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Abstract

The analysis of diffusion processes in financial models is crucially dependent
on the form of the drift and diffusion coefficient functions. A methodology is
proposed for estimating and testing coefficient functions for ergodic diffusions
that are not directly observable. It is based on semiparametric and nonpara-
metric estimates. The testing is performed via the wild bootstrap resampling
technique. The method is illustrated on S&P 500 index data.

JEL classification: C51, C52, G22

Keywords: Diffusion, Identification, Continuous-time financial models, Semi-
parametric methods, Kernel smoothing, Bootstrap

1 Introduction

The analysis of time series and diffusion models with stochastic variance and
covariance has been very intense in the last decade. In particular, the research on
stochastic volatility models in finance has been driven in several directions, see
Ghysels, Harvey & Renault (1996) and Frey (1997) for a survey. One direction
is related to modern continuous time finance, see Genon-Catalot, Jeantheau
& Larédo (2000), where one has realized the necessity to relate empirically
observed volatility or implied volatility data to theoretically derived stochastic
volatility models. Another direction focuses on time series models for asset
price and volatility which provide a well established framework for testing and
modeling nonlinear variance structures in finance, see Engle & Bollerslev (1986).

As shown by Nelson (1990) and Duan (1997), standard time series models,
such as ARCH, GARCH etc., converge for vanishing time step size between
observations towards corresponding diffusion models. These diffusion models
are fully characterized by their drift and diffusion coefficient functions. The
particular choice of the time discretization is not essential for a discrete time
approximation of a diffusion process as long as the maximum time step size
is small enough. Since real data are very frequently observed it is natural to
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interpret these as values of a discretely observed diffusion process or those of a
corresponding discrete time approximation of a diffusion. The main statistical
task in such a diffusion approach is the identification of the underlying drift and
diffusion coefficient functions.

To handle this task in standard situations, a well developed statistical theory
is now available. Parameter estimation methods for discretely observed station-
ary diffusion processes have been derived, for instance, by Bibby & Sgrensen
(1995), Hansen & Scheinkman (1995), Ait-Sahalia (1996), Gallant & Tauchen
(1996) and Kessler & Soerensen (1999). Hansen, Scheinkman & Touzi (1998)
consider a nonparametric method based on the spectral decomposition of the
conditional expectation operator to identify the drift and diffusion coefficients.
Jiang & Knight (1997) propose nonparametric estimators for the drift and dif-
fusion coefficient, that are based on the approximation of the local time process
and the estimation of the marginal density of the diffusion. A crucial assump-
tions for most of the developed estimation techniques is that a stationary dif-
fusion is directly observed. Unfortunately, in reality this assumption is often
not fulfilled. For instance, Genon-Catalot et al. (2000) consider a stochastic
volatility model where the observed stock price depends on a hidden volatility
process, which is itself a stationary diffusion.

We study here a case where a non-stationary diffusion process, an index, is
observed. To be able to apply methods that rely on ergodicity we express the
observed process as the product of an ergodic process and a smooth function
of time. This smooth function is interpreted as average growth of the index.
Due to the unknown impact of the average growth on the observed data, the
ergodic part of our model is not directly observable. The proposed methodology
combines recently developed nonparametric and parametric methods in order
to estimate and probe the drift and diffusion coefficients of the ergodic process.

To illustrate our methodology we concentrate here on the empirical analysis
of a particular stock market index, the S&P 500. The statistical analysis of
stock prices, exchange rates etc. is similar but not in the focus of this paper.
We concentrate here on the case where an index is modeled by a scalar diffusion
process.

The framework of Platen (2000) fully characterizes a financial market by
the specification of the different denominations of the, so called, best bench-
mark portfolio. The stock index and the index benchmarked stock prices can
be interpreted as denominations of the best benchmark portfolio. As a conse-
quence, exchange prices are ratios of corresponding denominations of the best
benchmark portfolio. Furthermore, this portfolio represents the optimal growth
portfolio, see Karatzas & Shreve (1998). A well diversified market index, as
the S&P 500, comes close to the optimal growth portfolio. For this reason,
the inference for the index is also the first step in the statistical analysis of an
exchange rate or stock price.

We assume that an appropriately normalized index process X = {X(¢),t >
0} can be interpreted as an ergodic process. Based on this assumption we focus
on the inference of this normalized process X instead of the index S = {S(¢),t >
0} itself. This allows us to direct our attention towards the identification of
the drift and diffusion coefficient functions of an ergodic diffusion. In Figure
1 we plot the S&P 500 index S with daily data from 1977 to 1997 together
with an average index S = {S(t),t > 0}. Such an average index S can be
obtained in different ways. For instance, it could be exogenously given by a
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function of economic and financial quantities, i.e. inflation rate, growth rate of
the domestic product, interest rate, etc.. It could also be derived by a kernel
smoothing procedure, with an appropriate bandwidth or filter length h. This is
the choice which we will study in this paper.

