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SUMMARY

Linear errors-in-covariables models are considered, assuming the availability of in-
dependent validation data on the covariables in addition to primary data on the
response variable and surrogate covariables. We first develop an estimated empir-
ical log-likelihood with the help of validation data and prove that its asymptotic
distribution is that of a weighted sum of independent standard x? random vari-
ables with unknown weights. By estimating the unknown weights consistently, an
estimated empirical likelihood confidence region on the regression parameter vec-
tor is constructed. We also suggest an adjusted empirical log-likelihood and prove
that its asymptotic distribution is a standard x2. To avoid estimating the unknown
weights or the adjustment factor, we propose a partially smoothed bootstrap empir-
ical log-likelihood to construct a confidence region which has asymptotically correct
coverage probability. A simulation study is conducted to compare the proposed
methods with a normal approximation based method in term of coverage accuracy

and average length of the confidence interval.

Some key words: Bootstrap empirical likelihood; Confidence region; Measurement

error; Surrogate variables.



1. INTRODUCTION

Let Y be a response variable and X be a d-vector of explanatory variables. We

consider the linear regression model
Y =X"B+e, (1.1)

where 8 € R? is a d-vector of regression coefficients, e is a random error, and given
X, the errors e are independent and identically distributed.

In many applications, the exact measurement of X may be difficult, time con-
suming or expensive, so a surrogate X is observed instead of X. Generally, the
relationship between the surrogate variables X and the true variables X can be
rather complicated compared to the classical additive error structure usually as-
sumed (Fuller, 1987). For example, X may follow the model X = F (X, €), where
€ is independent of (Y, X) and F is an arbitrary function. This situation presents
serious difficulties in making valid statistical inferences on the regression parameter
vector 3. One solution is to postulate distributional assumptions on the conditional
distribution of X given X , but the resulting inferences could be sensitive to the
assumed distribution.

In this paper, we consider settings where some validation data are available
to relate X and X. In particular, we assume that independent validation data
{(Xi, X;)X4r |} are available in addition to the primary data {(Y;, X;)X, }.Pepe &
Fleming (1991), Wittes, Lakatos & Probstfield (1989), and Pepe (1992) gave some
examples where such validation data are available. In one example of Pepe (1992)
related to school-based smoking prevention projects, current smoking behavior was
generally assessed through self-reporting by using questionnaires. But, self-reporting
data may be subject to error. Chemical analysis of saliva samples for the presence
of cotinine yields a more accurate measure of current smoking behavior. However,
due to higher costs relative to self-reporting, only a small subset of subjects enrolled

in the study can be subjected to cotinine analysis.



With the help of validation data, Stefanski & Carroll (1985), Carroll & Wand
(1991), Sepanski & Lee (1995), Wang (1999) and the above referenced authors de-
veloped suitable methods, but the existing literature does not deal with empirical
likelihood method to handle error-in-covariables models. It is well known that the
empirical likelihood method, introduced by Owen (1988), is especially useful for
constructing confidence regions (intervals). It has many advantages over some clas-
sical and modern methods, such as the normal approximation-based method and
the bootstrap method. In particular, it does not impose prior constraints on region
shape, does not require the construction of a pivotal quantity, and the region is range
preserving and transformation respecting (Hall & La Scala, 1990). Owen (1991) and
Chen (1993, 1994) developed empirical likelihood method for the linear regression
model (1.1) when X is measured exactly. In this case, the empirical log-likelihood
is asymptotically distributed as a standard x?.

To develop empirical likelihood method in the presence of errors in covariables,
we first calibrate the model (1.1) and obtain an equivalent calibration regression
model with E[X|X] as the covariate vector. Clearly, the empirical log-likelihood
function based on the calibration model contains unknown covariate vector E[X|X]
in addition to the unknown parameter vector 5. To make (3 identifiable, we replace
E[X|X] by an estimator obtained from the validation data, leading to an estimated
empirical log-likelihood. However, the distribution of the estimated empirical log-
likelihood is asymptotically a weighted sum of independent x? variables with un-
known weights. As a result, it cannot be applied directly to construct confidence
regions for 4. To overcome this difficulty, several different methods may be used. In
the first method, the unknown weights are estimated consistently so that the distri-
bution of the estimated weighted sum of chi-square variables can be calculated from
the data. In the second method, the estimated empirical log-likelihood is adjusted so

that the resulting adjusted empirical log-likelihood is asymptotically distributed as



a standard x2. In the third method, a bootstrap empirical log-likelihood is defined
so that the distribution of the bootstrap empirical log-likelihood approximates that
of the estimated empirical log-likelihood.

