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On It6’s formula for multidimensional Brownian motion

by

Hans Follmer and Philip Protter*

Institut fir Mathematik Mathematics and Statistics Department
Humboldt-Universitat Purdue University
D-10099 Berlin West Lafayette IN 47907-1395, USA
Abstract. Consider a d-dimensional Brownian motion X = (X!,..., X%) and a function

F which belongs locally to the Sobolev space W2, We prove an extension of It6’s formula
where the usual second order terms are replaced by the quadratic covariations [fx(X), X*]
involving the weak first partial derivatives fi of F. In particular we show that for any
locally square-integrable function f the quadratic covariations [f(X), X*] exist as limits
in probability for any starting point, except for some polar set. The proof is based on new
approximation results for forward and backward stochastic integrals.

Key words: It0’s formula, Brownian motion, stochastic integrals, quadratic covariation,
Dirichlet spaces, polar sets.
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1. Introduction

The behavior of a smooth function F on R? along the paths of d-dimensional Brownian
motion is described as follows by Ité’s formula. Let P, be the distribution of Brownian
motion with initial point z, and let X = (X',..., X?) denote the coordinate process on
the canonical path space Q = C([0,00), R%). Consider the process A defined by

(1) A= FX) - FXo) - 3 [ A)axt

where we denote by fr = % the partial derivatives of F. Itd’s formula provides an

alternative description of the process A:
1 [t
(1.2) A = 5/ AF(X,)ds P, —a.s.
0

for any t > 0, and for any starting point z € RY.

Note, however, that the description (1.2) in terms of the Laplace operator A involves
second order differentiability of F', while definition (1.1) requires only differentiability of
first order. In fact, the process in (1.1) is well defined whenever F' belongs to the Sobolev
space W12, at least locally. In this case, we choose an appropriate version of F' and use
the weak first derivatives fi in order to define (1.1) P,- almost surely for all ¢ E,| where
E is some polar set. Thus the question arises how to formulate an analogue to (1.2) for a
general function F' € VV&)’CZ Of course we can always approximate F' by smooth functions

F() in such a way that the terms in (1.1) converge to the corresponding terms for F', and
then we get the description

(1.3) A= lim = [ AF™(X,)ds.

But rather we are interested in an intrinsic description which directly involves the function

F itself.

It turns out that such an intrinsic description can be given in terms of quadratic
covariation. We show that for any initial point z € R?, except for some polar set, the
quadratic covariations [fx(X), X*] exist as limits in probability of the usual sums under
the measure P,. Our extension of Itd’s formula consists in identifying the process A defined

by (1.1) as

1 d
(1.4) A = 5; [fe(X),XF, P,—as.

for all x except for some polar set.



If F' is the difference of two positive superharmonic functions so that the distribution
%AF is given by a signed measure p, then (1.5) provides an explicit description of the
additive functional associated to p which appears in the extended It6 formula of Brosamler
(1970) and Meyer (1978). In the general case F' € W2 we can view F as a function in
the Dirichlet space associated to d-dimensional Brownian motion. From this point of
view, A is the process of zero energy appearing in Fukushima’s decomposition of the
process F(X;) (t > 0); cf. Fukushima (1980). Thus, our formula (1.5) provides an explicit
construction of the process of zero energy in terms of quadratic covariation.

In the one-dimensional case, the extension (1.5) of It6’s formula was shown in Follmer,
Protter and Shiryaev (1995). In this paper we consider the case d > 2. The basic idea is
the same: The existence of the quadratic covariations in (1.4) is shown by proving that
the forward and the backward stochastic integrals of f;(X) can be approximated by the
corresponding sums. But in contrast to the one-dimensional case, these approximation
results hold only for all initial points = outside some exceptional set of capacity zero, and
the proofs are more subtle. In section 2 we fix a starting point zo € R? and a measurable
function f on R?. We formulate two integrability conditions on f in terms of zy which
guarantee that both the forward and the backward stochastic integral can be constructed
in a straightforward manner as limits in probability

