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Abstract

This paper improves previous sufficient conditions for stationarity obtained in the
context of a general nonlinear vector autoregressive model with nonlinear autore-
gressive conditional heteroskedasticity. The results are proved by using the stability
theory developed for Markov chains. Stationarity, existence of second moments of
the stationary distribution, and useful mixing results are obtained by establishing
appropriate versions of geometric ergodicity. The results are applied to a nonlinear

error correction model to obtain an analog of Granger’s representation theorem.

Keywords: Geometric ergodicity, Markov chain, Mixing, Nonlinear error correction

model, Nonlinear vector autoregressive process, Stability



1 Introduction

Most of the traditional time series analysis assumes that the underlying data gener-
ation process is stationarity or asymptotically stationary in the sense that the non-
stationarity is only due to transient effects caused by initial values. For conventional
linear time series models necessary and sufficient conditions for stationarity are well
known and straightforward to obtain. However, as far as nonlinear time series mod-
els are concerned, the situation is much more difficult. For such models, the most
convenient approach for studying stationarity is apparently based on the theory of
Markov chains. When the considered model has a Markovian structure it suffices
to establish a property known as geometric ergodicity. Once this has been done the
desired asymptotic stationarity or, as we shall say, stability follows along with useful
mixing results. Chan and Tong (1985), Chan, Petrucelli, Tong, and Woolford (1985),
Feigin and Tweedie (1985), and Pham (1986) were among the first authors to use this
approach for nonlinear time series models. A good reference of the whole approach
and its applications till the early nineties can be found in the comprehensive book of
Meyn and Tweedie (1993).

Most of the stability results referred to above were obtained for specific nonlinear
time series models such as threshold autoregressive models, random coefficient au-
toregressive models, and bilinear models. In subsequent work, Masry and Tjgstheim
(1995), Lu (1998), and Lu and Jiang (2001) obtained similar results for general nonlin-
ear autoregressive processes with nonlinear autoregressive conditional heteroskedas-
ticity (ARCH). A drawback of these results is, however, that the given sufficient
conditions for stability can be very far from necessary.

In this paper we follow Masry and Tjgstheim (1995), Lu (1998), and Lu and Jiang
(2001) and consider a general nonlinear vector autoregressive (VAR) process with a
nonlinear ARCH component. Of our two major contributions the first one is that the

stability results obtained by these previous authors will be considerably improved.



Indeed, our sufficient condition for stability is even better than a condition Lu (1998)
only conjectured to hold in a corresponding univariate context. In the special case of
a linear VAR model with a conventional ARCH component necessary and sufficient
conditions for stability will be provided. These results can actually be obtained in a
fairly simple manner by adopting a method of proof already employed by Feigin and
Tweedie (1985).

The second major contribution of this paper is that we show how stability results
obtained for nonlinear VAR models can be applied to nonlinear error correction mod-
els similar to those discussed by Granger and Swanson (1996), Granger and Haldrup
(1997), and Granger (2001). The main result obtained in this context can be seen
as an extension of Granger’s representation theorem given by Johansen (1995, p. 49)
for linear VAR error correction models. In particular, just like in the previous linear
case we provide conditions which ensure that the considered nonlinear VAR process
is nonstationary and integrated of order one (or I(1)) but some of its linear combi-
nations are stationary. As recently indicated by de Jong (2001), such results are of
great importance in the development of asymptotic estimation and testing theory for
nonlinear error correction models.

Results, which at this stage can be readily obtained for nonlinear error correction
models, are unfortunately not of as broad applicability as one would hope. Several
interesting types of nonlinearity are ruled out including most, though not all, of the
threshold autoregressive error correction models and their smooth versions discussed
by Balke and Fomby (1997) and van Dijk, Terédsvirta, and Frances (2001). On the
other hand, our error correction model allows for a nonlinear ARCH component and
the form of nonlinearity is also otherwise slightly more general than permitted in the
related recent work of Corradi, Swanson, and White (2000). The error correction
model considered by these authors is somewhat different from our model and, as we

shall point out, more difficult to handle. A point, potentially related to this difficulty,



is that some of the proofs of Corradi, Swanson, and White (2000) appear to be in
flaw and some of their results are not true as stated.

The plan of the paper is as follows. The considered nonlinear VAR model and
related stability results are presented in Section 2. In Section 3 these results are
applied to a nonlinear VAR error correction model. Section 4 presents conclusions of
the paper and a mathematical appendix contains proofs of the theorems.

The following notation is used throughout the paper. The symbol vec denotes the
usual column vectorizing operator which stacks the columns of a matrix in a column
vector. The half vectorization operator, denoted by vech, stacks only the columns
from the principal diagonal of a square matrix downwards in a column vector. For
any (k x k) matrix A, the symbol Dy is used for the (k:2 X %k (k + 1)) duplication
matrix defined by vec(A) = Dyvech(A) whereas L, will signify the (1k (k + 1) x k?)
elimination matrix such that vech(A) = Lgvec(A). The largest and smallest eigen-
values of the square matrix A are denoted by Apin (4) and Ayax (4), respectively,
whereas p (A) = [Amax (A)] is the spectral radius of A. Moreover, rk(A), tr(A), and
det(A) signify the rank, trace, and determinant of A, respectively. The symbols L
and A stand for the lag and differencing operators, respectively, so that for a sequence
y; we have Ly, = y, 1 and Ay, = v — yp 1. If Ais a (k x [) matrix of full column
rank (k > 1) its orthogonal complement is denoted by A, so that A, isa (k x (k —1))
matrix of full column rank and such that A’A; = 0. Finally, ||-|| is used for the Eu-
clidean norm and a sum is defined to be zero if the lower bound of the summation

index exceeds the upper bound.

2 Nonlinear Vector Autoregression

Consider the n-dimensional stochastic process z; (t = 1,2, ...) generated by the non-

linear VAR process
2t = [ (2t-15 o0y Zt—p) + U (1)



where f: R" — R" is a (generally) nonlinear function and u; is a zero mean error
term. We allow for the possibility that the errors are conditionally heteroskedastic
and assume that

Uy = H (Zt_l, ceey Zt—p)1/2 Et (2)

where &; ~ i.i.d. (0, I,,) is independent of z; (s < t) and H: R"™ — R"*" is a positive
definite matrix valued function. Notice that it means no loss of generality to use the
same lag length p in equations (1) and (2) because this case can always be achieved
by a redefinition of the involved functions (cf. Lu (1998)).

The stability of the process defined by equations (1) and (2) was recently stud-
ied by Lu and Jiang (2001) without assuming that the errors &, have finite second
moments. Assuming the existence of second moments is convenient because from a
practical point of view it is mostly not restrictive and needed to develop conventional
asymptotic estimation and testing theory. The existence of second moments was as-
sumed by Lu (1998) who obtained stability results for univariate models similar to (1)
and (2) with n = 1. Lu’s (1998) results extended those previously obtained by Masry
and Tjgstheim (1995, Lemma 3.1). Our work makes use of ideas similar to those
employed by these previous authors.