The rest of this paper is organized as follows. In §2, we define an estimated
empirical log-likelihood and then show that it is asymptotically distributed as a
weighted sum of independent x? variables. In §3, we define an adjusted empirical
log-likelihood and obtain its asymptotic distribution as a standard x?, and then
use it to define a confidence region for 4. In §4, we develop a partially smoothed
bootstrap empirical likelihood method to construct a confidence region for 3 which
has asymptotically correct coverage probability. In §5, we conduct a simulation
study to compare the proposed methods and some classical methods. Proofs of

theorems in §2-4 are delegated to the Appendix.
2. ESTIMATED EMPIRICAL LOG-LIKELIHOOD

In what follows, we assume that in addition to the primary data consisting of N

N

independent and identically distributed observations {(Y;, X;) =1, validation data

consisting of n independent and identically distributed observations {(X;, X) e}

are available. Furthermore, we assume that E[e|X] = 0. This assumption may be
reasonable in some cases. A special case for the assumption to be true is that e is
independent of X and Fe = 0. A more general case is that the error e = o(X)¢
with E¢ = 0 and €’ is assumed to be independent of both X and X. This is the case
when X = F(X,€) and ¢ is assumed to be independent of both X and €, where € is

the measurement error associated with X and F is an arbitrary function.
Let u(X) = E[X|X], then (1.1) may be rewritten as
Y =u"(X)B+n (2.1)

with n = e + XT3 — u”(X)B. This motivates us to introduce the auxiliary random

vector Z;(0) = u(X;){Y; — u”(X;)3}. Now noting that EZ;(8) = 0 if 4 is the true
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parameter, the problem of testing whether ( is the true parameter is equivalent
to testing whether EZ;(f) = 0 for i = 1,2,---, N. By Owen (1991), this may be
done using the empirical likelihood. Let p;,ps,- -+, pny be the nonnegative numbers

summing to unity. Then, the empirical log-likelihood, evaluated at 3, is defined as

In(B) = -2 max Zlog Np;).
Zp,Z =0, Epz—lz !

If 3 is the true parameter, then [y () can be shown to be asymptotically distributed
as a standard x? with d degrees of freedom, x2. However, this result cannot be used
to make inference about 3 because Iy () contains the unknown terms u(X;), and
hence 3 is not identifiable. A natural way to solve this problem is to replace u(-) in
In(8) by an estimator. With the validation data, u(Z) can be estimated by

N+n X
5 e (55)

~ (~) _ Jj=N+1
n =

Ntm o (2255
ke (5)

j=N+1

(2.2)

where K (-) is a kernel density function and h, is a bandwidth that decreases to zero
as n increase to infinity. To avoid technical difficulties due to small values in the
denominator of @, (Z) given by (2.2), we define an estimated empirical log-likelihood
function by replacing u(-) in Iy (3) with a truncated version of 4, (-). Let

Fu(®) = (nhd)~ Nf}(( hX>

j=N+1

and f,(Z) = max{ f,(), by} for some positive constant sequence b,. The truncated

version of %, (Z) is then given by

e Tn(@al@)
()= (23)

Let Z;,(8) denote Z;(3) with u(X;) replaced by @, (X;) fori = 1,2,---, N. Then,
we define an estimated empirical log-likelihood as

1(8) = -2 max Zlog Np;),
Epl zn(ﬁ) 02?1—11 .