(1.5) /Otf(Xs)de: lim_ Y AXXE,, - XE)

t;€EDn
0<t; <t
and
t
(1.6) /f(XS)d*Xf_ lim_ Y A X )(XE, - XE)
0 t;€Dp
0<t; <t

under the measure P, . This implies the existence of the quadratic covariations

(1.7) [F(X), XFe = lim Y {f(Xey,) = F(Xe)HXE,, — XF)

11— 00
t;€Dp

O<ti<t

as limits in probability under the measure P, , and their identification as differences

(18) 055 = | )t / XX

of backward and forward stochastic integrals. In section 3 we consider a measurable func-
tion f such that

(1.9) P, t 2(X,)ds < ] =



at least for some z¢ and for some ¢. Note that condition (1.9) is clearly a minimal require-
ment if we want to talk about stochastic integrals of f(X). Using results of Hohnle and
Sturm (1993) on multidimensional analogues of the Engelbert-Schmidt 0 - 1 law, we show
that condition (1.9) implies that our integrability conditions in section 2 for the existence
of the quadratic covariations [f(X ), X*] are satisfied for all starting points except for some

polar set. In section 4 we apply these results to the weak derivatives f; of a function
F € W12, This leads us to our characterization (1.5) of the process A defined by (1.1).

Using the identification (1.8) of the quadratic covariations [fx(X), X*], our version
(1.5) of Ito’s formula can also be written in the form

(1.10) F(X,)— F(Xo) = Z/Otfk(Xs)ode,

2
loc

where for a function f € L _(R?) we define the Stratonovich integral as

(1.11) [ ryeaxt = 5[ soxaaxt+ [ foxaxh)

The idea of deriving an extended It6 formula in terms of quadratic covariations defined
by (1.8) or in terms of Stratonovich integrals defined as in (1.10) has appeared indepen-
dently in Russo and Vallois (1996) in a general semimartingale context, and in Lyons and
Zhang (1994) in the context of Dirichlet spaces. Note that it makes sense to use both
(1.8) and (1.10) as a definition of the quantities appearing on the left hand side whenever
the processes X* are semimartingales after time reversal. However, the explicit approx-
imation of the stochastic integrals in (1.5) and (1.6) and the resulting identification of
the quadratic covariations as limits in probability of the sums in (1.7) is another matter.
Such an approximation is of course straightforward if f is continuous. Russo and Vallois
(1996) consider a different approximation where they first smoothe the right hand side of
(1.7) by taking integrals over time instead of the usual sums. In Lyons and Zhang (1994),
the identification (1.7) of the quadratic covariations [f(X), X*] is shown under the regu-
larity assumption that the function f belongs to the Dirichlet space, and convergence in
probability is formulated with respect to a reversible reference measure.

In this paper, we concentrate on the classical case of Brownian motion. But here we
insist on two improvements. First, the approximations (1.5), (1.6) and (1.7) are established
with respect to a given starting point zo € R? under explicit integrability conditions
involving f and xg. The second point is that we remove any smoothing and any regularity
assumptions on the measurable function f. We require only the minimal integrability
conditions which are needed in order to guarantee existence of the forward stochastic
integral in (1.11). Thus, the existence of the quadratic covariations in (1.4) is established
on exactly the same level of generality which is appropriate for defining the stochastic
integrals in (1.1).



2. Existence of Quadratic Covariation

Let f be a measurable function on R? where d > 2. Our purpose in this section
is to establish the existence of the quadratic covariations [f(X), X*] under appropriate
integrability hypotheses on f, but without assuming any regularity conditions. Consider
the sums

(2.1) Y AF(Xup) = FX)HXE 40 — XF)

along a sequence of partitions D,, of RT. As in Follmer, Protter and Shiryaev (1995), the
idea is to decompose (2.1) and to show that the two sums

Y FXe)(XE,, —XE)
t;€Dn
0<t; <t

and

S F(Xa)(XE 4 — XE)
t;€Dnp
0<t; <t

converge separately, to respectively a forward and a backward stochastic integral. To this
end we assume that the sequence of partitions satisfies the following conditions:

-t4
(2.2) lim sup (tj41 —ti) =0, M :=sup sup ot
n—=x t.cp, n t;,€D, Ui

< o0;

note that the second condition is satisfied whenever the partitions are equidistant.

