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Abstract

We study the long run behaviour of interactive Markov chains on
infinite product spaces. The behaviour at a single site is influenced
by the local situation in some neighborhood and by a random signal
about the average situation throughout the whole system. The asymp-
totic behaviour of such Markov chains is analyzed on the microscopic
level and on the macroscopic level of empirical fields. We give suffi-
cient conditions for convergence on the macroscopic level. Combining
a convergence result from the theory of random systems with complete
connections with a perturbation of the Dobrushin-Vasserstein contrac-
tion technique we show that macroscopic convergence implies that the
underlying Microscopic process has local asymptotic loss of memory.

Key Words: Markov chains on infinite product spaces, local asymptotic
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1 Introduction

We consider interactive Markov chains on a product space E = C* where
C is some finite state space and A is an infinite set of sites or agents. Thus,
the state space of the Markov chain is the set of configurations z = (£%)gen
which specify an individual state for each agent ¢ € A. The convergence
behaviour of Markov chains of the form

M(z;-) = ] 7“(z;) (1)
a€h

has been investigated in depth in the case where the interaction is purely
local. This means that the probability 7%(z; c) that agent a € A switches to
the state ¢ € C only depends on the states in some neighborhood N (a). In
this case, II may be viewed as a Feller kernel on the compact state space E.
Using Dobrushin’s contraction technique and the Feller property, Vasserstein
(1969) has shown that such a Markov chain converges weakly to some unique
equilibrium distribution p if the interaction between different agents is not
too strong.

In recent years there is an increasing interest in dynamical microstruc-
ture models of financial markets which involve interacting preferences and
expectations of a large number of agents; see, e.g., Brock and Hommes
(1997). In such a context, the Markov chain II describes the dynamics of
all the individual agents’ states governing, for instance, their expectations
about the future evolution of asset prices. From an economic point of view,
it is appropriate to assume that the price expectation of an agent a € A for
the following period does not only depend on the current states of his ‘neigh-
bors’, but also on signals about the average expectation throughout the en-
tire population. Thus, in the context of microstructure models, it becomes
natural to introduce an additional dependence on the average behaviour of
the configuration z € E into the interaction, i.e., into the transition laws
m®, and to study the run long behaviour of locally and globally interacting
Markov chains.

Fo6llmer and Horst (2001) established an extension of Vasserstein’s con-
vergence theorem to the case where the interaction has both a local and
a global component. They consider the case A = Z% The average be-
haviour of 2 € F is described by the associated empirical distribution o(x)
or, more completely, by the empirical field R(z). In such a situation, the



Feller property of II is typically lost. Using contraction arguments with
respect to a suitable metric, Follmer and Horst (2001) show that the mi-
croscopic process {z;}ien induces a sequence of empirical fields { R(x¢) }ren
which converges almost surely to some random field y on E. Applying a
perturbation of the Dobrushin-Vasserstein contraction technique, they prove
that almost sure convergence of the macroscopic process { R(x¢)}1en implies
weak convergence of the underlying microscopic process {z;}ieN.

From an economic point of view, this model can be used to analyze situ-
ations where an individual agent a € A has complete information about the
average behaviour throughout the entire population. In view of many ap-
plications, however, such an assumption is rather restrictive. In microstruc-
ture models for financial markets, for instance, the empirical distribution

[43

o(z;) may be regarded as the “mood of the market” in period ¢, and it
seems more natural to assume that agents only have incomplete information
about p(x¢). This means that the agents do not observe directly the aver-
age situation over the whole system A, but receive a random signal whose
law depends on g(z;). In Horst (2000), Chapter 3, such Markov chains are
used as a random environment for the evolution of stock prices, viewed as
a sequence of temporary price equilibria. In order to analyze the asymp-
totic behaviour of these price processes, we need convergence results for the
process of empirical distributions {g(x;) };en. This is the motivation for the
present paper.

Our goal is to get some insight into the long run behaviour of locally and
globally interacting Markov chains with transition kernel II on an infinite
product space of the form E = C* where A = Z? We extend the model
studied in Follmer and Horst (2001) and consider Markov chains where the
behaviour of an individual agent a € A is influenced by the local situation
in some neighborhood and by a random signal about the average situation
throughout the whole population A. We also admit an interactive structure
in the transition itself. This means that II(z;-) is a Gibbs measure with
respect to a system of conditional probabilities depending on z; the product
case (1) is included as a special case. The class of such interactive Markov
chains is introduced in Section 2.

In order to analyze the long run behaviour of the Markov chain {z;}en
governed by the kernel II, we proceed in three steps. In Section 3, we
prove a spatial law of large numbers for empirical fields. This allows us



to analyze the asymptotics of the macroscopic process { R(x;)}ien, and to
extend a convergence result in Follmer and Horst (2001) to the case of
Gibbs measures. In Section 4, we prove that the macroscopic process may
be viewed as the Markov chain associated with a certain random system
with complete connections. Using a contraction argument with respect to a
suitable metric, we obtain weak convergence of the macroscopic process to
a unique equilibrium distribution. Combining a variant of the Dobrushin-
Vasserstein contraction technique with a convergence result from the theory
of random systems with complete connections, we show that convergence
of the macroscopic process implies that the underlying microscopic process
{z+}+en has local asymptotic loss of memory in the sense of Follmer (1979b).
In Theorem 4.19, we state conditions which ensure weak convergence of the
microscopic process to a unique equilibrium distribution.

2 Locally Interacting Markov Chains with Global
Signals

Let C be some finite state space. We denote by A the d-dimensional integer
lattice Z¢ and by E := C* the compact space of all configurations z =
(") aea with 2* € C. A probability measure  on E will be called a random
field. The space M(FE) of all such random fields is compact with respect to
the topology of weak convergence. Since the state space C'is finite, the class
L(E) of all local functions which depend only on finitely many coordinates
is dense in C(FE) with respect to the topology of uniform convergence. Thus,
a sequence {u;}ien of random fields converges weakly to p € M(E) iff

wlf) == /E Fdu ZF () (f € L(E)). (2)

Our aim is to analyze some aspects of the long run behaviour of interactive
Markov chains on E with transition kernel II(x;dy). Let us first assume
that the kernel II takes the product form

M(z;-) = [ #*(x;). (3)
a€h

In such a model, the state of a single agent ¢ € A changes in reaction to
the situation x € E according to the probability distribution 7%(z;-) on C.



The individual transition probabilities 7%(x;-) have an interactive structure
since they depend not only on the individual state x%. Note, however, that
the transition to a new configuration is made independently at different
sites. In (17) below, we will admit an interactive structure in the transition
itself. Such a situation is captured by a model where the measure II(z;-)
is not a product measure, but a Gibbs measure with respect to a system of
conditional probabilities depending on the configuration z.

The convergence of interactive Markov chains of the form (3) has been
investigated in depth in the case where the interaction is purely local, i.e.,
under the assumption that the individual transition law 7%(x;-) only de-
pends on the local situation (wb)beN(a) in some finite “neighborhood” N(a);
see, e.g., Vasserstein (1969) or Lebowitz, Maes, and Speer (1990). In such a
situation, the stochastic kernel II has the Feller property, i.e.,

/() = /E f(@)T(+ dx) € C(E)

whenever f € C(E). This property is crucial for the basic convergence
theorem in Vasserstein (1969): Under suitable contraction bounds on the
interaction between different sites Vasserstein (1969) establishes weak con-
vergence of the Markov chain to some unique equilibrium distribution v in
the sense that

Jim pIT(f) = v(f)

for all f € C(E) and any initial distribution y € M(FE). Due to (2), weak
convergence of the sequence {ull'};cny may be viewed as a notion of local
convergence.

