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Abstract

We study the long run behaviour of interactive Markov chains on

in�nite product spaces. The behaviour at a single site is inuenced

by the local situation in some neighborhood and by a random signal

about the average situation throughout the whole system. The asymp-

totic behaviour of such Markov chains is analyzed on the microscopic

level and on the macroscopic level of empirical �elds. We give suÆ-

cient conditions for convergence on the macroscopic level. Combining

a convergence result from the theory of random systems with complete

connections with a perturbation of the Dobrushin-Vasserstein contrac-

tion technique we show that macroscopic convergence implies that the

underlying Microscopic process has local asymptotic loss of memory.

Key Words: Markov chains on in�nite product spaces, local asymptotic

loss of memory, contraction techniques, Gibbs measures
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1 Introduction

We consider interactive Markov chains on a product space E = CA where

C is some �nite state space and A is an in�nite set of sites or agents. Thus,

the state space of the Markov chain is the set of con�gurations x = (xa)a2A

which specify an individual state for each agent a 2 A . The convergence

behaviour of Markov chains of the form

�(x; �) =
Y
a2A

�a(x; �) (1)

has been investigated in depth in the case where the interaction is purely

local. This means that the probability �a(x; c) that agent a 2 A switches to

the state c 2 C only depends on the states in some neighborhood N(a). In

this case, � may be viewed as a Feller kernel on the compact state space E.

Using Dobrushin's contraction technique and the Feller property, Vasserstein

(1969) has shown that such a Markov chain converges weakly to some unique

equilibrium distribution � if the interaction between di�erent agents is not

too strong.

In recent years there is an increasing interest in dynamical microstruc-

ture models of �nancial markets which involve interacting preferences and

expectations of a large number of agents; see, e.g., Brock and Hommes

(1997). In such a context, the Markov chain � describes the dynamics of

all the individual agents' states governing, for instance, their expectations

about the future evolution of asset prices. From an economic point of view,

it is appropriate to assume that the price expectation of an agent a 2 A for

the following period does not only depend on the current states of his `neigh-

bors', but also on signals about the average expectation throughout the en-

tire population. Thus, in the context of microstructure models, it becomes

natural to introduce an additional dependence on the average behaviour of

the con�guration x 2 E into the interaction, i.e., into the transition laws

�a, and to study the run long behaviour of locally and globally interacting

Markov chains.

F�ollmer and Horst (2001) established an extension of Vasserstein's con-

vergence theorem to the case where the interaction has both a local and

a global component. They consider the case A = Zd. The average be-

haviour of x 2 E is described by the associated empirical distribution %(x)

or, more completely, by the empirical �eld R(x). In such a situation, the
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Feller property of � is typically lost. Using contraction arguments with

respect to a suitable metric, F�ollmer and Horst (2001) show that the mi-

croscopic process fxtgt2N induces a sequence of empirical �elds fR(xt)gt2N

which converges almost surely to some random �eld � on E. Applying a

perturbation of the Dobrushin-Vasserstein contraction technique, they prove

that almost sure convergence of the macroscopic process fR(xt)gt2N implies

weak convergence of the underlying microscopic process fxtgt2N .

From an economic point of view, this model can be used to analyze situ-

ations where an individual agent a 2 A has complete information about the

average behaviour throughout the entire population. In view of many ap-

plications, however, such an assumption is rather restrictive. In microstruc-

ture models for �nancial markets, for instance, the empirical distribution

%(xt) may be regarded as the \mood of the market" in period t, and it

seems more natural to assume that agents only have incomplete information

about %(xt). This means that the agents do not observe directly the aver-

age situation over the whole system A , but receive a random signal whose

law depends on %(xt). In Horst (2000), Chapter 3, such Markov chains are

used as a random environment for the evolution of stock prices, viewed as

a sequence of temporary price equilibria. In order to analyze the asymp-

totic behaviour of these price processes, we need convergence results for the

process of empirical distributions f%(xt)gt2N . This is the motivation for the

present paper.

Our goal is to get some insight into the long run behaviour of locally and

globally interacting Markov chains with transition kernel � on an in�nite

product space of the form E = CA where A = Zd. We extend the model

studied in F�ollmer and Horst (2001) and consider Markov chains where the

behaviour of an individual agent a 2 A is inuenced by the local situation

in some neighborhood and by a random signal about the average situation

throughout the whole population A . We also admit an interactive structure

in the transition itself. This means that �(x; �) is a Gibbs measure with

respect to a system of conditional probabilities depending on x; the product

case (1) is included as a special case. The class of such interactive Markov

chains is introduced in Section 2.

In order to analyze the long run behaviour of the Markov chain fxtgt2N

governed by the kernel �, we proceed in three steps. In Section 3, we

prove a spatial law of large numbers for empirical �elds. This allows us
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to analyze the asymptotics of the macroscopic process fR(xt)gt2N , and to

extend a convergence result in F�ollmer and Horst (2001) to the case of

Gibbs measures. In Section 4, we prove that the macroscopic process may

be viewed as the Markov chain associated with a certain random system

with complete connections. Using a contraction argument with respect to a

suitable metric, we obtain weak convergence of the macroscopic process to

a unique equilibrium distribution. Combining a variant of the Dobrushin-

Vasserstein contraction technique with a convergence result from the theory

of random systems with complete connections, we show that convergence

of the macroscopic process implies that the underlying microscopic process

fxtgt2N has local asymptotic loss of memory in the sense of F�ollmer (1979b).

In Theorem 4.19, we state conditions which ensure weak convergence of the

microscopic process to a unique equilibrium distribution.

2 Locally Interacting Markov Chains with Global

Signals

Let C be some �nite state space. We denote by A the d-dimensional integer

lattice Zd and by E := CA the compact space of all con�gurations x =

(xa)a2A with xa 2 C. A probability measure � on E will be called a random

�eld. The space M(E) of all such random �elds is compact with respect to

the topology of weak convergence. Since the state space C is �nite, the class

L(E) of all local functions which depend only on �nitely many coordinates

is dense in C(E) with respect to the topology of uniform convergence. Thus,

a sequence f�tgt2N of random �elds converges weakly to � 2M(E) i�

�t(f) :=

Z
E

fd�t
t!1
�! �(f) (f 2 L(E)): (2)

Our aim is to analyze some aspects of the long run behaviour of interactive

Markov chains on E with transition kernel �(x; dy). Let us �rst assume

that the kernel � takes the product form

�(x; �) =
Y
a2A

�a(x; �): (3)

In such a model, the state of a single agent a 2 A changes in reaction to

the situation x 2 E according to the probability distribution �a(x; �) on C.
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The individual transition probabilities �a(x; �) have an interactive structure

since they depend not only on the individual state xa. Note, however, that

the transition to a new con�guration is made independently at di�erent

sites. In (17) below, we will admit an interactive structure in the transition

itself. Such a situation is captured by a model where the measure �(x; �)

is not a product measure, but a Gibbs measure with respect to a system of

conditional probabilities depending on the con�guration x.

The convergence of interactive Markov chains of the form (3) has been

investigated in depth in the case where the interaction is purely local, i.e.,

under the assumption that the individual transition law �a(x; �) only de-

pends on the local situation (xb)b2N(a) in some �nite \neighborhood" N(a);

see, e.g., Vasserstein (1969) or Lebowitz, Maes, and Speer (1990). In such a

situation, the stochastic kernel � has the Feller property, i.e.,

�f(�) :=

Z
E

f(x)�(�; dx) 2 C(E)

whenever f 2 C(E). This property is crucial for the basic convergence

theorem in Vasserstein (1969): Under suitable contraction bounds on the

interaction between di�erent sites Vasserstein (1969) establishes weak con-

vergence of the Markov chain to some unique equilibrium distribution � in

the sense that

lim
t!1

��t(f) = �(f)

for all f 2 C(E) and any initial distribution � 2 M(E). Due to (2), weak

convergence of the sequence f��tgt2N may be viewed as a notion of local

convergence.

