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Abstract
We introduce the notion of a convex measure of risk, an extension of the concept of a coherent
risk measure defined in Artzner et al. (1999), and we prove a corresponding extension of the
representation theorem in terms of probability measures on the underlying space of scenarios. As
a case study, we consider convex measures of risk defined in terms of a robust notion of bounded
shortfall risk. In the context of a financial market model, it turns out that the representation
theorem is closely related to the superhedging duality under convex constraints.

1 Introduction

There is a considerable interest, both from a theoretical and a practical point of view, in
a quantitative assessment of the risk involved in a financial position. If such a position is
described by the resulting discounted net worth at the end of a given period, defined as a real-
valued function X on some set ) of possible scenarios, then a quantitative measure of risk is
given by a mapping p from a certain space X of functions on 2 to the real line. Clearly, such a
map p should satisfy certain conditions of consistency.

Recently, Artzner et al. [1] have introduced the concept of a coherent measure of risk. It is
defined by the following properties of the mapping p: X — R:

Subadditivity: p(X +Y) < p(X) + p(Y). (1)
Positive Homogeneity: If A > 0, then p(AX) = Ap(X). (2)
Monotonicity: If X <Y, then p(X) > p(Y). (3)
Translation Invariance: If m € R, then p(Y +m) = p(Y) — m. (4)

*To appear in Finance and Stochastics



Typically, a coherent measure of risk p arises from some family Q of probability measures
on () by computing the expected loss under ) € Q and then taking the worst result as ) varies
over Q:

p(X) = sup Eg[-X|; ()
QeQ

for the case where ) is a finite set see Artzner et al. [1] and, in a different context, Huber [10].

In many situations, however, the risk of a position might increase in a nonlinear way with
the size of the position. For example, an additional liquidity risk may arise if a position is
multiplied by a large factor. This suggests to relax the conditions of positive homogeneity and
of subadditivity and to require, instead of (1) and (2), the weaker property of

Convexity: p(AX + (1 = A)Y) < Ap(X) + (1 — A)p(Y) for any X € [0,1]. (6)

Convexity means that diversification does not increase the risk, i.e., the risk of a diversified
position AX + (1 — A)Y is less or equal to the weighted average of the individual risks. Let X
be a convex set of functions on the set € of possible scenarios. We assume that 0 € X and that
X is closed under the addition of constants.

Definition 1 A map p : X — R will be called a convex measure of risk if it satisfies the
condition of convexity (6), monotonicty (3), and translation invariance (4).

If the convex measure of risk p is normalized in the sense that p(0) = 0, then the quantity
p(X) can be interpreted as a “margin requirement”, i.e., the minimal amount of capital which,
if added to the position at the beginning of the given period and invested into a risk-free asset,
makes the discounted position X “acceptable”.

In Section 2 we prove a representation theorem for convex measures of risk. In the case in
which & is the space of all real-valued functions on a finite set 2, any convex measure of risk is
of the form

p(X) = sup (Eq[-X]- (@),
QeP
where P is the set of all probability measures on 2, and «(-) is a certain “penalty function”
on P. Independently, this result was stated by D. Heath in [8]; see also [9]. In Theorem 6, we
prove an appropriate extension of the representation theorem where the finite set € is replaced
by a general probability space (Q2,F, P), and X is the space L*(Q, F, P) of bounded random
variables.

Alternatively, a convex measure of risk can be characterized in terms of properties of the

associated acceptance set

.Ap:{XEX‘p(X)SO}.

Conversely, a given set A of “acceptable positions” defines a convex measure of risk via

pa(X) ::inf{mER‘m—l—XGA}



provided that A satisfies itself certain axioms. Our two main case studies of convex risk measures
will be defined in terms of such acceptance sets.

In Section 3, we consider the situation where the acceptance set is defined in terms of a
(robust) notion of bounded shortfall risk, i.e., a position is acceptable if its shortfall risk is
bounded by some given level. In this case, the associated penalty function can be described by
a functional of the type of a dual Orlicz norm.

In Section 4, we consider a discrete-time financial market model with convex trading con-
straints. As a first step, we define a set A of acceptable positions as the class of functions X € X
such that X +V > 0 where V is the final portfolio value which can be generated by an ad-
missible trading strategy. Theorem 17 clarifies the structure of the corresponding risk measure
pA- In this case, the weight function a(Q) can be described explicitly in terms of the increasing
process which appears in the construction of the optional decomposition under convex trading
constraints in Follmer and Kramkov [5].

