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ABSTRACT 

We show in this article that fractionally integrated univariate models for GDP may lead to a 

better replication of business cycle characteristics. We firstly show that the business cycle 

features are clearly affected by the degree of integration as well as by the other short run 

components of the series. Then, we model the real GDP in France, the UK and the US by means 

of fractionally ARIMA (ARFIMA) models, and show that the three time series can be specified 

in terms of this type of models with orders of integration higher than one but smaller than two. 

Comparing the ARFIMA specifications with those based on ARIMA models, we show via 

simulations that the former better describes the business cycles features of the data at least for the 

cases of the UK and the US. 
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1. Introduction 

With the development of the National Bureau of Economic Research (NBER)‘s project of 

“Measurement without Theory” and the first extensive study of Burns and Mitchell (1947) on the 

American Economy, business cycles and their features have constituted a direct object of 

empirical analysis. Numerous studies have tried to describe them and to consider their stability 

over time. Romer (1986, 1994), Diebold and Rudebush (1992) and Watson (1994) have, for 

example, explored data to know if fluctuations have been smoother (lower amplitude and longer 

duration) after the second World War. Also, Neftci (1983), Hamilton (1989), Beaudry and Koop 

(1993) have created new business cycles features1 to show that business cycles exhibit an 

asymmetry in their phases: recessions being deeper and shorter than expansions. 

 Recently, business cycles features have been used for another purposes. Candelon and 

Hénin (1995) have built distributions of these features via bootstrapped simulation of simple 

linear (ARIMA) models for GDP. They could then locate the observed features of the last cycle 

and conclude that they are rather normal.  A step further, Isawa and Hess (1997) used them as 

benchmarks to gauge the adequacy of macroeconomic stochastic time series models. They 

replicate via Monte-Carlo simulations different models for GDP. Then, they build for each model 

the distribution of the business cycles features and compare them to the historical business cycles 

characteristics. The best model is selected as the one which replicate the best historical feature. 

Three types of linear models, namely, integrating a stochastic trend (ARIMA), a deterministic 

trend and a segmented trend (as in Perron, 1989) as well as several non linear ones (SETAR, 

Markov-Switching and Beaudry and Koop’s, 1993, non linearity) are considered. They conclude 

that complex non-linear or linear models do not better replicate business cycles features than a 

simple linear ARIMA(1,1,0) with a drift. Such a conclusion appears to be rather destructive for  

recent attempts, which have tried to better model GDP. 

                                                 
1 These features integrate the third moment of the cycle as the conditional asymmetry in mean. 
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 Nevertheless, they do not consider a recent and growing literature, which tries to model 

GDP and other macroeconomic time series in terms of fractionally integrated processes. 

Examples are Diebold and Rudebusch (1989); Sowell (1992); Gil-Alana and Robinson (1997); 

etc. A proper definition of fractional integration will be given in Section 2. We can, however, 

mention here that the ARIMA model can be viewed as a particular case of a much more general 

class of models, called fractionally ARIMA (ARFIMA), in which we allow for a fractional 

degree of differencing in a given raw time series. 

 In this article, we show that the ARFIMA models can better describe the business cycle 

characteristics of the GDP in France, the UK and the US, compared with the ARIMA 

specifications as well as other approaches. The structure of the paper is as follows: Section 2 

briefly describes the concepts of fractional integration and business cycles. Section 3 shows with 

some simulations that the degree of fractional integration of an univariate model affects to the 

characteristics of the fluctuations. Section 4 uses both ARIMA and ARFIMA models to describe 

the behaviour of the GDP series. Section 5 compares both types of models in terms of business 

cycle features while Section 6 concludes. 

 

2. Fractional integration and business cycle characteristics 

For the purpose of the present paper, we define an I(0) process {ut, t = 0, �1, …} as a covariance 

stationary process with spectral density function that is positive and finite at the zero frequency. 

In this context, we say that xt is I(d) if 

,...2,1,)1( ��� tuxL tt

d  ,   (1) 

where L is the lag operator (Lxt = xt-1), and d can be any real number. The macroeconomic 

literature stresses the cases of d = 0 and d = 1. In the latter case, we say that xt follows a unit root 

process or that the model contains a stochastic trend. This model became popular after the paper 

of Nelson and Plosser (1982), who following the work and ideas of Box and Jenkins (1970), 

showed that many US macroeconomic series could be specified in terms of unit roots. A huge 
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amount of empirical work has followed this approach (eg. Stock and Watson, 1986; Diebold and 

Nerlove, 1989; etc.) However, as it was shown by Adenstedt (1974), Taqqu (1975) and 

subsequent work, d can also be a real number. When d = 0 in (1), xt = ut, and a weakly 

autocorrelated xt is allowed for. However, if d > 0, xt is said to be long memory, so-called 

because of the strong association between observations widely separated in time. Note that the 

polynomial in (1) can be expanded in terms of its Binomial expansion, such that for all real d, 
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where �(x) means the gamma function. This type of processes was initially proposed by Granger 

(1980, 1981), Granger and Joyeux (1980), Hosking (1981) and were theoretically justified in 

terms of aggregation by Robinson (1978), Granger (1980) and more recently, in terms of the 

duration of shocks by Parke (1999).  