F�ollmer and Horst (2001) introduced a macroscopic component both

into the interaction and into the notion of convergence. In such a situation,

the Feller property of � will typically be lost. F�ollmer and Horst (2001)

analyzed the convergence behaviour Markov chains of the form (3) under

the assumption that the interactive inuence of a given con�guration x =

(xb)b2A on an individual agent a 2 A is felt through the local situation

(xb)b2N(a) in some neighborhood N(a) and through the average situation

throughout the whole system A . The average situation of x 2 E is described

by the associated empirical �eld R(x), viewed as an ergodic random �eld on

the con�guration space E. Under suitable bounds on the local interaction
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between di�erent agents and on the dependence of individual behaviour on

the empirical �eld R(x), they obtained convergence of the Markov chain

fxtgt2N governed by the transition kernel � both on the microscopic level

of con�gurations and on the macroscopic level of empirical �elds.

In the present paper, we consider a randomized version of the model

analyzed in F�ollmer and Horst (2001). We study the long run behaviour of

interactive Markov chains on in�nite product spaces where the inuence of a

given con�guration x at site a 2 A is felt through the local situation in some

neighborhood N(a) and through a random signal about global properties of

x. In many situations, such an approach provides an additional smoothing

e�ect which allows us to prove convergence of the Markov chain fxtgt2N on

the macroscopic level without any condition which controls the dependence

of individual behaviour on the signal about aggregate behaviour. In order

to study the asymptotic behaviour of such Markov chains, we apply the

method of separating the analysis of microscopic and macroscopic conver-

gence introduced in F�ollmer and Horst (2001). The following example where

the probability that an agent a 2 A switches to a state c 2 C depends both

on his individual state xa and on some random signal about the empirical

average m(x) associated with x illustrates this method.

Example 2.1 Let C = f0; 1g and denote by E1 the set of all con�gurations

such that the empirical average associated with the con�guration x 2 E1

exists along a suitable sequence of �nite sets A n " A :

E1 :=

(
x 2 E : 9 m(x) := lim

n!1

1

jA n j

X
a2An

xa

)

Given a con�guration x 2 E1, we assume that an individual agents reacts

to his own state xa and to a random signal s 2 [0; 1] about the empirical

average m(x). The conditional law

Q(m(x); �)

of the signal s, given the empirical average, m(x) is described by a stochastic

kernel Q on [0; 1]. The situation analyzed in F�ollmer and Horst (2001)

corresponds to the case Q(m; �) = Æm(�).
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For x 2 E1, we assume that the probability that an agent switches to

state c 2 C takes the form

�a(x; c) =

Z 1

0
�s(x

a; c)Q(m(x); ds)

where �s(x
a; �) is a transition kernel from C � [0; 1] to C. For any �xed

signal s 2 [0; 1], the transition to a new con�guration is therefore described

by the product kernel

�s(x; �) :=
Y
a2A

�s(x
a; �): (4)

For x 2 E1, it follows from the strong law of large numbers that

lim
n!1

1

jA n j

X
a2An

ya = lim
n!1

1

jA n j

X
a2An

�s(x
a; 1) �s(x; �)-a.s.

Thus, the product-measure �s(x; �) given by (4) is concentrated on the set

E1 whenever x 2 E1, and the empirical average satis�es

m(y) = u(m(x); s) := m(x)�s(1; 1) + (1�m(x))�s(0; 1)

for �s(x; �)-a.e. y 2 E1. Hence, the Markov chain fxtgt2N with transition

probability

�(x; �) :=

Z 1

0
�s(x; �)Q(m(x); ds)

on E1 induces almost surely the sequence of empirical averages fm(xt)gt2N .

Conditioned on the environment fstgt2N , this \macroscopic process" evolves

almost surely in a deterministic manner. The dynamics of the macroscopic

process can be described by a Markov chain fmtgt2N on the state space [0; 1]

whose transition operator U acts on the set bounded measurable functions

f : [0; 1]! R according the formula

Uf(m) =

Z
f(u(m; s))Q(m; ds):

For any starting point x 2 E1, the microscopic process fxtgt2N may therefore

be viewed as a Markov chain evolving in the random environment fstgt2N .

The law the environment is governed by the initial empirical average m(x).
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Below, we will formulate conditions on the individual transition probabili-

ties �a
s
and on the stochastic kernel Q which ensure that the Markov chain

fmtgt2N converges in law to a unique equilibrium distribution. Combining

techniques from the theory of random systems with complete connections

with a variant of the Dobrushin-Vasserstein contraction technique, we will

see that this implies that the Markov chain fxtgt2N has local asymptotic loss

of memory in the sense of F�ollmer (1979b). This illustrates the method of

separating the analysis of macroscopic and microscopic convergence.

Let us now consider the case where the individual behaviour is inuenced

both by a signal about the empirical average and by the situation in some

neighborhood. We �x l > 0 and de�ne the neighborhood of a coalition

A � A as

N(A) := fb 2 A : 9 a 2 A such that jb� aj � lg:

If the transition probability �as (x; �) depends on the values xb in the neigh-

borhood N(a) of a, then the analysis of the convergence behaviour of the

Markov chain becomes more involved. Only in very special cases such as in

the following variant of Example 2.2 in F�ollmer and Horst (2001), we can

still obtain a simple macroscopic equation for the conditionally deterministic

evolution of the sequence of empirical averages fm(xt)gt2N .

Example 2.2 As an illustration of the interplay between the long run be-

haviour on the level of con�gurations and the asymptotics of the sequence

of empirical averages fm(xt)gt2N , we consider the following simple voter

model with C = f0; 1g: For x 2 E1 and for a �xed signal s 2 [0; 1] about the

empirical average m(x), the individual transition law �a
s
(x; �) is described as

the convex combination

�as (x; 1) = �p(xa) + �ma(x) + s; (5)

where �+�+ = 1. Here, ma(x) is the proportion of `1' in the neighborhood

N(a). It is easy to see that the sequence of empirical averages satis�es almost

surely the conditionally deterministic dynamics

m(xt+1) = u(m(xt); st) := �fmp(1) + (1�m)p(0)g + �m(xt) + st:

We assume that the conditional law Q(m(xt); �) of the signal st given the

empirical average m(xt) is described by a signal kernel Q on [0; 1]. Thus,
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the macroscopic process fm(xt)gt2N may be viewed as a Markov chain on

the state space [0; 1] whose transition operator U is given by

Uf(m) =

Z
f(u(m; s))Q(m; ds):

In Theorem 4.12 below, we provide conditions which ensure that the macro-

scopic process converges in law to a unique equilibrium. Due to Theorem

4.15 this implies that the microscopic process fxtgt2N has local asymptotic

loss of memory in the sense of F�ollmer (1979b).

The next example shows that the dynamics of the sequence fm(xt)gt2N

typically cannot be described by a Markov chain.

Example 2.3 Consider the following generalization of the voter model (5).

For x 2 E1 and s 2 [0; 1], the individual transition probabilities can be

described by a measurable mapping gs : C
jN(a)j ! [0; 1] in the sense that

�as (x; 1) = gs

�
fxbgb2N(a)

�
: (6)

Typically, we cannot expect that there exist a function u : [0; 1] � [0; 1] !

[0; 1] such that m(xt+1) = u(m(xt); st). Nevertheless, we will show that the

macroscopic process fm(xt)gt2N converges in law if the dependence of the

mapping g on xb (b 2 N(a)) is not too strong; see Example 4.21 below.

We are now going to specify the mathematical framework which allows

us to analyze the long run behaviour of the Markov chain fxtgt2N both on

the macroscopic and on the microscopic level. To this end, we introduce the

family of shift-transformations �a (a 2 A ) on E de�ned by (�ax)(b) = xa+b.

De�nition 2.4 (i) A probability measure � 2 M(E) is called homoge-

neous, if � is invariant under the shift maps (�a)a2A . By

Mh(E) := f� 2M(E) : � = � Æ �a for all a 2 A g

we denote the class of all homogeneous random �elds � on E.

(ii) A homogeneous probability measure � 2 Mh(E) is called ergodic, if

� satis�es a 0-1-law on the �-�eld of all shift invariant events. The

class of all ergodic probability measures � on E is denoted by Me(E).
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For a given n 2 N we put

A n := [�n; n]d \ A

and denote by Ee the set of all con�guration x 2 E such that the empirical

�eld R(x), de�ned as the weak limit

R(x) := lim
n!1

1

jA n j

X
a2A n

Æ�ax(�); (7)

exists and belongs to Me(E). The empirical �eld R(x) carries all macro-

scopic information about the con�guration x = (xa)a2A 2 Ee. In particular,

the empirical distribution

%(x) = lim
n!1

1

jA n j

X
a2An

Æxa(�)

is given as the one-dimensional marginal distribution of R(x).