2 Convex measures of risks

2.1 Acceptance sets

Let X be a convex space of functions on a given set ) of possible scenarios. We assume that
0 € X and that X is closed under the addition of constants: X +m € X if X € X and m € R
Any risk measure p : X — R induces an acceptance set A, defined as

Ap::{XEX‘p(X)SO}. (7)

Conversely, for a given class A of acceptable positions, we can introduce an associated risk
measure p 4 by defining

pA(X)::inf{mER‘m—FXE.A}. 8)

The following two propositions summarize the relations between a convex measure of risk and

its acceptance set A,. They are similar to the ones found for coherent measures of risk; cf. [1],
[4], [11].

Proposition 2 Suppose p: X — R is a convexr measure of risk with associated acceptance set
A,. Then

PA, = p-
Moreover, A := A, enjoys the following properties.

1. A is convezr and non-empty.
2. If Xe AandY € X satisfiesY > X, then Y € A.
3 IfXeAandY € X, then

{Xe0,1][AX+(1-NY € A}

is closed in [0,1].



Proof: To show that p4,(X) = p(X) for all X, note that the translation invariance of p implies
that

pa,(X) = inf{m|m+XeA,}=inf{m|pim+X)<0}
= inf{m‘p(X)gm}:p(X).

The first two properties of A = A, are straightforward. As for the third one, note that
the function A — p()\X +(1-— /\)Y) is continuous, as it is convex and takes only finite values.
Hence, the set of X € [0,1] such that p(AX + (1 — A)Y) <0 is closed. [

Example 3 (Value at Risk) Value at Risk at level v > 0,
VaR,(X) ::inf{m‘P[X-{-m <0] 57},

is not a convex measure of risk. This is shown by the example in [1], p. 218, since the acceptance
set is not convex.

Proposition 4 Suppose that X is a linear space of bounded functions. Assume that A # 0 is a
convez subset of X which satisfies property 2 of Proposition 2, and denote by p4 the functional
associated to A via (8). If p4(0) > —oo, then

1. p4 is a conver measure of risk.

2. A is a subset of A,,. Moreover, if A satisfies property 3 of Proposition 2, then A=A, ,.

Proof: 1. It is straightforward to verify that p4 satisfies translation invariance and monotonic-
ity. We show next that p4 takes only finite values. To this end, fix some element Y of the
non-empty set A. For X € X given, there exists a finite number m with m + X > Y, because
X and Y are both bounded. Monotonicity, translation invariance, and the fact that p4(Y) <0
give pA(X) < m. To show that p4(X) > —oo, we take m’ such that X + m’ < 0 and conclude
that pA(X) > pa(0) + m' > —oc.

As for the property of convexity, suppose that X7, Xo € X and that m, my € R are such
that m; + X; € A. If A € [0,1], then the convexity of A implies that A(m1 + X1) + (1 —A)(ma +
Xs) € A. Thus, by the translation invariance of p4,

0 > pa(Almi+ X1) + (1= N)(ma + X3))

= pA(/\X1 +(1- )\)XQ) - ()\ml +(1 - /\)mz) )

and the convexity of p4 follows.

2. The inclusion A C A,, is obvious. Now assume that A satisfies the third property
of Proposition 2. We have to show that X ¢ A implies that p4(X) > 0. To this end, take
m > p4(0). By property 3 of Proposition 2, there exists an € € (0, 1) such that em+(1—¢)X ¢ A.
Thus,

pa((1=e)X) = pale- 0+ (1 -)X)
epA(0) + (1 —e)pa(X).

Em

IAINA
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Hence
£(m = pa(0))

X) >
palX) 2z ———

>0,

and property 2 follows. L]

2.2 The representation theorem for convex measures of risk

Now we prove the structure theorem for convex measure of risks. Let us first consider the special
case in which X is the space of all real-valued functions on some finite set 2.

Theorem 5 Suppose X is the space of all real-valued functions on a finite set Q. Then p: X —
R is a conver measure of risk if and only if there exists a “penalty function” a : P — (—00, 00]
such that

p(Z) = sup (Eq[-Z] - a(Q) ) - (9)
QeEP
The function a satisfies a(Q) > —p(0) for any Q € P, and it can be taken to be conver and
lower semicontinous on P.

Note that this theorem includes the structure theorem for coherent measures of risk as a
special case. Indeed, it is easy to see that p will possess the property of positive homogeneity,
i.e., p will be a coherent measure of risk, if and only if the penalty function a(-) constructed in
the proof takes only the values 0 and +oc. In this case, our theorem implies the representation
(5) in terms of the set

Q:{QEP‘a(Q):O}.
Proof of Theorem 5: The “if’-part is straightforward: For each @@ € P the functional

XHEQ[—X] —a(Q)

is convex, monotone, and translation invariant. These three properties are preserved under
taking suprema.