We construct the normalized index X by dividing the original index S by
the above described average index S, that is

S(t)
X(t)= == 1.1
0= 35 (1)
for ¢ > 0. The resulting normalized index X, derived via a kernel smoother,
is shown in Figure 1. Its path resembles that of a stationary diffusion process.
Note in the middle of our plot the sudden decline caused by the 1987 crash,

which we do not remove from our sample.
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Figure 1: S&P 500 index S, average index S and normalized index X

We assume for the value of the index S(t) at time ¢ a representation of the
form

S(t) = S(0)Z(t) exp {/Ot n(s)ds} (1.2)
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for t > 0. Here n(t) is interpreted as the deterministic, time dependent growth
rate of the index at time ¢. Furthermore Z(t) denotes the value of a positive
ergodic diffusion process Z at time ¢, that means, Z solves the Itd stochastic
differential equation (SDE)

dZ(t) = m{Z(t)}dt + o{Z(t)}dW (t) (1.3)

for ¢t > 0. Here W = {W(t),t > 0} denotes a standard Wiener process and m{.}
and o{.} are the drift and diffusion coefficient functions. Due to the factor S(0)
we assume that Z is stable about 1, which models a mean reverting behavior.
On the other hand, Z(t) has to be positive for all £ > 0.

To make our parametric model specific we may choose for Z a square root
process, that is positive and stable about an equilibrium reference level. The
square root process is also known as the Cox-Ingersoll-Ross (CIR) process, see
Cox, Ingersoll & Ross (1985). The functional form (1.2) that models the index is
a special case of the minimal market model (MMM) proposed in Platen (2000).

Another parametric model arises if we choose

Z(t) = exp{U(t)} (1.4)

with an Ornstein-Uhlenbeck process U = {U(t),t > 0}. This leads us to the
exponential of an Ornstein-Uhlenbeck process as index model. Such a model
has been used, for instance, in Féllmer & Schweizer (1993), Platen & Rebolledo
(1996) and Fleming & Sheu (1999).

To compute the average index S in (1.1), we apply a kernel smoother to
the logarithm of S and then calculate S as the exponential of this smoothed
process. This removes the average deterministic growth in (1.2). For the analysis
of the resulting normalized index we have to take into account that the residuals
InS —1In S are corrupted by the smoother. This will be shown in detail later on.
It means, that the normalized index X is not a diffusion and in particular it does
not equal the diffusion Z. For this reason we cannot directly apply estimation
methods for discretely observed diffusions. From the statistical point of view
we are faced with a nonparametric regression model with error terms that are
not independent and identically distributed but are the discrete observations of
a diffusion process. The analysis of these error terms and the clarification of
their relationship to Z is a main task in this paper.

We remark, that the index process S is itself a diffusion. When Z is specified
according to (1.4) with an Ornstein-Uhlenbeck process U, Ité’s formula yields
the representation

¢
dS(t) = {n(t) — B}S(t)dt + yexp {/0 n(s)ds} dW (t) (1.5)

for t > 0. The parameters 3, v and 1 cannot be easily separated in this repre-
sentation. For this reason, we develop a statistical methodology for models that
are based on the representation (1.2).

In Section 2.1 we introduce the parametric model for Z. The kernel smooth-
ing and the computation of X is described in Section 2.2. The choice of the
kernel and bandwidth and its influence on the average index is discussed in Sec-
tion 2.3 together with the corresponding parameter estimation methods. Section
2.4 introduces discrete time approximations of diffusion processes and Section



Hardle et al. Semipara. Diffusion Estimation 5

2.5 describes the nonparametric estimation of drift and diffusion coefficient func-
tions. In Section 2.6, a parametric model is tested versus a purely nonparametric
alternative. This test is carried out by the bootstrap technique described in Ap-
pendix A.3. In Section 3 and 4 we apply the introduced methodology to S&P
500 data and also in a simulation study.

We remark that the proposed methodology applies directly to situations,
where normalized data can be modeled by an ergodic diffusion process. Em-
phasis is here given to the case of an Ornstein-Uhlenbeck process, and results
on the influence of the kernel smoother are included for this case.