We shall now discuss assumptions imposed on the above model. Denote z =
[z} ... x'}l where z; € R* (i =1, ...,p). Following Masry and Tjgstheim (1995) and

p
Lu (1998) we assume that the function f satisfies

flx) = _ZijCj +o(llzl]) as [lz]] = oo. (3)

Here B; (j = 1,...,p) are (n x n) matrices which may all be zeros. Thus, it is assumed
that for large ||z|| the behavior of the function f is dominated by a linear function.
As for the function H, we assume that

k l

H(x) = ZZKUSE.TIKZ{]- +o (||x||2) as ||z|| — oo, (4)

i=1 j=1



where K;; (i=1,...,k, j=1,..,1) are (n x np) matrices possibly all zero. This im-
plies that for large ||z|| the nonlinearity in the conditional covariance matrix of z;
is dominated by a quadratic function similar to that used in the so called BEKK
formulation of the multivariate ARCH model (see Engle and Kroner (1995)). Indeed,

if f(z) =0 we have z; = u; and a special case of the BEKK model can be written as

k- »p
E (uuy | us, s <t)=®y+ ZZ@ijut_ju;,j@;j. (5)

i=1 j=1
Here ®; and ®;; (i =1,...,k, j=1,..,p) are (n x n) parameter matrices with @
(typically) positive definite and the lag length p has been used to make the formulation
conformable to that in (2). Thus, in this case equation (4) holds with [ = p and
Kij=10:---:0:®;:0:---:0] where ®;; is in the jth position. Furthermore, the
term o (||:1:||2) in (4) is only due to the constant matrix ®;.

Note that, although we presented the BEKK model by assuming f (z) = 0, our
results also apply to a model defined by equations (1) and (5) or, more generally, to
models obtained from (1) and (2) by replacing z; in the latter by u;. Of course, a
redefinition of the original model is then required to obtain the same lag length p to
(1) and (2). It should be noted, however, that our formulation does not allow for
generalized ARCH (GARCH) type conditional heteroskedasticity.

To be able to obtain stability results for our general model, suitable assumptions
have to be imposed on the matrices B; and K;; in equations (3) and (4). To this end,

define the companion matrix

B, B, B,.1 B,
I, 0 0 0

B=| 0 I, 0 0 (np x np)
0 0 I, 0




and the matrix
K.

1,
Kijo = ! (np x np).
0
We also need the duplication matrix D,z of dimension (n*p* x in%p? (n?p* + 1)) and
the elimination matrix L,z of dimension (3n%p* (n?p? + 1) x n'p?).
Now we can introduce our assumptions which also include conditions required

from the error term &;.

Assumption 1. (i) The distribution of the i.i.d (0,1,) random vectors &; is
absolutely continuous with respect to the Lebesgue measure and has a density function
which is positive almost everywhere in R".

(ii) The functions f and H are Borel measurable and bounded on bounded subsets of
R"?. In addition, the matrix valued function H is such that H (x) is positive definite
for any x € R" and one of the following conditions holds: (a) infzex Amin (H (z)) >
Ax > 0 for any compact set C R" or (b) H is continuous and Amin (H (z)) > 0 for
any x € R".

(iii) The functions f and H satisfy (3) and (4) and, furthermore,

P (Ln2p2 (B’ ® B+ K(I)) Dn2p2) <1 (6)

where Ko = 2% | Z;:l (Kijo ® Kijo) -
0

Parts (i) and (ii) of Assumption 1 have been adopted from Lu and Jiang (2001).
From a practical point of view they are very mild and met in most applications. Of
the two alternative conditions in Assumption 1(ii) the former may be more useful
in practice because it permits the function H to be discontinuous which is needed in
threshold type models. Moreover, the eigenvalue assumption usually holds in this case
because an additive positive definite constant part is typically included in conditional

covariance matrix models (cf. the matrix @y in the BEKK model (5)). Assumption
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1(iii) restricts the class of permitted nonlinear functions and actually rules out cases of
interest, as will be exemplified in the next section. However, relaxing this assumption
seems difficult unless the type of nonlinearity is specified in more detail (cf. the
discussion in Remark 3.1 of Masry and Tjgstheim (1995)). We shall return to this
point later and demonstrate that Assumption 1(iii) is nonetheless considerably weaker
than its previous counterparts.

An eigenvalue condition of the same character as (6) has previously been used
by Nicholls and Quinn (1982, Chapter 2) in random coefficient autoregressive mod-
els. These authors also considered the alternative condition p(B'® B’ + Kjj) < 1
subsequently adopted by Feigin and Tweedie (1985). For our purposes condition
(6) appears more convenient, however. Notice that the elimination matrix L,z
on the left hand side of (6) can be replaced by D;@pz = <D;1 2p2Dn2p2)_1 Dy, the
Moore-Penrose inverse of D,,2,2. This follows from the definition of the matrix K, and
well-known properties of elimination and duplication matrices (see result 9.6.5(1)(a)
in Liitkepohl (1996)).

The following theorem shows that Assumption 1 guarantees the existence of ini-
tial values which make the process z; stationary. The proof and formulation of this
theorem is based on the theory of Markov chains. To this end, we cast the model into

the state space form by defining X; = [z{5 2 +JI and, furthermore,

F (Xio,6) = f(Xm)+H (Xt—1)1/2 €t

Fi(Xt—hé?t) = Ztq, 1=2,.,p

and

F(Xir,e0) = [ (Xin,8)' -+ Fy(Xemr,e)]

With these definitions we have

Zr = JIXt and Xt =F (thl,é‘t)



where J' = [I,:0:---:0] (n x np). Since ¢; is independent of X; ; this shows that
X, is a Markov chain whose state space is R"?.

In what follows, the concept of V-geometric ergodicity of a Markov chain will be
employed (see Meyn and Tweedie (1993, p. 356)). Here V signifies a real valued
function defined on the state space of the considered Markov chain and such that
V () > 1. For such a function V, the Markov chain X; is said to be V-geometrically
ergodic if there exists a probability measure 7 on the Borel sets of R™ and a constant

0 > 1 such that

o0

S ¢ sup |E(h(X) |X0:x)—/

7 (dy) h(y)‘ <oo forallz e R"”. (7)
= mla<v RnP

The definition also assumes that the function V is integrable with respect to the
probability measure 7. The weakest form of this definition results when V' = 1. Then
the Markov chain X; is said to be geometrically ergodic. Geometric ergodicity entails
that the ¢-step transition probability measure P (z, -) defined on the Borel sets of R
by P! (z,A) = P (X, € A | Xy = ) converges at a geometric rate and for all z € R™
to the probability measure 7 () with respect to the total variation norm.

It is straightforward to show that geometric ergodicity implies stationarity of the
process X; if the distribution of the initial value X is defined by the probability
measure 7 (see Meyn and Tweedie (1993), p. 230-231). Of course, in this case the

process z; is also stationary. These results are contained the following theorem.