For the proof of the converse implication, we need the following auxiliary observation. For
Q € P, define a(Q) by

a(Q) := sup (EQ[—X] —p(X)). (10)
Xex
Then we claim that
a(Q) = sup Eg[-X]. (11)
XeA,



For the moment denote the righthand side by @(Q). By definition of A, we find a(Q) > @(Q).
To establish the converse inequality, take an arbitrary X € X and recall that X' := p(X)+ X €
A, by (?7). Thus

3(@) > Bo[ ~X'] = o[ ~X] - p(X).

This shows a(Q) = @(Q). Note that we did not yet use the assumption that €2 is finite.
Now fix some Y € X and take «(-) as in (10). Then we clearly have

p(Y) > SEE(EQ[_Y] —a(Q))-

To establish the reverse inequality, take m € R such that

m > sup ((Eo[ Y] ~a(Q)). (12)

We must show that m > p(Y') or, equivalently, m +Y € A,. Suppose that, on the contrary,
m+Y ¢ A,. Since p is by definition a convex function on the Euclidean space R taking only
finite values, p is already continuous; cf. [13, Corollary 10.1.1]. Hence A, = {p < 0} is a closed
convex set. Therefore, we can find a linear functional £ on R such that

B:= sup 4(X) <l(m+Y)=1v<o0. (13)
XeA,

It follows that £ is a negative linear functional. Indeed, note first that the axioms of normaliza-
tion and monotonicity imply

p(X) < p(0) for X > 0. (14)
Thus, if X € X satisfies X > 0, then AX + p(0) € A, for all A > 1, and hence
v > L(AX + p(0)) = M(X) + p(0).

Taking A 1 oo yields that £(X) < 0. If we assume that £ applied to the constant function 1 gives
—1, what we can do without loss of generality, then

Q[A] ‘ZE( _IA)

defines a probability measure @ € P. By (11) and (13) we find

Q) = sup Ho[-X] =4.
XeA,

But
EQ[—Y} —m=40m+Y)=7>p=0a(Q),

which is a contradiction to our choice of m. Therefore, we must have m +Y € A, and, thus,
m > p(Y). (]



In the previous proof, the assumption that € is finite was only used in order to obtain the
closedness of the acceptance set A,. In the case where X is given as the space L*(Q,F,P)
of bounded functions on a general probability space (2, F,P), we will have to assume the
closedness of A, in a suitable topology, but then the previous argument goes through. Thus
we obtain the following extension of Delbaen’s representation theorem for coherent measures of
risk on a general probability space; see [4, Theorem 3.2].

Theorem 6 Suppose X = L*°(Q,F,P), P is the set of probability measures @ < P, and
p: X — R is a conver measure of risk. Then the following properties are equivalent.

1. There is a “penalty function” a: P — (—o0, 00| such that

p(X) = sup (EQ[—X] - a(Q)) forall X € X. (15)
QKP

2. The acceptance set A, associated with p is weak*-, i.e., (L (P), L}(P))-closed.

3. p possesses the Fatou property: If the sequence (Xp)nen C X is uniformly bounded, and
X, converges to some X € X in probability, then p(X) < liminf, p(X,,).

4. If the sequence (X, )nen C X decreases to X € X, then p(X,) — p(X).

Proof: 1 = 2 holds, because p given by (15) is o(L>(P), L'(P))-lower semicontinuous. For
the converse implication, we can repeat the proof of Theorem 5 and apply the Hahn-Banach
separation theorem in the locally convex space (L*°(P),o(L>®(P),L'(P))) in order to get a
negative continuous linear functional £ satisfying (13). By assumption, £ can be represented as
¢(Z) = E[¢X ] with some ¢ € L'(P) yielding a probability measure dQ/dP = ¢/E[y]. We
conclude the proof as in Theorem 5. The remaining implications follow as in [4]. L]

Proposition 7 Suppose p : L®(Q,F,P) — R is a convex measure of risk possessing a repre-
sentation of the form (15) and take P as in Theorem 6. Then the representation (15) holds as
well in terms of the penalty function

0 (Q) = sup (EQ [-X]- P(X)) = Jup Fo [-X]. (16)

Moreover, it is minimal in the sense that ap(Q) < a(Q) for all Q € P if the representation (15)
holds for a(-). In addition,

ao(Q) = sup Eg[—X]| = sup Eg|—X| (17)
XeA, XeA

if p is defined as in (8) via a given acceptance set A.