2 Statistical Methodology for a Normalized Dif-
fusion

2.1 Parametric Models

As discussed in the introduction, one can, in principle, use various parametric
ergodic diffusion models. Let us mention two examples. Both of them have mean
reverting drift coefficients. In the case where the squared diffusion coefficient
has the form

o%(z) = v?z, z>0, (2.1)

with a positive constant v, we obtain in (1.2) a square root process Z. Here we
assume that Z satisfies the SDE

dZ(t) = {1 — o Z(t)}dt + v/ Z(t)dW () (2.2)

for t > 0 and with ¢ > v?/2, ¢ > 0. Note that a stationary and ergodic solution
of (2.2) exists with the expected value puo = E[Z] = /¢ > 0. Since the ratio
Z(t)/poo is again a square root process and any constant term can be absorbed
by S(0) in (1.2), one can for simplicity assume that po, = E[Z] = 1. This choice
leads us to the SDE

dZ(t) = {1 — Z($)}dt + v\/Z ()W (t). (2.3)

for t > 0.
We obtain a second example for an ergodic diffusion by defining Z as in
(1.4), where U denotes the well-known Ornstein-Uhlenbeck process with

dU(t) = —BU (t)dt + dW (2). (2.4)

for t > 0. Since U fluctuates about its reference level 0 and is ergodic, Z as
given in (1.4) is an ergodic, positive diffusion process fluctuating about 1.

2.2 Kernel Smoothing

Denote by K} a smoother with a kernel K and a bandwidth h. The smoothing
of any process is denoted by a convolution operator (x). As mentioned before,
the normalized index X (¢) in (1.1) can be defined by the exponential of the
difference of

L(t) = n{Z(t)} (2.5)
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and its smoother (K, x L)(t), that is:
X(t)=exp{InS(t) — (KnxInS)(t) } =exp{ L(t) — (Kp*xL)(t) }. (2.6)

Equation (2.6) holds if we neglect the difference between the accumulated de-
terministic growth rate fg n(s)ds in (1.2) and its smoother, this means:

/Ot n(s)ds — (Kh * /0' n(s) dS) (t) = 0.

Here we arrive at a delicate point of our study. If we want to remove efficiently
the deterministic growth rate in (1.2), then the value h should be chosen rela-
tively small. Indeed, smaller values for h reduce the bias. On the other hand,
the smaller the value of h is chosen, the more X is corrupted by K}, * L in (2.6).

The smoother K}, x L is differentiable for differentiable kernels K and thus of
bounded variation. Due to the smoothing procedure K}, * L involves also future
information about L. Thus X is not a diffusion process. For this reason, we
cannot treat In X (¢) in (2.6) as the logarithm of a square root process or as an
Ornstein-Uhlenbeck process. A more detailed analysis of X has therefore to be
performed. This is the objective of the next section. However note, in the case
when S is obtained exogenously and not by a smoothing procedure, X might
still be a diffusion.

2.3 Estimation of Parameters
In this section we assume that the only observations available are those of
In X (t) = L(t) — (Kp = L)(t) (2.7)

in (2.6) and that L is the Ornstein-Uhlenbeck process U given in (2.4). The
estimation problem that we now consider is that for the parameters g and v in
(2.4). In principle the value of vy can be restored from the quadratic variation of
either Z(t) or L(t). For differentiable kernels K}, in (2.6), the process (Kp*L)(t)
is also differentiable. For this reason it holds that

n

T
2 L?
. A g L? 9
Alg—rio ;:1 { In X (iAt) —In X (iAt — At) } /0 d< L > (2.8)

for n = T'/At. Here d < L >; denotes the differential of the quadratic variation
of the process L at time ¢. Empirical results confirm that the quadratic variation
is not sensitive to the choice of h. For more details on that see Table 1. The
following formula provides a stable estimate of 42 in the form

Il

42 T2 3" { InX(iAt) - In X (iAt — At) }*

=1
T
A T—l/ d<L>;. (2.9)
0

To estimate the speed of adjustment parameter 3 in (2.4) we could use the
well-known form of the stationary variance of the Ornstein-Uhlenbeck process
L. Along with (2.9) this would result in a first estimator of 8 with

BL=4%/@2Var[L)]). (2.10)
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Unfortunately, the substitution of Var[L] by Var[ln X] makes §; strongly de-
pendent on h. Indeed, the variance

Var[ln X] = Var[L — Kj = L] (2.11)

increases as h grows, and only for very large values of h we can expect that
Var[ln X] = Var[L].

It is not just the variance of the random process In X that changes with h.
Also its autocorrelation function depends on the bandwidth h. The correlation
between the values of the process In X, distant by a constant time length 7 > 0,
diminishes as h decreases. For this reason we propose a selection method for
h based on the simultaneous estimation of 8 from the variance and from the
autocorrelation function of the process In X. The idea is simple, if for each value
of h there are two different estimates of the same parameter 3, then the best
choice of h is considered to be that, which brings these estimates as close as
possible to each other.

The autocorrelation function p(X)(7) of the Ornstein-Uhlenbeck process L
equals

pB) (1) = e=PT (2.12)

for 7 > 0. Thus, 8 represents the absolute value of the slope of this function at
zero. Hence another estimate of 8 from the observations of L would be

= 150 213
where
ot _ . plr+s)—p(1)
EP(T) - 34}16,113>0 S

for 7 > 0 denotes the right hand derivative of p with respect to 7.