For a given point zg € R? we define two norms for f:

(2.3) 1£1 (x0) = / FW)! o — yll'~dy

(2.4) £112(x0) = ( / F(9)?ollzo — yl[)dy)

where

(2.5) o(r) = { (—logr)V1l ifd=2

p2—d ifd>3

(2.6) Remark. Suppose that f has compact support. If f is also bounded then both
norms || f]|i(zo) (i = 1,2) are clearly finite for every point zq € R%. This is still true if f is

5



in L? for some p > d; see remark (3.24). In section 3 we will see that, in view of a general
result on the existence of quadratic covariation, it is natural to assume finiteness of both
norms for all points zg ¢ E, where E is an exceptional set which is not hit by Brownian
motion.

(2.7) Proposition. Let f be a measurable function on R® with compact support, and let
zo € R be such that ||f]]2(70) < oo. Then the forward stochastic integral satisfies

t
k_ 1 ko yky i p2
(2.8) | #xoaxt = im T SO, —XE) in £ ()
o<t <t

for each k€ {1,...,d}.

Proof. It suffices to consider only the case t = 1.
1) Define the processes ¢ and ¢, by

(2.9) Blws) = F(X,(0)).

(2.10) ¢n(w73) = Z f(Xti(w))I(ti,ti+1](S)'

tzEDn

The convergence in (2.8) is equivalent to
(2.11) lim || — ¢nll2 =0,
n—>r00

where we use the norm
1 1
(2.12) 6lle = Exgl [ fers)7ds]
0

for any measurable function ¢ on 2 x[0, 1]. Observe that if f € Cy(R?), then (2.11) holds by
Lebesgue’s dominated convergence theorem. The general case will follow by approximating
f by continuous functions in the norm || - ||2(z0).

2) Note that the Gaussian density
_d
ps(2) = (27s)~ Zexp(—||z]|*/2s)
satisfies the inequality
1
(2.13) [ peterds < @il
0

6



for any z € R? with ||z]| < R, where ¢(R) is some constant depending on R; see, e.g.,
Dynkin (1965, VIII, 8.16). Denoting by K the compact support of f and choosing R >
sup,cx ||y — @ol|, we obtain the estimate

o1 161 = [ [ 7t = o)dyas
<c(R) [ £(5)ollly aold,

hence

(2.15) @[]z < az|[f]l2(z0),

where ay = \/¢(R).

3) In order to obtain a similar estimate for the approximating process ¢,, note that

(2.16) pii(2) < (2mt;) " Fexp(—||z||/25) < M¥py(2),

for t; < s < tit1, due to our assumption (2.2). Again using (2.13) we get

Ieallf = [ £) 3 puly = w0)(tie1 A1) =ty

ieDn
o<t <t
(2.17) p
<M= ps(y — xo)dsdy
d
< M=c(R)|| I3 (770)
hence
(2.18) |énllz < bl fll2(20)

where by, = C(R)JW%.

4) Next we choose a continuous function g with compact support such that ||g — f||2(x0)
¢, and denote by ¢ and 1, the processes associated to ¢g as in (2.9) and (2.10). We have

IN

(2.19) | = dullz < lé = ¢ll2 + |0 — ullz + [|[¥n — dull2-
But
(2.20) lim [ — 6]z = 0

since ¢ is bounded and continuous, and also

(2.21) |ton = Pnllz = [[( = @)nll2 < b2l[f — gll2(20),

7



due to our estimate (2.18) applied to the function f — g. This together with (2.15) implies

limsup || — ¢nll2 < [|¢ — ¥[l2 + lim sup [[¢pn — dnll2
n—r0o0

n—> 00

(2.22) < az||f — gll2(z0) + ba2||f — gll2(z0)
< (az + by) e.

Since ¢ > 0 was arbitrary we have shown (2.11) and hence (2.8).

(2.23) Proposition. Let f be a measurable function on R? with compact support, and let
zo € R? be such that ||f||i(zo) < oo for i = 1,2. Then the backward stochastic integral
satisfies

t
* vk : k k :
(2.24) /0 FX)d*X{ = lim ; F(Xrp )(XE, = XE) in £Y(Py,)
o<t ; <t

for each k € {1,...,d}.