Proof: By (10) and (11) we already know that the two terms on the righthand side of (16)
coincide, and the proof of our representation theorem shows that we can take ag(-) as in (16)
once p possesses of the form (15). If «(-) is any other functional with which we can represent
p, then it follows readily that

a(Q) > Eg[—X ] — p(X) for all X.

Thus a(Q) > ap(Q) for all Q € P. This proves the first part of the assertion. The second part
follows by recalling that A C A, and that ¢ + X € A whenever X € A, and € > 0. L]

Remark 8 Equation (17) shows that the minmal penalty function «q is lower semicontinu-
ous for the weak* topology on P considered as a subset of L'(P). In particular, o is lower
semicontinuous for the total variation distance.

Sometimes, it may be convenient to represent a convex measure of risk with a penalty
function a(-) that is not the minimal one. This case occurs, for instance, in the following
situation.

Proposition 9 Suppose that for every i in some index set I we are given a convex measure of
risk p; on X := L*(Q,F, P) with associated penalty function o;(-). We assume that

inf inf q; —00. 1
Jnf infe;(Q) > —o0 (18)
Then
p(X) == Su?pi(X), XeXx,
1€

is a convex measure of risk that can be represented as in (15) with the penalty function

a(Q) =infa;(Q), QK P.

i€l

Proof: Clearly,

p(X) = sup sup, (EQ[—X] - oq(Q)) = Sup (EQ[—X] —ygai(Q))-

Hence the assertion follows. L1

3 Risk measures defined in terms of shortfall risk

Suppose that £ : R — R is an increasing convex loss function which is not identically constant.
For a position X € L*®(2, F, P) we introduce the expected loss

Ep[4(-X)].
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If ¢ vanishes on (—00,0] then Ep[¢(—X)] = Ep[4(X~)] may be viewed as a quantitative
assessment of the shortfall risk. In view of examples such as Example 12, it will be convenient
to formulate our results without this restriction on £.

Let zy be an interior point in the range of £. A position X € L*(Q,F, P) will be called
acceptable if the expected loss is bounded by zy. Thus, we consider the class

A= {XGL"O(Q,]—",P)‘EP[Z(—X)] Sxo}. (19)

of acceptable positions. The set A satisfies the first two properties of Proposition 2 and thus
defines a convex measure of risk p := p4. Since £ is continuous as a finitely valued convex
function on R, p possesses the Fatou property and, hence, a representation of the form (15).
The corresponding minimal penalty function ag(-) can be expressed in terms of the Fenchel-
Legendre transform

0*(z) == ;Sclelﬁ (zz — £(z))

of Z; note that the following formula may be viewed as an extension of a classical result for
Orlicz spaces; cf. [12], p. 91.

Theorem 10 Suppose that A is the acceptance set given by (19). Then, for Q@ < P, the
minimal penalty function of p = p4 is given by

00(Q) = sup Bo[ X = inf 1 (w0 + Ep[ £ (x22)]). (20)

XeA A>0 A dP

For the convenience of the reader, we summarize below some basic properties of the functions
£ and £*.

Lemma 11 The functions £ and £* enjoy the following properties.
1. £%(0) = — inﬂ%ﬁ(m) and £*(z) > —£(0) for all z.
zE

2. The set N := {z € ]R|E*(z = —£(0) } is non-empty, z; := inf N > 0, and £*(z) =
sup (zz — £(z)) for z > z1. In particular, £* is non-decreasing on [z1,00).
>0

3. z :mf{zER‘ﬁ* ) < o0} €[0,00).

()

/.

Proof: Assertion 1 is trivial. As for the second claim, note that convexity of £ implies that
the set of all z with zz < £(z) — £(0) for all z € R is non—empty For those z we clearly have
¢*(z) < —£(0). On the other hand, ¢*(z) > —£(0) by 1. Next, it is clear that z; > 0. If z > z;
and z < 0, then zz — l(z) < 221 — £(z) < £*(z1) S - ( ), where the latter inequality follows
from the lower semicontinuity of £*. But £*(z) > —/(0) so that the supremum of (zz — £(x))
must occur for z > 0.

3. By 2, £* is not identically +oo and, thus, zp < co. On the other hand, £*(z) = oo for
all z < 0.

4. For z > z1, £*(2)/z = sup,so (z — £(z)/z) by 2. Hence £*(z)/z > z, — 1 if z, =
sup { T ‘ L(z) < z} . Since £ is increasing and takes only finite values, it follows that =, — oo
as z T oo.