 There is an interest in the estimation and testing of the fractional differencing parameter. 

If d � (0, 0.5), xt in (1) is covariance stationary while d � [0.5, 1) will imply that the series is 

nonstationary but still mean reverting, with the effect of the shocks dying away in the long run. 

On the contrary, if d � 1, the process will be nonstationary and non-mean reverting, with the 

effects of the shocks persisting forever. Thus, for example, if d > 1 and the data are in logs, that 

means that the growth rates have a long memory component and therefore, the stochastic trend 

overcome other potential characteristics of the series, In other words, the fractional differencing 

parameter can be used as an indicator of the degree of persistence of the series and, higher d is, 

higher will be the degree of persistence, implying that the cycles are less likely to occur. 

We now describe a datation rule to date the business cycles and define their 

characteristics. Numerous methods have been proposed in the literature. They can be based on 

direct data analysis (Burns and Mitchell, 1946), on expert judgment (NBER) or rely on the most 
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recent econometric methods (Hamilton, 1994)2. In this paper, we have decided to consider 

exclusively classical cycles (directly extracted from the data in levels) in order to avoid statistical 

problems caused by the extraction of the cyclical component (See Canova, 1994). Besides, we 

apply the most common rule to date classical business cycles. It is at the basis of the famous 

program developed by Bry and Boschan (1971) and defines the phases of the business cycles as 

follows3: 

a)   yt-1 > yt < yt+1 < yt+2 , then there is a trough in t. 

b)    yt-1 < yt > yt+1 > yt+2 , then there is a peak in t. 

c)  When several identical turning points are detected consecutively, we retain the optimal 

one (i.e., the highest peak and the deepest trough).  

This rule is very intuitive because it simply considers that a turning point occurs when 

there is a change in the slope: Conditions a) and b) can be rewritten as �j yt+-j > 0 and �j yt+-j < 0. 

Such a definition insures that phases of the cycles have a minimum duration of 2 quarters and the 

completed cycles a minimum length of one year. This definition also presents the advantage to 

induce an asymmetry in the length of the cycle phase. This is even greater when the generated 

process is I(d) with d � 1: As there is no more mean-reversion, activity has a stochastic growth 

rate and the length of an expansion is longer than the duration of a recession. This property is 

more difficult to exhibit from growth cycles (extracted from filtered data) but is confirmed in 

historical data (Moore and Zarnowitz, 1982). On the contrary, we can not expect to detect an 

asymmetry in the amplitude of the phases, as the conditions on the change in slope are symmetric 

for troughs and peaks.  

This method has suffered a stream of criticisms: For example, it could exhibit not only 

major but also minor cycles. McNees (1991) and Webb (1991) propose to solve this problem via 

an increase in the reference period (for example, a peak could be characterized by 3 consecutive 

                                                 
2 See Pagan and Harding (1999) for an exhaustive survey of the procedures for determining turning points. 
3 The same method can also be used on filtered data to exhibit growth cycles (see Canova, 1994). 
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periods of  growth over a year period). Candelon and Hénin (1995) have also noticed that this 

method leads to slight differences with the algorithms based on the detection of local optimum in 

the cases of growth cycles4. However, integrating these extensions in our datation algorithm will 

not alter the links between the degree of fractional integration and the business cycle 

characteristics. We thus make the choice of simplicity and keep rules a) - c) as our datation 

algorithm. 

(Insert Figure 1) 

 From this datation, we have built five indicators (see Figure 1): the number of peaks 

(which corresponds to the number of cycles, as we consider that a cycle begins with a trough),  

the length of the cycles (period running between two successive troughs), the length and the 

amplitude of an expansion (period running from a trough to a peak) and the length and the 

amplitude of a recession (period running from a peak to a trough). 

      

3. A simulation study 

We explore in this section the link between the degree of fractional integration and business 

cycle features via simulations. To this goal, we consider a process {yt}t=1…T,  with the following 

DGP: (1-L)d yt = ut. According to the values taken by d, yt can be stationary (d < 0.5), or non 

stationary (d � 0.5). To analyse the effect of d on the business cycle features, we simulate 2500 

series of length 100, 300 and 500, for some values of d = {0, 0.25, 0.5, 0.75, 1, 1.5, 2} and then 

compute the mean and the variance of the five pre-defined features of the cycle (number of 

cycles, length and amplitude of the phase of the cycles)5. The results could indeed be affected by 

the process followed by ut. Thus, as in Isawa and Hess (1997), three different linear processes are 

considered : 

1. ut is a white noise N(0,1).  Results are gathered in Table 1. 

                                                 
4 A local optimum is not a turning point for our methodology if it is preceeded and followed by only one quarter of 
increase or decrease in the activity. 
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2. ut = �ut-1 + �t, (AR1).  Results for � = {0.25, 0.5, 0.75} are gathered in Table 2. 