i=1 i=1
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suppressing the subscripts n and N on lA(ﬂ) for simplicity. By the Lagrange multiplier
method, lA(ﬂ) can be represented as
R N
1(B) =2 log{1+ X' Z(8)}, (2.4)
i=1

where )\ satisfies

B
ZHATZm(ﬁ) > %)

By Taylor’s expansion and some mild regularity conditions given in Appendix 1,

it can be shown that
T 1

19~ {3200} {3 5200700} { e 2.0} 400

N
Further, ¥ Z;,(8)/v' N can be shown to be asymptotically normal with zero mean
=1

vector and covariance matrix

V() = EuXul(X){Y —u"(X)8}
+1E [u(X)u" (X{(X — u(X))" )],

where v = lim(N/n). Also, ¥V | Zi(8)ZL (8)/N & Vy(B), where

Vo(B) = E{u(X)u" (X)(Y —u" (X)B)*}.

This implies that 1(3) is not asymptotically x3 since V(3) # Vo(3) when ~ # 0.
Actually, it is asymptotically a weighted sum of independent x? variables, as stated
in Theorem 1.

THEOREM 1 Under the regularity conditions listed in Appendiz 1, if 3 is the
true value of the parameter, then

~

L
1(B) = wix3, + - + waxi g

where the weights w; for 1 < i < d are the eigenvalues of D(8) = Vy 1(B)V(8), and
X%,i for 1 < i < d are independent x? variables, and “57 denotes convergence in

distribution.



To apply Theorem 1 to construct a confidence region (interval) for £, we must
estimate the unknown weights w; consistently. By the “plug in” method, V(8) and

Vo(B) can be estimated consistently by

VB = N7 (a0 (X) (¥ — 5 (X05))
3 3 AR [ - X))

and

Wo(B) = N‘I;{ﬂn(z)ﬂf(ﬁ?})(lfi—ﬂf(fé)ﬁ)Q},

respectively. Here B is the least squares estimator of 3 based on (2.1) and the “plug
in ” method:

B=5"14 (2.6)

with

™

Il
2=
M=
N
2
=
=t
P
s

A = il (X,)Y;.
=1

This implies that the eigenvalues of D(3) = V;™' (B)V (3), say @;, estimate w; consis-
tently for: = 1,2,---,d. Let ¢, be the 1 — a quantile of the conditional distribution
of the weighted sum S = @ X%,l + -+ de%,d given the data. Then, the confidence
region for B with asymptotically correct coverage probability 1 — « can be defined

as

Io(B) = {B: 1(B) <}
In practice, the conditional distribution of the weighted sum S given the data
(X5, X;)N4r ¥ and {(V;, X;)Y,} can be obtained using Monte Carlo simulations

by repeatedly generating independent samples Xil, cee X%,d from x? distribution.



In the absence of measurement error, D(f3) reduces to an identity matrix so that
w; = 1 for 1 < i < d, and Theorem 1 reduces to Owen’s (1991) result that the

empirical log-likelihood is asymptotically x3.

3. ADJUSTED EMPIRICAL LOG-LIKELIHOOD

Following Rao & Scott (1981), the distribution of p(8)(X%; wix};) can be ap-
proximated by x%, where p(8) = d/tr{D(8)} and tr(A) denotes the trace of a
matrix A. This implies that the asymptotic distribution of I(8) = p(B8)I(8) can be
approximated by x2 by Theorem 2.1 and the consistency of V (5) and V;(3), where
p(3) = d/tr{D(B)}. However, the accuracy of this approximation depends on the
values of w;s. Next, we give an adjusted empirical log-likelihood whose asymptotic
distribution is exactly a standard chi-square. Note that

R G
PO = T BT B

By examining the asymptotic expansion of A(ﬂ), we replace V(B) in (3.1) by H (E) =
(S0 Zin(BYHEE, Zin(B)}T and get a different adjustment factor

1
= 3.1
- (3.1)

N U ()3
(% (DH()

~ o~

It can be shown that 7(3)I(3) is asymptotically x2. To increase the accuracy of
approximation, we replace E in r(ﬁ) by (# and define an adjusted empirical log-

likelihood by

~ ~

laa(B) = T(B)U(B)- (3.2)

THEOREM 2. Under the reqularity conditions listed in the Appendiz, if (3 is the

true value of parameter, then lAad(ﬂ) is asymptotically x2. That is,

~

lad(ﬂ) i> Xﬁ



Based on Theorem 2, lAad(ﬂ) can be used to construct a confidence region for 3.