Proof of Theorem 10: Fix () < P and let

_

First, let us remark that it suffices to consider the case where zy > £(0). Otherwise we can find
some a € R such that £(—a) < zy, since zy was assumed to be an interior point of £(R). Let
l(z) :==4(x — a), and

A={X eLOO(Q,f,P)‘EP[Z(—)?)] <o}
Then A = {X —a|X € A}, and hence

sup B[ —X ] = sup Eg[-X]+a. (21)
Xed XeA

The loss function £ satisfies the assumption Z(O) < xg. So if the assertion is established in this
case, we find that

sup Bol =1 = jut 3 0+ B [F000)]) = o 5 (s + B[ 001 ) o

where we have used that the Fenchel-Legendre transform £* of £ satisfies £*(z) = £*(2) + az.
Together with (21), this proves that the reduction to the case £(0) < zg is indeed justified.
Next let I denote the right-continuous derivative of £*, and recall that for z,z € R

zz < L(z) + £*(2) with equality if z = I(2); (22)

see, e.g., [13]. Thus, for any A > 0 and X € A we have that

~Xp=1(-X)0) < 5 (6-X) +£09)).

Hence, for any A > 0

(370 + EP[E*(NP)])

00(Q) < sup * (EBp[6(-X)] + Bo[ £ (xg)]) < &

XeA

Thus, it remains to prove that

ao(Q) > /1\I>lf0 ; (370 + Ep [5*(/\@]) (23)

in case where ap(Q) < oo. This will be done first under the following two extra conditions:

There exists k € R such that £(z) = inf £ for all z < k. (24)
I is continuous on (0, c0). (25)

10



Note that (24) implies that £*(0) < oo and that I(0+) > k. Since £ is convex, increasing,
and takes only finite values, we may conclude that I(z) increases to +oc as z 1 0o, and hence
so does £(I(z)). Moreover, since

5 (z) > —£(0) > —xo for all z, (26)
it follows from (22) that

lim £(1(2) — o < lim (e(f(z)) + e*(z)) = lim21() = 0.

These facts and the continuity of I imply that for each large enough n there exists some A\, > 0
such that

Ep[e(f(,\nga)l{w})] =0 — £(0)- Pl >n].
Let us put

X" = —I(/\ngo)I{(pSn} .

Then X™ is bounded and
Ep[e(_Xn)] - EP[E(I()\ngo))I{(pSn} +£(0)I{w>n}] = 0.

Thus, X™ is contained in A. Hence, it follows from (26) that

00(Q) > %(xo F B[O, ]) 2 —L0)Plp <n]

n n

As we assumed that op(Q) < oo, we must have that lim inf,, A, > 0. Moreover, for large enough
n, An is bounded above by X/, where

Ep [e (I (A%‘P)I{mﬁ ] - %o

Since A, decreases in n, there is no loss in generality if we assume that ), converges to some
Ao € (0,00). The fact that £* is bounded from below admits the application of Fatou’s lemma:

ao(Q) > lim inf 1 (1170 + Ep [é*(knw)l{wsn} ]) > %0(330 + EPV*()\OSD)D '

ntoo )\n

This proves (23) under the assumptions (24) and (25).
If only (24) holds and I is not continuous, then we can approximate the upper semicontinuous
function I from above with an increasing continuous function I on [0, co) such that

0*(z) :== £*(0) + /O ’ I(y) dy

satisfies

0*(2) < (z) < L((1+€)2) for z > 0.

11



Let £ := £** denote the Fenchel-Legendre transform of £*. Since £** = £, it follows that

e(lie) < U(z) < £(z).

Therefore,
.Z::{XEX‘EP[Z(_X)] Sivo} c {(1+8)X‘X€‘A}::A

Since we already know that the assertion holds for Z we obtain that

i+ B[ (F)]) < i (e e [F () )
= sup Eg[—X]

XeA

< sup Eg[-X]
XeA:

= (1+&)a(Q)-

By letting € | 0, we obtain (23) in case where £ is bounded from below.

Finally, if £ does not take on its infimum, we choose a sequence &, | inf £ such that k, < g
and we let £,(z) := £(z) V k,. We define correspondingly ¢, I,, Ay, and afj(Q). Note that
both I,,(z) and £,(I,(z)) decrease in n while £} and of(Q) increase. From the preceding, we
know that

20(@) > a§(Q) = 3 (a0 + o[ 60070 ]) — (27)

for certain A5 € (0,00). Recall that we must only proof (23) in the case ap(Q) < oco. In this
case, since £} (z) coincides with £*(z) for large enough z uniformly in n, the fourth assertion of
Lemma 11 implies that sup,, A}, < co. Moreover, we have for large enough n

ir;fﬁ;;(z) = —4,(0) = —£(0) > —xo.