Follmer and Horst (2001) introduced a macroscopic component both
into the interaction and into the notion of convergence. In such a situation,
the Feller property of II will typically be lost. Follmer and Horst (2001)
analyzed the convergence behaviour Markov chains of the form (3) under
the assumption that the interactive influence of a given configuration = =
(2°)pen on an individual agent a € A is felt through the local situation
(xb)beN(a) in some neighborhood N(a) and through the average situation
throughout the whole system A. The average situation of z € F is described
by the associated empirical field R(z), viewed as an ergodic random field on
the configuration space E. Under suitable bounds on the local interaction



between different agents and on the dependence of individual behaviour on
the empirical field R(z), they obtained convergence of the Markov chain
{z}1en governed by the transition kernel IT both on the microscopic level
of configurations and on the macroscopic level of empirical fields.

In the present paper, we consider a randomized version of the model
analyzed in Follmer and Horst (2001). We study the long run behaviour of
interactive Markov chains on infinite product spaces where the influence of a
given configuration x at site @ € A is felt through the local situation in some
neighborhood N (a) and through a random signal about global properties of
z. In many situations, such an approach provides an additional smoothing
effect which allows us to prove convergence of the Markov chain {z;}en on
the macroscopic level without any condition which controls the dependence
of individual behaviour on the signal about aggregate behaviour. In order
to study the asymptotic behaviour of such Markov chains, we apply the
method of separating the analysis of microscopic and macroscopic conver-
gence introduced in F6llmer and Horst (2001). The following example where
the probability that an agent a € A switches to a state ¢ € C depends both
on his individual state z® and on some random signal about the empirical
average m(x) associated with z illustrates this method.

Example 2.1 Let C = {0,1} and denote by E; the set of all configurations
such that the empirical average associated with the configuration x € Ej
exists along a suitable sequence of finite sets A, T A:

E, = {$€E:3m(:p) ::nli_>1r{.10|ml| Z :1:“}

ach,

Given a configuration ¢ € Fy, we assume that an individual agents reacts
to his own state z° and to a random signal s € [0,1] about the empirical
average m(x). The conditional law

Q(m(z);)

of the signal s, given the empirical average, m(x) is described by a stochastic
kernel Q on [0,1]. The situation analyzed in Féllmer and Horst (2001)
corresponds to the case Q(m;-) = o (+)-



For x € Ei, we assume that the probability that an agent switches to
state ¢ € C takes the form

1
7(s;) = /0 7a(z% ©)Q(m(z); ds)

where ms(z%-) is a transition kernel from C x [0,1] to C. For any fixed
signal s € [0,1], the transition to a new configuration is therefore described

by the product kernel

() = H ms(z%; ). (4)

a€A

For x € Ey, it follows from the strong law of large numbers that

1 1
lim —— ¢ = lim —— ms(z% 1) IIg(x;-)-a.s.
g 200 = g 3 ey M)

Thus, the product-measure Ilg(x;-) given by (4) is concentrated on the set
E, whenever x € E1, and the empirical average satisfies

m(y) = w(m(z), s) := m(x)ms(1;1) + (1 = m(z))7(0;1)

for Ug(z;-)-a.e. y € Ey. Hence, the Markov chain {x;}en with transition
probability

1
M(; ) = /0 I, (; ) Q(m(x); ds)

on Ey induces almost surely the sequence of empirical averages {m(x;)}ien.
Conditioned on the environment {s;}ien, this “macroscopic process” evolves
almost surely in a deterministic manner. The dynamics of the macroscopic
process can be described by a Markov chain {m;}ien on the state space [0, 1]
whose transition operator U acts on the set bounded measurable functions
f:[0,1] = R according the formula

Uf(m) = / f(ulm, 3))Q (s ds).

For any starting point © € E1, the microscopic process {x;}ien may therefore
be viewed as a Markov chain evolving in the random environment {s;}ien.
The law the environment is governed by the initial empirical average m(x).



Below, we will formulate conditions on the individual transition probabili-
ties m and on the stochastic kernel (Q which ensure that the Markov chain
{mi}en converges in law to a unique equilibrium distribution. Combining
techniques from the theory of random systems with complete connections
with o variant of the Dobrushin-Vasserstein contraction technique, we will
see that this implies that the Markov chain {x;}ien has local asymptotic loss
of memory in the sense of Follmer (1979b). This illustrates the method of
separating the analysis of macroscopic and microscopic convergence.

Let us now consider the case where the individual behaviour is influenced
both by a signal about the empirical average and by the situation in some
neighborhood. We fix [ > 0 and define the neighborhood of a coalition
ACA as

N(A):={be A:3a€ Asuch that |b—a| <I}.

If the transition probability 7%(z;-) depends on the values z’ in the neigh-
borhood N(a) of a, then the analysis of the convergence behaviour of the
Markov chain becomes more involved. Only in very special cases such as in
the following variant of Example 2.2 in Foéllmer and Horst (2001), we can
still obtain a simple macroscopic equation for the conditionally deterministic
evolution of the sequence of empirical averages {m(z;)}ien.

Example 2.2 As an illustration of the interplay between the long run be-
haviour on the level of configurations and the asymptotics of the sequence
of empirical averages {m(z;)}ien, we consider the following simple voter
model with C = {0,1}: For x € Ey and for a fized signal s € [0, 1] about the
empirical average m(z), the individual transition law ©%(z;-) is described as
the convex combination

s (13 1) = ap(z®) + pm* (z) + s, (5)

where a4+~ = 1. Here, m®(x) is the proportion of ‘1’ in the neighborhood
N(a). It is easy to see that the sequence of empirical averages satisfies almost
surely the conditionally deterministic dynamics

m(zir1) = u(m(ze), s¢) := a{mp(1) + (1 — m)p(0)} + Bm(xs) + vs¢-

We assume that the conditional law Q(m(xz);-) of the signal sy given the
empirical average m(zy) is described by a signal kernel Q on [0,1]. Thus,



the macroscopic process {m(x;)}ien may be viewed as a Markov chain on
the state space [0, 1] whose transition operator U is given by

Uf(m) = / f(ulm, $))Q(m; ds).

In Theorem 4.12 below, we provide conditions which ensure that the macro-
scopic process converges in law to a unique equilibrium. Due to Theorem
4.15 this implies that the microscopic process {x;}ien has local asymptotic
loss of memory in the sense of Follmer (1979b).

The next example shows that the dynamics of the sequence {m(z;)}ien
typically cannot be described by a Markov chain.

Example 2.3 Consider the following generalization of the voter model (5).
For x € Ey and s € [0,1], the individual transition probabilities can be
described by a measurable mapping g5 : C'N @I — [0,1] in the sense that

ne(w51) = g; ({2 hen)) - (6)

Typically, we cannot expect that there exist a function u : [0,1] x [0,1] —
[0,1] such that m(zi1) = u(m(zy),s;). Nevertheless, we will show that the
macroscopic process {m(z;)}1en converges in law if the dependence of the
mapping g on z (b € N(a)) is not too strong; see Example 4.21 below.

