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1 The Analysis of Implied
Volatilities

Matthias R. Fengler, Wolfgang Hérdle and Peter Schiidt

Institute for Statistics and Econometrics,
Department of Business Administration and Economics,
Humboldt-Universitit zu Berlin,

Spandauer Strafle 1, 10187 Berlin, Deutschland

The analysis of volatility in financial markets has become a first rank issue in
modern financial theory and practice: Whether in risk management, portfolio
hedging, or option pricing, we need to have a precise notion of the market’s
expectation of volatility. Much research has been done on the analysis of real-
ized historic volatilities, Roll (1977) and references therein. However, since it
seems unsettling to draw conclusions from past to expected market behavior,
the focus shifted to implied volatilities, Dumas, Fleming and Whaley (1998).
To derive implied volatilities the Black and Scholes (BS) formula is solved for
the constant volatility parameter o using observed option prices. This is a more
natural approach as the option value is decisively determined by the market’s
assessment of current and future volatility. Hence implied volatility may be
used as an indicator for market expectations over the remaining lifetime of the
option.

It is well known that the volatilities implied by observed market prices exhibit
a pattern that is far different from the flat constant one used in the BS formula.
Instead of finding a constant volatility across strikes, implied volatility appears
to be non flat, a stylized fact which has been called ”smile”effect. In this
chapter we illustrate how implied volatilites can be analyzed. We focus first
on a static and visual investigation of implied volatilities, then we concentrate
on a dynamic analysis with two variants of principal components and interpret
the results in the context of risk management.
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1.1 Introduction

Implied volatilities are the focus of interest both in volatility trading and in
risk management. As common practice traders directly trade the so called
“vega”, i.e. the sensitivity of their portfolios with respect to volatility changes.
In order to establish vega trades market professionals use delta-gamma neutral
hedging strategies which are insensitive to changes in the underlying and to time
decay, Taleb (1997). To accomplish this, traders depend on reliable estimates
of implied volatilities and - most importantly - their dynamics.

One of the key issues in option risk management is the measurement of the
inherent volatility risk, the so called ”vega” exposure. Analytically, the ”vega”
is the first derivative of the BS formula with respect to the volatility parameter
o, and can be interpreted as a sensitivity of the option value with respect to
changes in (implied) volatility. When considering portfolios composed out of
a large number of different options, a reduction of the risk factor space can
be very useful for assessing the riskiness of the current position. Hardle and
Schmidt (2000) outline a procedure for using principal components analysis
(PCA) to determine the maximum loss of option portfolios bearing vega expo-
sure. They decompose the term structure of DAX implied volatilities ”at the
money” (ATM) into orthogonal factors. The maximum loss, which is defined
directly in the risk factor space, is then modeled by the first two factors.

Our study on DAX options is organized as follows: First, we show how to de-
rive and to estimate implied volatilities and the implied volatility surface. A
data decription follows. In section 1.3.2, we perfom a standard PCA on the co-
variance matrix of VDAX returns to identify the dominant factor components
driving term structure movements of ATM DAX options. Section 1.3.3 intro-
duces a common principal components approach that enables us to model not
only ATM term structure movements of implied volatilities but the dynamics
of the ”smile” as well.
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1.2 The Implied Volatility Surface

1.2.1 Calculating the Implied Volatility

The BS formula for the price C; of a European call at time ¢ is given by

Ct = St(I)(dl) - Ke_”@(dg), (11)
4 - ln(St/K);_\/(; + %02)7, (12)
d2 = d1 — 0'\/;, (].3)

where ® denotes the cumulative distribution function of a standard normal
random variable. r denotes the risk-free interest rate, S the price of the under-
lying, 7 = T — ¢ the time to maturity and K the strike price. For ATM options
the equality K = S; holds.

The only parameter in the Black and Scholes formula that cannot be observed
directly is the actual volatility of the underlying price process. However, we may
study the volatility which is implied by option prices observed in the markets,
the so called implied volatility: implied volatility is defined as the parameter
o that yields the actually observed market price of a particular option when
substituted into the BS formula. The implied volatility of a European put with
the same strike and maturity can be deduced from the ”put-call parity”

Ci—P=5—-—Ke .