Hence, (27) implies that lim inf, A5, > 0. Therefore, we may assume that A5, converges towards
some A¢ € (0,00). Then

a(Q) +¢e> hmlnf—(xo —I—Ep[@* )]) > %(wo —l—Ep[E*()\Ego)]) )

where we used again that £} (z) > —£(0), uniformly in n» and z. Letting ¢ | 0 completes the
proof of the theorem. L]

Example 12 For an exponential loss function, the penalty function can be described in terms
of relative entropy. Let us take /(xz) = e® and zy = 1 so that

p(X) :inf{mE]R‘Ep[e_m_X] < 1} :long[e_X].

12



Then (16) becomes the well-known variational formula for the relative entropy, namely

a(Q) = sup (EQ[—X] - long[e*X]) = H(Q|P),
XeL>(Q,F,P)

where the relative entropy of () with respect to P is defined as

dQ dQ .
—log—=dP if P
HQP)={ ) ap 8 ap T <D,
400 otherwise.

Example 13 Take in (19)

1 .
e(w) — ;.’Ep lffL' Z 9’
0 otherwise,

where p > 1. Then I(z) = z//®~1)  and with ¢ = p/(p — 1)

0*(z) ==

%zq ifz >0,
+o00 otherwise.

Thus, for g > 0 the conditions of Proposition 10 are fulfilled. Thus, if Q@ € P with ¢ :=
dQ/dP € L1, F, P), then the infimum in (20) is attained for

A = (Ej[oiﬂ)l/q'

Hence we can identify a(Q) for any Q@ < P as

o(Q) = (pro) 7 - B[ (22)']"

Together with Proposition 9, Theorem 10 yields the following result for risk measures which

are defined in terms of a robust notion of bounded shortfall risk.

Corollary 14 Suppose that Q is a family of equivalent probability measures, and that £, £*,
and o are as in Theorem 10. On X := L*°(Q, F, P), for any P € Q, let

A::{Xex‘Ep[e(—X)]gxoforaupeg}. (28)
Then the corresponding conver risk measure can be represented in terms of the penalty function
el : « [ 9Q
o(@ = juf 5 (=0 + juf Bo [ £ (A75) ])-

Example 15 In the situation of Example 12, the corresponding robust problem as in Corollary
14 leads to the following entropy minimization problem: For a given @) and a set Q of equivalent
probabilities, find

it H@QP).

Note that this problem is different from the standard problem of minimizing H(Q|P) with
respect to the first variable as it appears, e.g., in the theory of large deviations.

13



Example 16 Take in (19) zp = 0 and

i >
Uz) = {x if x>0,

0 otherwise.

Then

+o00 otherwise.

w@w:{o to=1,

Therefore a(Q) =  if @ # P, a(P) = 0, and, of course, p(X) = Ep[—X]. If Q is a set of
equivalent probability measures, the “robust” p of Corollary 14 describes a coherent measure of
risk:
p(X) = sup Ep[—-X].
PeQ

4 Risk measures arising in a
financial market with convex constraints

We consider a filtered probability space (€2, F, (F¢)¢=o,... 7, P) and a market where one bond and
d risky assets are traded. The price of the bond will be assumed to be normalized to 1, and the
(correspondingly discounted) price process of the risky assets is denoted by X; = (X1,..., X¢).
We will assume that

Xi>0 fori=1,...,dandt=0,...,T. (29)

Any d-dimensional predictable process & can be regarded as a self-financing trading strategy; &
is the number of shares held of the i** asset during the trading period ¢ — 1 ~~ ¢, and

t
Vi=Vo+ > & (Xp — Xp—1)
k=1

is the associated value process for an initial endowment Vj.

Now consider a financial position Z € L*®(P). Z can be interpreted as “riskless” if Z > 0
or, more generally, if the “risky part” of Z can be hedged at no additional cost. The latter
means that we can find a suitable hedging portfolio £ such that

T
Z4+> & (X=X, 1) >0  Pas. (30)
t=1

Note that (30) is only possible if ¢ is admissible in the sense that there is a constant ¢ = ¢(§)
such that the associated gains process satisfies

T
Gr(§) = Z & (Xt — Xi1) > —c P-as, (31)
=1

14



because the position Z is bounded.

