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Abstract

We examine the robustness of information cascades in laboratory experi-
ments. Apart from the situation in which each player can obtain a signal for
free (as in the experiment by Anderson and Holt, 1997, American Economic
Review), the case of costly signals is studied where players decide whether
to obtain private information or not, at a small but positive cost. In the
equilibrium of this game, only the …rst player buys a signal and chooses an
urn based on this information whereas all following players do not buy a
signal and herd behind the …rst player. The experimental results show that
too many signals are bought and the equilibrium prediction performs poorly.
To explain these observations, the depth of the subjects’ reasoning process
is estimated, using a statistical error-rate model. Allowing for di¤erent error
rates on di¤erent levels of reasoning, we …nd that the subjects’ inferences
become signi…cantly more noisy on higher levels of the thought process, and
that only very short chains of reasoning are applied by the subjects.



1 Introduction

In simple cascade games, the players sequentially choose one out of two
alternatives, after receiving private signals about the pro…tability of the two
options, and after observing the choices of all preceding players. While the
signals are not revealed to subsequent players, the latter may be able to infer
the information observed by their predecessors from the decisions that were
made. As a consequence, Bayesian Nash Equilibrium implies the possibility
(depending on the sequence of signals) that rational herding occurs, i.e. that
players disregard their own private information and follow the decisions of
previous players. In this case, no further information is revealed, and an
”information cascade” develops, with all players choosing the same option.
For example, if the decision problem is whether or not to invest in a new
technology, such herding behavior may create fads, where many potential
investors decide to invest in the technology without much further pondering
over their private pieces of information.1

From a behavioral perspective, one can ask whether such a reasoning
process would be applied by actual decision makers. This appears partic-
ularly doubtful in situations where relatively deep levels of reasoning are
needed, by which we mean that decisions are determined after several steps
of using the knowledge about the knowledge ... about the others’ rationality.
However, most of the existing experimental tests of cascade games seem to
support the theoretical predictions. Anderson and Holt (1997) report that
in cases where a player should, in equilibrium, disregard her own signal,
most subjects do so and indeed follow the others’ decisions; a result which
has since been replicated by Hung and Plott (1999) and other researchers.2

We modify the experimental design by Anderson and Holt (1997) by
introducing a separate stage for each player, at which she is asked whether
or not she wants to receive a signal, at a small but positive cost. This
modi…ed game can be viewed as a ”hard” test for Bayesian rationality, in
the sense that the equilibrium prediction is much more extreme: In Bayesian
Nash equilibrium, the …rst player buys a signal and all other players blindly
follow the …rst player’s decision, independently of the chance moves which
determine the signals: After the …rst player’s choice, no further signals are
bought, and cascades occur with certainty. (In the example of technology

1 Following Banerjee (1992) and Bikhchandani, Hirshleifer, and Welch (1992), the eco-
nomic literature on rational herding has grown considerably over the last decade. For a
survey see Bikhchandani, Hirshleifer, and Welch (1998).

2 For extensions and discussion see also the experimental papers by Nöth and Weber
(1999) and Huck and Oechssler (2000) .
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adoption given above, all except one agent will avoid incurring costs of
information acquisition, even if they are arbitrarily small, and the technology
will be uniformly accepted or rejected.)

The experimental results are not in line with these predictions. While not
all of the subjects acting as …rst players buy a signal, the signal acquisition
in later stages is excessive, and in sum far too many signals are bought.
Cascades often do not form at all, or are fragile in that after a cascade has
started subjects buy signals and choose in opposition to their predecessors’
decisions. The predictive value of Bayesian Nash Equilibrium is much lower
in the modi…ed game than it is in a control treatment without the cost,
which is comparable to Anderson and Holt’s design.

A natural candidate to explain this signal acquisition behavior are er-
rors. In this more complex game, subjects may simply err when making
their decisions, given their updated beliefs. A complementary and perhaps
more convincing explanation goes one step further in the reasoning process:
Subjects may not trust their predecessors to reveal their information as pre-
scribed in equilibrium (e.g. because of errors), and hence prefer to buy sig-
nals themselves. According to this hypothesis, it would help the subjects to
know whether or not their predecessors bought signals. We tested this possi-
bility by including another treatment, the ”high information treatment”, in
which subjects were given the information who of the previous subjects had
obtained a signal. It turns out, however, that even more signals are bought
under this treatment, and the prediction of Bayesian Nash Equilibrium –
which is identical under both treatments – performs even worse.3

To explain these observations, we conduct a depth-of-reasoning analysis.
I.e., we employ a statistical model which takes all levels of thinking about
thinking ... about others’ behavior into account, and allows us to make
inferences about the subjects’ updated beliefs after observing a given choice
history. Estimating parameters which capture the error rates on all levels of
the reasoning process, we are able to disentangle the di¤erent ”anomalies”
that can arise in long chains of reasoning, and obtain an estimate of the
actual depth of reasoning in the subject pool. The model, which is based on
the Agent Quantal Response Equilibrium by McKelvey and Palfrey (1998),
also allows us to apply straightforward statistical tests to answer a number
of questions concerning the reasoning process.