Theorem 1 Suppose that the process z; (t > 1) is generated by equations (1) and (2).
Then, if Assumption 1 holds the process Xy = [z} - zé_pﬂ]' is ||z||*-geometrically

ergodic.

Theorem 1 and our previous discussion imply that, in addition to being strictly
stationary, the process z; is also second order stationary when initialized from the sta-

tionary distribution. A further convenient implication of Theorem 1 is that it provides
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known conditions for second order stationarity in simple special cases. In particular,
when equations (1) and (2) define a linear homoskedastic VAR process the eigenvalue
condition (6) in Assumption 1(iii) is necessary and sufficient for the existence of a
causal second order stationary solution of the stochastic difference equation defining
the process z; (see e.g. Brockwell and Davis (1991, p. 418)). This can be seen by
observing that in this special case Ko = 0 and p (Lp2p2 (B ® B) Dy2p2) = p(B)? (see
results 2.4(11)(e), 9.5.4(2) and 9.5.5.(1)(a) in Liitkepohl (1996)). A similar result is
obtained in the special case of the BEKK model (5) (cf. Proposition 2.7 and the
subsequent discussion in Engle and Kroner (1995)). The previous conditions given
for similar general models by Masry and Tjgstheim (1995), Lu (1998), and Lu and
Jiang (2001) are different in this respect. For instance, when applied to a linear ho-
moskedastic VAR model, they are considerably more restrictive than our eigenvalue
condition (6)." A further advantage of Theorem 1 over these previous results is that
it shows the existence of second moments of the stationary distribution although at
the cost of assuming that the errors €; have finite second moments.

Thus, our eigenvalue condition (6) has some advantages over its previous counter-

parts. This point can be made even clearer by considering the model

» k ) 1/2
Zr = Z Bth_j -+ (E -+ Z Z Kint_1X£_1K£j> Et (8)
7j=1

i=1 j=1
where ¥ is a positive definite (n x n) matrix and the other notation is as before. This
model is clearly a special case of our general model and subsumes the linear VAR

model with ARCH errors. For this model the following result can be proved.

Theorem 2 Suppose that the process z; (t > 1) is generated by equation (8) where

gy is independent of zs (s < t) and satisfies Assumption 1(i). Then, the process Xy =

'Note that the condition given in Lemma 3.1 of Masry and Tjgstheim (1995) is generally
vacuous, as pointed out by Lu (1998). In the notation of this paper it is nonvacuous only
when K;; =0foralli=1,..,k j=1,.,1[.

11



EAREE zé_pH}' is ||z||*-geometrically ergodic if and only if condition (6) holds with

the matrices B and Ky defined from model (8).

Thus, given Assumption 1(i), the eigenvalue condition (6) is necessary and suf-
ficient for the ||z||*-geometric ergodicity of the process (8). A similar result has
previously been obtained in Hansen and Rahbek (1998, Theorem 1) in the special
case of a multivariate first order ARCH model with &, ~ N(0, I,,).

Although the result of Theorem 2 is of interest in its own right it is also useful
because it readily shows that previous alternatives of our eigenvalue condition (6)
are generally inferior. We exemplify this by considering a univariate special case of
our general model. Thus, suppose that in equations (1) and (2) n = 1 so that z;, a
typical component of the vector z, is a scalar. For convenience, rewrite the conditions

in equations (3) and (4) as
p
£) =) bz;+o(lz]) as [z = oo

and

qux +o(lzl]”) as |z = oo,

respectively. This special case is considered in Theorem 1 of Lu (1998) where it is

shown that a sufficient condition for geometric ergodicity is

(va) £ <t o

j=1
This condition is different from our eigenvalue condition (6). Since arguments used
in the proof of our Theorem 1 also apply in the context of Lu’s (1998) Theorem 1
it is straightforward to show that condition (9) is even sufficient for ||z||*-geometric
ergodicity. Thus, since both Lu’s (1998) result and our Theorem 1 also apply to
model (8) with n = 1 it follows from Theorem 2 that our eigenvalue condition is

implied by (9). In Theorem 3 and Remark 4.1 of Lu (1998) it is (essentially) shown

12



that replacing the eigenvalue condition (6) by (9) yields a necessary and sufficient

condition for the ||z||*-geometric ergodicity of the process

p 1/2
Zr = bizt_i + (0'2 + Z gb?zt_j) Et (10)
7j=1

where 1 < i < p and o2

> 0. Thus, for this model condition (9) is equivalent to
our eigenvalue condition. However, in general this is not the case. It is easy to find
examples in which our eigenvalue condition (6) holds although the first sum on the
left hand side of (9) is larger than one. Then condition (9) fails and its failure can be
very clear.

Based on the above mentioned result of model (10) Lu (1998) made the conjecture
that in the general univariate model defined by (1) and (2) with n = 1 condition (9)
could be replaced by the condition p (B)2 + Z?Zl ¢§ < 1 which, like our eigenvalue
condition (6), would subsume several known results of geometric ergodicity. However,
even if this conjecture were proved the obtained result would be inferior to that
obtained in Theorem 1. This can be seen in the same way as in the case of condition
(9) because it is possible to find examples in which the eigenvalue condition (6) holds
but the condition p (B)2 + Z?Zl d)? < 1 fails. In fact, Theorem 2 and the assumption
that, for large values of || X;_ ||, the considered general process is supposed to be
dominated by the process (8) suggest that it may be difficult to weaken the eigenvalue
condition (6) without making specific assumptions about the functions f and H in
(1) and (2). Yet, it is worth emphasizing that stationarity may obtain even if the
eigenvalue condition (6) does not hold. An example of this will be given in the next
section.

We close this section by showing that Theorem 1 implies useful mixing results for

the process z;. Specifically, the following theorem can be readily obtained.

Theorem 3 Under the conditions of Theorem 1 the following results hold.

(i) If the distribution of the initial values has finite second moments the process z; is

13



strong mizing with geometrically decaying mizing numbers.
(i) If the initial values have the stationary distribution the process z; is 3-mizing with

geometrically decaying mizing numbers.

Theorem 3 is useful because it makes it possible to apply conventional limit the-
orems needed in the development of asymptotic estimation and testing procedures.
Although strong mixing is often sufficient for this purpose there are cases where the
stronger concept of f-mixing, also known as absolute regularity, is needed (for defini-
tions, see e.g. Doukham (1994)). For instance, the application of some results in the
theory of empirical processes requires (-mixing (see Hansen (1996, 2000) for recent
applications of such results). It would be possible to relax the assumption imposed
on initial values in part (ii) of Theorem 3 but something stronger than assumed in

part (i) is needed (see Doukham (1994, p. 89 and 92)).

3 Nonlinear Error Correction Model

In this section, the results obtained in the previous section will be applied to a non-
linear error correction model. It appears convenient to first discuss the conventional
linear error correction model and change the notation so that y, (t = 1,2, ...) denotes
the n-dimensional stochastic process of interest. Then, the usual linear VAR error

correction model can be written as
P
A’yt = Hyt—l + Z PjAyt_j -+ Uy (11)
i=1
Here IT and I'; are (n x n) matrices of unknown parameters and u; is an error term

which for the moment is assumed to be a zero mean i.i.d. sequence with a finite

positive definite covariance matrix. Define the polynomial matrix

A()=1=-2)L,-Tz—=) T;(1-2)7 (12)

i=1

14



and assume that the following conditions hold.