Unfortunately, the estimator in (2.13) is not feasible since L is not observed.
In Appendix A.1 we show for the process In X that its stationary variance is
asymptotically

Var[ln X] = ; (1 - ﬂ_h +O(h™?) ) as h — oo, (2.14)

where the constant ckx depends on the kernel K. Furthermore, we prove in

Appendix A.1 for the autocorrelation function pg“ X) (1) of In X the asymptotics

"Xy = Corr[In X (7);1In X (0)]

BT _cx 4+ O h72)
e &+ (r
= 2 , >0 2.15
1- B—Ifz + O(h~2) ( )

as h — oo with the same constant cx asin (2.14). In Appendix A.1 this constant
is calculated for the rectangle and the Epanechnikov kernels.

It follows from equation (2.14) that the first-order approximation of the
stationary variance of In X is

Var[ln X] = {1 - @} Var[L). (2.16)
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By (2.15), the slope of the autocorrelation of In X at zero is asymptotically

Ot (I
A O - (217)

_ — CK
7=0 Bh

as h — co. Thus this slope is steeper than that of pl at 7 = 0.

The immediate consequence of (2.14) and (2.15) is that the formulas (2.10)
and (2.13) for /3’1 and /3’2, respectively, have to be modified if the process In X
rather than L is observed. In Appendix A.1 we show that the correct modifica-
tion is provided by the expressions

22

s e _ex
A = Srinx] ~ (2.18)
and
5oy 10T anx) CK
By = 5" 00| _ -5 (2.19)

respectively. Finally, our method for the selection of h is based on the following
balance equation

Br(h) = f2(h) (2.20)

which equals both estimates.

After h is chosen, we need to restore the process L, which is needed in
the remaining nonparametric and parametric analysis. From (2.6), proceeding
formally, one arrives at the following iterative formula:

L=mX+Ky+L = InX+Kp*(InX+Ky*L)

= WX+ KpshX+KpxKpxlnX+....(2.21)

The justification for the restoration formula (2.21) comes from the fact that
if one neglects the boundary effects, the smoothing operator K}, is a contracting
operator in Lo, as shown in Appendix A.1. In the practical application of (2.21),
we rely on the fact that the smoother of the original process L is close to the
smoother of L— Kp* L. In practice, only one or two convolutions are meaningful.
After the restoration process is completed, the parameter 3 can be estimated
directly from L by (2.10).

We were able to establish in this paper the above correction terms for the
Ornstein-Uhlenbeck process. One could, in principle, estimate parameters also
under the assumption that X itself is a square root process or another ergodic
diffusion. However, if the average index S is calculated via a smoothing proce-
dure, a similar bandwidth selection method has to be developed. At that stage
this is left for future research.

2.4 Discrete Time Approximation of a Diffusion

We interpret the process Z(t), which appears in (1.2), as a positive ergodic
scalar diffusion process that is the solution of the SDE (1.3). The drift m :
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[0,00) = (—00,00) and the diffusion coefficient o : [0, 00) — [0, 00) in (1.3) are
assumed to be sufficiently regular, such that a unique solution of (1.3) exists.
For the existence of an ergodic solution of (1.3) the drift and the diffusion

coefficient must satisfy some ergodicity conditions, see for instance Bibby &
Sgrensen (1995). The most important condition is that the stationary Kol-
mogorov forward equation

1

2 {2 (@m(=)} —m(z)po(2) = 0

must have a solution pg(z) which is then up to a constant the stationary prob-
ability density.

In particular, the above conditions hold for the exponential of an Ornstein-
Uhlenbeck process with a log normal stationary distribution and for the square
root process which has a Gamma-distribution as stationary distribution.

Let us assume that the diffusion process Z is observed at discrete times
t; =iA,i=1,2,..., with a time step size A > (. Here we suppose that A is
small or, more precisely, will tend to zero asymptotically. Under rather weak
assumptions, see Kloeden & Platen (1999), on the functions m and o2, it can
be shown that the Euler approximation

t t
ZA(t) :ZA(0)+/ m{Z(t;,) }ds +/ a{Z2(t;,) YdW (s) (2.22)
0 0

with ¢;, = max{t;, t; < s}, converges in a mean square sense to Z as A — 0,
ie.,

lim B [ sup |Z2(t) — Z(t)|2] —0, T>0. (2.23)
A—0 0<t<T

From now on, we assume that a discrete time approximation Z2 exists in
the form of (2.22), and that the convergence property (2.23) holds. For the
purposes of this paper, A will always be considered to be small enough so that
one can substitute Z by Z2 without any major error in our interpretation of
the observed data. The concrete choice of A does not matter since all the
relevant information about the model is contained in the drift m and diffusion
coefficient o. As the estimates of moments of higher order terms in the case of
the daily observed S&P 500 show, the step size A corresponding to the given
daily observations is small enough so that the difference between Z2(t;) and
Z(t;) is indeed negligible. Thus we interpret the increments of the observed
data as those of the Euler approximation (2.22), that is

ZA(tiy1) — Z8(t:) = m{Z2(t:) YA +o{Z2) W (tip1) — W (t:)} (2.24)
for i = 0,1,.... Note that the observations (Z*(t;)), i = 0,1,... form a state
dependent time series.