We are now going to specify the mathematical framework which allows
us to analyze the long run behaviour of the Markov chain {z;};cn both on
the macroscopic and on the microscopic level. To this end, we introduce the
family of shift-transformations 6, (a € A) on E defined by (6,z)(b) = z°*?.

Definition 2.4 (i) A probability measure p € M(E) is called homoge-
neous, if u is invariant under the shift maps (04)qca. By

MR(E):={pe M(E) : p=pob, for all a € A}
we denote the class of all homogeneous random fields p on E.

(1) A homogeneous probability measure p € My(E) is called ergodic, if
1 satisfies o 0-1-law on the o-field of all shift invariant events. The
class of all ergodic probability measures ju on E is denoted by M¢(FE).



For a given n € N we put
Ay == [-n,n]" N A

and denote by F, the set of all configuration z € E such that the empirical
field R(x), defined as the weak limit

R(z) :=

Z 50(11'(')7 (7)

nee |A | GEATL

exists and belongs to M.(E). The empirical field R(z) carries all macro-
scopic information about the configuration z = (2%),ca € E. In particular,
the empirical distribution

o(z) = lim Z Oga ()

n—»00 |A | =

is given as the one-dimensional marginal distribution of R(z).

Let us consider the product kernel II; on E governed by the individual
transition laws 7¢ in (6). Proposition 3.1 below shows that the measure
IIs(z;-) (r € E.) is concentrated on the set E, and that the empirical
average satisfies

m(y) = nlgr{;o|An| >y

ach,

= HIL%OM Z s (a3 1)

aEAn

- / o3 1) R() (d2)
= u(R(z),s)

for II4(x;-)-a.e. y € E,. Thus, we have to consider the full dynamics of
the sequence of empirical fields {R(z;) }ten even if, as in Example 2.3, the
behaviour of agent a € A depends on R(z) only on the empirical average
m(z). Our aim is now to formulate conditions on the individual transi-
tion laws which guarantee convergence of the sequence of empirical fields
{R(z¢)}ten and to analyze the interplay between convergence of the Markov
chain {z;};en on the macroscopic level and on the microscopic level.



2.1 Macroscopic Interaction: Independent Transitions

Consider the product kernel (3) and let us be more specific about the struc-
ture of the individual transition probabilities 7¢. We assume that the in-
teraction is spatially homogeneous and that the interactive influence of the
present configuration z at site g is felt both through the local situation
(2°) e N(a) in the neighborhood N (a) of a and through some random signal
about the average situation throughout the whole system which is described
by the empirical field R(z) associated with z € E.. We also assume that
the conditional law

Q(R(x);-) (8)

of the signal s given the empirical field R(x) is described by a stochastic
kernel @ from My (E) to S, where (S,S) is an arbitrary measurable space,
the signal space. The kernel @@ will be called the signal kernel.

For a fixed signal s € S, we consider individual transition laws which
take the form

Ty (;°) = 75 (0aw; ) (9)
where 74(x;-) is a stochastic kernel from £ x S to C.

Assumption 2.5 The probability laws {ms(x; ) }recp satisfy a spatial Markov
property of order | in their dependence on the present configuration:

s(0az; ) = ms(Oay; )  if oz = O,y on N(a).

Let us now fix a signal s € S and a configuration z € E. It follows from
our Assumption 2.5 that

My(z;-) == [ ] ms(0a; ) (10)

a€A

defines a Feller kernel on the configuration space E which is spatially ho-
mogeneous in the sense that

I fof, = Hs(f © ea)

for all f € C(E) and all @ € A. In particular, the individual transition laws
s together with the signal kernel () determine a stochastic kernel

M(z; ) = /S 1, (6,2 ) Q(R(x); ds) (11)

10



from FE, to E. In fact, we will see in Proposition 3.1 below that II may
be viewed as a stochastic kernel on the configuration space E,. In contrast
to II,;, the kernel II typically does not have the Feller property, due to
the macroscopic dependence on the present configuration = via the random
signal about the empirical field R(x).

2.2 Macroscopic Interaction: Interactive Transitions

Let us now extend the previous setting by introducing an interactive struc-
ture into the transition itself. This idea is captured by a model where the
random fields II(xz;-) are not product measures, but Gibbs measures with
respect to a system of conditional probabilities y** = {'yffl’s} Aca- Here,

A:={ACA:|A|l <o}

denotes the class of all local subsets of A, and v (-;v) is a stochastic kernel
form E x § x C*\4 to C*. For a given configuration z € E and a fixed
signal s € S, the kernel 77 specifies the joint behaviour of the coalition
A, given a boundary condition on A\ A, i.e., given the new states of all the
agents b ¢ A.

Let us now be more precise about the structure of the transition kernels
IT;. For any s € S, we consider a local specification y*** = {y}"*} 4¢ 4 which
is spatially homogeneous in the sense that

0a1,s

Ya ('§ 6'@1)) = 7£,2+A(.; U) 0. (12)

S

Assumption 2.6 The local specifications v*° satisfy a Markov property of

order | both in their dependence on the boundary condition v and on the
present configuration x: For any fixed configuration x we have

Y2 (50) =737 (w) ifv=w on N(A)\A
For any fized boundary condition v on A°, we have
V4" (v) =95 (50) if z =y on N(A).

Note that (12) and Assumption 2.6 reduce to (9) and Assumption 2.5,
respectively, if the transition to a new configuration is made independently
by different agents, given the configuration z.

11



Example 2.7 Let us put C = {0, 1} and assume that the local specifications

%5 have the structure of an Ising model of statistical mechanics:
exp (TimA(v) + Tom™(z) + Tss)

exp (TymA(v) + Tom®(x) + T3s) + 1°

va'(Lv) = (13)
Here, T), Ty, T3 are positive constants and m™(y) and m?(y) denotes the
average situation of the configuration y € E in N(A)\A and in N(A), re-
spectively:

. 1 1
w0 = A, 2 M T, 2 v

bEN(A)\A bEN(A)

Clearly, the local specifications in (13) are spatially homogeneous and satisfy
a Markov property of order [.

We also assume that the interaction between different agents is not too
strong. We specify this by means of a uniform Dobrushin contraction con-
dition on the family of conditional probabilities (y*%)cs.

S

Assumption 2.8 The local specifications v** satisfy the following uniform
Dobrushin condition: Let C(x,s) = (cqp(,5))apes denote the Dobrushin

interaction matriz for ¥%°, i.e., put

castes) = sup { P (50) =7 Gl v =w off . (1)

We have
¢ = supsucha,b(m, s) <1, (15)
z,8 b @
where || - || denotes the total variation norm of a signed measure.

Remark 2.9 Since our specifications v%° are spatially homogeneous we
have

Cap(T,8) = ca—po(0_px,s)

foralla,be A, x € E and s € S. Thus, (15) is equivalent to

sup Z Cap(z,s) < 1.

TS heh
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Moreover, it follows from Assumption 2.6 that

Sup Cq (2, 8) = supcq,—po(z,s) =0 for |a —b| > L.

z,s ,8
Example 2.10 Consider the local specifications introduced in (13). It is
well known that our uniform Dobrushin condition (15) is satisfied if Ty is
small enough.

Due to Dobrushin’s fundamental uniqueness theorem, our Assumption
2.8 excludes phase transitions. The random field specified by v%% is uniquely
determined; see, e.g., Dobrushin (1968) or Georgii (1989), Theorem 8.7. Let
us denote this random field by

s (z;-).