Depth-of-reasoning analyses have been conducted by several experimen-
talists (see the work by Nagel, 1995, Sefton and Yavaş, 1996, and Ho,

3 A similar treatment has been run independently by Kraemer, Nöth, and Weber, 2000,
with similar results.
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Camerer, and Weigelt, 1998), but they all investigate normal-form game
play.4 We argue that cascade games are especially well suited for an analysis
of depth of reasoning, and particularly so because they are extensive-form
games: First, subjects do not face problems of calculating a …xed point
or limit point in the strategy space, which typically arises in (behavioral)
models of normal-form game play. Second, the extensive structure clearly
de…nes the chains of reasoning that a player has to go through. Third, the
cascade games under investigation are relatively long (six players), implying
that with enough data we are able to obtain a complete picture over the
full length of the reasoning process (under the assumptions of the statistical
model). Fourth and …nally, cascade games have the property that although
they are games in extensive form, no backward-induction reasoning is in-
volved when thinking about other players’ decisions. Thus, the results do
not depend on the subjects’ ability to solve a game backwards, which is
often doubted.

The estimation results suggest that the subjects’ depth of reasoning is
very limited, and that the reasoning gets more and more imprecise on higher
levels: Subjects attribute a signi…cantly higher error rate to their opponents
as compared to their own, and this imbalance gets more extreme when con-
sidering the responses on the next level, i.e. when they think about the error
rate that others, in turn, attribute to their opponents. More strikingly, the
reasoning process ends after these two steps, although several more steps
would be possible and pro…t-increasing in the games.

The subjects’ signal acquisition behavior can be explained along the lines
of these estimation results. In the treatment with cost, subjects do not trust
their opponents’ decisions and excessively buy signals if there are only few
preceding players. With more predecessors, they tend to follow the others
more, as they expect that several of these predecessors may have made an
informed decision. However, they do not reason far enough to realize that
other subjects also sometimes rely on third players’ decisions. Therefore, in
later stages of the games, they behave as if many of the preceding players
made an informed decision, regardless of the history. In the high information
treatment, where they learn about the signal acquisition of their predeces-
sors, they are often surprised how little informed the others were, and hence
tend to buy even more signals.

The next section contains the experimental design and procedures. Sec-
4 Relatedly, Stahl and Wilson (1994, 1995), Costa-Gomes, Crawford, and Broseta

(2000), Goeree and Holt (2000), and Weizsäcker (2000) all estimate models of normal-
form game play behavior which allow for a limited depth of reasoning.
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tion 3 presents the results of the di¤erent treatments in summary statistics,
and Section 4 the statistical depth-of-reasoning analysis. Section 5 con-
cludes.

2 Experimental design and procedure

2.1 Experimental design

This section contains a basic description of the four experimental treatments.
We start by presenting the main treatments, Games HC and LC (”high cost”
and ”low cost”, respectively), which involve a cost of obtaining a signal,
but are otherwise almost identical to the baseline experiment conducted by
Anderson and Holt (1997).

Game HC/LC:

² Nature draws one of two possible states of nature, ! 2 fA; Bg, with
commonly known probability 1

2 . Nature’s draw is not disclosed to the
players. Each state of nature represents an urn, where urn A contains
two balls labelled a and one ball labelled b, and urn B contains two
balls labelled b and one ball labelled a.

² 6 players play in an exogenously given order, as follows: In stage
n;n = 1; :::; 6; the nth player

1. observes the (n ¡ 1) urn choices made by the previous players,

2. decides whether or not to obtain a private draw from the urn ! (a
signal, with possible realizations sn 2 fa;bg), at a cost K , where K
equals $1.50 in Game HC and $0.50 in Game LC, and

3. chooses one of two possible urns, A or B.

If the player’s urn choice coincides with the true urn !, she gets a …xed
prize of U = $12, and nothing otherwise.

² After all decisions are made, ! is announced and payo¤s are realized.

We restrict attention to the case of signals being not too expensive rela-
tive to the possible prize U that subjects receive if they correctly predict the
urn. More speci…cally, both $1.50 and $0.50 are below 1

6 of $12. Under this
condition, the prediction of any Perfect Bayesian Nash equilibrium of the
game is for the …rst player to obtain a signal, and for all subsequent players
not to buy a signal and simply to follow the …rst player’s choice. To see

4



this, notice that the second player, knowing that the …rst player obtained a
signal, cannot do better than following the …rst player’s action, even if she
obtains the opposite signal herself. Therefore, it is optimal for her not to
buy a signal and to follow the …rst player blindly. The same logic applies to
all subsequent players.

As the equilibrium prediction critically hinges on the players relying on
the …rst player to optimally have obtained a signal, one can ask whether the
speci…c uncertainty about previous signal acquisitions, which is not present
in the baseline game by Anderson and Holt (1997), causes deviations from
equilibrium play in the experiment. In order to examine this hypothesis, we
also conducted a high information treatment, Game HCHI.

Game HCHI:
All stages are as in Game HC, except that the nth player, before making

her own decisions, also observes whether or not each of the previous (n¡ 1)

players obtained a signal.