If we think of Z being the value of a “huge” portfolio, we should avoid to run into the regime
of illiquidity when hedging Z. For instance, one may want to impose individual limits on the
number of shares held of the risky assets. In this case, each component £ is only allowed to take
values in some interval [a;, b;]. Such constraints on the hedging portfolio were first suggested by
Cvitanic and Karatzas [2], [3]. Here we will work with the more general framework introduced
in the continuous-time setting by Follmer and Kramkov [5].

Thus, let S be a set of admissible trading strategies such that

e 0es8.

o X is predictably convex: If ¢, €2 € S and h is a predictable process with 0 < h < 1, then
also £" € S where €] := hy&} + (1 — hy)E2.

In a first step, we define the non-empty set
T
A:={Z € L™(P) ‘ there exists £ € S with Z+ Y&+ (X~ X;1) >0 P-as. |, (32)
t=1
of acceptable positions which can be hedged with strategies in S at no cost. By Proposition 4,
A induces the convex measure of risk
p(Z)::pA(Z):inf{mER‘m—l—ZEA} (33)
provided that
pa(0) > —oo. (34)

Note that (34) holds, in particular, if S does not contain arbitrage opportunities. We will
assume (34) throughout this section.
The following questions arise:

e When does p permit a representation of the form (15)?
e If so, can one identify the minimal penalty function ag?

Let us first consider the second question.

Proposition 17 Suppose the convex measure of risk p4 induced by the set A of (32) possesses
a representation of the form (15). Then the minimal penalty function ay(-) in the representation
(15) is given by

a(Q) = Eg[4%]  for Q< P. (35)

Here A9 is the predictable increasing process defined by

4G =0, A%, - A2 .= esssup [gm : (EQ [ X1 | F] - Xt) ] . (36)

15



Proof: First note that Fg [& (Xt — Xi—1) ‘ .7-",5_1] is well-defined and satisfies
Eglé&- (X — X41) | Fea] =& (EQ [ X¢ | Fia] - th)

for every £ € 8. To see this, observe first that by predictable convexity also £®) € S, where

f(t) . {ft lf S = t,

0 otherwise.

By assumption every element in S is admissible in the sense of (31), and thus there is some
constant ¢ with & - (X; — X;_1) = Gp(¢é®) > —¢ P-a.s. Using our assumption (29) that prices
are non-negative, the claim follows.

Next, if Z € A there exists £ € S with —Z < Zthl & - (Xy — Xy—1) P-a.s. By using the
above identity for &; - (EQ [Xt ‘.7-}_1 ] — Xt_1), we obtain that for Q < P

T

Eq[-Z] < o[ 3 &+ (Xi— Xui1) | < o[ 48], (37)
t=1

Hence, we conclude from Proposition 7 that
ao(Q) = sup Eq[ -Z] < Eq[A7].
ZeA

Now we turn to the proof of the converse inequality. To this end, we show first that

U= { éEQ[&-(Xt—Xt_lﬂft_l] ‘568}

is directed upwards in the sense that for 91,12 € ¥ there is 93 € U with 13 > 1)1 V 99. For
£,EeS let

Ap = {EQ[ft'(Xt—th)‘ftl] >EQ[E;'(X?5_XF1)|~7:¢*1] }’

and define ¢’ € S by N
62 = EtIAt + gtIAg .
Then clearly
EQl& - (Xi — Xy1) | Fioa ]
=Egl& - (Xi — Xom1) | Fecr | VEQ[ &+ (Xp — Xym1) | Fe—1 ],

and therefore W is directed upwards. It follows that Ag = esssup Y is the limit of an increasing
sequence in ¥. Hence,

T
Fal4f] = swpFo| 3o Falé (X~ Xi) | £
t=1
= supsupEQ[GT(f)/\k}.
£eS keN
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Admissibility yields that —(Gr(¢) Ak) € A C A,, and thus

Eq[Af] = 2ggiggEQ[GT(§) Nk] < ao(@Q)-

This concludes the proof. L]

Let us now turn to the question of the existence of a representation (15). Let Ps denote the
class of all probability measures P that satisfy the following conditions

e Pr P,
e X; € L(P) for all t, (38)
e the value process of every strategy in S is

a local supermartingale under P.

Here, a discrete-time stochastic process U is called a local supermartingale under ﬁ, if there
exists an increasing sequence of stopping times (7,)nen with 7, ~ T' P-a.s. such that the
stopped processes U™ are P-supermartingales.

Theorem 18 Assume that S is closed under convergence in probability, and let p denote the
convex measure of risk on X = L°°(P) arising from the set A of (32). Then the following
conditions are equivalent.