XploRe offers a fast and convenient numerical way to invert the BS formula in
order to recover ¢ from the market prices of C; or P;.

y = ImplVola(x{, IVmethod})
calculates implied volatilities.

As numerical procedures both a bisectional method and a Newton-Raphson
algorithm are available. They are selected by the option IVmethod, which can
either be the bisection method (IVmethod="bisect") or the default Newton-
Raphson. Within arbitrage bounds on the other input parameters there exists



4 1 The Analysis of Implied Volatilities

a unique solution, since the BS formula is globally concave in ¢. The input
vector x contains the data in an n x6 dimensional matrix, where the first column
contains the underlying asset prices S, the second the strikes K, the third the
interest rates r [on a yearly basis], the fourth maturities 7 [in scale of years],
the fifth the observed option prices C; and P;. The sixth column contains the
type of the option, where 0 abbreviates a put and 1 a call. For example, the
command ImplVola(100712070.0570.571.9471) yields the implied volatility
of a European call at strike K = 120 with maturity 7 of half a year, where
the interest rate is assumed to be r = 5%, the price of the underlying asset
S = 100 and the option price C; = 1.94: the result is 6 = 24.94%. One may
verify this result by using XploRe:

opc = BlackScholes(S, K, r, sigma, tau, task)

which calculates European option prices according to the Black and Scholes
model, when no dividend is assumed. The first 5 input parameters follow the
notation in this paper, and task specifies whether you desire to know a call
price, task=1, or a put price, task=0. Indeed, for o = 24.94% we reproduce

the assumed option call price of C; = 1.94. Q XFGiv00.xpl

Now we present a more complex example using option data from the German
and Swiss Futures Exchange (EUREX). The data set volsurfdata2.dat con-
tains the full set of option prices (settlement prices) as observed on January
4th, 1999. The first column contains the settlement price S of the DAX, the
second the strike price K of the option, the third the interest rate r, the fourth
time to maturity 7, the fifth the option prices C; or P; and the last column
finally the type of option, either 0, i.e. a put, or 1, i.e. a call. Hence the
data set is already in the form as required by the quantlet ImplVola. We may
therefore use the following code to calculate the implied volatilities:

library ("finance")

x=read ("volsurfdata2.dat") ; read the data
x=paf (x,x[,4]1>0.14&8&x[,41<0.22) ; select 2 months maturity
y=ImplVola(x,"bisect") ; calculate ImplVola

sort (x[,2]7y) ; sort data according to strikes
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Figure 1.1: Implied volatility ”smile” as observed on January 4th, 1999
Q xreivol.xpl

In Figure 1.1 we display the output for the strike dimension. The deviation from
the BS model is clearly visible: implied volatilities form a convex ”smile” in
strikes. One finds a curved shape also across different maturities. In combina-
tion with the strike dimension this yields a surface with pronounced curvature
(Figure 1.2). The discontinuity of the ATM position is related to tax effects
exerting different influences on puts and calls, Hafner and Wallmeier (2001).
In our case this effect is not so important, since we smooth the observations
and calculate the returns of the implied volatility time series before applying
the PCA.

1.2.2 Surface smoothing

Calculation of implied volatilities at different strikes and maturities yields a
surface. The quantlet volsurf estimates the implied volatility surface on a
specified grid using a bi-dimensional kernel smoothing procedure. A Nadaraya-
Watson estimator with a quartic kernel is employed, Ait-Sahalia and Lo (1998),
Ait-Sahalia and Lo (2000), Hérdle (1990), Hardle, Miiller, Sperlich, and Wer-
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watz (2001).

More technically, given a partition of explanatory variables (z1,z2) = (K, 7),
i.e. of strikes and maturities, the two-dimensional Nadaraya-Watson kernel
estimator is n S oo i n
Doier Ko (P ) Ko (F25724) 64

Z?:l Kl(l'lglzli)K2(z'2’::2i) ’

(1.4)

5’((61,.’1;’2) =

where &; is the volatility implied by the observed option prices Cy; or Py;. K;
and K5 are univariate kernel functions, and h; and hs are bandwidths. The
order 2 quartic kernel is given by

15

- —u?)* I(|u| < 1).