2.5 Nonparametric Estimation

For two consecutive observations Z2(t;) and Z*(t;;1) of the above time series
we define the increment

Y; = Z%(tip1) — Z2(t:) = m{Z2(t:)}A + o{Z2 (t:) }V Ae; (2.25)
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with independent standard Gaussian random variables

W(tiy1) — W(t;)
VA

It is now possible to use the increments Y; to estimate the functions m{.} and
0?{.}. In particular, we apply the local linear nonparametric method explained
in Fan & Gijbels (1996) and Hardle & Tsybakov (1997). To justify the use of
this method, the time series Z*(;) has to be ergodic and to meet some techni-
cal conditions, see Hardle & Tsybakov (1997). The square root process and the
Ornstein-Uhlenbeck process are examples, where the discrete time approxima-
tion (2.25) satisfies these conditions.
In this nonparametric framework we obtain the drift function estimator

~ N(0,1).

g; =

T, (2) = %ﬁo(z) (2.26)

with

@

—~~
N

SN
Il

Bo(2)
(50)
— argmin,,,, (n {Y ~ by — by (Z(t;) — z)}thl (z — ZA(ti))> .

i=1

The bandwidth h; > 0 is chosen with respect to the Silvermans rule of thumb,
see Hardle (1990). The Gaussian density function is used as the kernel.

We apply for the squared diffusion function o%(z) a two-step estimation.
First we compute from the above drift function estimator (2.26) the values
n, {Z(t;)}. In the second step we use the squared diffusion function estimator

5h(2) = 5 dol2) (2.27)

(#3)

= a,rgmin(Z {(Yz - Amhl{ZA(ti)})2

i=1

with

o
~—~

I
SN—r

I

—8o — 81(Z2(t:) — Z)}2Kh1 (z = ZA(tz'))>

and bandwidth h; > 0. For details and the asymptotic properties of these
estimators and the construction of corresponding confidence bands we refer to
Appendix A.2 and A.3.

The application of the above methodology to the data Z2 yields corre-
sponding nonparametric estimates with an estimated squared diffusion coeffi-
cient function as well as a drift coefficient function along with corresponding
confidence bands as we demonstrate below.



Hirdle et al. Semipara. Diffusion Estimation 11

2.6 Testing the Parametric Model

We construct tests to compare the nonparametric estimates of Section 2.5 for
m{.} and 02{.} to parametric forms, for example the coefficients of an Ornstein-
Uhlenbeck process.

To derive the null hypotheses in the case when Z is the exponential of an
Ornstein Uhlenbeck process, we apply It6’s formula to Z(t) = exp{U(t)}. Here
U satisfies (2.4) and one obtains

dZ(t) d(exp{U(t)})

Z(t) {_mn Z(t) + %72} dt + v Z(t)dW (t) (2.28)

Il

for ¢ > 0. The null hypotheses of the tests are therefore

Ho(m) :m(z) =z {—ﬁlnz + %72}
and
Ho(0?) : 0*(2) = v*2%,

while the alternative is nonparametric.

We construct confidence bands with the bootstrap method. The idea is
to bootstrap the original discrete time series and estimate each time the drift
and squared diffusion coefficients nonparametrically as described in Section 2.5.
With these estimates one can then construct confidence bands for the two func-
tions.

We choose the bootstrap method because it leads to better coverage prob-
abilities than, for instance, a Gaussian approximation. In Neumann & Kreiss
(1998) it was shown for a time series similar to (2.25) that the coverage proba-
bility is of order O(n~?) for some ¢ > 0, where n is the number of observations.
A Gaussian approximation, see Hall (1985), leads to a coverage probability of
order O(1/In(n)).

The bootstrap method is described in Appendix A.3. The asymptotic results
for the (1 — a) confidence bands K B(m) and (K B(c?)), that is

P{m(z) e KB(m)} > 1—«
and
P{o*(z) € KB(c?)} »1—«a

respectively, are proved in Franke, Kreiss, Mammen & Neumann (1998).

3 Empirical Analysis of the S&P 500

We apply the methods introduced in Section 2 to daily observations of the S&P
500 index from 31.12.1976 to 31.12.1997 (5479 observations). The data are
obtained from Thomson Financial Datastream.