The family (y*),cr defines a stochastic kernel II; on E. Due to our As-
sumption 2.6 and because of Proposition 7.11 and Theorem 8.23 (ii) in
Georgii (1989), it is easy to show that the transition kernel II; has the
Feller property. Due to (12), Il is spatially homogeneous, i.e.,

[Isf o, =11s(f 0 6,) (16)

for all f € C(E) and a € A. The local specifications v together with the
signal kernel @ from My, (E) to S introduced in (8) define a stochastic kernel

H(z; ) = /5 I, (2; ) Q(R(x); ds) (17)

from E to E.; the product kernel (11) is included as a special case. In fact,
it follows form Proposition 3.1 below that II may be viewed as a stochastic
kernel on the configuration space FE,.

3 A Law of Large Numbers for Random Fields

This section is devoted to the proof of a spatial law of large numbers for
ergodic empirical fields which will be the basis for our subsequent analysis.
For the case of product kernel Il,, the proof of the following proposition is
much simpler and can be found in Follmer (1979a).

13



Proposition 3.1 (“Law of large numbers”). Suppose that the local specifi-
cations v*° are spatially homogeneous and satisfy our Assumptions 2.6 and
2.8. Then the following holds true:

(i) For all configurations © € E. and for every signal s € S, the measure
[s(x;-) is concentrated on the set E.. For Ilg(x;-)-a.e. y € E,, the
empirical field R(y) takes the form

R(y)() = / T, (2 ) R(x) (d2). (18)

(ii) For any ergodic random field u on E, we have pully € M (E).

Proof: In order to establish our assertion, we proceed in several steps.

1. Let A€ Aand f € L(E) be any &4-measurable function, where €4
denotes the o-field generated by the projections z — z% (a € A).
Since the stochastic kernels II; on E have the Feller property and are
spatially homogeneous in the sense of (16), we have

/ / ()L (z: dy) R(z)(dz) = / (IL.1) (=) R(z) (d2)
EJE E

We denote by E, , the expectation with respect to the measure I (z; ),
introduce the sets

L, :={a=(a1,... ,aq) € A : max|a;| =n} (n e N)
and put

Yii=)Y fob, (i€N).

a€L;

Thus, for € E,., we have

R _
i, ;EY _ /E I, £ (4) R(x)(dy).

n—o0

14



In order to establish the existence of R(y) and the identification (18),
it is therefore enough to show that

lim —Z{Y Es.Yi} =0  My(z;-)-as. (19)

. We shall not prove (19) directly. Instead, we will first show that (19)
holds true if we replace the expectation Es , Y; by a suitable conditional
expectation. It will then be verified that this conditional expectation
can be chosen such that it is almost surely close enough to [ ,Y;.

To this end, let us introduce the random variables

n
M, == {Y; = E,[YilYo,... . Yia]} (n€N),
i=0
where [, ,[Yo|Yy, Y_1] := Es;[Yp]. Since the function f : E — R is
bounded, the sequence { M), },¢n is a square integrable martingale with
respect to the measure II;(z;-) and the filtration

{5n,0}neN = {U(Yﬂa Yi,... aYn)}REN'

Note that |L,| < 2d(2n+1)4~! and that |A, | = (2n+1)?. Thus, there
exists a constant ¢ < oo such that

]Esw[(Mn _Mn71)2|5n71 0] &
: — < < IIs(z;-)-a.s.
> TE —;(QnJrl)Z oo Ily(;-)-a.s

n>1
It follows from the strong law of large numbers for square integrable
martingales that

> Y —EoulYilYo,... . Yiq]} =0 Hi(z;-)-as. (20)

n—00 |An| .
(2

For n,k € N, let us put
Yoo:=Yn, Yop=E [Yalfoo1k-1], Enp: =00k -, Ynk)
where £_1 i, := {0, Q}. Tterating (20) we obtain for any k € N that

li Yik — Es o [YilEin
im IAnIZ{ k— i1k}

n—o0

n—o0

lim M Z {(Yip —Yigs} =0 Tg(z;-)-as.  (21)
=0
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Observe that &, ;, C E,41 for all k,n € N. Thus, the random variable
Y; ;. is &1 g—1-measurable if 1 < n. This yields

gn,k C gnfl,kfl c---C gnfk,() (’I’L > k)

Due to (21), we have Il (x;-)-a.s. that

lim —Z{Y Es 2 [YilEic1 p—1]} = hm L T, |Z{Y Yir}t=0.

Hence, (19) holds true with [, ;Y; replaced by E, [Yi|&i—14-1]. Our
objective is now to show that we can find a large enough k£ € N such
that

lim |AH|Z{E”Y|51 Lh1] =B Vit <e  g(x;-)-as. (22)

. Let us fix € > 0. In order to achieve our goal, we are first going to
verify that we can choose a constant ky = ko(€) such that

|]Es,x [f o 9a|€n71,k71] - ]Es,:v [f © oa” <€ Hs(x; ')'a"s' (23)

for all n > k > ko. This will then allow us to establish (22).

To this end, we introduce, for n > k, the set
n—k
-J Ui+4y
=0 jEL;

Since the mapping f : £ — R is £4-measurable, the random variable
Y; is € yn.k-measurable whenever ¢+ < n — k, and so

Sn,k (@ Snflykfl c---C Snfk,O C gAn,k (n > k) (24)
Let us now denote by
4™ ()

the conditional joint distribution of the random variables y* (a €
(A™F)€) with respect to € nx and Ig(x;-), given the boundary con-
dition v on A™F. Since the local specification 4% = {74} Aca satisfies
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our Assumption 2.8, we can apply Theorem 8.23 in Georgii (1989).
The random field H”’An’k(m; -) is Markov of order ! and is uniquely
determined by its conditional distributions {y’y"} 4c4 which take the
form

Vi (w) =y 4y ank (5 w0"). (25)

Here, w® is the boundary condition on (A\A™F)¢ which is equal to v
on A™* and equal to w on A®\A™F,

For any a € A, (24) implies that
Es,x [f o 6‘a|gnfl,lcfl] = ]Es,:v [Es,x [f ° 6‘a|gAn,k]|gnfl,k71]
< sup/f09a(y)H"’An’k(ac;dy) I (z;-)-a.s.

In particular, we have II¢(x;-)-a.s. that

|]Es,:L‘ [f o 9a|gn—1,k—1] - ]Es,w [f © 90,”
[ o0 wsdy) ~ [ 000y

< sup
v
For any n € N and for all a € L,,, the distance
s(a+ A, AMF) ;= min{|b—b| : bea+ A, be A™F}

of the sets a + A and A™* does only depend on k. We can therefore
choose a small enough A € R and a sufficiently large kg = ko(e) € N
satisfying

DN ™

c(N) = suchb,g(x,s)eMb' <1 and exp(=As((a+ A), A™F)) <
z,s

foralln >k >ky and a € L,,.

For n > k > ky, let us now choose a set V € A such that, for all
a € Ly, the following holds true:

VNA™ =0, a+ACV, exp(-As((a+4),V)) <e.