3. ut = �t + ��t-1, (MA1).  Results for � = {0.25, 0.5, 0.75} are gathered in Table 3. 

(Insert Figure 2) 

To have a more precise view, Figure 2 plots the results for white noise ut. As expected the 

average length of expansion is in all the cases greater than the duration of the recession. This 

asymmetry in the duration is due to the stochastic trend of the generated series. The tables also 

confirm that the amplitude of the phase is symmetrical: Recession amplitudes seems to be higher 

than expansion ones, but the variance is such that the symmetry can not be rejected. It also turns 

out that the relationship between the degree of fractional integration and the business cycle 

features has the same evolution in all cases. The average number of cycles increases until a value 

of d around 0.5 and then goes down. The other features dealing with the length and the amplitude 

of the phases exhibit an opposite evolution. The variance of the features exhibits similar paths.  

These results can be interpreted in the following way: When the degree of integration increases, 

the mean reversion is less important. A large part of the dynamic of yt is then impulsed by the 

stochastic trend. The variance and the mean of the process are thus higher, leading a smaller 

number of longer and deeper business cycles. For the extreme case where d tends to infinite, the 

process is exclusively driven by the trend and no more cycles could be extracted. Figure 2 also 

shows that the level of inflection is quicker for the amplitude characteristics (d ~ 0.25 for white 

noise and d ~ 0.5 for AR and MA ut) and a little bit longer for the duration ones (d ~ 0.75 for 

white noise). It also appears that if d > 1, the path is explosive (for 300 observations, we only 

find a mean value of 4 cycles for a white noise ut and d = 2, whereas when d = 1,  24 peaks can 

be observed on average) 

(Insert Tables 1 – 3 about here) 

                                                                                                                                                              
5 The distribution of these features could be computed as in Isawa and Hess (2000). However, as all processes are 
linear, the distribution will not give more information than the mean and the variance. 
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 When the AR or the MA coefficients become high (Tables 2 and 3), the evolution of the 

features with respect to the degree of fractional integration becomes linear, with a negative slope 

for the number of cycles and a positive one for the other criterion. When � is closed to one, the 

process possesses a near-unit-root, removing the mean reversion and increasing the variance. The 

average number of cycles is thus smaller, whereas their length and amplitude become higher, � 

thus playing a similar role as the degree of integration. 

 

4. The empirical application 

The time series data analysed in this section correspond to the logarithmic transformation of the 

real Gross Domestic Product (GDP) in France, United Kingdom and United States, quarterly, 

(seasonally adjusted), for the time period 1961:1-2000:1 and are extracted from the IMF-IFS 

database. We have performed our datation algorithm and compared its results with reference 

studies. For the United States, it is referred to the National Bureau of Economic Research 

(NBER) business cycle datation. It turns out in Table 4 that our algorithm leads to a nearly 

identical6 datation except for the cycle (80:3-81:1), which is considered as minor in the official 

datation. For the European countries, as it does not exist official datation, we refer to the paper of 

Artis and al. (1997). Our results are similar but not identical. Nevertheless, it is worth noticing 

that Artis and al. (1997) consider Industrial Production for a different period, define cycles 

period running between two peaks, and use a more complex datation algorithm. So, the small 

differences could be justified and do not lead to a rejection of our datation algorithm. 

(Insert Tables 4 and 5 about here) 

Table 5 gathers the business cycle characteristics of the three time series. We notice that 

in each country, 5 major cycles occurred during the last 40 years. It also turns out that the 

                                                 
6 As NBER datation is performed for monthly data and our for quartely observations, sometimes our datation differs 
from a quarter.  
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expansions are longer and deeper than recessions. This stylised fact is generally acknowledged 

for classical cycles. 

We now start with the empirical application. Let’s assume that ut in (1) is a stationary 

ARMA(p, q) process of form: 

    ...,,2,1,)()( �� tLuL tqtp ���    (2) 

with white noise �t. Substituting (2) in (1), the general time series model becomes 

...,,2,1,)()1()( ��� tLxLL tqt

d

p ���   (3) 

which is usually called an ARFIMA(p, d, q) model. Sowell (1992) estimated the parameters in 

(3) using a procedure that allows quick evaluation of the likelihood function in the time domain, 

which is given by: 

,
2
1exp)2( 1'2/12/

�

�

�

�

�

�

���

�

�

�

TT

T XX�  

with XT = (x1, …, xT)	 ~ N(0, 
). An Ox-programme of this procedure (see, Doornik and Ooms, 

1999) will be employed in the empirical application below. 