With the additional information given in Game HCHI, the equilibrium
prediction remains unchanged, as compared to Games HC and LC: In equi-
librium the players know each other’s actions in Games HC and LC, so no
new information is revealed. But the subjects’ possible uncertainty about
whether or not previous subjects made an informed decision is removed.
Hence, if this uncertainty alone drives non-equilibrium behavior in Games
HC and LC, deviations should be reduced in Game HCHI.

Finally, a control treatment was conducted without the cost, as in An-
derson and Holt’s (1997) experiment:

Game NC:
All stages are as in Game HC/LC, except that players can obtain signals

for free, i.e. K = 0.

In contrast to Anderson and Holt’s design, where players receive their
signal automatically, Game NC includes a stage for each player where she is
explicitly asked whether she wants to obtain a signal. This modi…cation was
introduced in order to make Game NC comparable to the other treatments:
The structure of the games is the same, and the instructions could be held
essentially identical.5

In any Perfect Bayesian Nash equilibrium of Game NC (of which there
are a multitude, depending on how subjects break ties if indi¤erent between

5 The instructions are given in the Appendix.
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their possible decisions), cascades occur with positive probability: If, for
example, the third player receives a private signal a, but the two preced-
ing players both chose B, almost all equilibria would prescribe for her to
disregard her own signal and also choose B.6 Assuming a speci…c tie-rule,
one can then observe how many of the subjects’ choices are consistent with
the equilibrium path prescribed by the corresponding equilibrium.7 Impor-
tantly, the equilibrium prediction here is di¤erent from games HC, LC, and
HCHI, as more signals are obtained.

2.2 Experimental procedure

The experiment was run in the Computer Lab for Experimental Research
at Harvard Business School in four sessions between March and June 2000,
using the software z-Tree. At the beginning of each session, two draws
from physical urns were made as a demonstration. After that, all obtained
signals were displayed on the subjects’ computer screens. The subjects in
each session were anonymously divided into groups of six players who stayed
together over the entire session and played the games with player roles ran-
domly changing after each round. In sessions 1 and 2, the subjects played
Games HC, NC, and HCHI, and in sessions 3 and 4, subjects only played
Game LC. To ensure at least partially that di¤erences in behavior between
games are not due to learning or other e¤ects that arise because of the order
in which the games are played, we switched the order of Games HC and NC.
Half of the subjects in sessions 1 and 2 faced the order [NC, HC, HCHI], the
other half [HC, NC, HCHI]. Within each session, half of the subjects played
according to each order to control for session e¤ects. Game HCHI was al-
ways played at the end of the session because if a subject plays HCHI …rst,

6 This is not true if the equilibrium prescribes for the second player to always follow
the …rst player, regardless of his (the second player’s) signal. If, however, the equilibrium
tie-rule involves any positive probability for the second player to follow his own signal if
it contradicts the …rst player’s decision, then two preceding B’s are su¢cient for the third
player to disregard her own a signal. (Therefore, the tie-rule matters for the equilibrium
prediction of this game.)

7 Anderson and Holt (1997) consider the tie-rule ”Follow your own signal if indi¤erent”.
To simplify the analysis, we will restrict attention to a corresponding tie-rule for Game
NC: ”If indi¤erent concerning the urn choice, follow your own signal if you observed one,
and randomize otherwise. Concerning the signal acquisition decision, always obtain a
signal unless it is strictly optimal to follow the previous players’ choices regardless of the
signal, in which case you randomize between obtaining a signal and not.” Consideration
of other tie-rules would not change the equilibrium predictions in most cases, although
in some cases it would (cf. Footnote 6). Notice that in Games HC, LC, and HCHI, the
equilibrium-path prediction does not rely on a speci…c tie-rule.
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she may transfer the information on how many subjects bought signals to
the other games, which could distort the results. Each game was played for
15 rounds in a row, with one unpaid practice round immediately preceding
each game.8

Overall, 66 subjects (mostly undergraduate students from universities
in the Boston area) participated in the experiment: 24 in session 1, 12 in
session 2, 18 in session 3, and 12 in session 4. Given the number of rounds
chosen, this implies that games HC, LC, and HCHI were played 90 times
each and game LC was played 75 times, yielding a total of 4140 decisions
(12 per round). At the end of the experiment, three payo¤-relevant rounds
in sessions 1 and 2 (one per treatment) and one payo¤-relevant round in
sessions 3 and 4 were randomly determined by drawing from a stack of 15
numbered cards. The earnings from these rounds were added to a show-up
fee of $16.9 The subjects were identi…ed by code numbers only and received
their total earnings in cash directly after the experiment.

3 Results: Summary statistics

Figures 1 through 4 summarize how well Bayesian Nash Equilibrium predicts
the behavior in the four experimental treatments. In each of the …gures, the
…rst column reports the relative frequency of subjects making the signal
acquisition decision prescribed on the equilibrium path, at each of the six
stages. Likewise, the second column shows the frequency of subjects follow-
ing the equilibrium-path urn decision, at each stage. It is important to notice
that these frequencies are not conditioned on the histories of the games at
the respective stages – histories which in many cases are inconsistent with
equilibrium play of the previous subjects.