17



Thus, our uniform Dobrushin condition (15) together with Theorem
8.23 and with Remark 8.26 in Georgii (1989) yields the following esti-

mate:

Sl;p /foHa(y)HU’A z;dy) — /foH (x; dy)‘
= sup /foﬁa(y)(ﬂ”’m’k( ")(dy) /f09 II(z; dy)‘
< sl [ f00a(y)(7€(dy;w)—H(x;dy))‘ (26)
1 C
< AT ep(-As((a+ 4. V)
< ce(f)e

for some constant c(f) depending on f. Here, (26) follows from (25).

4. We can now apply the preceding estimates in order to establish (22)
and (19). Since |L,| < 2d(2n + 1)¢~! it follows from (23) that there
exists ¢ < oo such that

B 2 [VolEn 14-1] — Bs e Y| < ec(2n 4 1)4! I, (2;-)-as.  (27)

for all n > k > kg. Thus, as |A,| = (2n + 1), we deduce from (21)
and from (27) that there exists a large enough k € N which satisfies

lim ——

n—oo |An|

'S,

lim

n=¥00 |An|

IN

sm[y|gz 1,k— 1]}‘

—|—hm—

n—»00 |

< ce I (z ,-)—a.s.

i—1,k— 1] ]Es,l'yri}

SCE

This shows (19) and, therefore, establishes the existence of the em-
pirical field R(y) for IIs(z;-)-a.e. y € E and the identification (18) as
€ > 0 is arbitrary.

5. Before we show that R(y) € M¢(FE), let us first establish (ii).

18



To this end, we fix y € M.(E) and verify that ull; is an ergodic ran-
dom field on E. Due to (16), the probability measure pll; is spatially
homogeneous:

(ulls) (1 0 6a) = p(Ts(1p 0 6a)) = p(Tls(15) © 0a) = plls(15)

for all @ € A and B € £. Thus, Birkhoff’s ergodic theorem implies
that plly € M.(E) whenever

R(y) = pll, plls-a.s.

Since p = R(x) for p-a.e. z € E it follows from (18) that

pls({y = R(y) = plls}) = /Eﬂs(w; {y: R(y) = R(2)IL;})p(dz) = 1,
and so pll; € M.(E). This shows (ii).

6. We can now easily show that Il;(z; E.) = 1 whenever x € E,. Indeed,
for any =z € E,, we have R(z) € M.(FE), and so it follows from (ii)
that R(z)Il; € M (E). Thus, R(y) = R(z)Ily € M.(E) for II;(z;-)-
a.e. y € E, due to (18) and therefore II(z; E.) = 1.

This completes the proof. O

Remark 3.2 Consider the situation analyzed in Follmer and Horst (2001),
i.e., assume that S = M(E) and that Q(R;-) = 0r(-). In this case, each
specification > (z € E,) determines a unique random field T(x;-) =
Mg (w;+). The preceding Proposition yields T(z; Ee) = 1 and

R(y)() = / Moy () R(x) (d2) = / Moy (3 -) R(2) (d)

€

for Il(x;-)-a.e. y € E.. This proves Theorem 3.1 (i) Féllmer and Horst
(2001) for the case of Gibbs measures.

4 Convergence Theorems

We are now ready to study the dynamics of the interactive Markov chain
{z;}1en on the state space E,. defined by the general transition kernel

M(z; ) = /S T, (; ) Q(R(x): ds)

19



introduced in (17). For any random field p which is concentrated on the
set F,, we denote by [P, the distribution of the chain {z;}scn with initial
distribution p. Since a configuration z € E. induces an ergodic empirical
field R(x), the microscopic process {x;}cn induces P,-a.s. the macroscopic
process {R(z;) }1en with state space M (E).

4.1 Separating Macroscopic and Microscopic Convergence

Let us show that our spatial law of large numbers for ergodic empirical fields
allows us to analyze the microscopic process and the macroscopic process
separately. In a first step, we will verify that the dynamics of the macroscopic
process can be described by a Markov chain on the state space M, (E). In
a second step, we are going to show that the microscopic process may be
viewed as a Markov chain in a random environment where the distribution
of the environment is governed by the initial empirical field R(z).

Let us first analyze the structure of our macroscopic process. To this
end, we introduce a mapping u : My (E) x § — My(E) by

w(R, s) = RIL,() = / I, (2 -) R(dz). (28)
It follows from our Proposition 3.1 that the macroscopic process satisfies
R(zi4+1) = u(R(xt), st) P,-a.s. (29)

Using the law of conditional iterated expectations and (29), it easy to prove
the following theorem.

Theorem 4.1 Under the measure P, = Ps  (x € E.), the macroscopic
process is a Markov chain on the state space My (E) with initial state R(z).
Its transition operator U acts the class of all bounded measurable functions
f: My(E) = R according to the formula

Uf(R) = / F(u(R, 3))Q(R; ds) (30)

Let us now fix a signal sequence {s;};en and put

SO .= HS and s = (s0,...,50).
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Iterating (29) we obtain

R(z¢y1) = we(R(x),5Y)  Pg-as. (31)
where we define the mappings u; : My,(E) x S® — M (E) recursively by
up(R, s9) := u(R,s0) and wu(R,sY) :=u(us1(R,sY_,),5¢) (t>1).
Since, conditioned on the environment {s;};cn, our macroscopic process
evolves almost surely in a deterministic manner, we propose a random system
with complete connections' (RSCC) as a suitable mathematical framework

for analyzing the convergence behaviour of the sequence { R(z;) }1en. Let us
recall the notion of a RSCC.

Definition 4.2 Let (My,dys,) be a metric space and (Ms, M3) be a mea-
surable space. Let Z denote a stochastic kernel from My to Moy and let

v My x My — My be a measurable mapping. Following losefescu and
Theodorescu (1968), we call the quadruple

Y= ((Mla dMl)a (M27 M2)7 Z, ’U)
a homogeneous random system with complete connections.

(i) Given an initial value & € My, a RSCC induces two stochastic pro-
cesses {& Jren and {(;}ien on the canonical probability space (2, F,P¢)
taking values in My and in Ms, respectively, by

§ev1 = v(&4, Cr) (lo=¢ Pe-as.)
and by

Pe(Ct € +|&ey Coo1,60-1, G2y - - ) = Z(&t57)-
These processes are called the associated Markov process and the signal

sequence, respectively.

(ii) A random system with complete connections is called a distance-dimini-
shing model, if the transformation v : My X Ms — M, satisfies the
contraction condition

dar, (v(€,€),v(€,€)) < 0dar, (€,€)

for some constant 6 < 1.

"We refer to the books of Tosefescu and Theodorescu (1968) or Norman (1972) for a
detailed discussion of random systems with complete connections.
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In Section 4.2, we will state conditions on the local specifications y**
which guarantee that the mapping u in (28) satisfies the contraction condi-
tion

d(u(R,s),u(R,s)) <vd(R,R)  (y<1)

with respect to a suitable metric d which induces the weak topology on
M, (E). In this case, the random system with complete connections

= (Mn(E),d),(S,5),Q,u) (32)

is distance-diminishing in the sense of Definition 4.2 (ii). Note that the tran-
sition operator of the Markov chain {&;};cn associated with ¥* acts on the
class of all bounded measurable functions g : M, (E) — R according to the
formula (30). Thus, for any z € E,, it follows form Theorem 4.1 that our
macroscopic process {R(z;)}ien may be viewed as the Markov chain with
initial state R(z) associated with the distance-diminishing random system
with complete connections ¥*. This will allow us to apply a general con-
vergence result in Norman (1972) in order to state conditions on the signal
kernel ) which guarantee that the macroscopic process converges in law to
a unique equilibrium distribution; see Theorem 4.12 below.