We estimate for the three time series different ARFIMA models like (3), taking values of 

p and q smaller than or equal to 3. Following standard practise, the models were estimated in first 

differences and then converted back to level by adding 1 to the estimated value of d. Across the 

sixteen potential models, we choose the best one according to the Bayesian Information Criteria 

(BIC). The results are given in Table 6.7 

(Insert Table 6 about here) 

 We see that the best model specifications are an ARFIMA(0, 1.47, 2) for France; an 

ARFIMA(1, 1.38, 2) for the UK; and an ARFIMA(0, 1.36, 0) for the US. Thus, the orders of 

integration are in all cases higher than one but smaller than two,  and  the  t-statistics based on the       

                                                 
7  The models were estimated with no intercept based on the assumption that the first differenced series have zero 
mean. Note that the inclusion of an intercept in first differences would imply that a linear trend in the original series 
for t > 1 only for the unit root case but not for I(d) processes. 
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nulls d = 1 and d = 2 reject both hypotheses for the three series. (Note that the estimates are based 

on maximum likelihood and thus, standard tests based on the statistics (d-1)/SE(d) and (d-

2)/SE(d) are applicable in these cases). As a validation control for each of the selected models, 

we use a very simple version of a testing procedure due to Robinson (1994). He proposed a 

Lagrange Multiplier (LM) test of the null hypothesis: 

,: oo ddH �      (4) 

in (1) for any real value do. Specifically, the test statistic is given by: 

,
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I(�j) is the periodogram of tû  where t

d

t yLu o)1(ˆ
��  and g above is a known function coming 

from the spectral density of ut: ),;(
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Ho (4), Robinson (1994) showed that under certain regularity conditions, 

.)1,0(ˆ
��� TasNr d    (6) 

Thus, an approximate 100�% level test of (4) will reject Ho against the alternative: Ha: d > do (d 

< do) if r̂ > z
�

 ( r̂ < -z
�

), where the probability that a standard normal variate exceeds z
�

 is �. He 

also showed that the tests are efficient in the Pitman sense, i.e., that against local alternatives of 

form: Ha: d = do + 
T-1/2, with 
 � 0, r̂  has a limit distrtibution which is normal with variance 1 

and mean that cannot (when ut is Gaussian) be exceeded in absolute value by that of any other 

rival regular statistic. Empirical applications based on this version of Robinson’s (1994) tests can 
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be found in Gil-Alana and Robinson (1997) and Gil-Alana (2000) and, other versions of his tests 

based on seasonal (quarterly and monthly) and cyclical models are respectively Gil-Alana and 

Robinson (2001) and Gil-Alana (1999, 2001). 

We report, in the last column of Table 6, the results of r̂  in (5) in a model given by (1), 

testing Ho (4) for values do = 1, d* and 2, where d* is the chosen value according to the previous 

estimation procedure.8  Note that the non-rejections of Ho (4) in these cases will imply that the 

series follow respectively an I(1), an ARFIMA, and an I(2) process. We see that when testing 

with do = 1, Ho (4) is rejected against alternatives with d > 1, and similarly, if do = 2, the null is 

rejected this time against alternatives with d < 2, implying that the order of integration of the 

series might fluctuate between these two extreme cases. Furthermore, we also observe that Ho (4) 

cannot be rejected in any series when do is chosen as the estimated value with the previous model 

selection criterion, indicating that the models can be correctly specified. 

(Insert Table 7 about here) 

 Table 7 firstly reports the results of ARIMA models imposing d = 1 in the GDP series. 

The best model specifications appear to be an ARIMA(1, 1, 2) for France and the UK, and an 

ARIMA(1, 1, 1) for USA. However, we observe that in all these cases, the AR parameter is very 

close to the unit root case (0.99 for France and 0.95 for UK and USA). Thus we also report the 

results assuming that d = 2. In this context, the best model specifications, according to the BIC, 

are an ARIMA(0, 2, 2) for France; an ARIMA(0, 2, 1) for UK, and an ARIMA(1, 2, 1) for USA, 

and in the three cases, the roots of the MA part seem to indicate now that there is a common unit 

root in the process. In view of these results, it becomes apparent that the ARFIMA models 

presented in Table 6 may better describe the long run behaviour of the three series since it does 

not restrict themselves to the integer differencing of the series. To show this, we describe in the 

following section simulated business cycle characteristics based on both, the ARFIMA models 

described in Table 6 and the ARI(2)MA models of Table 7. 
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5. A simulated comparison between ARIMA and ARFIMA models 

Once the coefficients of the ARI(2)MA and ARFIMA models have been estimated, our objective 

now consists of selecting the best model, with respect to its ability to reproduce the business 

cycles features. So, we simulate 2500 ARI(2)MA and ARFIMA models for each country and 

compute their business cycles characteristics. Their empirical mean and variance are indicated in 

Table 89.  

(Insert Table 8 about here) 

The selection of the best model stems out from the comparison with the observed features in 

Table 5. It is first noticeable that Table 8 confirms the results exhibited in Section 3: As the 

degree of fractional integration is always lower than 2, the number of peaks is lower in the cases 

of  ARI(2)MA models, whereas the contrary results hold for the lengths and the amplitudes. 