Ki(u)

The basic structure of volsurf is given by

{IVsurf, IVpoints} = volsurf(x, stepwidth, firstXF,
lastXF, firstMat, lastMat, metric, bandwidth, p,
{IVmethod})

As input parameters we first have the n x 6 matrix x which has been explained
in section 1.2.1. The remaining parameters concern the surface: stepwidth is
a 2 x 1 vector determining the stepwidth in the grid of the surface; the first
entry relates to the strike dimension, the second to the dimension across time to
maturity. firstXF, lastXF, firstMat, lastMat are scalar constants giving
the lowest limit and the highest limit in the strike dimension, and the lowest
and the highest limit of time to maturity in the volatility surface. The option
metric gives you the choice whether to compute the surface in a moneyness
or in a strike metric. Setting metric = 0 will generate a surface computed in
a moneyness metric K/F, i.e. strike divided by the (implied) forward price of
the underlying, where the forward price is computed by F; = Sie™”. If metric
= 1, the surface is computed in the original strike dimension in terms of K.
bandwidth is a 2 x 1 vector determining the width of the bins for the kernel
estimator. p determines whether for computation a simple Nadaraya-Watson
estimator, p = 0, or a local polynomial regression, p # 0, is used. The last
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and optional parameter IVmethod has the same meaning as in the ImplVola
quantlet. It tells XploRe which method to use for calculating the implied
volatilities, default again is Newton-Raphson.

The output are two variables. IVsurf is an N x 3 matrix containing the
coordinates of the points computed for the implied volatility surface, where
the first column contains the values of the strike dimension, the second those
of time to maturity, the third estimated implied volatilities. N is the number
of grid points. IVpoints is a M x 3 matrix containing the coordinates of the M
options used to estimate the surface. As before, the first column contains the
values for the strike dimension, the second the maturity, the third the implied
volatilities.

Before presenting an example we briefly introduce a graphical tool for display-
ing the volatility surface. The following quantlet plots the implied surface:

volsurfplot (IVsurf, IVpoints, {AdjustToSurface})

As input parameters we have the output of volsurf, i.e. the volatility sur-
face IVsurf, and the original observations IVpoints. An optional parame-
ter AdjustToSurface determines whether the surface plot is shown based on
the surface data given in IVsurf, or on the basis of the original observations
IVpoints. This option might be useful in a situation where you have esti-
mated a smaller part of the surface than would be possible given your data.
By default, or AdjustToSurface = 1, the graph is adjusted according to the
estimated surface.

Now, let’s look at an example!

library ("finance")

x=read("volsurfdata2.dat") ; read data
sw=70|(1/52) ; set stepwidth
bw=250[0.5 ; set bandwidth
£XF=3500 ; set firstXF
1XF=7000 ; set lastXF
fMat=0 ; set firstMat
1Mat=1 ; set lastMat

metric=0 ; calculate in moneyness dimension
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AdjustToSurface=1
{IVSurf,IVpoints}=volsurf (x, sw, fXF, 1XF, fMat, 1Mat, metric, bw, 0)
volsurfplot (IVSurf,IVpoints,AdjustToSurface)

Q XFGiv02.xpl

XFGiv02 computes an implied volatility surface with the Nadaraya-Watson es-
timator and displays it (Figure 1.2). The parameters are determined in order
to suit the example best, then volsurfplot is used to create the graphic. The
output matrix IVsurf contains now all surface values on a grid at the given
stepwidth. Doing this for a sequential number of dates produces a time series
{6+} of implied volatility surfaces. Empirical evidence shows that this surface
changes its shape and characteristics as time goes on. This is what we analyze
in the subsequent sections.