1. p is relevant in the sense that p(X) > 0 whenever X € X is non-positive and satisfies
P[X <0]>0.

2. There are no arbitrage opportunities in S.
3. The set Ps is non-empty.

If one of these conditions is fulfilled, p possesses a representation of the form (15) where one
can take a(Q) as in (35) for @ = P and a(Q) = oo if Q % P.

That the relevance of p is equivalent to the absence of arbitrage follows immediately from
the respective definitions. The proof of the remaining assertions uses standard techniques for
proving the fundamental theorem of asset pricing and the superhedging duality theorem; for
the details we refer to [7].

Remark 19 In a continuous-time financial market model where the price process X follows a
special semimartingale under P, one can similarly define a predictably convex set S of admissible
integrands and a corresponding convex measure of risk p. If one assumes in addition that the set
{ J&dX ‘ Ees } is closed in the seminartingale or Emery topology, the optional decomposition
theorem of [5] will imply a representation (15) of p. The penalty function a(Q) can be described
as a(Q) = EQ[Ag] provided that @) satisfies the following three conditions are fulfilled. @ is
equivalent to P, every process [£dX with ¢ € S is a special semimartingale under @, and Q
admits the upper variation process A% for the set { [¢dX ‘f € S }. One can take a(Q) = oo
for measures () which do not fulfill one of these conditions.
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In a second step, we combine the results of this section with those of Section 3. If £ is
a convex loss function and zg is an interior point in the range of ¢, one can call a position
X € X = L*®(P) acceptable if there exists ¢ € S such that the expected loss of X + G (&) is
bounded by z, i.e.,

Ep[6(- X - Gr()] < mo. (39)

The risk measure arising from this class of acceptable positions is closely related to the problem
of efficient hedging or the problem of utility maximization; see, e.g., [6], [14]. Here we go one
step further and replace the risk measure associated with £ by a general risk measure p® which
possesses a representation (15). A position X € X will be acceptable if there exists £ € S such
that X + Gr(€) is acceptable for p° in the sense that there exists Y € A" := Ao such that
X+ Gr(€) > Y (note that X + Gr(£) needs not be bounded):

A= {XEX‘EI&ESsuchthatX—I-GT(E) szorsomeYE.AO}. (40)
Let p := pz. According to Proposition 4, p is a convex measure of risk provided that
p(0) > —o0. (41)

Note that this condition (41) implies our assumption (34).

Let us first consider the special case where A° is defined in terms of a convex loss function,
and let us show that p coincides indeed with the risk measure which arises from the acceptability
criterion (39). For this identity, the condition (41) is not needed.

Proposition 20 Suppose that the acceptance set A is of the form (19) for a convez loss
function £ and an interior point xo in the range of £. Then

p(X) :inf{mER‘ 3¢ € 8 such that Ep[£(—m — X — Gr(£)) ] Swo}. (42)

Proof: Denote for the moment the right-hand side of (42) by p(X). Clearly, p is translation
invariant, and every X € A satisfies p(X) < 0. Thus, we obtain p > p. Conversely, if X € X is
arbitrary and m > p(X), then either there exists £ € S such that

Ep[t(—m—X —Gr(¢))] < 0,
or there exists ¢ > 0 such that
Ep[f(—m—X —Gr(§)] =0,
for all m € (p(X),p(X) +¢€). In both cases, if k > 0 is large enough, then
Ep[t(—m—X —Gr(&) Nk)] < .

It follows that Y := m + X + Gr(€) Ak € A%, which in turn implies that m + X € A and
p(X)<m. O
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For a general risk measure p°, the following proposition shows how the resulting risk measure
7 depends both on p° and on the structure of the financial market.

Proposition 21 Assume L41) and let p4 and p be the conver measures of risk associated with
the acceptance sets A and A of (32) and (40), respectively. If both p4 and p possess representa-
tions (15), then the minimal penalty function @y arising in the representation (15) of p is given
by

@ (Q) = og(Q) +g(@), Q<P (43)
where of is the minimal penalty function for p° and of is given by (35).
Proof: Let A be the acceptance set of (32). It is easy to prove that

A= {X°+X1 ‘XO e A, X! eA}.

For instance, if X € A, then there exists Y € A? and ¢ € S such that X + Gr(£) > Y. Hence,
X0 is the sum of X —Y € A and of Y € A°.
Now it follows from (17) that

@(Q) = sup EQ[—X} = sup sup EQ[—XO —Xl] = ag(Q) +a(1)(Q).
XcA X0c A0 XAl

This proves the assertion. L]
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