Let us consider the product kernel �s on E governed by the individual

transition laws �a
s in (6). Proposition 3.1 below shows that the measure

�s(x; �) (x 2 Ee) is concentrated on the set Ee and that the empirical

average satis�es

m(y) = lim
n!1

1

jA n j

X
a2An

ya

= lim
n!1

1

jA n j

X
a2An

�s(�ax; 1)

=

Z
�s(x; 1)R(x)(dz)

:= u(R(x); s)

for �s(x; �)-a.e. y 2 Ee. Thus, we have to consider the full dynamics of

the sequence of empirical �elds fR(xt)gt2N even if, as in Example 2.3, the

behaviour of agent a 2 A depends on R(x) only on the empirical average

m(x). Our aim is now to formulate conditions on the individual transi-

tion laws which guarantee convergence of the sequence of empirical �elds

fR(xt)gt2N and to analyze the interplay between convergence of the Markov

chain fxtgt2N on the macroscopic level and on the microscopic level.

9



2.1 Macroscopic Interaction: Independent Transitions

Consider the product kernel (3) and let us be more speci�c about the struc-

ture of the individual transition probabilities �a. We assume that the in-

teraction is spatially homogeneous and that the interactive inuence of the

present con�guration x at site a is felt both through the local situation

(xb)b2N(a) in the neighborhood N(a) of a and through some random signal

about the average situation throughout the whole system which is described

by the empirical �eld R(x) associated with x 2 Ee. We also assume that

the conditional law

Q(R(x); �) (8)

of the signal s given the empirical �eld R(x) is described by a stochastic

kernel Q from Mh(E) to S, where (S;S) is an arbitrary measurable space,

the signal space. The kernel Q will be called the signal kernel.

For a �xed signal s 2 S, we consider individual transition laws which

take the form

�a
s
(x; �) = �s(�ax; �) (9)

where �s(x; �) is a stochastic kernel from E � S to C.

Assumption 2.5 The probability laws f�s(x; �)gx2E satisfy a spatial Markov

property of order l in their dependence on the present con�guration:

�s(�ax; �) = �s(�ay; �) if �ax = �ay on N(a):

Let us now �x a signal s 2 S and a con�guration x 2 E. It follows from

our Assumption 2.5 that

�s(x; �) :=
Y
a2A

�s(�ax; �) (10)

de�nes a Feller kernel on the con�guration space E which is spatially ho-

mogeneous in the sense that

�sf Æ �a = �s(f Æ �a)

for all f 2 C(E) and all a 2 A . In particular, the individual transition laws

�s together with the signal kernel Q determine a stochastic kernel

�(x; �) :=

Z
S

�s(�ax; �)Q(R(x); ds) (11)
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from Ee to E. In fact, we will see in Proposition 3.1 below that � may

be viewed as a stochastic kernel on the con�guration space Ee. In contrast

to �s, the kernel � typically does not have the Feller property, due to

the macroscopic dependence on the present con�guration x via the random

signal about the empirical �eld R(x).

2.2 Macroscopic Interaction: Interactive Transitions

Let us now extend the previous setting by introducing an interactive struc-

ture into the transition itself. This idea is captured by a model where the

random �elds �s(x; �) are not product measures, but Gibbs measures with

respect to a system of conditional probabilities x;s = f
x;s

A
gA2A. Here,

A := fA � A : jAj <1g

denotes the class of all local subsets of A , and 
x;s

A
(�; v) is a stochastic kernel

form E � S � CA nA to CA. For a given con�guration x 2 E and a �xed

signal s 2 S, the kernel 
x;s

A
speci�es the joint behaviour of the coalition

A, given a boundary condition on A nA, i.e., given the new states of all the

agents b =2 A.

Let us now be more precise about the structure of the transition kernels

�s. For any s 2 S, we consider a local speci�cation x;s = f
x;s

A
gA2A which

is spatially homogeneous in the sense that


�ax;s

A
(�; �av) = 

x;s

�a+A(�; v) Æ �a: (12)

Assumption 2.6 The local speci�cations x;s satisfy a Markov property of

order l both in their dependence on the boundary condition v and on the

present con�guration x: For any �xed con�guration x we have


x;s

A
(�; v) = 

x;s

A
(�;w) if v = w on N(A)nA:

For any �xed boundary condition v on Ac, we have


x;s

A
(�; v) = 

y;s

A
(�; v) if x = y on N(A):

Note that (12) and Assumption 2.6 reduce to (9) and Assumption 2.5,

respectively, if the transition to a new con�guration is made independently

by di�erent agents, given the con�guration x.
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Example 2.7 Let us put C = f0; 1g and assume that the local speci�cations

x;s have the structure of an Ising model of statistical mechanics:


x;s

A
(1; v) =

exp
�
T1m̂

A(v) + T2m
A(x) + T3s

�
exp (T1m̂A(v) + T2ma(x) + T3s) + 1

: (13)

Here, T1; T2; T3 are positive constants and m̂A(y) and mA(y) denotes the

average situation of the con�guration y 2 E in N(A)nA and in N(A), re-

spectively:

m̂A(y) :=
1

jN(A)nAj

X
b2N(A)nA

yb; mA(y) :=
1

jN(A)j

X
b2N(A)

yb:

Clearly, the local speci�cations in (13) are spatially homogeneous and satisfy

a Markov property of order l.

We also assume that the interaction between di�erent agents is not too

strong. We specify this by means of a uniform Dobrushin contraction con-

dition on the family of conditional probabilities (x;s)x2S .

Assumption 2.8 The local speci�cations x;s satisfy the following uniform

Dobrushin condition: Let C(x; s) = (ca;b(x; s))a;b2A denote the Dobrushin

interaction matrix for x;s, i.e., put

ca;b(x; s) := sup

�
1

2
k

x;s

b
(�; v) � 

x;s

b
(�;w)k : v = w o� a

�
: (14)

We have

ĉ := sup
x;s

sup
b

X
a

ca;b(x; s) < 1; (15)

where k � k denotes the total variation norm of a signed measure.

Remark 2.9 Since our speci�cations x;s are spatially homogeneous we

have

ca;b(x; s) = ca�b;0(��bx; s)

for all a; b 2 A , x 2 E and s 2 S. Thus, (15) is equivalent to

sup
x;s

X
a2A

ca;0(x; s) < 1:

12



Moreover, it follows from Assumption 2.6 that

sup
x;s

ca;b(x; s) = sup
x;s

ca�b;0(x; s) = 0 for ja� bj > l:

Example 2.10 Consider the local speci�cations introduced in (13). It is

well known that our uniform Dobrushin condition (15) is satis�ed if T1 is

small enough.

Due to Dobrushin's fundamental uniqueness theorem, our Assumption

2.8 excludes phase transitions. The random �eld speci�ed by x;s is uniquely

determined; see, e.g., Dobrushin (1968) or Georgii (1989), Theorem 8.7. Let

us denote this random �eld by

�s(x; �):

The family (x;s)x2E de�nes a stochastic kernel �s on E. Due to our As-

sumption 2.6 and because of Proposition 7.11 and Theorem 8.23 (ii) in

Georgii (1989), it is easy to show that the transition kernel �s has the

Feller property. Due to (12), �s is spatially homogeneous, i.e.,

�sf Æ �a = �s(f Æ �a) (16)

for all f 2 C(E) and a 2 A . The local speci�cations x;s together with the

signal kernel Q fromMh(E) to S introduced in (8) de�ne a stochastic kernel

�(x; �) :=

Z
S

�s(x; �)Q(R(x); ds) (17)

from E to Ee; the product kernel (11) is included as a special case. In fact,

it follows form Proposition 3.1 below that � may be viewed as a stochastic

kernel on the con�guration space Ee.

3 A Law of Large Numbers for Random Fields

This section is devoted to the proof of a spatial law of large numbers for

ergodic empirical �elds which will be the basis for our subsequent analysis.