In the case of the UK, the ARFIMA model leads to a better replication of the features: the 

number of peaks corresponds to what is observed (5 cycles) and the amplitudes (of both phase of 

the cycle) are closer to the historical observations. Both length features are also bettered but not 

too significantly. For the US, the ARFIMA model overestimates the number of cycles (9) 

whereas the ARI(2)MA underestimates it (3). Nevertheless, we notice that the length features and 

the mean amplitude of the recession are more in line with the observed features when the 

fractional model is entertained.. Only the mean amplitude of expansion is underestimated by the 

ARFIMA model. This result is probably due to the linearity of the models: ARI(2)MA models 

exhibit mean amplitude features corresponding to the observed expansion amplitude (0.18) and 

so overestimate recession amplitude, whereas ARFIMA models replicate amplitude of the 

recession (0.02) and so overestimate the expansion amplitude. However, the ARFIMA model 

appears here slightly better than the ARI(2)MA one. In the case of France, the results appear to 

                                                                                                                                                              
8  The null hypothesis Ho (4) in the tests of Robinson (1994) considers do as any given real value and thus, we can 
test Ho: d = d*, taking d* as a given value rather than as an estimated one. 
 
9 These two moments are sufficient to resume the complete distribution as we only consider linear models. 
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be more in favour of the ARI(2)MA model, which outperforms the ARFIMA for nearly all the 

features except the length of the recession. 

 In conclusion, it appears that the ARFIMA models perform better than the ARIMAs , at 

least for the cases of the US and the UK. 

 

6. Conclusions 

We have tried in this article to analyse how fractionally integrated models can modify the 

reproduction of business cycle features. From a theoretical point of view, several Monte Carlo 

experiments conducted via simulations showed that the business cycle features can be seriously 

affected by the degree of integration of the series as well as by the short run (ARMA) 

components associated to it. We built up five indicators for the business cycle characteristics, 

namely, the number of peaks, and the length and amplitude of the recessions and the expansions. 

It turns out that the average number of cycles increases until d ~ 0.5, and then sharply decreases. 

The other features share a symmetric paths. The importance of the stochastic trend part of the 

process (when d > 0.5) justifies this result. Next, we modelled the real GDP series in France, the 

UK and the US by means of fractionally ARIMA (ARFIMA) models. We used the Sowell’s 

(1992) procedure of estimating by maximum likelihood in the time domain. The results indicate 

that the three series can be specified in terms of ARFIMA models, with orders of integration 

higher than one but smaller than two. This is also corroborated by the tests of Robinson (1994). 

When imposing an integer order of differencing, the series appear to be I(2), and comparing the 

ARFIMA models with the ARIMA ones, the former models seem to better describe the business 

cycle characteristics of the data, at least for the cases of the UK and the US. Isawa and Hess 

(2000) showed that the ARIMA models better replicate the business cycle features of many 

historical data compared with other approaches and, in that respect, we have shown in this article 

that the ARFIMA specification can do it even better than the ARIMA model. 
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FIGURE 1 

Business cycle features 

 
 
Note: This figure represents the first cycle in US data. T stands for Trough, P for Peak, le for length of expansion, lr 
for length of recession, ae for amplitude of expansion and  ar for amplitude of recession. The length of the cycle is the 
sum of the two lengths. 
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FIGURE 2 
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Note: we perform 2500 replications of process 1 (ut is a white noise). The sample length is 300 observations. 
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TABLE 1 

Business cycle characteristics for fractional processes with white noise disturbances 

Sample size Values of d Aver. number 
of cycles 

Mean length 
of recession 

Mean length 
of expansion 

Mean 
amplitude of 

recession 

Mean 
amplitude of 

expansion 

0.00 7.37 

(0.03) 

6.29 

(1.64) 

11.01 

(1.97) 

2.24 

(0.33) 

2.24 

(0.33) 

0.25 7.76 

(0.03) 

5.94 

(1.48) 

10.46 

(1.75) 

2.16 

(0.34) 

2.16 

(0.35) 

0.50 8.07 

(0.06) 

5.73 

(1.35) 

9.83 

(1.54) 

2.15 

(0.37) 

2.15 

(0.39) 

0.75 8.17 

(0.06) 

5.68 

(1.30) 

9.48 

(1.45) 

2.27 

(0.45) 

2.36 

(0.48) 

1.00 7.69 

(0.06) 

6.15 

(1.45) 

9.63 

(1.50) 

2.79 

(0.68) 

3.00 

(0.73) 

1.50 4.43 

(0.04) 

10.41 

(2.90) 

15.11 

(2.02) 

10.37 

(3.67) 

12.02 

(3.61) 

T  =  100 

2.00 2.66 

(1.92) 

13.00 

(1.92) 

19.39 

(2.02) 

29.12 

(5.48) 

36.84 

(5.86) 

0.00 23.30 

(0.18) 

6.22 

(0.99) 

11.09 

(1.21) 

2.24 

(0.19) 

2.24 

(0.19) 

0.25 24.64 

(0.19) 

5.92 

(0.89) 

10.37 

(1.06) 

2.16 

(0.19) 

2.16 

(0.20) 

0.50 25.55 

(0.20) 

5.72 

(0.81) 

9.91 

(0.95) 

2.16 

(0.21) 

2.17 

(0.23) 

0.75 25.79 

(0.20) 