For the kernel smoothing of S we choose the Epanechnikov kernel. The
constant cx that appears in the correction terms in (2.18) and (2.19) are known
for this particular kernel, see Appendix A.1.
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As already mentioned in Section 2.3 the estimates for the parameter -y calcu-
lated from formula (2.9) are small relative to 1 and do not change significantly
with h. Table 1 shows the estimated values for different values of h. The vari-
ance of the process X is also shown in that table. The small variance and the
fact that X is stable about 1 justifies to concentrate on the case of a geometric
Ornstein-Uhlenbeck process defined by (1.4) and (2.4).

h | 200 250 300 350 400
Var(X) | 0.0018303 0.0023465 0.0029246 0.0035622 0.0042183
4 0.0090593 0.0090703 0.0090849 0.0090991 0.0091103

Table 1: Estimated values for v and the estimated variance of X for different
bandwidths h.

The next step in our analysis is the choice of h. Due to the long range of
observations we apply a flexible bandwidth to the data. This flexible band-
width was calculated by splitting the data in overlapping subintervals of differ-
ent lengths and calculating an optimal fixed bandwidth for every subinterval.
The bandwidth is chosen to be optimal with respect to the balance equation
(2.20). To get a continuous optimal bandwidth function hep(t) we interpolate
the resulting values. The function ¢ — hp(t) is shown in Figure 2. The fi-

optimal flexible bandwidth
o) X . X .
g
(@]
el -
™
R L
c Q] i

8 I
O -

T T T T T T

0 1000 2000 3000 4000 5000

time

Figure 2: The optimal flexible bandwidth hgp(t).

nal values for 8 are ﬁl(hopt) = 0.010352 and ﬁz(hopt) = 0.0089721 and the
ratio is 31 (hopt)/B1(hops) = 1.1538. For fixed bandwidths in the range of hp
this ratio is given in Table 2. All these ratios are larger than those for hgp
which justifies the use of the flexible bandwidth. The estimated value for 7 is
A(hopt) = 0.0091033.

Now we are in the position to restore the path of the process Z and to
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h | 200 225 250 275 300
B1(h) 0.017913  0.01569 0.013826  0.012197  0.010776
B2(h) 0.01328 0.012098 0.011092 0.0098626 0.0086047

By (R) /B (h) 1.3480  1.2969  1.2465 1.2367 1.2523

Table 2: Estimated values for g for different fixed bandwidths h.

estimate the parameters. We get the following estimates from the restored path

B1 =0.01003, B2 = 0.0093294,
Bi/B2 = 1.0751, 4 = 0.0092454.

To finish the empirical analysis we apply the test procedure described in
Section 2.6. Figure 3 shows the nonparametric estimates of the drift and squared
diffusion coefficient of the restored process Z together with the 90% confidence
bands. The almost straight lines show the parametric estimates with respect to
the estimated values of the restored process Z. The vertical lines enclose the
interval where 99% of the observed data reside.

drift coefficient squared diffusion coefficient

20 25 30
1 7 i

m(2)*0.1
008 -006 004 -002 O 002 004 006 008
V(Z)*E-5
- 0 10 15

T T T T T T
0.8 0.9 1 11 12 08 0.9 1 11 12

Figure 3: Nonparametric and parametric estimates of the drift m(.) and squared
diffusion coefficient ¢2(.) with 90% confidence bands.

Both parametric functions are surely inside the confidence bands. Thus
the null hypothesis of the geometric Ornstein—Uhlenbeck process cannot be re-
jected.

4 Simulation Study

We perform now a simulation study by applying the estimation methods intro-
duced in Section 2.3 to simulated trajectories of the Ornstein-Uhlenbeck process
U. The drift and diffusion parameters 3 and « in (2.4) are estimated directly
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from the observations of U as well as from the residual of a kernel smoothing
procedure.

It is well known that the transition probability of an Ornstein-Uhlenbeck
process is normal with conditional mean

ElUisa|Us = u] = ue P2

and conditional variance

2
VaT(Ut+A|Ut = U) = IYTﬂ (e_zﬁA — 1) .

Using this Gaussian transition probability we simulate 100 paths of the process
U with time step size A = 1. The true parameters are set to 3 = 0.01 and
~v = 0.01, which correspond approximately to the empirical estimates for the
S&P 500 index in Section 3.

For the analysis of the directly observed process U we apply three estimators
for the speed of adjustment parameter 3. Besides 3, and 3, introduced in (2.10)
and (2.13), we use also the estimator

2 1 EnZI Uifle'

=——h== 4.1
53 A Z?Zl Ui2_1 ) ( )
which is based on martingal estimating functions and was proposed in Bibby
& Sgrensen (1995). It is easy to see, that (3 is related to the autocorrelation
function of U. For details about this estimator and the theory of martingal
estimating functions we refer to Bibby & Sgrensen (1995) and the references
therein. The diffusion coefficient is estimated via the slope of the quadratic
variation, similarly as in (2.9).