For the case of product kernel �s, the proof of the following proposition is

much simpler and can be found in F�ollmer (1979a).

13



Proposition 3.1 (\Law of large numbers"). Suppose that the local speci�-

cations x;s are spatially homogeneous and satisfy our Assumptions 2.6 and

2.8. Then the following holds true:

(i) For all con�gurations x 2 Ee and for every signal s 2 S, the measure

�s(x; �) is concentrated on the set Ee. For �s(x; �)-a.e. y 2 Ee, the

empirical �eld R(y) takes the form

R(y)(�) =

Z
Ee

�s(z; �)R(x)(dz): (18)

(ii) For any ergodic random �eld � on E, we have ��s 2Me(E).

Proof: In order to establish our assertion, we proceed in several steps.

1. Let A 2 A and f 2 L(E) be any EA-measurable function, where EA

denotes the �-�eld generated by the projections x 7! xa (a 2 A).

Since the stochastic kernels �s on E have the Feller property and are

spatially homogeneous in the sense of (16), we haveZ
E

Z
E

f(y)�s(z; dy)R(x)(dz) =

Z
E

(�sf)(z)R(x)(dz)

= lim
n!1

1

jA n j

X
a2A n

�s(f Æ �a)(x):

We denote by E s;x the expectation with respect to the measure �s(x; �),

introduce the sets

Ln := fa = (a1; : : : ; ad) 2 A : max
i

jaij = ng (n 2 N)

and put

Yi :=
X
a2Li

f Æ �a (i 2 N):

Thus, for x 2 Ee, we have

lim
n!1

1

jA n j

nX
i=0

E s;xYi =

Z
E

�sf(y)R(x)(dy):

14



In order to establish the existence of R(y) and the identi�cation (18),

it is therefore enough to show that

lim
n!1

1

jA n j

nX
i=0

fYi � E s;xYig = 0 �s(x; �)-a.s. (19)

2. We shall not prove (19) directly. Instead, we will �rst show that (19)

holds true if we replace the expectation E s;xYi by a suitable conditional

expectation. It will then be veri�ed that this conditional expectation

can be chosen such that it is almost surely close enough to E s;xYi.

To this end, let us introduce the random variables

Mn :=

nX
i=0

fYi � E s;x [YijY0; : : : ; Yi�1]g (n 2 N);

where E s;x [Y0jY0; Y�1] := E s;x [Y0]. Since the function f : E ! R is

bounded, the sequence fMngn2N is a square integrable martingale with

respect to the measure �s(x; �) and the �ltration

fEn;0gn2N := f�(Y0; Y1; : : : ; Yn)gn2N :

Note that jLnj � 2d(2n+1)d�1 and that jA n j = (2n+1)d. Thus, there

exists a constant c <1 such thatX
n�1

E s;x [(Mn �Mn�1)
2jEn�1;0]

jA n j
2

�
X
n�1

c

(2n+ 1)2
<1 �s(x; �)-a.s.

It follows from the strong law of large numbers for square integrable

martingales that

lim
n!1

1

jA n j

nX
i=0

fYi � E s;x [YijY0; : : : ; Yi�1]g = 0 �s(x; �)-a.s. (20)

For n; k 2 N, let us put

Yn;0 := Yn; Yn;k := E s;x [YnjEn�1;k�1]; En;k := �(Y0;k; : : : ; Yn;k);

where E�1;k := f;;
g: Iterating (20) we obtain for any k 2 N that

lim
n!1

1

jA n j

nX
i=0

fYi;k � E s;x [YijEi�1;k]g

= lim
n!1

1

jA n j

nX
i=0

fYi;k � Yi;k+1g = 0 �s(x; �)-a.s. (21)

15



Observe that En;k � En+1;k for all k; n 2 N. Thus, the random variable

Yi;k is En�1;k�1-measurable if i � n. This yields

En;k � En�1;k�1 � � � � � En�k;0 (n � k):

Due to (21), we have �s(x; �)-a.s. that

lim
n!1

1

jA n j

nX
i=0

fYi � E s;x [YijEi�1;k�1]g = lim
n!1

1

jA n j

nX
i=0

fYi � Yi;kg = 0:

Hence, (19) holds true with E s;xYi replaced by E s;x [YijEi�1;k�1]. Our

objective is now to show that we can �nd a large enough k 2 N such

that

lim
n!1

1

jA n j

nX
i=0

fE s;x [YijEi�1;k�1]� E s;xYig < � �s(x; �)-a.s. (22)

3. Let us �x � > 0. In order to achieve our goal, we are �rst going to

verify that we can choose a constant k0 = k0(�) such that

jE s;x [f Æ �ajEn�1;k�1]� E s;x [f Æ �a]j < � �s(x; �)-a.s. (23)

for all n � k � k0. This will then allow us to establish (22).

To this end, we introduce, for n � k, the set

An;k :=

n�k[
i=0

[
j2Li

fj +Ag:

Since the mapping f : E ! R is EA-measurable, the random variable

Yi is EAn;k -measurable whenever i � n� k, and so

En;k � En�1;k�1 � � � � � En�k;0 � E
An;k (n � k): (24)

Let us now denote by

�v;A
n;k

(x; �)

the conditional joint distribution of the random variables ya (a 2

(An;k)c) with respect to EAn;k and �s(x; �), given the boundary con-

dition v on An;k. Since the local speci�cation x = fx
A
gA2A satis�es

16



our Assumption 2.8, we can apply Theorem 8.23 in Georgii (1989).

The random �eld �v;A
n;k

(x; �) is Markov of order l and is uniquely

determined by its conditional distributions f
v;x

A
gA2A which take the

form


v;x

A
(�;w) = 

AnAn;k(�;wv): (25)

Here, wv is the boundary condition on (AnAn;k)c which is equal to v

on An;k and equal to w on AcnAn;k.

For any a 2 A , (24) implies that

E s;x [f Æ �ajEn�1;k�1] = E s;x [E s;x [f Æ �ajEAn;k ]jEn�1;k�1]

� sup
v

Z
f Æ �a(y)�

v;A
n;k

(x; dy) �s(x; �)-a.s.

In particular, we have �s(x; �)-a.s. that

jE s;x [f Æ �ajEn�1;k�1]� E s;x [f Æ �a]j

� sup
v

����Z f Æ �a(y)�
v;A

n;k

(x; dy) �

Z
f Æ �a(y)�(x; dy)

���� :
For any n 2 N and for all a 2 Ln, the distance

s(a+A;An;k) := minfjb�ebj : b 2 a+A; eb 2 An;k
g

of the sets a + A and An;k does only depend on k. We can therefore

choose a small enough � 2 R and a suÆciently large k0 = k0(�) 2 N

satisfying

c(�) := sup
x;s

X
b

cb;0(x; s)e
�jbj < 1 and exp(��s((a+A); An;k)) <

�

2

for all n � k � k0 and a 2 Ln.

For n � k � k0, let us now choose a set V 2 A such that, for all

a 2 Ln, the following holds true:

V \An;k = ;; a+A � V; exp(��s((a+A); V c)) < �:

17



Thus, our uniform Dobrushin condition (15) together with Theorem

8.23 and with Remark 8.26 in Georgii (1989) yields the following esti-

mate:

sup
v

����Z f Æ �a(y)�
v;A

n;k

(x; dy) �

Z
f Æ �a(y)�(x; dy)

����
= sup

v

����Z f Æ �a(y)(�
v;A

n;k

(x; �)
v;x

V
)(dy) �

Z
f Æ �a(y)�(x; dy)

����
� sup

w

����Z f Æ �a(y)(
x

V
(dy;w) ��(x; dy))

���� (26)

� �(f)jAj
1

1� c(�)
exp(��s((a+A); V c))

� c(f)�

for some constant c(f) depending on f . Here, (26) follows from (25).