Let

Luaa(B) = {5 : lua(B) < ca}
with P(x% < ¢o) = 1 — a.. Then, by Theorem 2, I4,(5) gives a confidence region
for B with asymptotically correct coverage probability 1 — a.

Clearly, the Rao-Scott adjusted empirical log-likelihood /() can also be improved

by replacing p(3) in I(3) by p(8). The improved Rao-Scott adjusted empirical log-
likelihood reduces to the adjusted empirical log-likelihood given by (3.2) when d = 1.

4. PARTIALLY SMOOTHED BOOTSTRAP EMPIRICAL LOG-LIKELIHOOD

In this section, we develop a partially smoothed bootstrap empirical log-likelihood
method to construct a confidence region for [ with asymptotically correct cov-
erage probability 1 — «. Let uy be the empirical distribution of the primary data
{(X;,Y;),i=1,2,---,N}. Given (X1, Y1), -+, (Xn, Yn), let (X5, Y7), -, (X3, Y5
be independent, with common distribution py. Let v, be the empirical distribution
of the validation data {()A(;,Xz-),i =N+1,---,N+n}. Given (XN—H;XN—H); e
(XNin Xnan)), let ()A(J}(Hl, X)) (Y&+m, X3/ +m) be independent, with com-
mon distribution v,. It should be pointed that the primary and validation data are
bootstrapped independently.

Let @;,(-) be the bootstrap analog of @, (-) given by (2.3), based on the bootstrap
primary data { (X7, ¥;*)M, } and bootstrap validation data { (X7, X7)Mim 3. Denote
the bootstrap auxiliary random vector by Z;, (3) = u*,(X7)(Yy — @T(X7)[), where

~

B is given by (2.6). The bootstrap empirical log-likelihood function is defined as

M
(8) =2 log(1+ X Z;,(5)), (4.1)
i=1
where A\* satisfies (2.5) with Z;,(3) and N replaced by Z;"m(B) and M, respectively.
To prove that the asymptotic distribution of f“(ﬁ) approximates that of A(ﬁ), we

need to ensure that X}, SRTRE X3, +m have a probability density. This motivates
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us to use a smoothed bootstrap obtained as follows. Let YE+i = Y}(/Hi + hn&nryi
for i = 1,2,---,m, where h, is the bandwidth sequence used in §2 and &;44,1 =
1,2,---,m are independent and identically distributed random variables with the
common probability density K (-), the kernel function used in §2. We define I**(53) to
be I*(3) with XJ}(/IH, e 5(:}\"/[% replaced by Yﬂﬂ, e Yﬂﬂn. Because this method
uses smoothed bootstrap sample only partially, we call this method as partially
smoothed bootstrap.

In what follows, we denote P* as the partially smoothed bootstrap probability.

THEOREM 3 Assume the regularity conditions of Theorem 1. Then, along al-
most all sample sequences, (X;,Y;) for 1 < i < N and ()ffj,Xj) for N+1<j <
N +n,

sup |P(I(5) < ) = P*(I*(B) < )] — 0,

as n, N,m and M tend to infinity

As pointed out by a referee M and m only need to go to infinity and they can but
need not match N and n respectively. The distribution of I**(3) can be calculated
by Monte Carlo simulation. Hence, the bootstrap approximation result in Theorem

3 can be used to construct a confidence region for 5. Let ¢* be the 1 — a-quantile

of the distribution of 7**(3) and

~ o~ ~

Iy ={B:18) <e

Then, by Theorem 3, I ~x gives a bootstrap confidence regions for # with asymptot-
ically correct coverage probability 1 — a.