The third column, in contrast, summarizes in how many of the rounds all
decisions up to the respective stage are on the equilibrium path, including
both signal acquisitions and urn choices. In the course of the six stages, this
proportion decreases quite dramatically, particularly in the treatments with

8 In session 3, the subjects played Game LC for another 15 rounds, which had not been
announced to them before. To increase comparability between the di¤erent treatments,
we decided not to include these data in the analysis and only used those from the …rst 15
rounds. Subjects in sessions 1 and 2 were, likewise, not told what would happen after the
…rst (and second) set of 15 rounds.

9 The relatively high show-up fee was chosen in order to increase average earnings, which
became necessary because sessions 1 and 2 lasted for about two and a half hours. At the
beginning of the experiment, only $8 was announced as a show-up fee. The additional
payment of $8 was announced in sessions 1 and 2 right before game HCHI started. In
sessions 3 and 4 it was announced at the end of the experiment.
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Figure 1: Decisions consistent with Perfect Bayesian Nash Equilibrium in
Game HC.
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Figure 2: Decisions consistent with Perfect Bayesian Nash Equilibrium in
Game LC.
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Figure 3: Decisions consistent with Perfect Bayesian Nash Equilibrium in
Game HCHI.
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Figure 4: Decisions consistent with Perfect Bayesian Nash Equilibrium in
Game NC.
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a signal cost. In treatments HC, LC, and HCHI respectively, only 12%, 3%,
and 4% of all games display equilibrium behavior of all six participants. In
the NC-treatment, all six players make equilibrium decisions in 41% of the
90 rounds. Hence, with a positive cost the equilibrium prediction performs
much worse, according to these aggregate numbers.

Next we ask whether the failure of the equilibrium prediction in the cost
treatments must be attributed to subjects taking the wrong signal acquisi-
tion decision or to out-of-equilibrium urn choices. Table 1 summarizes the
number of signal acquisition decisions consistent with the equilibrium pre-
diction (…rst row) and the number of cases in which both decisions follow
the equilibrium path (second row), each divided by the total number of de-
cisions after an equilibrium history or after what could be an equilibrium
history.10 Notice that in treatment HCHI the proportions of observed equi-
librium signal decisions and of observed equilibrium signal and urn decisions
are the lowest. Thus, providing the subjects with information about who of
the preceding players saw a signal does not lead to more decisions consistent
with equilibrium behavior. In the high-cost treatment HC, signal decisions
and urn choices follow the equilibrium path slightly more often than in the
low-cost treatment LC. By far the highest number of equilibrium decisions
occurs in the no-cost treatment NC where only 5% of all signal decisions and
13% of combined signal and urn decisions are not in line with equilibrium
play.

Yet, the equilibrium prediction for Game NC di¤ers from the other three
games in that herding should occur less often. So it may still be the case that
rational herding occurs as rarely in Game NC as it does in the treatments
with cost, relative to the number of equilibrium herding decisions. However,
this is not true: The third row reports in how many situations after an
equilibrium-path history subjects either decided not to see their signal at
all or to disregard their own signal ”correctly”, divided by the number of
situations in which such herding is prescribed in equilibrium. Again, the
NC treatment is closest to equilibrium play. In 84% of all potential herding
decisions (on an equilibrium path) subjects actually disregard their signal or
do not wish to see it and follow their predecessors.11 The cost treatments are

10 Since it is not clear what can be assumed about o¤-equilibrium beliefs, for the numbers
reported in Table 1 we only consider decisions following a history that could be part of
an equilibrium. Histories can still be included after certain out-of-equilibrium decisions,
as long as the latter do not lead to an observable history that cannot be part of an
equilibrium. E.g., in any of the games, if the …rst player observes a signal a but chooses
urn B, the second player’s decision would still be included in the analysis.

11 In the corresponding treatment by Anderson and Holt (1997), 70% of the subjects
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ordered such that high costs and no information lead to more equilibrium
herding decisions than either low costs or high information.12

Data: HC LC HCHI NC
eq. signal dec. 272/375=0.73 215/316=0.68 104/166=0.63 475/500=0.95

eq. signal & urn dec. 240/375=0.64 196/316=0.62 87/166=0.52 433/500=0.87
eq. herding dec. 196/285=0.69 146/241=0.61 46/76=0.61 80/93=0.84

Table 1: Frequencies of decisions as predicted in equilibrium, given that the observed
history could be part of an equilibrium.