4. We can now apply the preceding estimates in order to establish (22)

and (19). Since jLnj � 2d(2n + 1)d�1 it follows from (23) that there

exists c <1 such that

jE s;x [YnjEn�1;k�1]� E s;xYnj � �c(2n+ 1)d�1 �s(x; �)-a.s. (27)

for all n � k � k0. Thus, as jA n j = (2n + 1)d, we deduce from (21)

and from (27) that there exists a large enough k 2 N which satis�es

lim
n!1

1

jA n j

�����
nX
i=0

fYi � E s;xYig

�����
� lim

n!1

1

jA n j

�����
nX
i=0

fYi � E s;x [YijEi�1;k�1]g

�����
+ lim

n!1

1

jA n j

�����
nX
i=0

fE s;x [YijEi�1;k�1]� E s;xYig

�����
� c� �s(x; �)-a.s.

This shows (19) and, therefore, establishes the existence of the em-

pirical �eld R(y) for �s(x; �)-a.e. y 2 E and the identi�cation (18) as

� > 0 is arbitrary.

5. Before we show that R(y) 2Me(E), let us �rst establish (ii).

18



To this end, we �x � 2Me(E) and verify that ��s is an ergodic ran-

dom �eld on E. Due to (16), the probability measure ��s is spatially

homogeneous:

(��s)(1B Æ �a) = �(�s(1B Æ �a)) = �(�s(1B) Æ �a) = ��s(1B)

for all a 2 A and B 2 E . Thus, Birkho�'s ergodic theorem implies

that ��s 2Me(E) whenever

R(y) = ��s ��s-a.s.

Since � = R(x) for �-a.e. x 2 E it follows from (18) that

��s(fy : R(y) = ��sg) =

Z
E

�s(x; fy : R(y) = R(x)�sg)�(dx) = 1;

and so ��s 2Me(E). This shows (ii).

6. We can now easily show that �s(x;Ee) = 1 whenever x 2 Ee. Indeed,

for any x 2 Ee, we have R(x) 2 Me(E), and so it follows from (ii)

that R(x)�s 2 Me(E). Thus, R(y) = R(x)�s 2 Me(E) for �s(x; �)-

a.e. y 2 E, due to (18) and therefore �(x;Ee) = 1.

This completes the proof. 2

Remark 3.2 Consider the situation analyzed in F�ollmer and Horst (2001),

i.e., assume that S = Me(E) and that Q(R; �) = ÆR(�). In this case, each

speci�cation x;R(x) (x 2 Ee) determines a unique random �eld �(x; �) =

�R(x)(x; �). The preceding Proposition yields �(x;Ee) = 1 and

R(y)(�) =

Z
Ee

�R(z)(x; �)R(x)(dz) =

Z
Ee

�R(x)(x; �)R(x)(dz)

for �(x; �)-a.e. y 2 Ee. This proves Theorem 3.1 (i) F�ollmer and Horst

(2001) for the case of Gibbs measures.

4 Convergence Theorems

We are now ready to study the dynamics of the interactive Markov chain

fxtgt2N on the state space Ee de�ned by the general transition kernel

�(x; �) =

Z
S

�s(x; �)Q(R(x); ds)

19



introduced in (17). For any random �eld � which is concentrated on the

set Ee, we denote by P� the distribution of the chain fxtgt2N with initial

distribution �. Since a con�guration x 2 Ee induces an ergodic empirical

�eld R(x), the microscopic process fxtgt2N induces P�-a.s. the macroscopic

process fR(xt)gt2N with state space Me(E).

4.1 Separating Macroscopic and Microscopic Convergence

Let us show that our spatial law of large numbers for ergodic empirical �elds

allows us to analyze the microscopic process and the macroscopic process

separately. In a �rst step, we will verify that the dynamics of the macroscopic

process can be described by a Markov chain on the state space Mh(E). In

a second step, we are going to show that the microscopic process may be

viewed as a Markov chain in a random environment where the distribution

of the environment is governed by the initial empirical �eld R(x).

Let us �rst analyze the structure of our macroscopic process. To this

end, we introduce a mapping u :Mh(E)� S !Mh(E) by

u(R; s) := R�s(�) =

Z
�s(x; �)R(dx): (28)

It follows from our Proposition 3.1 that the macroscopic process satis�es

R(xt+1) = u(R(xt); st) P�-a.s. (29)

Using the law of conditional iterated expectations and (29), it easy to prove

the following theorem.

Theorem 4.1 Under the measure Px = PÆx (x 2 Ee), the macroscopic

process is a Markov chain on the state space Mh(E) with initial state R(x).

Its transition operator U acts the class of all bounded measurable functions

f :Mh(E)! R according to the formula

Uf(R) =

Z
f(u(R; s))Q(R; ds) (30)

Let us now �x a signal sequence fstgt2N and put

S(t) :=

tY
i=0

S and s0t := (s0; : : : ; st):
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Iterating (29) we obtain

R(xt+1) = ut(R(x); s
0
t
) Px-a.s. (31)

where we de�ne the mappings ut :Mh(E) � S(t) !Mh(E) recursively by

u0(R; s
0
0) := u(R; s0) and ut(R; s

0
t
) := u(ut�1(R; s

0
t�1); st) (t � 1):

Since, conditioned on the environment fstgt2N , our macroscopic process

evolves almost surely in a deterministic manner, we propose a random system

with complete connections1 (RSCC) as a suitable mathematical framework

for analyzing the convergence behaviour of the sequence fR(xt)gt2N . Let us

recall the notion of a RSCC.

De�nition 4.2 Let (M1; dM1
) be a metric space and (M2;M2) be a mea-

surable space. Let Z denote a stochastic kernel from M1 to M2 and let

v : M1 � M2 ! M1 be a measurable mapping. Following Iosefescu and

Theodorescu (1968), we call the quadruple

� := ((M1; dM1
); (M2;M2); Z; v)

a homogeneous random system with complete connections.

(i) Given an initial value � 2 M1, a RSCC induces two stochastic pro-

cesses f�tgt2N and f�tgt2N on the canonical probability space (
;F ;P�)

taking values in M1 and in M2, respectively, by

�t+1 = v(�t; �t) (�0 = � P�-a.s.)

and by

P�(�t 2 �j�t; �t�1; �t�1; �t�2; : : : ) = Z(�t; �):

These processes are called the associated Markov process and the signal

sequence, respectively.

(ii) A random system with complete connections is called a distance-dimini-

shing model, if the transformation v : M1 �M2 ! M1 satis�es the

contraction condition

dM1
(v(�; �); v(�̂; �)) � �dM1

(�; �̂)

for some constant � < 1.
1We refer to the books of Iosefescu and Theodorescu (1968) or Norman (1972) for a

detailed discussion of random systems with complete connections.
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In Section 4.2, we will state conditions on the local speci�cations x;s

which guarantee that the mapping u in (28) satis�es the contraction condi-

tion

d(u(R; s); u( eR; s)) � d(R; eR) ( < 1)

with respect to a suitable metric d which induces the weak topology on

Mh(E). In this case, the random system with complete connections

�� := ((Mh(E); d); (S;S); Q; u) (32)

is distance-diminishing in the sense of De�nition 4.2 (ii). Note that the tran-

sition operator of the Markov chain f�tgt2N associated with �� acts on the

class of all bounded measurable functions g :Mh(E)! R according to the

formula (30). Thus, for any x 2 Ee, it follows form Theorem 4.1 that our

macroscopic process fR(xt)gt2N may be viewed as the Markov chain with

initial state R(x) associated with the distance-diminishing random system

with complete connections ��. This will allow us to apply a general con-

vergence result in Norman (1972) in order to state conditions on the signal

kernel Q which guarantee that the macroscopic process converges in law to

a unique equilibrium distribution; see Theorem 4.12 below.

Remark 4.3 Note that R(x) 2 Me(E) for all x 2 Ee. Thus, our macro-

scopic process may as well be viewed as a Markov chain on the state space

Me(E). However, we want to apply Theorem 4.2 in Norman (1972) and

the Riesz representation theorem. Thus, we have to regard the sequence

fR(xt)gt2N as a Markov chain on the compact metric space (Mh(E); d).