Assumption 2. (i) If det A(z) =0 then |z| > 1 or z = 1.
(ii) rk(Il) =r < n

(iii) The number of unit roots in condition (i) equals n — 7 > 0.

Assumption 1(ii) implies that we can write
II=af (13)

where « and 8 are (n x r) matrices of full column rank. A well-known consequence
of Assumption 1 is that y; is a nonstationary I(1) process but, with an appropriate
specification of initial values, 8'y; and Ay, are stationary. These results can be found
in Theorem 4.2 and Corollary 4.3 of Johansen (1995) which also show that Assumption
1(iii) can be replaced by the requirement that the matrix o (In — > F]-) B, is
nonsingular.

The stationary linear combinations 3'y; can be interpreted as long run equilibrium
relations between the components of the nonstationary process y;. Using equation (13)
they can be incorporated into the error correction model (11) to obtain

P
Ayt = Olﬂ’yt—l + Z FjAyt—j + Ut. (14)
j=1
In the nonlinear error correction model we shall mainly consider the linear combina-
tions 3'y,_; are augmented by a nonlinear term. Specifically, we consider the model
p
Ay = a(B'y-r+ 9 (Byir)) + DO TiAyj +uy, (15)
j=1

where g: R” — R’ is a general nonlinear function to be described in more detail later.
Here we just note that g (8'y;_1) may only depend on some components of the vector

B'y,_1 and it may contain an additive constant term. In particular, one may have
9 (B'ye-1) = p+ 9 (B'ye-1)

15



where some components of g (3'y;_1) can be identically equal to zero.

General nonlinear error correction models of the form (15) have previously been
discussed by Granger and Swanson (1996), Granger and Haldrup (1997) and Granger
(2001). Of course, one could absorb the linear combinations 3'y;_; into the nonlinear
function ¢ (8'y;_1) but we have not done this because the achieved additional gener-
ality appears rather limited. The reason is that, as far as the proofs of the subsequent
stability results are concerned, it is ‘almost necessary’ that in (15) the error correction
term 3'y;_1 + g (3'ys—1) contains the linear part 3'y;_;. A more precise discussion of
this point will be given later. Here it may be noted that there are cases of practical
interest where this additive linear part is present anyway. For instance, consider the

bivariate model

Ay1 (03]
' = (yltfl —byoy—1 — p—0G (yltfl —bya—1 — M)) (16)
Ayzt (6%}

Y1 Y Ayi—1 Uy
11 Y12 t n t
Yo1 V22 Ayor 1 Ut

_|_

where G is the cumulative distribution function of a continuous random variable. If
0 = 0 we have a conventional linear error correction model in which the stationary
long run relation between yi; and yy; varies around a fixed level determined by the
parameter pu. However, when § # 0 a smooth level shift in the long run relation occurs.
Specifically, if the value of the parameter ¢ is positive the level of the long run relation
is small when y;4_1 —byg;_1 — i1 is small but when y;;_1 —bys—1 — 4 increases sufficiently
a smooth shift to a higher level occurs. Thus, the specification of the long run relation
in model (16) is based on an idea similar to that used in smooth transition regression
models discussed by Granger and Terésvirta (1993) amongst others. Note that more
than one level shift can be readily allowed for by redefining the function G or its

argument in a suitable way. For examples, see van Dijk, Terdsvirta, and Frances

(2001).
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As a limiting case of model (16) one obtains a threshold type model in which G is a
step function implying an abrupt change in the constant term. This is a special case of
the threshold error correction model of Balke and Fomby (1997). In a univariate case
stationary threshold autoregressive models based on this idea were recently considered
by Lanne and Saikkonen (2001) who demonstrated that neglecting such a level shift
can easily lead to the incorrect conclusion that the considered series is generated by
an I(1) process. This indicates that in the case of model (16) an application of the
corresponding standard linear model may similarly lead to the conclusion that the
processes y;; and y9; are not cointegrated and no long run relation between them
exists. However, if § # 0 this is not a correct interpretation because a nonlinear
stationary long run relation can still exist, as will be seen shortly. Similar conclusions
can be drawn from the simulation results of Balke and Fomby (1997) based on other
types of threshold autoregressive error correction models.

As the preceding discussion has already made clear, an essential feature of our
nonlinear error correction model is that the nonlinear function g (3'y;_;) is absorbed
into the error correction term. As an alternative model, not necessarily having this

feature, one could consider

P
Ay, = af'yi1 + g0 (B'ye—1) + z LjAy—j + e, (17)

j=1
where go: R” — R” is some nonlinear function. In the special case where the lagged
differences are absent this model was recently considered by Corradi, Swanson, and
White (2000). Although our main interest is in model (15) we shall also briefly discuss
this alternative specification. The reason for concentrating on model (15) is that we
have not been able to obtain similar results for model (17) whose time series properties
turn out to be less straightforward to handle than those of model (15).

To be able to apply Theorem 1 to the nonlinear error correction models discussed

above a simple transformation of the polynomial matrix A (z) in (12) is needed. In
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order to develop this transformation, let ¢ (n X r) be a matrix of full column rank
and such that ¢/3 = I,.. One possible choice for the matrix c is ﬂ(ﬂ',@)_l but any
other will also do. It is easy to see that the matrix @ = [3 : cL]' is nonsingular and
its inverse can be written as Q! = [c: 8,] where ¢, 3, = I,,_, is assumed, as the

notation indicates. We also define the related (n x n) polynomial matrix

and introduce the notation

p
T(2)=I,—» T2
j=1

where I'; (j =1,...,p) are as before. Now we can state the following lemma which

gives a representation for the polynomial matrix A (2).

Lemma 4 Assumption 2 holds if and only if the polynomial matriz A (z) can be

expressed as

A(2) =Q7'B.(2) P (2)
where B, (z) is a polynomial matriz defined by
B, (2) =Q['(2)c(1—2) —az:T(2) 8]
and such that B, (0) = I, and det B, (2) # 0, |z| < 1.