The first row of Table 3 shows the means of the corresponding estimated
values. In the second row the variance of the estimates are shown. We emphasize

that the results are based on a directly observed simulated diffusion.

b1 Bo B3 Y B1/B= opth
0.01070 0.01018 0.01028 0.00996
4.589%-06 3.695e-06 4.541e-06 1.059e-08
0.00964 0.00967 0.00996 0.99435 295.0
7.161e-06 6.258e-06 1.067e-08 0.00248

Table 3: Estimated parameters.

Furthermore, we simulate the logarithm of the index in (1.2) In S as the
sum of a linear function and U. In a second step we calculate In X as in (2.6)
with the Epanechnikov kernel, see Appendix A.1. We then estimate from the
simulated data the parameters 8 and v of U by the methods in (2.18), (2.19)
and (2.9). This gives us an idea about the fixed sample behavior of these
estimation methods when the residuals of a kernel smoothing procedure are
observed instead of those of an Ornstein-Uhlenbeck process itself.

The estimated values calculated from the simulated trajectories of In X are
shown in the third and fourth row of Tables 3. The results clearly demonstrate
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that the correction terms in (2.18) and (2.19) are necessary to obtain a rea-
sonable estimated values. In the situation considered here, the correction terms
equal each other and have approximately the value ¢z /h = 0.0061, see Appendix
A.1. Since the correction terms for ,33 are not considered, we have not to report
them in Table 3. o

The table also shows the mean and the variance of the ratio 1 /82 used
to select the bandwidth h, see (2.20). The mean of the selected bandwidth h,
which brings this ratio as close as possible to one, is given in the last column.

The second part of the simulation study treats the bootstrap procedure. We
apply the bootstrap methodology as introduced in Appendix A.3 to a simulated
path of an Ornstein-Uhlenbeck process U following the dynamics in (2.4) with
parameters 8 = 0.01, v = 0.01 and A = 1. The values of the parameters are
reasonable with respect to the empirical results for the S&P 500. The number of
observations is 5000 and the number of the bootstrapped series for the confidence
bands is 160. The two plots in Figure 4 show the nonparametric estimators for
the drift and squared diffusion coefficient together with their 90% confidence
bands constructed by the bootstrap procedure. The plots also show the true
parametric functions for the drift and diffusion coefficient. The dotted vertical
lines are the empirical 0.005 and 0.995 quantiles of the stationary distribution
of exp(U). If we only consider the range between these quantities, i.e. the
range where 99% of the data reside, then both of the parametric functions
remain inside the confidence bands. This means, the null hypotheses Hy(m)
and Hy(o?) as in Section 2.6 cannot be rejected for data in this range.

drift poeffici ent ‘ squared diffusion cogffici ent
\ /

T T T T T T T T
0.9 1 11 12 0.9 1 11 12

.t

005
o d e S
15
™

/'

m(2)*0.1

005
I\

¢

-0.1
I

Figure 4: Nonparametric estimates for the drift and squared diffusion coeffi-
cients of a simulated geometric Ornstein-Uhlenbeck process, confidence bands
and true functions.
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5 Conclusion

In this paper we modeled an index as the product of an ergodic diffusion and
a deterministic growth process. In the first part we proposed a methodology
that allows us to separate the estimation of the average growth of the index and
that of the parameters of the ergodic diffusion. The general methodology was
carried out for the particular case of an Ornstein-Uhlenbeck process. A challenge
for future research is to establish similar estimation methods for parameters
of a square root process and other ergodic diffusions. The derivation of the
corresponding correction terms will be the key problem in such an approach.

In the second part of the paper we developed a semiparametric testing pro-
cedure for the drift and diffusion coeflicient functions of an ergodic diffusion.
The test is based on a comparison of the parametric forms of these functions to
their nonparametric estimators. Finally, an empirical analysis of the S&P 500
stock market index and a simulation study completed the paper.

A Appendix

A.1 Parameter Estimation

Let U(t) be the Ornstein-Uhlenbeck process satisfying (2.4). Introduce the
autocovariance of the process U — K x U as

Cov(r) = COV[(U = Ky xU)(7); (U—-KpxU)(0)], 0<7<<h.

Let
Cov(7)
pr(r) = Cov(0)
be the autocorrelation function of U — Kp x U.

Proposition 1. (i) If K (u) is the rectangle kernel, i.e., K(u) = (1/2)I(|u| <
1), then as h — oo we have that

v gr 1 1
2% 3

(i) If K(u) = (3/4)(1 — u?)I(Ju| < 1) is the Epanechnikov kernel, then

Cov(r) = (r/h) + O(h2) ). (A1)

2
_ Yo _18_15
Cov(t) = 25( e 5h " Bh

Proposition 2. Under the assumptions of Proposition 1, up to the terms
of the magnitude O(h=2), the following equation holds for [3:

ot B 8
o = T i

The solution of this equation is approximately

(r/h)*> + O(h™?) ). (A.2)

A ot
By = |5 _ -5+ 007
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where cxg = 1 if K is the rectangle kernel, and cx = 1.8 if K is the Epanechnikov
kernel.