5.70 

(0.78) 

9.52 

(0.85) 

2.29 

(0.26) 

2.35 

(0.28) 

1.00 24.30 

(0.19) 

6.10 

(0.86) 

9.64 

(0.90) 

2.77 

(0.40) 

2.95 

(0.43) 

1.50 12.35 

(0.11) 

12.21 

(3.85) 

18.86 

(4.39) 

13.73 

(6.22) 

19.13 

(7.53) 

T  =  300 

2.00 3.82 

(0.04) 

26.04 

(8.01) 

44.10 

(9.66) 

114.77 

(44.12) 

177.19 

(51.54) 

0.00 39.33 

(0.15) 

6.24 

(0.78) 

11.08 

(0.94) 

2.25 

(0.15) 

2.25 

(0.15) 

0.25 41.38 

(0.33) 

5.97 

(0.70) 

10.22 

(0.82) 

2.17 

(0.15) 

2.17 

(0.15) 

0.50 43.11 

(0.34) 

5.73 

(0.63) 

9.76 

(0.72) 

2.16 

(0.16) 

2.18 

(0.17) 

0.75 43.68 

(0.34) 

5.64 

(0.59) 

9.51 

(0.67) 

2.28 

(0.20) 

2.35 

(0.21) 

1.00 41.07 

(0.32) 

6.07 

(0.66) 

9.67 

(0.70) 

2.76 

(0.31) 

2.95 

(0.33) 

1.50 19.92 

(0.18) 

13.07 

(3.70) 

19.47 

(4.06) 

15.81 

(6.64) 

20.77 

(7.62) 

T  =  500 

2.00 4.63 

(0.05) 

33.54 

(12.24) 

61.70 

(16.84) 

196.67 

(85.03) 

336.16 

(122.33) 

Note : We perform 2500 replications.  Standard errors in parenthesis. 
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TABLE 2 

Business cycle characteristics for fractional processes with AR(1) disturbances and T  =  300 

Sample size Values of d Aver. number 
of cycles 

Mean length 
of recession 

Mean length 
of expansion 

Mean 
amplitude of 

recession 

Mean 
amplitude of 

expansion 

0.00 26.12  

(0.20) 

5.66 

(0.82) 

9.62 

(0.94) 

2.28 

(0.19) 

2.29 

(0.20) 

0.25 27.28 

(0.21) 

5.34 

(0.72) 

9.48 

(0.85) 

2.26 

(0.21) 

2.27 

(0.22) 

0.50 27.92 

(0.22) 

5.25 

(0.66) 

9.02 

(0.75) 

2.33 

(0.24) 

2.37 

(0.25) 

0.75 27.10 

(0.21) 

5.38 

(0.67) 

9.20 

(0.75) 

2.60 

(0.31) 

2.72 

(0.34) 

1.00 24.51 

(0.19) 

5.95 

(0.82) 

9.91 

(0.90) 

3.35 

(0.53) 

3.73 

(0.58) 

1.50 11.53 

(0.11) 

12.91 

(4.21) 

21.61 

(5.07) 

19.35 

(8.89) 

28.93 

(11.06) 

�  =  0.25 

2.00 3.75 

(0.04) 

27.38 

(7.90) 

44.55 

(9.91) 

157.92 

(56.34) 

223.80 

(68.04) 

0.00 27.88 

(0.22) 

5.25 

(0.68) 

9.17 

(0.80) 

2.34 

(0.21) 

2.34 

(0.22) 

0.25 28.36 

(0.22) 

5.18 

(0.63) 

8.91 

(0.71) 

2.42 

(0.24) 

2.45 

(0.25) 

0.50 27.78 

(0.22) 

5.22 

(0.62) 

9.15 

(0.71) 

2.64 

(0.30) 

2.73 

(0.32) 

0.75 25.87 

0.20) 

5.63 

(0.71) 

9.57 

(0.79) 

3.22 

(0.45) 

3.46 

(0.49) 

1.00 22.28 

(0.17) 

6.62 

(1.00) 

10.82 

(1.08) 

4.71 

(0.90) 

5.37 

(0.98) 

1.50 9.54 

(0.09) 

15.82 

(5.42) 

26.83 

(6.52) 

35.61 

(16.41) 

51.23 

(19.83) 

�  =  0.50 

2.00 3.32 

(9.03) 

30.27 

(7.93) 

50.28 

(9.22) 

264.89 

(83.44) 

363.07 

(93.09) 

0.00 27.41 

(0.21) 

5.32 

(0.66) 

9.23 

(0.76) 

2.44 

(0.25) 

2.47 

(0.27) 

0.25 26.76 

(0.21) 

5.40 

(0.66) 

9.57 

(0.77) 

2.72 

(0.33) 

2.82 

(0.35) 

0.50 24.79 

(0.19) 

5.84 

(0.75) 

10.18 

(0.86) 

3.39 

(0.50) 

3.66 

(0.54) 

0.75 21.39 

(0.17) 

6.82 

(1.03) 

11.62 

(1.17) 