Using the notation introduced above we now define the polynomial matrix
p .
B(z)=I,—) B;j# =Q'B,(2)Q
7j=1

and transform the process y; as

w=Q ' P(L)y=Q Boe | (18)
Aclyt
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By the definitions and Lemma 4 we then have 3z, = 3'y; and A(L)y; = B (L) z,
and it follows that model (15) can be transformed to

P
2 = Z Bjzi_j+ ag (8'zi-1) + uy. (19)

i=1

Thus, we have transformed the original error correction model to a special case
of the nonlinear VAR model considered in the previous section. Two points are
worth noting in this nonlinear VAR model. First, its variables are nonsingular linear
transformations of the vectors 3'y; and Ac/| y; which in the linear case are known to be
stationary when Assumption 1 holds. Second, the lag polynomial matrix B (L) related
to the nonlinear VAR model (19) has its roots outside the unit circle. This means that
we can apply Theorem 1 to show the stationarity of the nonlinear VAR process (19)
and thereby the stationarity of the processes 3'y; and ¢, Ay, in our nonlinear error
correction model (15).2 This clearly means that the same approach could be applied
even if we extended the nonlinearity of the model by including the lagged values
B'Yi—2, .-y BYt—p in the argument of the function g in (15). Since ¢, z; = Ac| y; we
could similarly include the variables Ac¢/| y;_1, ..., A/, yi—, or, more generally, make the
function g depend on the lagged differences Ay;_1, ..., Ay;_,. However, for simplicity
and for the lack of a reasonable motivation we have preferred not to make these
extensions explicit.

It is also possible to allow for conditional heteroskedasticity in the nonlinear error
correction model (15). Since the related stability results are proved by applying The-
orem 1 to the transformed model (19) a general form of conditional heteroskedasticity

that can be easily handled is

Uy = H (Zt—la N Zt_p)l/z Et.- (20)

20f course it is also possible to use Lemma 4 to prove these results in the linear case where
g (ﬁ'yt,l) reduces to a constant vector. In this way it is possible to obtain an alternative

to Johansen’s (1995, p. 49-52) proof of Granger’s representation theorem.

19



Here the error term £; and the function H are as in the previous section. Although this
formulation is convenient from the viewpoint of formulating and proving the desired
stability results it may be somewhat disturbing that the conditional heteroskedastic-
ity is assumed to depend on lagged values of the transformed variable z;. Alternative
formulations would be possible but, since they seem to complicate the exposition and
formulation of the needed assumption, we shall not try to discuss them here. Another
reason for this is that the above specification still covers the important special case
where a (possibly nonlinear) ARCH model is specified for the error term u;. This
follows from the fact that the same error term wu; appears both in the original model
(15) and in the transformed model (19). Therefore, after an appropriate reformu-
lation, lagged values of u; can be used in (20) (cf. the corresponding discussion in
the previous section). Below we shall see that there is also another case where the
occurrence of lagged values of the transformed variable z; in (20) is not restrictive.
In addition to Assumption 2 the following conditions are needed to prove the

stability of the nonlinear error correction model (15) combined with (20).

Assumption 3. (i) The function ¢ in (15) is Borel measurable, bounded on bounded
subsets of R", and such that ||g ()|| = o(||z||) as ||z]| = cc (zx € R").

(ii) The function H in (20) satisfies condition (4) and the conditions in Assumption
1(ii).

(iii) The eigenvalue condition (6) in Assumption 1(iii) holds with the matrix K as
before and the matrix B defined in terms of the matrices B; (j =1, ..., p) in equation
(19).

0

This assumption makes it easy to apply Theorems 1 and 3 but the condition
llg (x)|]| = o(||z]|) as ||z|| — oo is somewhat restrictive. For instance, in the bi-

variate model (16) one might wish to allow for the possibility that, instead of the
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constant term p, the values of the adjustment parameters «; and «y depend on
the value of the linear combination ;1 — bys;_1 — . An example of a model with
such a feature is obtained by replacing the term 6G (y1; 1 — bya; 1 — ) in (16) by
0G (y14—1 — byas—1 — ) (y1e—1 — byas—1 — p) . However, even this simple specification
is ruled out by the condition imposed on the function g in Assumption 3(i). Being
able to relax this condition would clearly be of great interest. However, that would
require extensions of Theorem 1 and, as discussed in the previous section, such exten-
sions seem difficult to obtain without making more specific assumptions of the form

of the considered nonlinearity.
The following theorem contains the main result of this section.

Theorem 5 Suppose that the process y, is generated by equations (15) and (20) with
gt in satisfying Assumption 1(i). Then, if Assumptions 2 and 3 are also satisfied, the
following results hold.

(i) The conclusions of Theorems 1 and 3 hold with the process z; defined as z, =
W8 Ayey]’.

(i1) Suppose that the initial values y_pi1, ..., Yo are such that the process z, defined
in (i) is stationary. Then, the process y, is nonstationary and such that T~/ Yrs]
(0 < s <1) converges weakly to a Brownian motion with covariance matriz of rank

n-—r.

Thus, Theorem 5 shows that results entirely similar to those obtained in the stan-
dard linear VAR error correction model also hold for our nonlinear extension which
may even involve conditional heteroskedasticity. Notice that it is not uncommon to
define an I(1) process by requiring that a functional central limit theorem similar
to that in Theorem 5 holds (see e.g. Corradi, Swanson, and White (2000)). Thus,
the latter result of Theorem 5 has the interpretation that y; is an I(1) process. The
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assumption of stationary initial values is probably not necessary but used to simplify
the proof.

Earlier we noted that it is ‘almost necessary’ that the error correction term 7,1+
g (8'y;—1) in model (15) contains the linear part 3'y;_;. From the proof of Theorem 5 it
can be seen that we could replace the sum 3'y;_ + g (3'y;—1) by a function g, (8'y;_1),
say. However, since the proof of Theorem 5 relies on Lemma 4, we would need the
condition g, (z) = Bz + o(||z||) as ||z|| = oco. Moreover, since the (n x r) matrix (3
should be of full column rank the additional generality achieved by this formulation
appears rather limited.

When the conditional heteroskedasticity in Theorem 5 is of the most general form
assumed the parameters of the polynomial matrix B (z) have to satisfy conditions not
required in the standard linear error correction model (14). These additional condi-
tions can be dispensed with if the form of conditional heteroskedasticity is restricted.

The following corollary makes this precise.

Corollary 6 Suppose that the assumptions of Theorem & hold with Assumption 3(ii)
strengthened by requiring that K;; = 0,1 =1,...k, j =1,..,1, in equation (4). Then
the results of Theorem 5 hold without Assumption 3(iii).

This corollary applies when there is no conditional heteroskedasticity but also
when the conditional heteroskedasticity can be modeled by a bounded function. The
latter case is relevant, for instance, when the conditional heteroskedasticity is similar
to that in the threshold models of Balke and Fomby (1997). When the assumptions
made of the function H in Corollary 6 hold the lagged values of z; in equation (20)
can be replaced with any linear transformations without affecting the stated result.
More generally, if we again denote X; | = [2271 - -zéfp}l and set X, | = CX;_; with
C' an nonrandom matrix of appropriate dimension the result of Corollary 6 holds even

if the function H (21, ..., 2_p) = H (X;1) is replaced by H (X ).
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We close this section by considering the alternative model specification (17). Argu-
ments used to transform model (15) to (19) show that model (17) can be transformed

to »
2y = ZBth_]‘ + 90 (ﬁlzt—l) + Ut (21)

j=1
where the notation is as before. This model combined with (20) is a special case of
the nonlinear VAR model of the previous section. This implies that, after modifying
Assumption 3(i) to concern the function gy, the first result of Theorem 5 can again be
concluded from Theorem 1. However, we have not been able to prove the second result
of Theorem 5 in the case of model (17). In fact, it seems that such a result cannot be
proved without making more specific assumptions of the form of nonlinearity.