Proof. It suffices to consider the case t = 1.

1) Let P} be the distribution of the time reversed process X o R under P,,, where (RX); =
Xi_¢. The time reversed process X o R is a d-dimensional Brownian bridge tied down to
0 € R? and starting with initial distribution N (0, I), where I is the identity matrix. Under
P}, each component XF is a semimartingale with decomposition

k k

t
(2.25) XF=xt+w}+ / “’Olisds,
0

— S

where W* (k= 1,...,d) are independent Wiener processes. The convergence in (2.24) for
t =1 is equivalent to the convergence

1
E_ 1 ko _ vk : 1/ p*
(2.26) /0 F(X5)dX{ = Tim ; FIXo)(XE, —XE) inLY(P}),
0<s;<1

where D} = {1 — t;|t; € D, }. Let us now use the decomposition (2.25) of X* under P} ,
and let us first show that condition ||f||2(z0) < oo implies

1
1) Dm0 AV, - Wh = [ AX)IVE e,
QZGDZ
0<s;<1

This follows as in the proof of proposition (2.7). We have only to check that the estimates
(2.15) and (2.18) have analogues in terms of the norm ||¢||5 defined by

(2.25) 16]l; = B | / $(w, 5)ds]
8



for any measurable function ¢ on € x [0,1]. This is clear for (2.15) since

1
161152 = B, | / £2(X.)ds)

1
=B £ - )
— 161 < asllFIB(xo).

In order to obtain an analogue to (2.18), consider the term

6all? = B2 [ S F2X ) (5001 — 5]

s; €D}
0<s;<1

= By Z P (Xep ) (tigr — 1))

t;,€Dnp
0<t; <1

— [£6) S b v = 20)tis — t)dy.

t;€Dp
0<t; <1

(2.29)

(2.30)

For t; < s <t;41 and for any z € R? we have

Ptia (2) < (275) 7% exp(—
(2.31)

< (2773)_% exp(— )= ps(ﬂl_%z)

due to (2.2). Using again the estimate (2.13), and observing that U(JW_%T) < awv(r) for
some constant o which only depends on M and d, we get

> PGt —t) < [ p O E2)ds < Ryl
(2.32) €D, 0

< ac(R)o([[]]).

Returning to (2.30) we see that

(2.33) 6all3 < B311£112(z0)

for some constant b3. Using the estimates (2.29) and (2.33), we can now conclude as in
part 3) of the proof of proposition (2.7) that (2.27) holds.

2) It remains to show

z-|—1Xk_$ 1 Xk—l'
2.34 1 D5 0 g5 = X,) o0y P
(239) nlféo;*f / = /0f< ) s L)
0<s;<1



or, equivalently,

tig1 Xk - 1 Xk _
235 lm Y A [ ST | 000 i (),
n— oo ti 0

1—s
t;€Dnp
0<t; <1

Let us define the norm
! Xf — xk
(2.36) Il = B [ T, =0y
0

for any measurable function ¢ on © x [0, 1]. For the process ¢ defined in (2.9) we have

Xk
6l = E / ol 'ds1

ps -
/|f )l —:co|/ Py =20 4 g,

However for the Gaussian density ps there is a constant ay such that

(2.37)

1
s\% _
(2.39) lell [ 25 < el
0 S
for any z € R%; see, e.g., Dynkin (1980, VIII, 8.45). Combining (2.37) and (2.38) yields

(2.39) el < ar[l 1] (o).