While the equilibrium is often socially ine¢cient (in cases of false cas-
cades where all players choose the wrong urn), in none of the four treatments
did the observed deviations from equilibrium play increase the overall e¢-
ciency. Expressed in percentages of the total payments that would have been
received in equilbrium, total earnings in the four treatments were: 81.3% in
HC, 96.8% in LC, 78.6% in HCHI, and 91.4% in NC.13

Finally, consider Figures 1 to 4 again, and in particular the columns
for the …rst stages of the games. As these columns never reach 1, the …rst
players deviate from equilibrium play, either when deciding whether to buy
a signal or when choosing the urn or both. In particular, only 53% of all
players in the …rst round in treatment HC decide to see their signal, 68%

in treatment LC, 47% in treatment HCHI, and 89% in treatment NC. Since
there is no uncertainty about others’ behavior involved, these decisions may

followed the equilibrium prescription to herd in such herding situations. However, the
relative number of rounds in which complete equilibrium play occurred was higher in
their experiment, at 60%, as compared to 41% in Game NC. Also, the number of rounds
in which herding decisions should occur in equilibrium and do occur in the laboratory,
diveded by all rounds in which herding should occur, are 0.65 in Game NC and 0.73 in
the games conducted by Anderson and Holt (1997). These numbers are calculated on the
basis of the tie rules given in Footnote 7, and not counting decisions as herding decisions
when players are indi¤erent in equilibrium and disregard their own signal.

12 Only in Game NC Bayesian Nash Equilibrium allows for obtaining a signal in situa-
tions where herding is prescribed. Hence, the numbers reported in the third row of Table
1 for the treatments with cost do not include situations where a subject buys a signal after
an equilibrium history and then, contradicting her own signal, follows her predecessors.
However, the numbers of these cases are relatively small for the treatments with cost: In
Game HC, a subject bought a signal in a herding situation which contradicted the equi-
librium urn decision in 10 cases, and disregarded it in 6 cases. In LC, 13 out of 17 such
signals were disregarded, in HCHI 0 out of 5.

13 These numbers are calculated as expected payo¤s, not just considering the rounds
that were selected to be payo¤ relevant for the subjects.
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be viewed as mistakes, at least if subjects are risk-neutral money maximiz-
ers. An obvious question is whether anticipating this relatively high number
of apparent mistakes rationalizes some of the behavior of players at later
stages. Below, a model is estimated to determine – among other things
– whether players expect other players to deviate from money-maximizing
decisions and whether they expect them to do so even more often than is
actually observed. For this analysis, all data can be used, not just the deci-
sions following a history which looks like equilibrium play.

4 A statistical depth-of-reasoning analysis

In this section, we present and estimate an error-rate model which allows us
to make inferences about the subjects’ reasoning processes. The model uses
logistic response functions to determine choice probabilities, but speci…es
separate parameters for the response rationality on each level of reasoning,
i.e. it allows for di¤erent error rates at each step of thinking about thinking
... about others’ behavior. In particular, the model does not impose the
assumption that subjects have a correct perception of other subjects’ error
rates, or that they have a correct perception of other subjects’ perceptions
of third subjects, and so on.

We will …rst present the behavioral assumptions describing the single-
person decision process of a subject who decides at stage n. Let ¯n be the
probability of the event that the true urn is A, given the nth subject’s infor-
mation before she has the opportunity to see a signal. Also, let ē

n(sn; ¯n)
be the subject’s updated probability of A, after observing a private signal
sn 2 fa;bg, or after deciding not to buy a signal, which will be denoted by
sn = 0.14 The expected payo¤ from choosing A, after buying a signal with
realization sn, is then given by eu(A; sn;¯n) = ē

n(sn; ¯n)U-K , the payo¤
from choosing B is eu(B; sn;¯n) = (1-ēn(sn; ¯n))U-K: If the subject has not
bought a signal, K is not subtracted.

Subjects are assumed to employ a logistic choice function with preci-
sion parameter ¸1 ¸ 0 when making their choices, i.e. to choose A with

14 Using Bayes’ rule, it holds that ē
n(a; ¯n) =

2
3
¯n

2
3¯n+

1
3 (1-¯n)

and ē
n(b;¯n) =

1
3¯n

1
3
¯n+

2
3
(1-¯n)

. If no signal is bought, no updating can occur, so ē
n(0; ¯n) = ¯n.
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probability

Pr(A;sn;¯n;¸1) =
exp(¸1eu(A; sn;¯n))P

j=A;B exp(¸1eu(j; sn; ¯n))

and to choose B with the remaining probability mass.
When deciding whether to buy a signal or not, subjects are assumed to

anticipate their own decision probabilities when choosing an urn, to calcu-
late the expected payo¤s from their two options accordingly, and to decide
logistically: Letting u(k;¯n)), k = y;z, be the subject’s expected payo¤s
from buying (denoted by y) and not buying (denoted by z), respectively,15

the probability of buying a signal is given by

Pr(y; ¯n; ¸1) =
exp(¸1u(y;¯n))P

k=y;z exp(¸1u(k; ¯n))
.