To see the difficulty alluded to above, let 1(-) signify the indicator function and

consider the univariate first order threshold autoregressive model

Y = Y1+ 1 (Yem1 < 0) + ol (ye—1 > 0) + & (22)

where the error term &, satisfies Assumption 1(i) and the intercept terms p, and u,
are such that p, > 0 and p, < 0. The value of the threshold parameter is assumed
to be zero just for convenience and without any loss of generality. This model is a
univariate special case of (17) with the function go bounded and with the counterpart
of the polynomial matrix A (z) containing a unit root. However, it is well-known that,
in spite of the unit root, equation (22) has a stationary solution (see Chan, Petrucelli,
Tong, and Woolford (1985) for a proof and Balke and Fomby (1997) for a discussion).
The same is true even if the number of regimes exceeds two and the intercept terms
related to the highest and lowest regimes are negative and positive, respectively. Note
also that a simple extension of this example to the vector case is obtained by taking
independent copies of processes of the type (22).

The above example shows that for nonlinear processes unit roots do not necessarily

mean nonstationarity and it also demonstrates why it is difficult to prove the second
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result of Theorem 5 without specifying the function gy in more detail. Furthermore,
this example implies that the result given in Proposition 2.4 of Corradi, Swanson, and
White (2000) is not true as stated. In this proposition the authors assume that the
function go is bounded and consider model (17) with u; = &; and without the term
a3'y;_1 and the lagged differences on the right hand side.? They argue that the process
explodes with a positive probability or, more specifically, that Pr (||y;|| = o0) > 0 as
t — oo. However, the process defined by equation (22) provides a counter example
because an explosive behavior of this kind is not possible for an (asymptotically)
stationary process.

It may be noted that the difficulty with Proposition 2.4 of Corradi, Swanson,
and White (2000) does not occur in the alternative specification the authors discuss
on page 44 (line 3) of their paper. The reason is that then the nonlinear function
disappears from the model because the model behaves exactly in the same way as
our model (15). Using this alternative specification would have been reasonable in
the stationarity test considered in Section 3 of Corradi, Swanson, and White (2000)
because otherwise the consistency result given in Theorem 3.1 of that paper is not true.
This is an immediate consequence of the existence of stationary nonlinear processes
such as (22) which have a unit root in the autoregressive polynomial.

Since the proofs of Propositions 2.3(i) and 2.4 of Corradi, Swanson, and White
(2000) are based on the same argument the above discussion also casts doubts on the
validity of the former proposition and the related test procedure considered in Section

4 of that paper. However, in this case we have not found a counter example which

3Corradi, Swanson, and White (2000) actually assume that the function gy satisfies some
smoothness properties which rule out discontinuous functions such as the indicator functions
in model (22). However, the proof they give for their Propositon 2.4 makes no use of these
smoothness properties so that, if the proof were valid for the considered smooth functions,

it would also be valid for the indicator functions used in (22).
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would exactly match the considered model.*

The reason why proving the result of Theorem 5(ii) in the case of model (17) is
more difficult than in the case of model (15) may be seen by considering the familiar
linear special cases where the functions g and gy are constants. As is well known, the
deterministic parts obtained for the levels y; in these two models are very different.
In model (15) the deterministic part only consists of a constant term but in model
(17) a linear deterministic trend term is generally obtained. In the proof of Theorem
5(ii) the nonlinear term g (8'y;_1) is treated in the same way as the intercept term in
the standard linear model so that, if this approach is attempted in the case of model

(17), a rather different situation is obtained.

4 Conclusion

In this paper previous stability results obtained for general nonlinear VAR models
have been improved and it has also been shown how these results can be applied
to a general nonlinear VAR error correction model to obtain an analog of Granger’s
representation theorem. However, more research is still needed in this matter because
for several nonlinear models of interest the question of stability remains a totally or
at least partially open problem. As already indicated, in the future it may be best to
concentrate on models in which the form of nonlinearity is at least somewhat more

specific than assumed in this paper.

4The proof of Proposition 2.3(i) of Corradi, Swanson, and White (2000) seems to contain
a flaw. In the notation of that paper, the problem is that in the last step the authors
use the result gor /Tl/ 2 = @G where = signifies weak convergence and G is said to be
either a nondegenerate or a degenerate random variable. Then, using a previously defined
nondegenerate normal random vector Bi, they claim that the desired result follows from
the equality P (w:B; (w) = —G (w)) = 0. When G is degenerate this equality is of course
valid. However, the problem is that it is not valid if B; = —G (a.s.) and the authors give

no explanation why this possibility is ruled out.
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More research is particularly desirable in the case of nonlinear error correction
models because for them we mainly showed how the problem can be approached. As
discussed in the context of the nonlinear the error correction model (17), the real
difficulty may not be proving that the differences and some linear combinations of

the considered process are stationary but proving that the process itself is I(1).
Appendix

Before proving Theorem 1 we shall prove the following auxiliary lemma.

Lemma 7 (i) Condition (6) holds if and only if, for any symmetric (n*p?* x n?p?)
matrix S,

(B'® B'+ K}) vec(S) = 0, ast — oc. (23)

(i) The convergence in (23) is equivalent to the convergence of the series

—

vec (Uy) = ; (B'® B' + K'Y vec(S) . (24)

I
=)

When this series converges its limit can be expressed as vec(U) where U is a symmetric

matriz which is positive definite if S is positive definite.

Proof. Part (i) can be proved by using the same arguments as in the proof of
Theorem 2.5 of Nicholls and Quinn (1982). That the convergence of (24) is implied
by (23) is seen in the same way as in the proof of Theorem 2.4 of Nicholls and Quinn
(1982) whereas the converse is obvious. Finally, since S is symmetric it follows by
induction that each U; is symmetric. If S is positive definite it similarly follows by
induction that each Uy is positive definite and, moreover, Ay, (U;) > ¢ for some € > 0.
Thus, the limit of (23) is symmetric (positive definite) when S is symmetric (positive

definite). m
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Proof of Theorem 1. The idea of the proof is to apply Theorem 15.0.1 of Meyn
and Tweedie (1993). From Lemmas 1 and 2 of Lu and Jiang (2001) we first find that
the Markov chain X, is irreducible and aperiodic and that all bounded sets of R™
with positive Lebesgue measure are small sets. Given this, it suffices to show that
condition (15.3) of Meyn and Tweedie (1993, p. 355) holds.