Remark 4.3 Note that R(xz) € M.(E) for all x € E,. Thus, our macro-
scopic process may as well be viewed as a Markov chain on the state space
M(E). However, we want to apply Theorem 4.2 in Norman (1972) and
the Riesz representation theorem. Thus, we have to regard the sequence
{R(z¢) }ten as a Markov chain on the compact metric space (M (E),d).

Let us now concentrate on the dynamics of the microscopic process. In
view of (31), the law of the random variable ;4 is given by

I+ (3 / / v Ty (23 ) Qe (R(z), 80 );dsy) -
(z),50);ds1)Q(R(x); dso).

In this sense, the microscopic process {z;}en may be viewed as a Markov
chain in the random medium {s;};cn where the law of the environment
is determined by the empirical field R(z). Combining a perturbation of
the Dobrushin-Vasserstein contraction technique with a contraction method
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from the theory of random systems with complete connections, we shall
prove in Theorem 4.19 that convergence in law of the macroscopic process
implies that the microscopic process {z;};en has local asymptotic loss of
memory in the sense of Féllmer (1979b).

4.2 Macroscopic Convergence

In this section, we are going to state conditions on the local specifications
v** and on the signal kernel @ from M (F) to S which guarantee that
the macroscopic process { R(z:) }ten, viewed as a Markov chain on the state
space My, (E), converges in law to a unique equilibrium distribution.

Let us first formulate a weighted Dobrushin- Vasserstein condition on the
specifications v%>* in order to control the local interactions in the transition
kernel II;. To this end, we introduce, for any pair (z,s) € E x S, the
matrix D(z,s) = (D(z,),p) as the sum of the non-negative powers of the
Dobrushin interaction matrix C(z, s) defined in (14), i.e.,

D(z,s) := Z C"(z,s).

n>0

We also introduce the vector b(x,y, s) with components

1
ba(2,y,5) 1= 5 /E I7a°(50) =73 (5 0) s (z;dv) - (a € A),

and, for a € A, s € S, we define a vector r; by

Tab "= SUD {ZDGJ,(:E, s)by(x,y,8) : x =y off a} (b € A). (33)
ach

Note that r} , = r>_, , since our local specifications are translation invariant.
b )

Assumption 4.4 For a small enough n > 0, the vectors r) introduced in
(33) satisfy

o= su onalps 1. 34
sp; a,0 ( )

S

Example 4.5 Let us return to the local specifications v*° introduced in

(13). We assume that there exists a large enough constant § such that

sup cq0(z, s) < e~ Plal ,
z,8
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i.e., we assume that Ty is small enough. We also assume that Ty is suffi-
ciently small so that

p

1 0y, 0 sy,
_Sup{“')’g b:L‘S(_;,U)_,),U bys(.;y) : bEA,IE:yOﬁa,’UEEH}Sm

2

for a suitable constant ,@ > 0. In this case, our Assumption 4.4 is satisfied.
For details, we refer the reader to Proposition 2.17 in Horst (2000).

Remark 4.6 Suppose that the transition to a new configuration is made

independently by different agents. In this case, the vector rf is given by

rip=sup{ 3l es) =l o =y off o -0} ().

Thus, if the individual laws 75 depend in a continuous manner on the signal
s € S, then our weighted uniform Dobrushin-Vasserstein condition (34) is
equivalent to the uniform Dobrushin-Vasserstein condition

Qg = su réo < 1. 35
0 sp; a,O ( )

In the case of product measures g the equivalence of (34) and (35) follows
from our Assumption 2.5.

We denote by Ay(f) the oscillation of a function f on E at site a € A, i.e.,

Aa(f) = sup{|f(z) = f(y)| : ==y off a}.

Remark 4.7 A vector v = (74)aen 15 called an estimate for the random
fields p and v on E if

() = (N < ralalf) (36)
a€A

for any f € C(E). Let p and v be Gibbs measures on E with respect to the
local specifications y* and ", respectively, and denote by D(u) the sum of
the non-negative powers of the Dobrushin interaction matriz C(u) associated
with the random field . Then the vector v = (r4)eca with components

ro =" Day(u)bo(s2) (37)
b
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is such an estimate where the vector b(u) is defined by

1 v
bali) =5 [ I C0) =22 50 o)
E
cl., €.9., oillmer ) eorem <.4 or otmon ) eorem el
f. Foll 1982), Th 2.4 Si 1993), Th V.2.2

In view of (36) and (37) we have

A(Tf) <D rs yA(f)

beA

for any f € C(E). Under Assumption 4.4 we obtain the estimate

Al f) < (Slgp > 7"2—1;,0) SN S ad Ay(f).
a b b
For any signal sequence {s;}icn it follows by induction that

AL - - 1, f) < ZTZ}bAb(H& eIl f) < o't ZAb(f)a
a,b b

and so
Jim A(IL, 11, f) =0. (38)

In this sense, our microscopic process has local asymptotic loss of memory
for any fixed environment {s;}cn if our Assumption 4.4 holds true.

Remark 4.8 In the case where the transition kernel does not depend on s,
the preceding argument shows that the Markov chain I1 converges to a unique
equilibrium distribution. In our context, however, local asymptotic loss of
memory does not necessarily yield the existence of a stationary measure for
IT as this transition kernel typically does not have the Feller property.

Let us now introduce a metric d on the class M(E) by

o vl
W) oSS 2T A (f)

Lemma 4.9 (i) The metric d induces the weak topology on M(E). In
particular, (Mp(E),d) is a compact metric space.
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(i) Under our Assumption 4.4 the mapping v : Mp(E) x E — My(E)
defined in (28) satisfies

d(RIL,, RIL,) < ad(R, R) (39)

uniformly in s € S. In particular, the random system with complete
connections X* introduced in (32) is distance-diminishing in the sense
of Definition 4.2 (ii).

Proof: The assertions follow from Propositions 3.3 and 3.8 in Follmer and
Horst (2001); see also Propositions 2.15 and 2.19 in Horst (2000). O

Suppose that S = My (FE) and that there exists a constant § < 1 — «
such that

sup (Ll (z; ), 1Ly (z3)) < fd(p, v). (40)

Under the assumption that Q(R;-) = dg(-) such a condition yields almost
sure convergence of the macroscopic process { R(z¢)}+en to a unique homo-
geneous random field p* on E. This is Theorem 3.12 in Follmer and Horst
(2001) for the case of Gibbs measures IT,(z;-) instead of product measures.
Our aim is now to establish convergence in law of macroscopic process with-
out such a restrictive assumption. Instead, we assume that the signal kernel
Q from M (E) to S satisfies the following two conditions.

Assumption 4.10 (i) The signal kernel Q from My (E) to S satisfies a
uniform Lipschitz condition: There exists a constant L < oo such that

sup |Q(u; B) — Q(v; B)| < Ld(,v).
BeS

(i) The stochastic kernel Q has a lower bound: There exists a constant
A > 0 and a probability measure v on (S,S) such that

inf i) > Av(s).
Lnt Q) = M)

Remark 4.11 Note that our Assumption 4.10 (i) is satisfies whenever the
probability distributions Q(u;-) have a density f, with respect to some mea-
sure v satisfying

|fu() - fll()| < Ld(ﬂay)'
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We are now ready to state and prove the main result of this section.