This two-step decision process is an immediate application of the logit Agent
Quantal Response Equilibrium de…ned by McKelvey and Palfrey (1998) to
the present single-person decision problem. As usual in such logistic-choice
models, the parameter ¸1 captures the response precision of the decision
maker: The higher ¸1, the more ”rational” are the decisions. As ¸1 ap-
proaches in…nity, decision probabilities become arbitrarily close to an opti-
mal pair of responses, given the prior ¯n; if ¸1 = 0, behavior is completely
random. At the same time, for any ¸1 > 0, the probability of making
a non-optimal decision decreases with the expected relative loss from this
decision.16

Now consider the question how subjects make use of their predecessors’
decisions when forming their prior beliefs ¯n. It is assumed that subjects are
aware that all other subjects follow the logistic decision process described
above, with the exception that they attribute a possibly di¤erent precision
parameter to the decisions of their opponents: ¸2 instead of ¸1.17 Anal-
ogously, when a subject considers the reasoning that others apply when

15 These expected payo¤s are given by u(y; ¯n)) = (¯n(
2
3 Pr(A;a; ¯n; ¸1) +

1
3 Pr(A;b;¯n;¸1)) + (1-¯n)(

2
3 Pr(B;a;¯n; ¸1) +

1
3 Pr(B;b; ¯n; ¸1)))U-K and u(z; ¯n) =

¯n Pr(A; 0; ¯n;¸1)+(1-¯n) Pr(B; 0; ¯n;¸1). For all estimates, expectations over the payo¤-
relevant rounds were used, i.e. all dollar amounts were divided by 15.

16 A common interpretation is that ¸1 captures the impact of computational errors
made by the subjects. For a random-utility justi…cation of Quantal Response Equilibrium
models and further discussion see McKelvey and Palfrey (1995, 1998) as well as Anderson,
Goeree, and Holt (1999).

17 Using this speci…cation, it is possible to test the ”rational expectations” assumption
¸1 = ¸2; i.e. that on average subjects have a correct perception of the randomization
processes of others.
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thinking about third subjects, we allow for a third parameter ¸3, which she
supposes each of her predecessors attributes to each of their predecessors.
For even longer chains of reasoning, additional higher-level parameters are
used. With these attributed parameters, the subject determines her belief
¯n via Bayes’ rule and the formulae for the decision probabilities given in
the previous paragraphs.

Since the longest chains of reasoning in the games involve …ve steps of
thinking about other subjects, the resulting model includes six parameters
altogether: ¸1 through ¸6. It is essential, however, that higher-level param-
eters are only applied when a player goes through chains of reasoning of the
according length, and not when she directly considers the decision of others
who decided several steps before herself. For example, player 3 attributes
the precision parameter ¸2 to the decisions of both previous decision mak-
ers, because she uses both players’ urn choices directly when forming her
updated belief. She also attributes the parameter ¸3 to player 1, but only
when she considers how player 2 thinks about player 1’s decision. Subse-
quent players go through increasingly complex updating procedures, with
di¤erent precision parameters for higher levels of reasoning.18 Using this
set of parameters and starting with ¯1 = 0:5, one can recursively construct
the players’ updated probabilities that A is the true urn, for any history of
observed choices.19

The model contains a number of special cases that can be tested using
the experimental data. If all parameters are equal, we have the logit Agent
Quantal Response Equilibrium applied to the entire game, which prescribes
for the subjects to know the error rate of other subjects, on all levels of
reasoning.20 If all parameters are in…nite, Perfect Bayesian Nash Equilib-
rium is predicted. Of particular interest are those cases in which one of
the parameters is equal to zero, because this re‡ects the limit in the depth
of reasoning. E.g., if ¸2 = 0 holds, then players behave as if responding
to random behavior by all other players, since no information is inferred

18 Analogously, later players also have to consider that several of their predecessors’
chains of reasoning skip player positions when forming their priors. E.g., player 4 has to
consider how player 3 considers player 1’s behavior directly. Such a chain is treated in the
analysis as a chain of length 2 (not of length 3), so ¸3 is applied there.

19 The updating procedure, which only relies on Bayes’ rule, is not presented in more
detail here for the sake of brevity. While the procedure is completely analogous for treat-
ments HC, LC, and NC, it di¤ers for the HCHI treatment in that the additional informa-
tion about signal acquisitions is also taken into account.

20 In the context of normal-form games, this assumption has been tested using related
behavioral models by both Goeree and Holt (2000) and Weizsäcker (2000), and has uni-
formly been rejected for a large number of games.
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from previous decisions. If the …rst two parameters are strictly positive but
¸3 = 0 holds, then players only make direct inferences from their predeces-
sors’ choices, and do not take into account that these predecessors also think
about third players when making their decisions. Similar statements apply
to cases in which higher-level parameters vanish. Hence, the length of the
reasoning process in the subject pool is re‡ected by the …rst parameter that
is indistinguishable from zero in the estimation results.

Data: pooled HC LC HCHI NC
¸1 10.45 11.36 8.19 12.97 10.84

(0.000, 0.000) (0.000, 0.139) (0.000, 0.941) (0.000, 0.000) (0.000, 0.000)
¸2 5.94 8.12 8.31 4.71 3.77

(0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000)
¸3 1.65 1.29 2.44 0.00 0.00

(0.795, 0.194) (0.994, 0.641) (0.905, 0.575) (1.000, 0.970) (1.000, 0.996)
¸4 0.00 0.00 0.61 - -

(1.000, 0.968) (1.000, 0.975) (1.000, 0.908)
¸5 - - 373.32 - -

(1.000, 0.981)
¸6 - - 0.00 - -

(0.996, -)

ll¤ -2045.9389 -518.1821 -470.2698 -523.7681 -464.9299

Table 2 : Response precisions estimated from the experimental data. Numbers
in parentheses are (i) the marginal level of signi…cance for the parameter
to be di¤erent from zero, and (ii) the marginal level of signi…cance for
the parameter to be di¤erent from the parameter on the next-higher level.