Let us now concentrate on the dynamics of the microscopic process. In

view of (31), the law of the random variable xt+1 is given by

�t+1(x; �) =

Z
S

� � �

Z
S

[�s0
� � ��st ] (x; �)Q(ut�1(R(x); s

0
t�1); dst) � � �

� � �Q(u0(R(x); s0); ds1)Q(R(x); ds0):

In this sense, the microscopic process fxtgt2N may be viewed as a Markov

chain in the random medium fstgt2N where the law of the environment

is determined by the empirical �eld R(x). Combining a perturbation of

the Dobrushin-Vasserstein contraction technique with a contraction method
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from the theory of random systems with complete connections, we shall

prove in Theorem 4.19 that convergence in law of the macroscopic process

implies that the microscopic process fxtgt2N has local asymptotic loss of

memory in the sense of F�ollmer (1979b).

4.2 Macroscopic Convergence

In this section, we are going to state conditions on the local speci�cations

x;s and on the signal kernel Q from Mh(E) to S which guarantee that

the macroscopic process fR(xt)gt2N , viewed as a Markov chain on the state

space Mh(E), converges in law to a unique equilibrium distribution.

Let us �rst formulate a weighted Dobrushin-Vasserstein condition on the

speci�cations x;s in order to control the local interactions in the transition

kernel �s. To this end, we introduce, for any pair (x; s) 2 E � S, the

matrix D(x; s) = (D(x; s)a;b) as the sum of the non-negative powers of the

Dobrushin interaction matrix C(x; s) de�ned in (14), i.e.,

D(x; s) :=
X
n�0

Cn(x; s):

We also introduce the vector b(x; y; s) with components

ba(x; y; s) :=
1

2

Z
E

kx;s
a
(�; v) � y;s

a
(�; v)k�s(x; dv) (a 2 A );

and, for a 2 A , s 2 S, we de�ne a vector rsa by

rs
a;b

:= sup

(X
a2A

Da;b(x; s)bb(x; y; s) : x = y o� a

)
(b 2 A ): (33)

Note that rs
a;b

= rs
a�b;0 since our local speci�cations are translation invariant.

Assumption 4.4 For a small enough � > 0, the vectors rsa introduced in

(33) satisfy

� := sup
s

X
a

2�jajrsa;0 < 1: (34)

Example 4.5 Let us return to the local speci�cations x;s introduced in

(13). We assume that there exists a large enough constant � such that

sup
x;s

ca;0(x; s) � e��jaj;
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i.e., we assume that T1 is small enough. We also assume that T2 is suÆ-

ciently small so that

1

2
sup

n
k

�
�bx;s

0 (�; v) � 
�
�by;s

0 (�; v) : b 2 A ; x = y o� a; v 2 Ek
o
�

�̂

2ld + 1

for a suitable constant �̂ > 0. In this case, our Assumption 4.4 is satis�ed.

For details, we refer the reader to Proposition 2.17 in Horst (2000).

Remark 4.6 Suppose that the transition to a new con�guration is made

independently by di�erent agents. In this case, the vector rsa is given by

rs
a;b

= sup

�
1

2
k�s(x; �)� �s(y; �)k : x = y o� a� b

�
(b 2 A ):

Thus, if the individual laws �s depend in a continuous manner on the signal

s 2 S, then our weighted uniform Dobrushin-Vasserstein condition (34) is

equivalent to the uniform Dobrushin-Vasserstein condition

�0 := sup
s

X
a

rs
a;0 < 1: (35)

In the case of product measures �s the equivalence of (34) and (35) follows

from our Assumption 2.5.

We denote by �a(f) the oscillation of a function f on E at site a 2 A , i.e.,

�a(f) := supfjf(x)� f(y)j : x = y o� ag:

Remark 4.7 A vector r = (ra)a2A is called an estimate for the random

�elds � and � on E if

j�(f)� �(f)j �
X
a2A

ra�a(f) (36)

for any f 2 C(E). Let � and � be Gibbs measures on E with respect to the

local speci�cations � and �, respectively, and denote by D(�) the sum of

the non-negative powers of the Dobrushin interaction matrix C(�) associated

with the random �eld �. Then the vector r = (ra)a2A with components

ra =
X
b

Da;b(�)bb(�) (37)
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is such an estimate where the vector b(�) is de�ned by

ba(�) :=
1

2

Z
E

k�
a
(�; v) � �

a
(�; v)k�(dv);

cf., e.g., F�ollmer (1982), Theorem 2.4 or Simon (1993), Theorem V.2.2.

In view of (36) and (37) we have

�a(�sf) �
X
b2A

rs
a;b
�b(f)

for any f 2 C(E). Under Assumption 4.4 we obtain the estimate

�(�sf) �

 
sup
b

X
a

rs
a�b;0

!X
b

�b(f) � �
X
b

�b(f):

For any signal sequence fstgt2N it follows by induction that

�(�s0
� � ��stf) �

X
a;b

rs1
a;b
�b(�s1

� � ��stf) � �t+1
X
b

�b(f);

and so

lim
t!1

�(�s0
� � ��stf) = 0: (38)

In this sense, our microscopic process has local asymptotic loss of memory

for any �xed environment fstgt2N if our Assumption 4.4 holds true.

Remark 4.8 In the case where the transition kernel does not depend on s,

the preceding argument shows that the Markov chain � converges to a unique

equilibrium distribution. In our context, however, local asymptotic loss of

memory does not necessarily yield the existence of a stationary measure for

� as this transition kernel typically does not have the Feller property.

Let us now introduce a metric d on the class M(E) by

d(�; �) := sup
f2C(E)

j�(f)� �(f)jP
a
2�jaj�a(f)

:

Lemma 4.9 (i) The metric d induces the weak topology on M(E). In

particular, (Mh(E); d) is a compact metric space.
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(ii) Under our Assumption 4.4 the mapping u : Mh(E) � E ! Mh(E)

de�ned in (28) satis�es

d(R�s; eR�s) � �d(R; eR) (39)

uniformly in s 2 S. In particular, the random system with complete

connections �� introduced in (32) is distance-diminishing in the sense

of De�nition 4.2 (ii).

Proof: The assertions follow from Propositions 3.3 and 3.8 in F�ollmer and

Horst (2001); see also Propositions 2.15 and 2.19 in Horst (2000). 2

Suppose that S = Mh(E) and that there exists a constant � < 1 � �

such that

sup
x

d(��(x; �);��(x; �)) � �d(�; �): (40)

Under the assumption that Q(R; �) = ÆR(�) such a condition yields almost

sure convergence of the macroscopic process fR(xt)gt2N to a unique homo-

geneous random �eld �� on E. This is Theorem 3.12 in F�ollmer and Horst

(2001) for the case of Gibbs measures ��(x; �) instead of product measures.

Our aim is now to establish convergence in law of macroscopic process with-

out such a restrictive assumption. Instead, we assume that the signal kernel

Q from Mh(E) to S satis�es the following two conditions.

Assumption 4.10 (i) The signal kernel Q from Mh(E) to S satis�es a

uniform Lipschitz condition: There exists a constant L <1 such that

sup
B2S

jQ(�;B)�Q(�;B)j � Ld(�; �):

(ii) The stochastic kernel Q has a lower bound: There exists a constant

� > 0 and a probability measure � on (S;S) such that

inf
�2Mh(E)

Q(�; �) � ��(�):

Remark 4.11 Note that our Assumption 4.10 (i) is satis�es whenever the

probability distributions Q(�; �) have a density f� with respect to some mea-

sure � satisfying

jf�(�)� f�(�)j � Ld(�; �):
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We are now ready to state and prove the main result of this section.

Theorem 4.12 Suppose that the local speci�cations x;s are spatially homo-

geneous and satisfy a Markov property of order l both in their dependence

on x and on the boundary condition. If our Assumption 4.4 and 4.10 are

satis�ed, then the following holds true:

1. There exists a unique probability measure �� on the class Mh(E) of

all homogeneous random �elds on E such that the macroscopic process

converges in distribution to ��.