4.91 

(0.96) 

5.60 

(1.03) 

1.00 16.83 

(0.13) 

8.60 

(1.67) 

14.85 

(1.96) 

8.84 

(2.38) 

11.11 

(2.67) 

1.50 6.42 

(0.06) 

22.15 

(8.06) 

40.25 

(1.96) 

88.09 

(41.56) 

136.14 

(51.08) 

�  =  0.75 

2.00 2.91 

(0.03) 

33.41 

(6.43) 

60.58 

(8.20) 

531.91 

(124.68) 

842.48 

(153.26) 

Note: We perform 2500 replications. Standard errors in parenthesis. 
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TABLE 3 

Business cycle characteristics for fractional processes with MA(1) disturbances and T  =  300 

Sample size Values of d Aver. number 
of peaks 

Mean length 
of recession 

Mean length 
of expansion 

Mean 
amplitude of 

recession 

Mean 
amplitude of 

expansion 

0.00 27.38 

(0.21) 

5.34 

(0.74) 

9.36 

(0.88) 

2.33 

(0.19) 

2.33 

(0.19) 

0.25 28.52 

(0.22) 

5.09 

(0.66) 

9.05 

(0.78) 

2.29 

(0.20) 

2.30 

(0.21) 

0.50 29.16 

(0.23) 

4.97 

(0.60) 

8.83 

(0.71) 

2.33 

(0.22) 

2.36 

(0.24) 

0.75 28.39 

(0.22) 

5.13 

(0.62) 

8.82 

(0.70) 

2.54 

(0.29) 

2.65 

(0.31) 

1.00 25.83 

(0.20) 

5.72 

(0.76) 

9.31 

(0.81) 

3.21 

(0.48) 

3.49 

(0.52) 

1.50 12.13 

(0.11) 

12.64 

(4.24) 

20.25 

(4.80) 

18.46 

(8.73) 

25.75 

(10.15) 

�  =  0.25 

2.00 3.84 

(0.04) 

24.79 

(7.32) 

42.11 

(9.01) 

130.87 

(47.07) 

197.12 

(57.26) 

0.00 32.33 

(0.25) 

4.52 

(0.53) 

8.02 

(0.61) 

2.48 

(0.19) 

2.48 

(0.19) 

0.25 33.01 

(0.26) 

4.42 

(0.48) 

7.82 

(0.55) 

2.47 

(0.20) 

2.47 

(0.22) 

0.50 32.65 

(0.25) 

4.46 

(0.48) 

7.88 

(0.54) 

2.55 

(0.24) 

2.60 

(0.26) 

0.75 30.95 

(0.24) 

4.72 

(0.52) 

8.21 

(0.58) 

2.86 

(0.32) 

2.99 

(0.35) 

1.00 27.32 

(0.21) 

5.35 

(0.69) 

9.13 

(0.77) 

3.68 

(0.56) 

4.11 

(0.62) 

1.50 12.37 

(0.11) 

12.74 

(4.31) 

20.70 

(4.96) 

22.77 

(10.65) 

32.14 

(12.71) 

�  =  0.50 

2.00 3.83 

(0.04) 

25.55 

(7.55) 

44.90 

(10.15) 

169.58 

(60.35) 

273.02 

(81.86) 

0.00 36.14 

(0.28) 

4.04 

(0.41) 

7.25 

(0.47) 

2.69 

(0.20) 

2.69 

(0.20) 

0.25 36.13 

(0.28) 

4.07 

(0.40) 

7.05 

(0.44) 

2.71 

(0.22) 

2.72 

(0.23) 

0.50 34.94 

(0.27) 

4.18 

(0.41) 

7.44 

(0.46) 

2.85 

(0.26) 

2.90 

(0.26) 

0.75 32.52 

(0.25) 

4.53 

(0.48) 

7.76 

(0.53) 

3.22 

(0.36) 

3.39 

(0.39) 

1.00 28.32 

(0.22) 

5.18 

(0.66) 

8.88 

(0.73) 

4.18 

(0.64) 

4.71 

(0.70) 

1.50 12.46 

(0.11) 

12.23 

(4.15) 

20.54 

(4.92) 

25.05 

(11.84) 

36.50 

(14.54) 

�  =  0.75 

2.00 3.79 

(0.04) 

25.51 

(7.23) 

47.07 

(10.31) 

197.69 

(69.00) 

328.39 

(97.74) 

Note: We perform 2500 replications. Standard errors in parenthesis. 
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TABLE 4 

Business cycle datation 

Country  Our datation  Reference datation* 

  Peak Trough  Peak Trough 

 

 

FRANCE 

 80:1 

84:1 

90:3 

92:1 

95:3 

75:1 

80:4 

85:1 

91:1 

93:1 

 79:4 

82:1 

84:1 

92:1 

75:1 

81:1 

82:4 

85:1 

 

 

UNITED 

KINGDOM 

 64:4 

73:1 

78:4 

84:1 

90:2 

 

 

65:1 

74:1 

81:1 

84:3 

91:3 

  

 

79:2 

83:4 

90:1 

 

 

74:1 

81:1 

84:2 

92:1 

 

UNITED 

STATES 

 73:2 

80:1 

81:1 

90:2 

92:4 

70:1 

75:1 

80:3 

82:1 

91:1 

 73:4 

80:1 

 

90:3 

70:4 

75:1 

 

82:4 

91:1 
* Reference datation corresponds to the NBER datation for the United States and to the datation  
proposed by Artis and al. (1997) for France and the United Kingdom. 
 