Table 2 reports the results of the maximum-likelihood estimation of the
model, for the four separate data sets and the pooled data. The table also
contains the levels of signi…cance for each parameter to be distinguishable (i)
from zero and (ii) from the parameter on the next-higher level of reasoning,
which are obtained using appropriate likelihood-ratio tests. An empty cell in
the table (”-”) indicates that the parameter is not identi…ed. This happens
if at the maximum value of the likelihood function a lower-level parameter
is estimated to be zero, so beyond this level of reasoning no information is
used when decisions are made.

The estimates show a clear distortion in the subjects’ perception of their
opponents: With only two insigni…cant exceptions, the response parameters
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decrease from one level of reasoning to the next, in all four data sets.21 In
particular, a comparison of the estimates for ¸1 and ¸2 shows that subjects
on average attribute a lower response precision to their opponents than
they have themselves. More strikingly, there is a large gap under all four
treatments between the estimated response precisions on the next level, as
¸2 di¤ers from ¸3 at a high signi…cance level. The parameter ¸3, in turn,
cannot be distinguished from zero in any of the data sets.22

Taken together, the results suggest that the subjects apply only short
chains of reasoning, and that the perceived response precisions get lower
and lower on higher levels of reasoning. As an interpretation, apart from
the possibility of an underestimation of the opponents’ response rationality,
one may think of these biases as evidence that the subjects’ reasoning gets
more and more ”fuzzy” on higher levels. Within the assumptions of the
model, this evidence can serve as an explanation of the observed deviations
from equilibrium play in the games, and in particular of the observed signal
acquisition behavior. While the subjects tend to ”distrust” the response
rationality of their opponents (as ¸1 exceeds ¸2), and hence often prefer to
buy signals themselves, they also behave as if disregarding the fact that their
opponents at least sometimes use the information that is conveyed by third
subjects’ decisions. Subjects fail to realize that other subjects may have had
good reasons not to obtain a signal in later stages of the games. In the high
information treatment, they learn how little information is accumulated in
the course of the game, which induces them to buy signals with an even
higher probability.

5 Conclusions

The paper investigates cascade formation with costly signals. The experi-
mental data exhibit substantial divergence from equilibrium play. In partic-
ular, players who have to decide early (but not …rst) buy too many signals,
whereas players who decide toward the end of the games seem con…dent
that previous decisions were based on private signals, hence buy less signals
themselves, and herd. When players are informed about who saw a signal
and who did not, they tend to buy even more signals than when they have

21 The hypothesis that all six parameters are equal is rejected on high levels of signi…-
cance, for each of the data sets.

22 The hypothesis that the parameter values decrease with a constant ratio between one
parameter and the next, as suggested by the model of Goeree and Holt (2000), can only
be rejected for the data of the LC treatment, at a 5% level of signi…cance. For the pooled
data, the hypothesis is accepted (p = 0:266).
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to form beliefs about who of their predecessors saw a signal. We explain
this …nding by limited depth of reasoning, using an error-rate model that
allows for false beliefs about the opponents’ behavior. The estimation re-
sults suggest that players do not consider what their predecessors thought
about their respective predecessors, so they do not understand that some
of the decisions they observe have been herding decisions, not based on any
private information.

These results can perhaps help to assess the value of Bayesian Nash pre-
dictions in situations where social learning is possible. Fads may well occur
– not because decision makers follow the equilibrium reasoning, but rather
because they tend to believe that previous decision makers were informed,
and hence follow the majority.

On a more general level, it may be interesting to compare the estimated
length of the subjects’ reasoning process with the results of previous studies,
cited in the Introduction, that investigate lengths of reasoning in di¤erent
experimental games. In contrast to these studies, we employ a random-
utility (or quantal-response) model of behavior, with incomplete information
about the others’ randomization processes, and draw all our conclusions from
the estimations of unobservable parameters. Despite these di¤erences in the
estimation approaches, there is a congruence in results with most of the
earlier work: The average subject does not make more than two steps of
reasoning.
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Appendix

A Instructions

[Instructions for groups playing the sequence [HC, NC, HCHI].]

This is an experiment in decision making. The Harvard Business School
has provided funds for the experiment. Your earnings will be paid to you
privately, in cash, at the end of the experiment. Only by coming here, you
have already earned a show-up fee of $8. It is very important to us that you
do not communicate with the other participants in the room (except via the
computer terminal in front of you). Therefore, please remain silent at all
times during the experiment. If you have a question, please raise your hand,
and we will come to your desk.

This experiment consists of several separate rounds. You will be ran-
domly matched with 5 other participants in the room. This group of 6
persons will be the same over all rounds of the experiment.