3) We also need an estimate of the form (2.39) for the approximating processes

(2.40) Z F( Xt (@)t 1444) (5)-

t; €D,

We will write ). for EtiEDn70<ti<1. Then
[ * fi Xf -
16311 = 3 B (o) / P~ ol
i1 |Xk
(2.41) - 3Bl / XS =20l g p(x,,,0)

141 1
3 [ BBl — U S
i Ut

Recall that a normal random variable Z with law N(m,o?) satisfies

(2.42) B[1Z)) = m(28(2) ~ 1) + ﬁ exp( G0 ) < |+ \/2

10




where ® denotes the distribution function of N(0,1). In the conditional expectation ap-
pearing in (2.41), the normal random variable Z = X* — zk has conditional mean

k k
(24:3) m = ti—i—l (XfH-l xO)
and conditional variance
(2.44) o2 = —(tipr —s) < (M —1)s,
tit1

where we use our assumption (2.2). Thus, (2.42) implies
(2.45) B, [1XE — a8l1Xi,0] < Ai(s) + Bi(s)
where we put

2Ms

™

(2.46) Ai(s) = —— || X,

t<+1 i1 _$0||7
1

Bi(s) =
for t; < s < tit1. Returning to (2.41) we obtain the estimate
. (X))
(247 el Bl [ R A + Bis))dsl
i vt

4) Let us first consider the term

i |sz 1 z l
(2.48) mZ/ e gia /|f |||y—v:o||z et (y — w0)dy.

Due to (2.31) and (2.38) we obtain the estimate

1
S — 8 1 1
2] 2 (2) <2l | Sps(M T3 2)ds
Si+1 S
i t 0

< eMz||z|| 4.

(2.49)

Returning to (2.48) we see that

it ]
Bl [ T AL < by [ 1wl = soll 'y
= L flh (o)

(2.50)

where k1 = cll\l%.

11



5) As to the second term on the right hand side of (2.47), we again use (2.31) to obtain
the estimate

(2.51)

e3[R g = 2 [ S [ Doty sulasay

< \/? [ | 1 Zp (M (y = ao)dsdy.

But for any z € R? we have

1
1
2.52 —ps(2)ds < 1—d
(2.52) /0 \/gp (2)ds < cal|2||

for some constant ¢z, and so (2.51) implies

£ (3 [ e i <t [1500] ly = soll
= L[ fl]1(z0)

(2.53)

where [; = \/gcﬂ\l%.

6) Combining (2.47) with (2.50) and (2.53) we see that

(2.54) énll1 < billfl1 (o),

where by = k1 4+ 1. Using the estimates (2.54) and (2.39), we can now conclude as in part
3) of the proof of proposition (2.7) that ||¢ — ¢} |1 tends to 0. This implies the convergence
in (2.35) and (2.34), and so the proposition is proved.

We combine propositions (2.7) and (2.23) to obtain:

(2.55) Corollary. Let f be a measurable function on R%, let zo € RY, and let K,,, (m > 1)
be a sequence of compact sets such that

(2.56) lim P, [Xi €K, Vte[0,T]]=1 VT >0.

M — 00

Assume that for any m > 1 the restriction fn, of f to K,, satisfies
(2.57) | fmlli(z0) < oo (i =1,2).

Then the quadratic covariation

FX),X40= Tim 3 {F(X0y,) — AX)MNXE,, - XE)

(2.58) . o<ty .
- / F(X0)d"XE / F(X0)dxE
0 0
12



exists in probability under Py, and satisfies

(2.59) [F(X), X*], = / F(X)dXE - / F(X.)dx",

for each k€ {1,...,d}.

Proof. Let ¢ be fixed and ¢ > 0, and let T}, = inf{t > 0 |X; ¢ K,,} be the exit time
from K,,. We denote by S, the n-th sum in (2.58), by S the difference of the forward and

backward stochastic integrals, and by S} and 5™ the corresponding terms if the function
f is replaced by fi,. Since S, = S and S = S™ P, -a.s. on {T},, > t}, we have

(2.60) Pryl|Sn = S| > 6] € Pry[Tn < 1]+ Poy|S5 = S™| > ¢

for any m > 1. Applying propositions (2.7) and (2.23) to the function f,, we see that the
last term converges to 0 as n tends to co. Thus,

(2.61) limsup Py, [|Sn — S| > €] < Py [T < 1,

n— o0

and due to (2.56) the result follows by letting m tend to oco.

3. Exceptional sets

Let f be a measurable function on R?. In our approximation (2.55) of the quadratic
covariation

(3.1) [F(X), X*], = / X XE - / F(X.)dxE,

as a limit in probability under P, , we have assumed integrability conditions on f which
are formulated in terms of the initial point xg. In this section we show that it is no loss of
generality to make these assumptions for all zg outside some exceptional set which is not
hit by Brownian motion.