Theorem 4.12 Suppose that the local specifications v%* are spatially homo-
geneous and satisfy a Markov property of order | both in their dependence
on x and on the boundary condition. If our Assumption 4.4 and 4.10 are
satisfied, then the following holds true:

1. There exists a unique probability measure pu* on the class My (E) of
all homogeneous random fields on E such that the macroscopic process
converges in distribution to p*.

2. The probability measure u* satisfies

p(Mc(E)) € {0,1}.

Proof: Let us denote by ({& }ien, (I@’g)gth(E)) the Markov chain on M, (E)
associated with the random system ¥*. Due to Lemma 4.9, (M (E),d) is
a compact metric space, and X* is distance diminishing in the sense of
Definition 4.2 (ii). Thus, it follows from Theorem 4.2 in Norman (1972)
that there exists a unique probability measure p* on My, (F) such that

. ™ *

Jim [ f(eodte = [ fau
for all f € C(Mp(E)) and £ € My (E). This shows (i) since, for any starting
point z € E,, our macroscopic process may be viewed as the Markov chain
{& }ten on My, (E) with initial state R(z). The second assertion follows from
Proposition 3.1 (ii) as u(R, s) € M(FE) for all s € S if R € M(E). O

Example 4.13 Consider the local specifications v** introduced in (13) and
assume that the signal kernel Q satisfies our Assumption 4.10. If Ty and Ts
are sufficiently small, then the macroscopic process { R(z¢) hien converges in
law to a unique equilibrium distribution.

The model analyzed in this paper may be viewed as a randomized version
of the model studied in F6llmer and Horst (2001). Follmer and Horst (2001)
considered the case Q(R;-) = dg(-) and established almost sure convergence
of the macroscopic process under the assumption that the local interaction
in the kernels Il is not too strong and given that the dependence of the
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specifications on the parameter s is weak enough. In our present setting,
the transition to a new state depends on the current empirical field R(x;)
through some random variable s; whose law depends on R(z:). As we have
seen, this may provide an additional smoothing effect which allows us to
establish a convergence result, namely convergence in law of the macroscopic
process, without any condition which controls the dependence of the local
specifications on the signal s, that is, without such a restrictive contraction
condition like (40). We just have to control the local interaction in the
kernels I1; by means of a suitable Dobrushin-Vasserstein condition. Observe,
however, that our Assumption 4.10 excludes the case Q(R(7);-) = dr()(-)-

4.3 Microscopic Convergence

In this section, we analyze the asymptotics of the microscopic process {z; }ien.
We study the interplay between the long behaviour on the macroscopic level
of empirical fields and the asymptotic behaviour on the microscopic level.
We prove that convergence in law of the macroscopic process implies that
the microscopic process has local asymptotic loss of memory in the sense
of Follmer (1979b). This means that the distribution of the states of any
finite set of agents does, asymptotically, not depend on the starting point
of the microscopic process. In a second step, we prove weak convergence of
the Markov chain IT under the additional assumption that the macroscopic

process converges in law to a probability measure p* which is concentrated
on the set M. (E).

4.3.1 Asymptotic Loss of Memory

Throughout this section, we assume that the macroscopic process converges
in law to a unique equilibrium p* on M, (E). Our goal is to show that the
underlying microscopic process has local asymptotic loss of memory. To this
end, we combine a convergence result from the theory of random systems
with complete connections with a variant of the Dobrushin-Vasserstein con-
traction technique. The next result follows from Theorem 2.1.65 in Iosefescu
and Theodorescu (1968).

Lemma 4.14 Suppose that the Markov chain ({&;}en, (Pg)gth(E)) asso-
ciated with the random system with complete connections 3* converges in
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law to a unique equilibrium distribution p* on My(E) and put Fr; = o(s; :
T < i <T+t). If the signal kernel Q satisfies our Assumption 4.10 (i),
then the signal sequence {si}ien associated with X* is uniformly ergodic in

the strong sense, i.e.,

0.

li Pe —P*||. =
Jim sup [P | #r.,

Here, P*(-) = [y, () Pe(-)u*(d€), and | -
norm of signed measures on ]:"T,t.

|¢Tt denotes the total variation

Thus, if the macroscopic process converges in law, then the microscopic
process evolves asymptotically in a random environment whose law does not
depend on the initial configuration. Moreover, for any fized environment
{st}ten, we have

lim A(IL, -+ 1L, f) = 0

for any f € C(E) if our uniform Dobrushin-Vasserstein condition is satisfied;
see (38). This allows us to prove the following theorem.

Theorem 4.15 Suppose that the local specifications v%* are spatially homo-
geneous and satisfy our Assumptions 2.6, 2.8 and the weighted Dobrushin-
Vasserstein condition 4.4. If the stochastic kernel Q from My(E) to S
satisfies Assumption 4.10, then the microscopic process has local asymptotic
loss of memory in the sense of Follmer (1979b), i.e., we have

lim sup |II*(z; B) — II'(2; B)| = 0 (41)

=00 gy

for each A € A and B € £4. Here E4 denotes the o-field generated by the
projections x — z% (a € A).

In order to prepare the proof of Theorem 4.15, we introduce some addi-
tional notation. For ¢, T € N we put

st = (57,0, 5741)-

For z € E, and t,n,m € N we denote by

Q"™(z;-)  and 2 () (42)
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the law of the random variable s}, and the conditional law of the random

variables s?, given the signal vector s!, respectively, under P,. For a given

signal vector s!, we consider the transition kernels HS? on E defined by

HstT (:L‘; ) = [HST T H5T+t] (:E; ) (43)

Let us first prove (41) under the additional assumption that the stochas-
tic kernels II, take the product form (10). In this case, the mapping s?
sup,, IL,o (z; B) is measurable for any B € &4 (A € A) as we just have to
determine the supremum of finitely many measurable functions.

Proof of Theorem 4.15: Independent Transitions
Let us fix A € A and B € £4. In terms of the notation introduced in
(42) and (43) we have for any initial configuration z € E, that

[T+ (2 B)

= [ [ M BIQE (s (w3 dp) @7 (s ),

due to Proposition 3.1. Let us now fix t € N. The quantity II'*"*!(z; B) is
bounded above by

[ [T s BQT (o s wsds)

and bounded below by

[ [t s ) QF (s )QT sy ),
This yields the following estimate:

sup [Tt (z; B) — IT 1+ (y; B)|
z,y

< sup

[ty e B)) [Q7 s ds]) - QT (idsD)]| (44
+sup [fsup Ly (:55) —inf Wy (s BQ™ (sl (49

We are going to analyze the quantities (44) and (45) separately.
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1. Since Q" (z;-)— Q" (y;-) is a signed measure on ([]i_, S, ®_,S) with
total mass zero, we can estimate (44) by
sup [| Q7 (25 ) — QT (y; )l
Y

Due to Theorem 4.12 and Lemma 4.14, the signal sequence associated
with the random system ¥* is uniformly ergodic in the strong sense.
Thus, there exist measures Q; on ([]i_, S, ®!_,S) such that

fim_sup 1Q™ (z;) = QF ()l = 0. (46)

T—oo g,

In particular, we have that

lim sup
T—ootzy

/Sup Hsz" (z; B) [QT’t(w; ds?) — QT’t(y; dsf)]‘ =0.