1.3 Dynamic Analysis

1.3.1 Data description

Options on the DAX are the most actively traded contracts at the derivatives
exchange EUREX. Contracts of various strikes and maturities constitute a
liquid market at any specific time. This liquidity yields a rich basket of implied
volatilities for many pairs (K, 7). One subject of our research concerning the
dynamics of term structure movements is implied volatility as measured by the
German VDAX subindices available from Deutsche Borse AG (http://deutsche-
boerse.com/)

These indices, representing different option maturities, measure volatility im-
plied in ATM European calls and puts. The VDAX calculations are based on
the BS formula. For a detailed discussion on VDAX calculations we refer to
Redelberger (1994).

Term structures for ATM DAX options can be derived from VDAX subindices
for any given trading day since 18 March 1996. On that day, EUREX started
trading in long term options. Shapes of the term structure on subsequent
trading days are shown in Figure 1.3.

If we compare the volatility structure of 27 October 1997 (blue line) with that
of 28 October 1997 (green line), we easily recognize an overnight upward shift
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Figure 1.2: Implied volatility surface as observed on January 4th, 1999
Q XFGiv02.xpl

in the levels of implied volatilities. Moreover, it displays an inversion as short
term volatilities are higher than long term ones. Only a couple of weeks later,
on 17 November (cyan line) and 20 November (red line), the term structure
had normalized at lower levels and showed its typical shape again. Evidently,
during the market tumble in fall 1997, the ATM term structure shifted and
changed its shape considerably over time.

As an option approaches its expiry date 7', time to maturity 7 = T — t is
declining with each trading day. Hence, in order to analyze the dynamic struc-
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Figure 1.3: Term Structure of VDAX Subindices
Q xFGiv03. xpl

ture of implied volatility surfaces, we need to calibrate 7 as time ¢ passes. To
accomplish this calibration we linearly interpolate between neighboring VDAX
subindices. For example, to recover the implied volatility ¢ at a fixed 7, we
used the subindices at 7— and 74 where 7— < 7 < 74, i.e. we computed 64(7)
with fixed maturities of 7 € {30,60, 90,180, 270, 360, 540, 720} calendar days
by

T—T_

4(7) = G¢(7) [1 - ] +6u(ry) [i] (1.5)

Ty —T— T4 — T—

Proceeding this way we obtain 8 time series of fixed maturity. Each time series

is a weighted average of two neighboring maturities and contains n = 440 data
points of implied volatilities.

1.3.2 PCA of ATM Implied Volatilities

The data set for the analysis of variations of implied volatilities is a collection
of term structures as given in Figure 1.3. In order to identify common factors
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we use Principal Components Analysis (PCA). Changes in the term structure
can be decomposed by PCA into a set of orthogonal factors.

Define X, = (z4;) as the T x J matrix of centered first differences of ATM
implied volatilities for subindex 7 = 1,...,J in time ¢ = 1,...,7, where in our
case J = 8 and T = 440. The sample covariance matrix S = 7' XX, can be
decomposed by the spectral decomposition into

S =TAT?, (1.6)

where I' is the 8 x 8 matrix of eigenvectors and A the 8 x 8 diagonal matrix
of eigenvalues A; of S. Time series of principal components are obtained by
Y =X.T.

A measure of how well the PCs explain variation of the underlying data is given
by the relative proportion (; of the sum of the first [ eigenvalues to the overall
sum of eigenvalues:

Cl — E‘l]ZI )\] — Z‘l]ZI Va/l"(y‘))
2521 Aj 2521 Var(y;)

The quantlet XFGiv04 uses the VDAX data to estimate the proportion of vari-
ance (; explained by the first [ PCs.

for 1<8 (1.7)

Q XFGiv04.xpl

As the result shows the first PC captures around 70% of the total data vari-
ability. The second PC captures an additional 13%. The third PC explains a
considerably smaller amount of total variation. Thus, the two dominant PCs
together explain around 83% of the total variance in implied ATM volatilities
for DAX options. Taking only the first two factors, i.e. those capturing around
83% in the data, the time series of implied ATM volatilities can therefore be
represented by a factor model of reduced dimension:

Tij = Yi1Ye1 + Vi2Yt2 + €, (1.8)

where ;5 denotes the jkth element of I' = (i), ys is taken from the matrix
of principal components Y, and ¢ denotes white noise. The «; are in fact
the sensitivities of the implied volatility time series to shocks on the principal
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components. As is evident from Figure 1.4, a shock on the first factor tends
to affect all maturities in a similar manner, causing a non-parallel shift of the
term structure. A shock in the second factor has a strong negative impact on
the front maturity but a positive impact on the longer ones, thus causing a
change of curvature in the term structure of implied volatilities.