(3.2) Definition. A measurable set E C R? is called polar if

(3.3) P.[X; € E forsomet >0 =0 Vze R

(3.4) Remark. This probabilistic notion of an exceptional set is equivalent to the potential
theoretic notion of a set of capacity zero; see, e.g., Fukushima (1980, Th. 4.3.1 and Example
4.3.1). Equivalently, we can define these exceptional sets in terms of the Bessel capacity

of order (1,2) as in Ziemer (1989, 2.6); see, e.g., Fukushima (1993, p.25).

13



Note first that in order to introduce the forward stochastic integral in (3.1) with
respect to the measure P, , at least for some zo € R? and some t > 0, we clearly need the
condition

(3.5) Pxo[/o fA(X)ds < 00] = 1.

But the results in Hohnle and Sturm (1993, Th.1.1) show that the validity of (3.2) for
some o € R? and some tg > 0 implies that the function f satisfies condition (3.5) for all
t > 0 and for all initial points © ¢ E where E is some polar set. Moreover, it follows that
all the assumptions we used in theorem (2.55) hold for any starting point lying outside
some polar set:

(3.6) Proposition. Let f be a measurable function on R? such that condition (3.5) holds

for some xy € R? and some t < co. Then there exist a sequence of compact sets K, C
R (m > 1) and a polar set E such that the conditions

(3.7) lim Py [X; € Km Vte[0,T]]=1 VYT >0

m— 00

(3.5) /m@M<w,wmmm<m (i=1,2)

are satisfied for all xo ¢ E and for all m > 1, where f,, denotes the restriction f - Ix,  of
f to the set K,,.

Proof. 1) It is shown in H6hnle and Sturm (1993, Th. 3.5 and 3.7) that the validity of

(3.2) for some 2o € R? and some ¢ < oo is equivalent to the fact that there exists a polar
set Ey and a sequence of compact sets K, (m > 1) with

(3.9) fA(z)dr < oo (m>1)

K.,

such that the conditions (37) and
(3.10) [ wllla =y NPy <o (1)

are satisfied for any z¢ ¢ E2. Thus, the restrictions f,, of f to K,, satisfy
(3.11) fm € L2(RY), ||fmll2(20) < o0
for all z¢ ¢ E,.

14



2) It remains to verify the integrability condition

(3.12) | fmll1(z0) < o0

for all xg outside some polar set. In view of 1) we may assume that f has compact support
K and is square integrable. Consider the Bessel potential ¢; * | f| of order 1 defined by

(3.13) (g1 % | f)(z) = / a1(x — )| f1(y)dy.

where ¢, is defined as that function whose Fourier transform is

(3.14) Ga(z) = (2m)F (1 + ||o]*)"%.
Note that

L a=d 4 o(]]z|]*®
(3.15) ga(Z)—mHZH + of|[=][*77)

with some constant v(«) as ||z|| — 0; see, e.g., Ziemer (1989, p. 65). Thus, there is a
constant ¢ such that

(3.16) ly —wol|'™* <c-gi(wo—y) on K

and so we have

I17l(0) = [ 151wl = ool ay
- (g1 *|F1)(z0)

But the function u = ¢; * f, being the Bessel potential with index o« = 1 associated to the
square integrable function f, belongs to the Sobolev space W'% ; see Ziemer (1989, Th.
2.6.1). This implies that the version @ defined by

(3.17)

N 1
(3.18) u(x) —%ﬁm/&(r)u(z)dz

satisfies 4(z) < oo outside some polar set Ey; see, e.g., Ziemer (1989, Th.3.1.4 and 3.10.2)
or Fukushima (1993, Th. 2.1). Since