In each round you will be asked to predict a randomly chosen urn. A
new urn is chosen before each round. It is equally likely that urn A or urn B
will be chosen. Urn A contains 2 chips marked ”a” and 1 chip marked ”b”.
Urn B contains 1 chip marked ”a” and 2 chips marked ”b”. If you correctly
predict the urn, you win a …xed prize.

To help you determine which urn has been selected, each person has
the option to see one chip, drawn at random, from the urn. The result of
this draw will be your private information and should not be shared with
the other participants. After each draw, we will return the chip to the urn
before making the next private draw. Each person can have at most one
private draw. This is done on the computer. When it is your turn to obtain
your draw, you will be asked on the computer screen whether you want to
obtain the draw. To obtain the draw you have to pay a fee. If you decide
to see the draw, click on the button marked ”Yes” that will appear on your
computer screen. If you don’t want to see your draw, click on the button
marked ”No”. If you clicked on the ”Yes”-button, your window will read
”The draw is: b” if the chip that the computer has randomly drawn for
you is marked ”b”. And it will read ”The draw is: a” if the chip that the
computer has randomly drawn for you is marked ”a”.

After you have or have not seen you draw, you will be asked to input
the letter of the urn (A or B) that you think is more likely to have been
used. But you will also see the choice of all persons in your group who
made a decision before you. For all persons in your group, the same urn will
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be used. (But remember that a new urn will be chosen before each round.)
The order in which you get to decide (among the participants in your group)
is randomly determined every round. The …rst person who has to make a
decision (in your group) sees no other decisions. The second person sees
which urn the …rst person chose. The third person sees the choice of the
…rst and the second person, and so forth. This process will be repeated until
all 6 people have made decisions. Finally, we will inform everyone of the urn
that was actually used.

Your earnings are determined as follows: If your decision matches the
urn that was actually used, you earn $12. Otherwise you get nothing. If
you decided to see your draw, you have to pay $1.50, which will be deducted
from your total earnings. The …rst part of the experiment consists of 15
rounds. After the experiment, we will randomly determine one of these 15
rounds that will actually count for your earnings. All other rounds are not
relevant for your earnings. If you decided to obtain a draw in any of these
other periods, you will also not have to pay for it. Your earnings in the
selected round will be added to your show-up fee of $8.

At the end of each round, your choice will be recorded on your screen
along with the actual urn used, and your payo¤ for the round. (This round
payo¤ will be shown in all 15 rounds, not just in the one that determines
your earnings.)

(The following paragraphs in italics will also be read aloud to you.)
Before we begin the actual experiment, we will go through a demonstra-

tion. We will show how the actual urn is chosen, and the process by which
the draws are made. Note that, in the actual experiment, the computer will
choose the actual urn, as well as make the draws for each person.

We have two bags (the urns), labeled ”A” and ”B”. Urn A contains
two chips marked ”a” and one chip marked ”b”. Urn B contains two chips
marked ”b” and one chip marked ”a”. Now we will ‡ip a coin, to determine
which urn is chosen. If the result of the coin ‡ip is heads, then urn A will
be used, and if the result of the coin ‡ip is tails, then urn B will be used.
We will now draw a chip for the …rst person who wants to see his or her
draw. If this were not just a demonstration, then this person would see the
letter marked on the chip on the screen, and make a decision by checking
the button for urn A or urn B on the screen.

Then, we will draw a chip for the next person who wants to see his or
her draw. If this were not a demonstration, this person would see the letter
marked on the chip on the computer screen, also see the decision of the …rst
person on the screen, and make a decision (A or B) him- or herself.

Are there any questions before we begin?
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Please do not open other windows on the computer while the experiment
is running.

Before we begin the actual rounds, wewill go through one practice round,
for which you will not be paid. After this practice round, the 15 rounds of
the …rst part of the experiment start.

[The following part of the instructions was distributed after the …rst 15
rounds were over.]

That concludes the …rst part of the experiment. For the second part, the
procedure is the same, but you (and all other participants in your group)
will now be able to see the draw for free. So, nothing will be deducted from
your earnings when you see your draw. Remember that only one randomly
chosen round (out of 15) is relevant for your earnings.

Before the second part begins, we will again have one round of practicing
the game, which does not count for your earnings. After that, the new 15
rounds will start.

[The following part of the instructions was distributed after the second
15 rounds were over.]

That concludes the second part of the experiment. For the third part,
it again costs $1.50 to see your draw. The procedure is the same, but you
will now see whether the persons deciding before you have seen their draws
or not. On your screen you will now read for example ”The 1st player’s
decision was: B. The 1st player did obtain a draw.” if the …rst player chose
urn B and decided to see his draw. You will read ”The 1st player’s decision
was: B. The 1st player did not obtain a draw.” if the …rst player chose urn
B and decided not to see the draw. Similarly, this information will appear
on your screen for all persons who made decisions prior to you. When it
is your turn, you will be asked whether you want to see your draw. After
seeing or not seeing your draw, you will have to make a decision (urn A or
urn B).

As before, we will have one practice round before the 15 rounds of the
third part begin. Again, one randomly determined round out of all 15 rounds
will count for your earnings.
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