To the proof of Proposition 1. (i) Integrate the both sides of (2.4) with
the rectangle kernel. The integration results in

—{U(t+h) = Ut —h)} = (K +xU)(t) — ——{W(t+ h) = W(t — h)},

2[3h 208h

or

(Kn*U)(t) = 52 (Wt +h) = W(t — b)) -

28h (U(t+h) - U(t - h)).(A3)

1
23h
The autocovariance function equals

Cou(r) = E[UMU(0)] - E[U(r) (Kn *U)(0)]
—E[U(0) (Kn * U)(1)] + E[(Kp x U)(7) (Kp*U)(0)]. (A.4)

The first term in the latter formula is E[U(7)U(0)] = {72/(28)}e~#". With the
help of (A.3) and the explicit representation

U(t) = / exp{—B(t — 5)} v dW (s),

—0o0

one finds by direct calculation that each of the negative terms on the right-hand

side of (A.4) contributes
2

S (28°h) 62 h)

while the covariance of K, * U adds up to

+O(h™?),

7*(2h — 1)
(28h)?

Combining these results, we arrive at (A.1).
(ii) Integrating (2.4), we find as in (A.3) that

+O(h™?).

3

(KpxU)(t) = ~ 9808

t+h ~y
/ (s=OU()ds + 5 (Kn s W)(®- (A5)
It is straightforward to verify that the variance of the first term on the right-
hand side of (A.5) has the magnitude O(h~2) for h large. This term is negligible
as compared to the second one. As in part (i), we obtain

Couv(r) = ;—ﬂe—ﬁf -9 ( ?,)szh +O(h™ )) 7 [(Kh * W)(1) (Kp, * W)(O)]
Y e 3 (3 3 /T\2 —2

= 95° - 28%h B2 (_ T (E) ) O™ (4.6)

This proves (A.2). O

To the proof of Proposition 2. The slope of the autocorrelation at zero
follows from (A.1) and (A.2). Let

o+
A= |8_ph(T)

[
7=0
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then for 3, the quadratic equation B% h — By hA + cxA = 0 holds with root
By = A—cxc/h+ O(h2). O

Proposition 3. Let Cy be a space of continuous function with finite support.
Define K as the rectangle or Epanechnikov kernel. Then the operator K, is a
contracting operator on the space Ly [ Co with the Lo-norm.

To the proof of Proposition 3. The Fourier transformation for the
rectangle kernel is K (z) = (sin z)/z, and for the Epanechnikov kernel is K (z) =
3(sin z — z cos z) /2> with unique maximum value 1 at z = 0. Thus, for the n-th
iterative convolution, ||K™||s — 0 as n — oo. This confirms the result. O

A.2 Asymptotic Properties of LLP

The asymptotic properties of local polynomial estimates are studied in Fan &
Gijbels (1996) and Hardle, Klinke & Miiller (1999). Under some smoothness
conditions with bandwidth hy = ko/n'/5 for a constant ko > 0, the results
applied to our case provide the following formulas on the asymptotic normality

i : MWAH@> A

n?/® {1, (2) —m(2)} B N ( 2 Ha(K) Am-(2) kopo(z)

25 {63 () —o%(2)} B N ( %OM(K) (A (%)) +2(am'(2))?)
2A%0% () || K13
ot ) (4

Here pa(K) is the second moment of the kernel K and ||K||2 is its Lz norm.
Furthermore po(z) denotes the stationary density of Z as given in Section 2.4.

A.3 The Bootstrap Procedure

The confidence bands in Section 2.6 for the nonparametric estimator are con-
structed by the following bootstrap method :

1. Choose a bandwidth g, which is larger than the optimal h; in order to
have oversmoothing. Estimate then nonparametrically m(.) and ¢2(.) and
obtain the residual estimated errors :

o _ Vi Ay {75 (1))

i = - .

\/ZUQ{Z Ati)}

Since we make the assumption that the £; has zero-mean, we subtract the

sample mean of &;.

2. Replicate N times the series of the (¢;) with wild bootstrap obtaining
(e7™) forn=1,...,N and build N new bootstrapped series (Z*"):

70" = Z%(t)
ZIN — ZP" = Ning (ZP™) + VA6, (27"

Estimate again m(z) and o?(z) for each of the N bootstrapped series with
bandwidth h;.
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3. Build the statistics:

T — sup i (2) = 1 (2]
" Oy (2)

and
T; = sup|(6°);"(2) — 63, (2)]

4. Form the (1 — a) confidence bands K B

KB(m(.)) = [, (2) = 6, (2)tm,1-a/2 » Th, (2) + Ghy (2)tm,a)2]
and

KB(U2()) = [6—}211 (z) - to,l—a/Z ) &’211 (Z) + ta,a/Q]

where ¢, o and t, , denote the empirical a-quantile of T};, and T}, respec-
tively.
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