1
(3.19) %ﬁ}m/&(r) g1y — z)dz = g1 (y — x)

for any y # = by Lebesgue’s theorem, we obtain

li — x)dzd
/|f| gﬁ)l vol( Ba( ) /Ba(x) g1ly — z)d=dy
1

<lminf ——— u(z)dz,
810" vol(Bs(z)) /Ba(r) )
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using Fatou’s lemma and Fubini’s theorem. For z¢ ¢ E;, we have thus shown u(zq) < oo,

hence ||f||1(z0) < oo due to (3.17).
Combining proposition (3.6) with corollary (2.55) we obtain:

(3.21) Theorem. Let f be a measurable function on R such that condition (3.5) holds
for some zo € R and some t < co. Then there ezists a polar set E such that for any
zo ¢ E the quadratic covariation

X)L XH= Tim 37 {f(Xep) — AX)NXE,, — XE)

(3.22) o t
=/ﬂ&w@>/fmmw
0 0

exists in probability under Py, and satisfies

(3.23) [Nﬁﬁ%zlf@wﬁ@—lfﬂﬁmﬂ

for each k € {1,...,d}.

(3.24) Remark. If f € L7 (R?) for some p > d then the conlusion of the theorem holds
for every starting point 2o € R?, without exception. To see this we may assume that f has

compact support. In this case, the assumption that f € LP(R?) for some p > d implies
(3.25) A li(wo) <00 (i =1,2)

for every zo € RY. Thus, our assumptions in corollary (2.55) for the existence of quadratic
covariation are satisfied everywhere. Conditions (3.25) can be verified directly, using
Holder’s inequality. They also follow from the Sobolev embedding theorem. Note that
the function u, defined by

(3.20) wa(e) = [ F)olll e -y )y

belongs to W?P/2; see Gilbarg and Trudinger (1983, Th. 9.9). This implies uy € C(R?)
for p > d, hence ||f||2(z) < oo for any z € R?; see Ziemer (1989, Th.2.4.2). Note also that
for f € L? the Bessel potential u = g1 * | f| belongs to W':?; see Ziemer (1989, Th. 2.6.1).
This implies u € C(R?) for p > d, again by Ziemer (1989, Th. 2.4.2), hence ||f]|;(z) < oo
for any = € R?, due to (3.17).
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4. Ito’s formula

Let W2 denote the Sobolev space of functions in £2(R?) such that the weak first
partial derivatives belong to £2(R?). Recall that a function in W'? can be defined every-
where, except for a polar set, in terms of its integral averages, i.e., we can choose a version
F and a polar set Ey such that

. 1
(4.1) Flo) = tim s | Ly

for all x € Ep; see, e.g., Fukushima (1993, Th. 2.1 and p.25) or Ziemer (1989, Th. 3.1.4).

. . . 1.2 . . .
Let us now consider a function in W, i.e., a measurable function on R? which

coincides on each compact set with a function in W2, We fix a version F such that (4.1)
holds outside some polar set Ey, and we denote by

OF
(4.2) fe = g, € Lhocl(BY)

the k-th weak partial derivative of F. With probability 1, Brownian motion does not
enter a given polar set after time 0, and so the values F(X¢(w)) of the function F' along a
Brownian path are well defined P,-almost surely for any starting point = ¢ E.

(4.3) Theorem. Let F € Wllo’f be given as above. For all zg € R except for some polar
set, the quadratic covariation

(4.4) [fe(X), X e =Tim Y (Fe(Xey) = fr( X)) (X7, — XF)

exists as a limit in probability under P, for each k € {1,...,d}, and Ité’s formula holds
in the form

d t d
(4.5) F(X,) = F(Xo) + ; i Fe(X)dXE + %;[fk(X),X’“]t P,, — a.s.

for all t > 0.

Proof. 1) By a localization argument as in the proof of corollary (2.55), we can assume
that F has compact support and belongs to W12, Since fr € £2(R?), we have

(4.6) Pxo[/0 fi(Xs)ds < o0l =1

for all zg except for some polar set; see Fukushima (1980, (5.4.23)). Due to (3.21) we
can conclude that the quadratic covariations [fix(X), X*]; are well defined as limits in
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probability under P,  for all zg, except for some polar set. Alternatively we can apply
propositions (2.7) and (2.23), using the estimates ||fi||i(z0) < oo (i = 1,2) for 2o ¢
E4 U E; which are implied by (4.20) and (4.25) below.