We proceed by making use of ideas employed in the proof of Theorem 3 of Feigin
and Tweedie (1985). First, let W (n?p? x n?p?) be an auxiliary positive definite

matrix and define the matrix U (n?p? x n?p?) by the equation
vec(U) = Y (B'® B' + Ky’ vec(W) (25)

§=0
where K is as defined in the formulation of the theorem. By Lemma 7 the right hand
side is well defined and the matrix U is positive definite. Next, define the real valued
function ¢ by

q(z) =1+2'Uz.
Since the matrix U is positive definite we clearly have ¢ (z) > 1 for all z € R"”. We
also define the bounded set

C={zeR?”:2'Uzx < M}

where is M; an appropriate constant to be determined later.
Using the above definitions, we shall show that there exist constants 0 < p <1

and 0 < My < oo such that
E(@X) | Xpn=z)<pg(z), v¢C (26)

and

E(qX) | Xo=2)< My, z€C. (27)

It is easy to see that then condition (15.3) of Meyn and Tweedie (1993, p. 355)
holds with V' (-) = ¢ (-) and, consequently, the Markov chain X; is g-geometrically
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ergodic. Thus, since we clearly have ||z|”> < Mg (z) for some 0 < M < oo, the
desired ||z||*-geometric ergodicity follows from conditions (26) and (27).

To establish conditions (26) and (27), we first write equation X; = F (X; 1,¢;) as
Xt = BXt_l + R (Xt—la Et) (28)

where the matrix B is as in Assumption 1 and

f (Xt—l) — Z?:l Bth_j " H (Xt—1)1/2 &t
0 0

R(Xt—h&:) =

wf Ry(Xi1) + Ry (X1, 64) -

Using the definitions we can then write

¢(Xy) = 1+ (BX; 1+ R(Xy1,6))U(BX; 1 + R(Xi_1,1))
= 14X, ;BUBX; 1+2X, {BUR; (X; 1) +2X, {BURy (X; 1,&)
+Ry (Xi—1) URy (Xy-1) + 2R: (Xi1)' URs (X1, 1)
+Ry (Xi—1,61)' URy (Xy_1,5;) .
Thus, since ¢; and X;_; are independent this equality and the definitions readily show
that
E(q(Xy) | X;m1=2) = 14+2'BUBz+22'B'UR; (x) (29)
+Ry (2) URy (z) + trH (z) U

where H (z) =diag[H () 0]. Denoting

R (z) = tr (F @) -> ) Kijom'xgjo) U

i=1 j=1
we can write equation (29) as

k l
E(q(X)) | Xim=2)=142'BUBz+tr» Y Kijoza'KjyU + Z (z)

i=1 j=1
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where Z (z) = 22'B'UR; () + Ry (z)' UR; (z) + R3 (x). For the second and third
terms on the right hand side we can use well-known properties of the vec operator

(see Liitkepohl (1996, Chapter 7.2)) and find that
¢'BUBz = (2’ @ ') (B' ® B") vec(U)

and

kool
tr Z Z Kijora' Ki;)U = (¢ ® ') Kyvec(U).
i=1 j=1

Thus, we can conclude that equation (29) can be written as

E(@Xy) | Xpa=2) = 14+ (' ®2")(B'® B + Kj)vec(U) + Z ()
= 1+ (' ®@2") (vec(U) — vec(W)) + Z (z)
= q(z)—2Wz+ Z ().

Here the second equality is based on the definition of the matrix U in (25) and the
third one on the definition of the function ¢q. Thus, we have shown that
¥?Wx — Z (z)

E(q(Xy) | Ximi=12)=¢q(z) |1 7 (@)

(30)

Now suppose that z ¢ C so that z’Uz > M;. Then, assuming M; > 1,

vUs +2' Uz = M+l
1 1

2'Uzx < 22'Ux

q(z) <

and therefore
We=2() | V) 2(6)
q(z) = 22Uz 1+2'U
)\min (W) _ |Z (33)| .
B 2/\max (U) ||33||2 )‘min (U)

From the assumed asymptotic behavior of the functions f and H and the definition

of Z (z) it follows that |Z (z)| = o(||z||?) as ||z]|> = co. Thus, there exists a value
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of My > 1 such that for ||z|| > M; the last expression above can be bounded from
below by a positive constant € < 1. Setting p = 1 — & we can then see from (30) that
condition (26) holds.

As for condition (27), since the functions f and H are bounded on bounded subsets
of R, R, (z) and H (z) are bounded for € C and we can conclude from equality
(29) that condition (27) also holds. Thus, the proof is complete. B

Proof of Theorem 2. If condition (6) holds the stated result follows from The-
orem 1, so we only need to prove the converse.

The process X; is now generated by

X, BX, , + [ H(Xt_1)1/2 -| 3
oo

where

H (X, 1) 2+ZZ X XK

=1 j=1

Straightforward calculations show that
X, X; =BX; 1 X, B'+ H(X; 1) + Ry (Xy1,81) (31)
where H (x) =diag[H (x) 0] as before, and

!
H(X,_ 1/2 H(X,_ 1/2
R4 (Xt—lagt) = BXt_lé“; ( :) 1) + ( ; 1) €tX£—1B,

| Hx ] | H (X ]
+ (erer — 1) i
U I

Denote 3 =diag[¥ 0] and use the definitions to rewrite equation (31) as

k l
XX, =S+ BX, 1 X, \B'+ Y Y KijoXy 1 X] Kl + Ra (X 1,20).

i=1 j=1

30



Using well-known properties of the vec operator (see Liitkepohl (1996, Chapter 7.2))
to both sides of this equation yields

vec (X, X)) = vec (Z) + (B' ® B' + Kj) vec (X;-1X, 1) + vec (Ry (X 1,€4)) -

In the preceding equations Kjjo and K, are defined from Kj;; in the same way as
before. Since we clearly have E (R (X;-1,¢:) | X;—1) = 0 we can conclude from this

that, for ¢t > 1,
E (vec (X3 X]) | Xo=1x) = vec (i) +(B®B +Kj))E (vec (Xt_lXé_l) | Xo = x) )

Thus, by repetitive substitution,
t—
E(vec(X,X}) | Xo=2)=(B'®B + K{)' vec (zz') + Y (B'® B' + K} vec (%),
J

=

Il
=]

Now suppose that ¢ — oo and conclude from the definition of ||z||°-geometric
ergodicity that the expression on the right hand side of this equation converges to a
limit independent of the initial value 2. This implies that (B’ ® B’ + K})'vec(za') — 0
as t — oo for every z € R™. Using the spectral decomposition of symmetric matrices
in the same way as in the proof of Theorem 2.4 of Nicholls and Quinn (1982) we then
find that, for any symmetric (n2p? x n2p?) matrix S, (B' ® B' + K})'vec(S) — 0 as
t — oo. By Lemma 7 this implies condition (6). W

Proof of Theorem 3. To prove (i), first recall that in the proof of Theorem 1
we showed that the Markov chain X; is irreducible and aperiodic and that condition
(15.3) of Meyn and Tweedie (1993, p. 355) holds with an appropriate small set and
the function V given by V (z) = ¢ (z) = 1 + 2'Uz. Since it is clear that M~ ||z||*> <
q(z) < M ||z|)* for some M > 1 we can therefore conclude from Theorem 16.0.1 of
Meyn and Tweedie (1993) that the Markov chain X is ||z||*-uniformly ergodic (for
a definition of this concept, see page 382 of the same reference). Given the ||z||*-
uniform ergodicity, the stated strong mixing property of X; follows from Theorem

16.1.5 Meyn and Tweedie (1993, p. 388) and the discussion given after its proof.
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That geometric ergodicity implies S-mixing in the case of stationary initial values
has been pointed out by Pham (1986) (see also Doukham (1994, p. 4 and 89).H

Proof of Lemma 4. Suppose that Assumption 2 holds and use the representation
of the matrix IT in (13) to express the polynomial matrix A (z) defined in equation
(12) as

A(2) = (T (2) (1 - 2) —af'2) Q7'Q.
Next note that
af Q7 =af [c: B,] = all,: 0]

and hence

g _
A(z)=T(2)c(1—-2)—az:T(2)5,] =Q 'B,(2) P(2).
(1-2)¢,
Here the latter equality follows from the definitions which also show that B, (0) = I,.