2. Let us now analyze the integral in (45). It follows from (46) that

lim sup ‘/{sup I (2;B) — inf IT 7 (z; B)}QT (y: dsT)
z z

T—00 Y

= | [tsup Tt )~ w11y s )01 )

(47)

For any fixed environment {s; } <N, our uniform Dobrushin-Vasserstein-
Condition (Assumption 4.4) implies that

sup [TTo (25 B) — Mo (y; B)| < ca'™ (48)
Y

for some constants ¢ = ¢(]A|) < oo and & < 1 which do neither depend
on B € £4 nor on the environment {s;}en; cf. (38). Thus, for any
given € > 0, there exists large enough ¢y, 7Ty € N such that

sup |Io(z;B) —o(y; B)| <€ (t > to)
$:y,5? ‘ !

and such that

sup [|Q7! () = Qi ()| <e (T > To).

z,y,t

Hence, for all ¢ >ty and T' > Tywe have the following estimate:

(45) <sup Q" (z;-) — Qi ()l + sup A(Tlo(B)) < 2. (49)

T,y Sg
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Thus, for any t > ty and for all T" > Tj, we have that
sup |1+ (4; B) — I T L (y: B)| < 3e.
I:yGSO

Since € > 0 is arbitrary, the assertion follows. a

Let us now consider the general transition kernel II introduced in (17).
For any two configurations v,z € E and for all local sets A € A, we denote
by 74’ (-;v) the probability measure v (-; (v%)qeac) on C# with boundary
condition (v%)4ec4c on A°. Moreover, we put

ILg, (3 / / Vo (day;v) - AT (dag; 0)y ™ (5 0),

where Ag D Ay D ... are local sets.

In order to avoid a problem of measurability, it will be convenient to
use the following approximation result which follows immediately from our
Assumptions 2.6 and 2.8 together with Theorem 8.23 and Remark 8.26 in
Georgii (1989).

Lemma 4.16 For any local set A € A, for each t € N and for all € > 0,
there exits local sets Ag D A1 D --- D A; such that

sup |H (:E;B) —ITo(z;B)| <€
Bega ‘

uniformly in © € E, in s) € S and in the boundary condition v € E.

Remark 4.17 Observe that, for any given configuration v € E, for all
teN, A €A, B € E4 and for any fized local sets Ay, A1, ... , Ay, the mapping

0 HAg -B
sy = sup Il ,(7;B)
xT b
18 measurable.

We are now ready to prove Theorem 4.15.

Proof of Theorem 4.15: Interactive Transitions
Letusfix Ac A, Be &4, t € Nand e > 0. Due to Lemma 4.16, we can

choose local sets Ay D --- D A; such that
AO
sup |ILr(z; B) — Hszi,v(x;Bﬂ <e.

v,m,B,s’tI‘
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Thus, uniformly in B € &4, the quantity ITI**7*!(z; B) is bounded above by

/ /{SupH (2 B)}QT L(@5dsHQYT (wydsy_y) + e
and bounded below by
[ [t e QR s )QM asdsh ) ~ e

By analogy with the case of product kernels we have the following estimate:

sup |HT+t+1((I:; B) o HT+t+1(y; B)|

x,y
< sup| [ [{sup I e BQR (o3 as] QT st )
x,Yy v
= [ [t QR s (s dsh )|+ 2e
< sup /{Sgpﬂsg’i,v(Z;B)} [QT (; ds) —QT’t(y;dstT)]‘

+ sup /{Sup qug (21 B) — inf qug (= B)}Q" (y; ds]) + 2e.
y z t z t

Using a tedious but straightforward 3-e-argument one can now easily show
that

lim sup /{SupH ,(z:B) — 1an ,(z:B)} = 0.

T—o00 Yt T

This yields our assertion by analogy with the case of product kernels. a

4.4 Existence and Uniqueness of Invariant Measures

Let us now state conditions which guarantee the existence of a stationary
distribution for the microscopic process.

Lemma 4.18 Let u* be any stationary distribution for the Markov chain
associated with the random system with complete connections ¥* defined by
(32) which is concentrated on the set M¢(E). Then the microscopic process
is stationary under the law Py~ , where the random field v* on E is given by

V() = /MB(E)M(')M*(dN)-
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Proof: In order to prove our assertion, it is enough to show that
P, [:EO € B] =P« [:El € B]

for any B € £4 (A € A). Since R(z) = v for v-a.e. z € E whenever
v € M(E), we have

Ey- [R(x0)] = v".

Since p* is concentrated on the set M. (FE), the macroscopic process is sta-
tionary under P,«. Thus, we have

By [R(z0)] = B+ [R(z1)],
and so it is enough to show that
Py-[z1 € B] = Ep- [R(21)(B)].
Due to Proposition 3.1 (ii), we have pully € M(E) if p € M (E). In

particular, puIl; = R(x) for ull;-a.e. z € E, and so

Ey«[R(z1)(B)] = //SER(m)(B)Hso(fBo;dxl)Q(R(xO);dSO)V*(de)
_ /MQ(E) /S /E Riz1) (B)ully, (d1)Q (s: dso)s* (o)

_ / / HTLe (B)Q(1; dso) i ()
M(E)JS
= PV*[(IIlEB].

Thus, v* is an invariant measure for the stochastic kernel II, and so the
microscopic process are stationary under the law P,«. a

We are now ready to prove the main result of this paper.

Theorem 4.19 Suppose that the local specifications v%° are spatially ho-
mogeneous and satisfy our Assumptions 2.6 and 2.8. Assume moreover,
that the signal kernel Q from My (E) to S satisfies Assumption 4.10. If the
unique stationary distribution u* for the Markov chain associated with the
random system with complete connections ¥* satisfies p*(Me(E)) = 1, then
there exists a unique stationary probability measure p for the microscopic
process. For any starting point x € E,, the sequence {II'(z;-)}ien converges
weakly to .
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Proof: It follows from Theorem 4.12 that the macroscopic process con-
verges in law to the unique equilibrium distribution p of the Markov chain
associated with the random system with complete connections »*. Thus,
we deduce from Lemma 4.18 that there exists a stationary distribution for
our microscopic process. Uniqueness of the stationary distribution and weak
convergence of the sequence {II*(z;-)}4en follows from Theorem 4.15. O

Example 4.20 Consider the mean-field type interaction in Ezample 2.1,
and assume that the interaction if spatially homogeneous. In this case, it is
easy to show that the unique invariant measure of the Markov chain associ-
ated with the random system ¥* is concentrated on the set M (E) whenever

the dependence of the probability law ws(x®;-) on % is not too strong.

Example 4.21 Let us return to the individual transition laws 7 defined
in (6). Assume that the signal kernel Q from My (E) to [0,1] satisfies As-
sumption 4.10. We also assume that the uniform Dobrushin condition (35)
is satisfied, i.e., that the dependence of the probability distribution mws(x;-)
on the configuration x is not too strong. In this case, Markov chain {z;}ien
with transition kernel

M(z;) = [ [ 7s(0az; ) Q(R(x); ds)
a€A
has local asymptotic loss of memory. If, moreover, the unique stationary
measure of the random system X* is concentrated on the set M (E), the pro-
cess {x}en converges in distribution to unique random field p. It remains
an open problem, however, to give sufficient conditions for u*(M.(E)) = 1.
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