2. The probability measure �� satis�es

��(Me(E)) 2 f0; 1g:

Proof: Let us denote by (f�tgt2N ; (P̂�)�2Mh(E)) the Markov chain onMh(E)

associated with the random system ��. Due to Lemma 4.9, (Mh(E); d) is

a compact metric space, and �� is distance diminishing in the sense of

De�nition 4.2 (ii). Thus, it follows from Theorem 4.2 in Norman (1972)

that there exists a unique probability measure �� on Mh(E) such that

lim
t!1

Z
f(�t)dP̂� =

Z
fd��

for all f 2 C(Mh(E)) and � 2Mh(E). This shows (i) since, for any starting

point x 2 Ee, our macroscopic process may be viewed as the Markov chain

f�tgt2N onMh(E) with initial state R(x). The second assertion follows from

Proposition 3.1 (ii) as u(R; s) 2Me(E) for all s 2 S if R 2Me(E). 2

Example 4.13 Consider the local speci�cations x;s introduced in (13) and

assume that the signal kernel Q satis�es our Assumption 4.10. If T1 and T2

are suÆciently small, then the macroscopic process fR(xt)gt2N converges in

law to a unique equilibrium distribution.

The model analyzed in this paper may be viewed as a randomized version

of the model studied in F�ollmer and Horst (2001). F�ollmer and Horst (2001)

considered the case Q(R; �) = ÆR(�) and established almost sure convergence

of the macroscopic process under the assumption that the local interaction

in the kernels �s is not too strong and given that the dependence of the
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speci�cations on the parameter s is weak enough. In our present setting,

the transition to a new state depends on the current empirical �eld R(xt)

through some random variable st whose law depends on R(xt). As we have

seen, this may provide an additional smoothing e�ect which allows us to

establish a convergence result, namely convergence in law of the macroscopic

process, without any condition which controls the dependence of the local

speci�cations on the signal s, that is, without such a restrictive contraction

condition like (40). We just have to control the local interaction in the

kernels �s by means of a suitable Dobrushin-Vasserstein condition. Observe,

however, that our Assumption 4.10 excludes the case Q(R(x); �) = ÆR(x)(�).

4.3 Microscopic Convergence

In this section, we analyze the asymptotics of the microscopic process fxtgt2N .

We study the interplay between the long behaviour on the macroscopic level

of empirical �elds and the asymptotic behaviour on the microscopic level.

We prove that convergence in law of the macroscopic process implies that

the microscopic process has local asymptotic loss of memory in the sense

of F�ollmer (1979b). This means that the distribution of the states of any

�nite set of agents does, asymptotically, not depend on the starting point

of the microscopic process. In a second step, we prove weak convergence of

the Markov chain � under the additional assumption that the macroscopic

process converges in law to a probability measure �� which is concentrated

on the set Me(E).

4.3.1 Asymptotic Loss of Memory

Throughout this section, we assume that the macroscopic process converges

in law to a unique equilibrium �� on Mh(E). Our goal is to show that the

underlying microscopic process has local asymptotic loss of memory. To this

end, we combine a convergence result from the theory of random systems

with complete connections with a variant of the Dobrushin-Vasserstein con-

traction technique. The next result follows from Theorem 2.1.65 in Iosefescu

and Theodorescu (1968).

Lemma 4.14 Suppose that the Markov chain (f�tgt2N ; (P̂�)�2Mh(E)) asso-

ciated with the random system with complete connections �� converges in
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law to a unique equilibrium distribution �� on Mh(E) and put F̂T;t = �(si :

T � i � T + t). If the signal kernel Q satis�es our Assumption 4.10 (i),

then the signal sequence fstgt2N associated with �� is uniformly ergodic in

the strong sense, i.e.,

lim
t!1

sup
T

kP̂� � P
�
k
F̂T;t

= 0:

Here, P�(�) :=
R
Mh(E)

P�(�)�
�(d�), and k � k

F̂T;t
denotes the total variation

norm of signed measures on F̂T;t.

Thus, if the macroscopic process converges in law, then the microscopic

process evolves asymptotically in a random environment whose law does not

depend on the initial con�guration. Moreover, for any �xed environment

fstgt2N , we have

lim
t!1

�(�s0
� � ��stf) = 0

for any f 2 C(E) if our uniform Dobrushin-Vasserstein condition is satis�ed;

see (38). This allows us to prove the following theorem.

Theorem 4.15 Suppose that the local speci�cations x;s are spatially homo-

geneous and satisfy our Assumptions 2.6, 2.8 and the weighted Dobrushin-

Vasserstein condition 4.4. If the stochastic kernel Q from Mh(E) to S

satis�es Assumption 4.10, then the microscopic process has local asymptotic

loss of memory in the sense of F�ollmer (1979b), i.e., we have

lim
t!1

sup
x;y

���t(x;B)��t(x;B)
�� = 0 (41)

for each A 2 A and B 2 EA. Here EA denotes the �-�eld generated by the

projections x 7! xa (a 2 A).

In order to prepare the proof of Theorem 4.15, we introduce some addi-

tional notation. For t; T 2 N we put

sT
t
:= (sT ; : : : ; sT+t):

For x 2 Ee and t; n;m 2 N we denote by

Qn;m(x; �) and Q
n;m

t
(x; �) (42)
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the law of the random variable snm and the conditional law of the random

variables sn
m
, given the signal vector s0

t
, respectively, under Px. For a given

signal vector sT
t
, we consider the transition kernels �

s
T

t

on E de�ned by

�
s
T

t

(x; �) :=
�
�sT

� � ��sT+t

�
(x; �): (43)

Let us �rst prove (41) under the additional assumption that the stochas-

tic kernels �s take the product form (10). In this case, the mapping s0t 7!

sup
x
�
s
0
t

(x;B) is measurable for any B 2 EA (A 2 A) as we just have to

determine the supremum of �nitely many measurable functions.

Proof of Theorem 4.15: Independent Transitions

Let us �x A 2 A and B 2 EA. In terms of the notation introduced in

(42) and (43) we have for any initial con�guration x 2 Ee that

�T+t+1(x;B)

=

Z
� � �

Z
�
s
T

t

(y;B)Q
T;t

T�1(x; ds
T

t
)�

s
0
T�1

(x; dy)Q0;T�1(x; ds0
T�1);

due to Proposition 3.1. Let us now �x t 2 N. The quantity �t+T+1(x;B) is

bounded above byZ
� � �

Z
fsup

z

�
sT
t

(z;B)gQ
T;t

T�1(x; ds
T

t )Q
0;T�1(x; ds0

T�1)

and bounded below byZ
� � �

Z
finf

z

�
s
T

t

(z;B)gQ
T;t

T�1(x; ds
T

t )Q
0;T�1(x; ds0T�1):

This yields the following estimate:

sup
x;y

j�T+t+1(x;B)��T+t+1(y;B)j

� sup
x;y

����Z fsup
z

�
sT
t

(z;B)g
�
QT;t(x; dsTt )�QT;t(y; dsTt )

����� (44)

+ sup
y

Z
fsup

z

�
s
T

t

(z;B)� inf
z

�
s
T

t

(z;B)gQT;t(y; dsTt ): (45)

We are going to analyze the quantities (44) and (45) separately.
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1. SinceQT;t(x; �)�QT;t(y; �) is a signed measure on (
Q

t

i=0 S;

t

i=0S) with

total mass zero, we can estimate (44) by

sup
x;y

kQT;t(x; �)�QT;t(y; �)k:

Due to Theorem 4.12 and Lemma 4.14, the signal sequence associated

with the random system �� is uniformly ergodic in the strong sense.

Thus, there exist measures Q�t on (
Q

t

i=0 S;

t

i=0S) such that

lim
T!1

sup
x;t

kQT;t(x; �)�Q�
t
(�)k = 0: (46)

In particular, we have that

lim
T!1

sup
t;x;y

����Z sup
z

�
s
T

t

(z;B)
�
QT;t(x; dsTt )�QT;t(y; dsTt )

����� = 0:

2. Let us now analyze the integral in (45). It follows from (46) that

lim
T!1

sup
y

����Z fsup
z

�
s
T

t

(z;B)� inf
z
�
s
T

t

(z;B)gQT;t(y; dsTt )

����
=

����Z fsup
z

�
s0
t

(z;B)� inf
z
�
s0
t

(z;B)gQ�t (ds
0
t )

���� (47)

For any �xed environment fstgt2N , our uniformDobrushin-Vasserstein-

Condition (Assumption 4.4) implies that

sup
x;y

j�
s0
t

(x;B)��
s0
t

(y;B)j � c�t+1 (48)

for some constants c = c(jAj) <1 and � < 1 which do neither depend

on B 2 EA nor on the environment fstgt2N ; cf. (38). Thus, for any

given � > 0, there exists large enough t0; T0 2 N such that

sup
x;y;s

0
t

����s0
t

(x;B)��
s0
t

(y;B)
��� < � (t � t0)

and such that

sup
x;y;t

kQT;t(x; �)�Q�t (�)k < � (T � T0):

Hence, for all t � t0 and T � T0we have the following estimate:

(45) � sup
x;y

kQT;t(x; �)�Q�t (�)k + sup
s
0
t

�(�
s0
t

(�;B)) � 2�: (49)
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Thus, for any t � t0 and for all T � T0, we have that

sup
x;y2S0

j�t+T+1(x;B)��t+T+1(y;B)j < 3�:

Since � > 0 is arbitrary, the assertion follows. 2

Let us now consider the general transition kernel � introduced in (17).