2) Let o € R%. Suppose that we can approximate F by functions Fn) ¢ C?(R?) with
compact support in such a way that

(4.7) F(z) = lim F™(z)

n— 00

for all  outside some polar set, and that the partial derivatives f,(cn) = %F(") satisfy
(4.8) Dim [|f;" = filli(zo) =0 (i=1,2)

for the two norms introduced in section 2. Due to our estimates (2.15), (2.29), (2.39) we
can conclude, as in the proof of (2.7) and (2.23), that

t t
(49) i [ A ()axE = [ A(X)AXE i £ (P)
and
t t
(4.10) i [ A )0XE = [ RX)EXE 0 ()
n (o) 0

In particular,

mawﬂh:/n X.)d Xk - /ﬁ X,)dx*

= lim [fkn)( X), X ] in L1(Py,).

n— 00

(4.11)

Applying Itd’s formula to the functions F("™), we obtain

d
%Zmapmhdm§ZmW),h

n—ro0
k=1 k=1
d
(4.12) = lim (FO(X,) - F™(Xo) - Z/ £ (x,)dx k)
k=
= F(Xy) — Z P,, —as.,
k=170

where we have applied once more (4.9) in the last step.
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3) In order to construct such an approximation, let us take functions F) ¢ c? (R?) with
compact support such that

(4.13) Y NF™ = Flly < 0
n=1
where || - [|1,2 denotes the Sobolev norm in W2, In particular, the functions
(4.14) = 1A~ fil
n=1

belong to £?(R?) since

(frawant <3210~ ean®
(4.15) "l
<Y NIF™ — Flji 2 < 0.

n=1

It follows as in part 2) of the proof of proposition (3.6) that the Bessel potential

(4.16) g1+ m)(e) = [ gn(e =)o)y
is finite for all ¢ outside some polar set Ey. But due to (3.17) we have

(4.18) hklli(z0) < e+ (g1 * hx)(zo),
for some constant ¢, and so we have shown that ||hg||1(z0) < oo for all zg ¢ Ey. This
implies

(4.19) STUA™ = fella(zo) < oo,
n=1

by monotone integration, and so we get the desired approximation
(4.20) Tim (1™ = filli(20) = 0
for all ¢ ¢ Ej.

4) Let us define

o0

(4.21) = (O (R = f)?)?.

n=1
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Since

(4.22) /hzd:c = Z/ (™ = f,)%dz < oo,

part 1) of the proof of (3.6) shows that

(423) [ olllea = i)y < o0

for all m > 1 and for all zg except for some polar set E, where (K,,) is a sequence of
compact sets satisfying (3.7). In view of the localization argument in the proof of (2.55),
we can assume without loss of generality that F' vanishes outside K,,, for some mg > 1.
Then we get

(424) > [ ollleo = DU = Ay < o0
n=1

for all zg ¢ E5, and this implies the desired approximation

(4.25) Tim [|f;" = fulla(zo) = 0

for all z¢ ¢ E,.
5) Let us also check that (4.7) holds for all points zy except for some polar set. We have

1
4.26 F—F") (g —hmi/ F — FU")(2)dz
( ) ( )( 0) 510 VOl(Bg(.Io)) Bg(l‘o)( )( )
for all points xg except for the polar set Eg involved in the choice of the version F. Since
(4.27) Z |F — F(M)| e w2
n=1

due to (4.13), we get the existence of

4.28 li F—F™|(z)d
( ) 51?(} vol B(s (20)) /Ba(ro) Z| (@)de < oo

for all z¢ except for a polar set E3. For xg ¢ Eg U E3, we can conclude that

o0

. 1

F— FM|(z0) < liminfi/ F = FV|(a)da
g_ | |(z0) < o vol(Bs(zo)) Ba(l’o)| o
(4.29) )

o0

1
< lim inf ———— F — F™|(z)dx < oo,
— slo vol(Bs(xo)) /Ba(ro) nz:l| )

and this implies (4.7). Thus, all properties of the approximation which were used in part
2) of the proof are satisfied for any o ¢ Eo U Eq U Ey U Ej.
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