported, py (-) is bounded below from 0, and E~1(Z;Zl'|W = w) exists for all w, we
can show that for n > ng,

1 Wi —w;, _ _ _
n < CIEKQ(%)pVI/?(wj’W—jt)F]’ Nws, Wojt) ZeZ{ T (wj, W_je) "€}
1 W't — Wj
< Cp—K(——L)u?
>~ 2nh ( h )Ut )

where C; > 0 is a constant and u; = (¢! Z;)e;. Hence

E [7772ztI(|77nt| > T)‘gt—l}

1 Wit — w; - -

< oy K(F5—)" 2,20 oB [1(¢" Zier| 2 mnh G5 ||K I )G
1 Wi —w

= CQ—hK(JtTw])(cTZtZ;‘FC) x o(1), as n — oo,
n

from F (Zithtef) < C3E (ZyZjt) < 0o, where o(1) does not depend on ¢. This implies

ZE (12 (14| > 7)[G—1]

t=1
1 " W~t—w~
< — > KL (" %z
< o ok () @zt
= o(l)/K(s)dscTE(ZtZtT)c, asn — oo, V71 >0,

which builds up the validity of all necessary conditions for

an N N(0,1) as n — oo.
t=1
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