Factor Loadings

—i -
Lo | i L
= o
=
(]
8
L)
CID' -
O T T T T
2 4 6 8
Subindex

Figure 1.4: Factor Loadings of First and Second PC
Q XFGiv05.xpl

1.3.3 Common PCA of the Implied Volatility Surface

Implied volatilities calculated for different strikes and maturities constitute a
surface. The principle component analysis as outlined above, does not take this
structure into account, since only one slice of the surface, the term structure of
ATM options are used. In this section we present a technique that allows us to
analyze several slices of the surface simultaneously. Since options naturally fall
into maturity groups, one could analyze several slices of the surface taken at
different maturities. What we propose to do is a principal component analysis
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of these different groups. Enlarging the basis of analysis will lead to a better
understanding of the dynamics of the surface. Moreover, from a statistical point
of view, estimating PCs simultaneously in different groups will result in a joint
dimension reducing transformation. In this chapter, we like to present a form
of a multi-group PCA, the so called common principle components analysis
(CPCA), which yields this joint eigenstructure across groups.

In addition to traditional PCA, the basic assumption of CPCA is that the
space spanned by the eigenvectors is identical across several groups, whereas
variances associated with the components are allowed to vary. This approach
permits us to analyze a p variate random vector in k£ groups, say k maturities
of implied volatilities jointly, Fengler, Hardle and Villa (2001).

More formally, the hypothesis of common principle components can be stated
in the following way, Flury (1988):

Hepe : ¥; = TATT, i=1,..k

where the ¥; are positive definite p x p population covariance matrices, I' =
(715 +--,7p) is an orthogonal pxp transformation matrix and A; = diag(A1, ..., Aip)
is the matrix of eigenvalues. Moreover, assume that all \; are distinct.

Let S be the (unbiased) sample covariance matrix of an underlying p-variate
normal distribution Np(u, ¥) with sample size n. Then the distribution of nS
is Wishart, Muirhead (1982), p. 86, with n — 1 degrees of freedom:

nS ~W,(¥,n—1)

The density of the Wishart distribution is given by
p(n—1)

1 n—1\"3
f(8) = F,,("T*I)I‘I’I("*W( 2 ) *

exp{tr(—n > 1\1;*15) }\5|<"*P*2>/2, (1.9)

where

T,(z) = 7?P-1/4 f[ r{z- %(z’ -1}

i=1
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is the multivariate gamma function, Muirhead (1982). Hence for given Wishart
matrices S; with sample size n; the likelihood function can be written as

k
L(Ty,..,T) = C’Hexp{tr (—%(ni - 1)@;15,)} 1T,z (1.10)
=1

where C' is a constant not depending on the parameters ¥;. Maximizing the
likelihood is equivalent to minimizing the function

k

9T, T) = > (s — 1){1n |T;] + tr(q;;ls,-)}.

i=1

Assuming that Hcpc holds, i.e. in replacing ¥; by TA;I'T, one gets after some
manipulations

k 5 Sivi
g(T, A1, ..., Ag) = Z(nz -1) Z (ln)‘ij + J)\z,. ) :

i=1 j=1 J

As we know from section 1.3.2, the vectors «y; in I' need to be orthogonal.
We achieve orthogonality of the vectors 7; via the Lagrange method, i.e. we
impose the p constraints 'yJ-T'yj = 1 using the Lagrange multiplyers ;1;, and the
remaining p(p—1)/2 constraints v; v; = 0 for (h # j) using the multiplyer ;.
This yields

P p
g (T, A1, Ag) = g() — ZMJ’(’Y}”YJ -1)- ZZNhj'Y}F{'Yj-
j=1 h<j

Taking partial derivatives with respect to all A;,, and ~,,, it can be shown
(Flury, 1988) that the solution of the CPC model is given by the generalized
system of characteristic equations

k

Aim = Aij . )