 
 
 

TABLE 5 

Business cycle characteristics of the log of the real GDP series 

Country Number 
of peaks 

Mean length of 
expansion 

Mean length of 
recession 

Mean amplitude  
of expansion 

Mean amplitude 
of recession 

 FRANCE 
 

5 14.75 

        (3.52) 

3.25 

(0.41) 

0.11 

(0.03) 

0.01 

(0.002) 

UNITED 
KINGDOM 

 

 

5 

 

17.00 

         (5.62) 

4.00 

(0.94) 

0.18 

(0.05) 

0.02 

(0.003) 

UNITED 
STATES 

  

5 

  
21.25 

        (3.44) 

5.00 

(1.28) 

0.16 

(0.04) 

0.02 

(0.01) 
    Standard errors in parenthesis. 
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TABLE 6 

Best ARFIMA model specification for the log of the real GDP series 
 ARFIMA t-tests AR coefficients MA coefficients Robinson’s tests 

Country (p,  d,  q) d=1 d=2 
�1 �2 �3 �1 �2 �3 d = 1 d = d* d = 2 

FRANCE (0, 1.47, 2) 9.40 -10.60 --- --- --- -0.86 0.20 --- 1.99 1.23’ -2.31 

UNITED 
KINGDOM 

(1, 1.38, 2) 5.42 -8.85 -0.87 --- --- 0.58 -0.38 --- 1.73 0.07’ -1.69 

UNITED 
STATES 

(0, 1.36, 0) 3.60 -6.40 --- --- --- --- --- --- 2.16 -0.79’ -2.34 

The last column corresponds to the tests of Robinson (1994), testing Ho: d = do, where do is the maximum likelihood 
estimated of d obtained in previous tables. ‘ means non-rejection values at the 95% significance level. 
 
 
 
 
 

TABLE 7 

Best ARI(1)MA model specifications for the log of the real GDP 
  ARIMA  AR coefficients  MA coefficients 

Country  (p,  d,  q)  
�1 �2 �3  

�1 �2 �3 

FRANCE  (1,  1,  2)  0.99 --- ---  -1.35 0.42 --- 

UNITED KINGDOM  (1,  1,  2)  0.95 --- ---  -0.90 0.10 --- 

UNITED STATES  (1,  1,  1)  0.95 --- ---  -0.63 --- --- 

Best ARI(2)MA model specifications for the log of the real GDP 
  ARIMA  AR coefficients  MA coefficients 

Country  (p,  d,  q)  
�1 �2 �3  

�1 �2 �3 

FRANCE  (0,  2,  2)  --- --- ---  -1.35 0.42 --- 

UNITED KINGDOM  (0,  2,  1)  --- --- ---  -0.99 --- --- 

UNITED STATES  (1,  2,  1)  0.30 --- ---  -0.98 --- --- 
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TABLE 8 

Simulated business cycle characteristics of the log of the real GDP series with 
ARFIMA MODELS 

Country 
Aver. 

Number 
of Peaks 

Mean length of 
expansion 

Mean length of 
recession 

Mean amplitude 
of  expansion 

Mean amplitude 
of recession 

FRANCE 
10 

(0.087) 

11.7804 

(2.063) 

7.3447 

(1.818) 

0.0150 

(0.0041) 

0.013 

(0.0035) 

 UNITED 
KINGDOM 

5 

(0.0446) 

22.8476 

(4.7520) 

16.0179 

(4.752) 

0.0803 

(0.0234) 

0.0685 

(0.023) 

UNITED 
STATES 

 

9 

(0.0761) 

 

13.6392 

(2.7195) 

8.8280 

(2.4950) 

0.0294 

(0.0101) 

0.0237 

(0.0089) 

    Simulated business cycle characteristics of the log of the real GDP series with 
ARI(2)MA MODELS 

Country 
Aver. 

Number 
of Peaks 

Mean length of 
expansion 

Mean length of 
recession 

Mean amplitude  
of expansion 

Mean amplitude 
of recession 

FRANCE 
6 

(0.0664) 

15.086 

(2.827) 

17.216 

(2.909) 

0.0311 

(4.0073) 

0.0283 

(0.008) 

 UNITED 
KINGDOM 

3 

(0.033) 

24.066 

(3.800) 

16.031 

(3.760) 

0.4389 

(0.0971) 

0.314 

(0.090) 

UNITED 
STATES 

 

3 

(0.035) 

 

27.423 

(4.215) 

16.9742 

(3.875) 

.2502 

(0.056) 

0.1707 

(0.051) 

 
 