Thus, since

det A (z) = det Q' det B, (z) det P (2)

and since the number of unit roots in det P (z) is clearly n — r it follows from As-
sumption 1(iii) that det B, (z) # 0 for |z] < 1.

To prove the converse, suppose the polynomial matrix A (z) defined in equation
(12) has the representation given in the lemma. Then, Assumptions 2(i) and (iii)
follow from analyzing the determinant of A (z) in the same way as in the proof of
the first part whereas the validity of Assumption 2(ii) is seen by calculating A (1) =
-I=Q 'B,(1)P(1)=—-ap'. N

Proof of Theorem 5. We shall prove the first assertion by applying Theorems 1
and 3 to the transformed process defined by equations (19) and (20). An inspection of
the assumptions reveals that we only need to show that Assumption 3(i) implies that
the function g (8'z), x € R™, satisfies ||g (8'7)|| = o (||z||) as ||z|]| — oco- To see this,

notice that we can write z = fa + 3, b for some a € R" and b € R*". Without loss
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of generality we can also assume that 3'3 = I, and 3’ 8, = I,_,. Thus, if ||z|| = oo
at least one of the relations ||a|]| — oo or ||b|| = oo must hold. If ||a|| — oo holds
the equality g (3'z) = g (a) implies the desired conclusion. On the other hand, if
||b]| = oo and ||a|| remains bounded the assumption that the function g is bounded
on bounded subsets of R gives g (3'z) = g (a) = O (1) as ||z|| — oo. Thus, again the
desired conclusion follows, and we have established the first assertion of the theorem.

As for the second assertion, first conclude from part (i) that the stationary process
2; has finite second moments. Thus, since Assumption 3.1(i) implies that ||g (3'z)]| <
M||z||, 0 < M < oo, for ||z|| large enough, it follows that the process g (82 1) is
also stationary with finite second moments. Further, since the function H is assumed
to satisfy condition (4) one can similarly show that the process u; is a stationary
martingale difference sequence with finite second moments. Finally, Theorem 3(i)
implies that u; is strong mixing and hence also ergodic (see e.g. Doukham (1994, p.
21)). These facts will be used in the subsequent proof.

By repetitive substitution one obtains from equation (19)
w=k+B(L) " ag(Ba1)+B(L) " w, 1,2

where k; is due to the initial values z_p11, ..., 20 and g (8'2:) = 0 and u; = 0 for ¢t < 0.
)71

Next use the Beveridge-Nelson decomposition B (L)' = B (1)™" + AF (L) to write

this equation as
w=k+B1) ag(Bz)+Av+e, 1,2,.. (32)
where, for simplicity, v; = F (L)ag (B'2-1) and e; = B (L)_1 ug. By the definitions,

B1)'a = ([~a:T(1)E]Q) "«
= Q'[-a:T'(1)B,] "a

1]

= [c: B,]
Sy
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Thus, since | zz = Ac'| y; we can solve equation (32) for ¢, y; to get
dy=cdy+c] Z kj+c v —cv+¢| Z e;.
From this and the stated initial value assumption it is easy to see that

[T's]
T2y = T7V2¢ Ze +T712¢ g + T2 g + 0, (1) (33)

where the term o, (1) is uniform in 0 < s < 1.

Now consider the sequence v; and conclude from the definition that
=2
= dig (Fa1-y)
j=1

where JJ is the jth coefficient in the power series representation of F (L) . Since

Lemma 4 implies that the roots of det B (2) lie outside the unit circle it follows that

uniformly in 0 < s < 1. The second and third terms on the right hand side of

d;|| converges to zero at a geometric rate as j — oo. Thus, since the process

g(8'%_1) is stationary with finite second moments we have T=V2¢/ virg = o0, (1)

(33) can therefore be absorbed into the last term and, using the Beveridge-Nelson

decomposition B (L)™' = B(1)™! + AF (L) in the definition of e,, we can write
T g = T B ()73 g+ T2 Ty = T2 T + 0, (1) (34

where u; = F (L) uy. Note that, apart from the impact of initial values, u; is a zero
mean stationary process with finite second moments. This implies that the third
term on the right hand side of (34) can be replaced by o, (1) . The same is true for the

second term if 71/2

maxi<j<r ||ts]| = 0p (1) . If the impact of initial values is ignored
and u, is treated as a stationary process this follows from the fact that the Lindeberg

condition holds for the array T—2u,, t,...,T (see Hall and Heyde (1980, p. 53)).
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Since this argument can clearly be extended to allow for the present specification of

initial values we have

[T's]
T2 gy =T 2B (1) uy+ 0, (1).
j=1

Since u; is a stationary and ergodic martingale difference sequence with finite
second moments a standard functional central limit theorem shows that the right
hand side converges weakly to a Brownian motion (cf. Theorem 23.1 of Billingsley
(1968)). To see the assertion concerning the covariance matrix, use the definitions to

conclude that

AB(M) = Q7 [~a:T (1))
= [0: L] [~a: T @) 8.7
= (& T'(1) 5L)71 o,
where the last equality follows from straightforward matrix calculus. This shows that
the ((n — 7) x n) matrix ¢, B (1)~ is of rank n —r and we only need to show that the
covariance matrix of the process u; is positive definite. To demonstrate this, recall

the notation X;_; = [2]_, -~ -zé_p]' and let a be any (n x 1) vector of unit length.

Then use the law of iterated expectations to conclude that
a' Buuya = Ea'H (Xy—1) a > Edmin (H (X4—1)) > Edmin (H (X3-1)) 1 (Xy—1 € K)

where I C R"™ is a compact set. By Assumption 3(ii) the set I can be chosen so
that the last expectation is positive. Thus, the proof is complete. B

Proof of Corollary 6. The stated result follows because when K;; = 0, 7 =
1.k, j = 1,.,1, we have p(Ly2p (B'® B' + K{)) Dp2p2) = p(B)?, as discussed
after Theorem 1. Assumption 2, Lemma 4, and well-known properties of companion
matrices imply that p (B)? < 1 (see e.g. Johansen (1995, p. 16)). Thus, the eigenvalue
condition (6) holds and Assumption 3(iii) is automatically satisfied.l
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