For any two con�gurations v; x 2 E and for all local sets A 2 A, we denote

by 
x;s

A
(�; v) the probability measure 

x;s

A
(�; (va)a2Ac) on CA with boundary

condition (va)a2Ac on Ac. Moreover, we put

�
A
0
t

s
0
t
;v
(x; �) :=

Z
E

� � �

Z
E


x;s0

A0
(dx1; v) � � � 

xt�1;st�1

At�1
(dxt; v)

xt;st

At
(�; v);

where A0 � A1 � : : : are local sets.

In order to avoid a problem of measurability, it will be convenient to

use the following approximation result which follows immediately from our

Assumptions 2.6 and 2.8 together with Theorem 8.23 and Remark 8.26 in

Georgii (1989).

Lemma 4.16 For any local set A 2 A, for each t 2 N and for all � > 0,

there exits local sets A0 � A1 � � � � � At such that

sup
B2EA

j�
A
0
t

s
0
t
;v
(x;B)��

s
0
t

(x;B)j < �

uniformly in x 2 E, in s0
t
2 S(t) and in the boundary condition v 2 E.

Remark 4.17 Observe that, for any given con�guration v 2 E, for all

t 2 N; A 2 A; B 2 EA and for any �xed local sets A0; A1; : : : ; At, the mapping

s0t 7! sup
x

�
A
0
t

s
0
t
;v
(x;B)

is measurable.

We are now ready to prove Theorem 4.15.

Proof of Theorem 4.15: Interactive Transitions

Let us �x A 2 A, B 2 EA, t 2 N and � > 0. Due to Lemma 4.16, we can

choose local sets A0 � � � � � At such that

sup
v;x;B;s

T

t

j�
s
T

t

(x;B)��
A
0
t

s
T

t
;v
(x;B)j < �:
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Thus, uniformly in B 2 EA, the quantity �
t+T+1(x;B) is bounded above byZ

� � �

Z
fsup

z

�
A
0
t

sT
t
;v
(z;B)gQ

T;t

T�1(x; ds
T

t
)Q0;T�1(x; ds0

T�1) + �

and bounded below byZ
� � �

Z
finf

z
�
A
0
t

s
T

t
;v
(z;B)gQ

T;t

T�1(x; ds
T

t
)Q0;T�1(x; ds0

T�1)� �:

By analogy with the case of product kernels we have the following estimate:

sup
x;y

j�T+t+1(x;B)��T+t+1(y;B)j

� sup
x;y

����Z � � �

Z
fsup

z

�
A
0
t

s
T

t
;v
(z;B)gQ

T;t

T�1(x; ds
T

t
)Q0;T�1(x; ds0

T�1)

�

Z
� � �

Z
finf

z
�
A
0
t

s
T

t
;v
(z;B)gQ

T;t

T�1(y; ds
T

t
)Q0;T�1(y; ds0

T�1)

����+ 2�

� sup
x;y

����Z fsup
z

�
A
0
t

s
T

t
;v
(z;B)g

�
QT;t(x; dsT

t
)�QT;t(y; dsT

t
)
�����

+sup
y

Z
fsup

z

�
A
0
t

sT
t
;v
(z;B)� inf

z

�
A
0
t

sT
t
;v
(z;B)gQT;t(y; dsT

t
) + 2�:

Using a tedious but straightforward 3-�-argument one can now easily show

that

lim
T!1

sup
y;t

Z
fsup

z

�
A
0
t

s
T

t
;v
(z;B) � inf

z
�
A
0
t

s
T

t
;v
(z;B)g = 0:

This yields our assertion by analogy with the case of product kernels. 2

4.4 Existence and Uniqueness of Invariant Measures

Let us now state conditions which guarantee the existence of a stationary

distribution for the microscopic process.

Lemma 4.18 Let �� be any stationary distribution for the Markov chain

associated with the random system with complete connections �� de�ned by

(32) which is concentrated on the set Me(E). Then the microscopic process

is stationary under the law P�� , where the random �eld �� on E is given by

��(�) :=

Z
Me(E)

�(�)��(d�):
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Proof: In order to prove our assertion, it is enough to show that

P�� [x0 2 B] = P�� [x1 2 B]

for any B 2 EA (A 2 A). Since R(x) = � for �-a.e. x 2 E whenever

� 2Me(E), we have

E �� [R(x0)] = ��:

Since �� is concentrated on the set Me(E), the macroscopic process is sta-

tionary under P�� . Thus, we have

E �� [R(x0)] = E�� [R(x1)];

and so it is enough to show that

P�� [x1 2 B] = E �� [R(x1)(B)]:

Due to Proposition 3.1 (ii), we have ��s 2 Me(E) if � 2 Me(E). In

particular, ��s = R(x) for ��s-a.e. x 2 E, and so

E�� [R(x1)(B)] =

Z
Ee

Z
S

Z
Ee

R(x1)(B)�s0
(x0; dx1)Q(R(x0); ds0)�

�(dx0)

=

Z
Me(E)

Z
S

Z
E

R(x1)(B)��s0
(dx1)Q(�; ds0)�

�(d�)

=

Z
Me(E)

Z
S

��s0
(B)Q(�; ds0)�

�(d�)

= P�� [x1 2 B]:

Thus, �� is an invariant measure for the stochastic kernel �, and so the

microscopic process are stationary under the law P�� . 2

We are now ready to prove the main result of this paper.

Theorem 4.19 Suppose that the local speci�cations x;s are spatially ho-

mogeneous and satisfy our Assumptions 2.6 and 2.8. Assume moreover,

that the signal kernel Q from Mh(E) to S satis�es Assumption 4.10. If the

unique stationary distribution �� for the Markov chain associated with the

random system with complete connections �� satis�es ��(Me(E)) = 1, then

there exists a unique stationary probability measure � for the microscopic

process. For any starting point x 2 Ee, the sequence f�
t(x; �)gt2N converges

weakly to �.
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Proof: It follows from Theorem 4.12 that the macroscopic process con-

verges in law to the unique equilibrium distribution � of the Markov chain

associated with the random system with complete connections ��. Thus,

we deduce from Lemma 4.18 that there exists a stationary distribution for

our microscopic process. Uniqueness of the stationary distribution and weak

convergence of the sequence f�t(x; �)gt2N follows from Theorem 4.15. 2

Example 4.20 Consider the mean-�eld type interaction in Example 2.1,

and assume that the interaction if spatially homogeneous. In this case, it is

easy to show that the unique invariant measure of the Markov chain associ-

ated with the random system �� is concentrated on the set Me(E) whenever

the dependence of the probability law �s(x
a; �) on xa is not too strong.

Example 4.21 Let us return to the individual transition laws �s de�ned

in (6). Assume that the signal kernel Q from Mh(E) to [0; 1] satis�es As-

sumption 4.10. We also assume that the uniform Dobrushin condition (35)

is satis�ed, i.e., that the dependence of the probability distribution �s(x; �)

on the con�guration x is not too strong. In this case, Markov chain fxtgt2N

with transition kernel

�(x; �) =
Y
a2A

�s(�ax; �)Q(R(x); ds)

has local asymptotic loss of memory. If, moreover, the unique stationary

measure of the random system �� is concentrated on the setMe(E), the pro-

cess fxtgt2N converges in distribution to unique random �eld �. It remains

an open problem, however, to give suÆcient conditions for ��(Me(E)) = 1.
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