Yo (Z(nz - 1)/\7)\15',) v; =0, m,j=1,..,p, m#j (1.11)
i1 imN\ij
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This has to be solved using

Aim = fy,ESfym, i=1,...,k, m=1,..,p
under the constraints

0 m#£j
%Tm-:{ e
1 m=]

Flury (1988) proves existence and uniqueness of the maximum of the likelihood
function, and Flury and Gautschi (1988) provide a numerical algorithm, which
has been implemented in the quantlet CPC.

CPC-Analysis

A number of quantlets are designed for an analysis of covariance matrices,
amongst them the CPC quantlet:

{B, betaerror, lambda, lambdaerror, psi} = CPC(A,N)
estimates a common principle components model.

As input variables we need a p x p x k array A, produced from k p x p covariance
matrices, and a k x 1 vector of weights N. Weights are the number of observations
in each of the k groups.

The quantlet produces the p X p common transformation matrix B, and the px p
matrix of asymptotic standard errors betaerror. Next, eigenvalues lambda
and corresponding standard errors lamdbaerror are given in a vector array
of 1 x p x k. Estimated population covariances psi are also provided. As
an example we provide the data sets volsurfOl.dat, volsurf02.dat and
volsurf03.dat that have been used in Fengler, Hardle and Villa (2001) to
estimate common principle components for the implied volatility surfaces of
the DAX 1999. The data has been generated by smoothing a surface day by
day as spelled out in section 1.2.2 on a specified grid. Next, the estimated grid
points have been grouped into maturities of 7 = 1, 7 = 2 and 7 = 3 months
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and transformed into a vector of time series of the ”smile”, i.e. each element
of the vector belongs to a distinct moneyness ranging from 0.85 to 1.10.

The following quantlet shows how to estimate a CPC model: Q XFGiv06.xpl

We plot the first three eigenvectors in a parallel coordinate plot in Figure 1.5.
The basic structure of the first three eigenvectors is not altered. We find a
shift, a slope and a twist structure. This structure is common to all maturity
groups, i.e. when exploiting PCA as a dimension reducing tool, the same
transformation applies to each group! However, from comparing the size of
eigenvalues among groups, i.e. ZZ.lambda, we find that variability is dropping
across groups as we move from the front contracts to long term contracts.

Common Coordinate Plot: First three Eigenvectors

10| Iy L
o
> o -
10
S L
1 2 3 4 5 6

Index of Eigenvectors

Figure 1.5: Factor loadings of the first (blue), the second (green), and the third
PC (red)

Q xFGivo6. xpl

Before drawing conclusions we should convince ourselves that the CPC model
is truly a good description of the data. This can be done by using a likelihood
ratio test. The likelihood ratio statistic for comparing a restricted (the CPC)
model against the unrestricted model (the model where all covariances are
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treated separately) is given by

L((I}la ) (I}k)

T(n17n27"'7nk) =—2In m-

Inserting from the likelihood function we find that this is equivalent to
* det;
s = 3 i~ DoH,

i=1

which is x? distributed as min(n;) tends to infinity with

k{%p(p— 1)+1} - {%p(p— 1) +kp} = %(k— Dp(p—1)

degrees of freedom. In the quantlet XFGiv06 this test is also included.

Q xrGiv06. xpl

The calculations yield Ty, n,.....n,) = 31.836, which corresponds to the p-value
p = 0.37512 for the x?(30) distribution. Hence we cannot reject the CPC
model against the unrelated model, where PCA is applied to each maturity
separately.

In following section 1.3.2, we can estimate the amount of variability (; explained
by the first [ principle components: again a few number of factors, up to three
at the most, is capable of capturing a large amount of total variability present in
the data. Since the model now captures variability both in strike and maturity
dimension, this can be a suitable starting point for a simplified VaR calculation
for delta-gamma neutral option portfolios using Monte Carlo methods, and is
hence a valuable insight for risk management.
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