Compared to the estimated empirical log-likelihood and the adjusted empiri-
cal log-likelihood, an advantage of the bootstrap empirical log-likelihood is that it
avoids estimating the unknown weights and the adjusting factor. This is especially
attractive in some cases when the unknown weights or the adjustment factor are dif-
ficult to estimate efficiently. Hall & La Scala(1990) pointed out that a construction

of any multivariate bootstrap region requires a decision on how the region should

9



be shaped, and it can be rather difficult to make the decision in a manner which
depends only on objective, data-driven criteria. On the other hand, the shape of the
confidence region of the bootstrap empirical likelihood is determined automatically

by the data configuration.
5. SIMULATION RESULTS

To evaluate the performance of the proposed methods, we conducted a simula-
tion study for the two cases, d = 1 and d = 2. We compared the four empirical
likelihood methods, namely the estimated empirical likelihood, the adjusted em-
pirical likelihood , the improved Rao-Scott adjusted empirical likelihood, and the
partly smoothed bootstrap empirical likelihood, with a normal approximation-based
method and the standard bootstrap empirical likelihood in terms of coverage accu-
racies of confidence regions (intervals) and average lengths of confidence intervals.
The normal approximation confidence region (interval) was calculated based on the
asymptotic normality of B, defined in (2.6), with asymptotic covariance matrix es-
timated by

~ ~

0= 7S,

where £ and V(§) are defined in §2.

5.1. Case 1I: d =1

We considered the linear model (1.1) with 8 = 1.5 and e distributed as N(0,1).
The surrogate variable X was generated such that X = 125X + d€, where X and
€ have the standard exponential distribution and N(0, 1) distribution respectively,
and ¢ is the standard deviation of the measurement error. Results for 6 = 0.4,0.6
are reported. Simulations were run with validation and primary data sizes (n, N) =

(10, 30), (30,90), (60,180), (10,50), (30,150) and (60, 300); bootstrap sample sizes

10



were taken as m = n and M = N. The bandwidth A, was taken to be n~% and
b, = n~21, and the kernel K (z) to be 5 if [z| < 1, and zero otherwise. The coverage
probabilities and the average lengths of the confidence intervals, with nominal level
0.95, were computed by using 5000 simulation runs. The simulation results are

presented in Tables 1 and 2.

Insert Tables 1 and 2 here

Since the improved Rao-Scott adjusted empirical likelihood reduces to the ad-
justed empirical likelihood when d = 1, we do not consider the improved Rao-Scott
adjusted empirical likelihood in Tables 1 and 2. Table 1 shows that the standard
bootstrap empirical likelihood method behaves quite badly in terms of coverage ac-
curacy. It appears that the confidence interval based on this method does not have
asymptotically correct coverage probability because the coverage accuracy changes
unstably with the sample size. It is clear from Tables 1 and 2 that the normal
approximation method is consistently and sometimes grossly over covering and it
does this by using long intervals. The adjusted empirical likelihood method consis-
tently achieves higher coverage levels, close to 0.95 as n and NV increase, and shorter
intervals than the estimated empirical likelihood method, although the differences
are not substantial. Also, the adjusted method generally leads to shorter intervals
than the smoothed bootstrap empirical likelihood method. This might explain why
the smoothed method is generally over covering while the adjusted method leads to
coverage levels lower than 0.95. However, the over covering of the smoothed method
is smaller than the over covering of the normal approximation method. Comparing
the values in Tables 1 and 2 for the estimated, adjusted and smoothed methods
as n increases with N/n constant, we see that the coverage levels, for a given §,

rapidly approach the nominal level, 0.95, and the interval lengths rapidly decrease,
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especially as n increases from 10 to 30. Also, the methods, for a given §, perform
better in terms of coverage levels and interval lengths as N increases with n constant:
N/n =5 versus N/n = 3. But, the improvement is small compared to increasing n
with N/n constant. We also note that the performance of the methods, for a given
(n, N), improves as the standard deviation of the measurement error, J, decreases.

All in all, our limited simulation study suggests that the adjusted and smoothed
bootstrap empirical likelihood methods perform better than the remaining methods
for d = 1. Also, the smoothed method might be preferred over the adjusted method
if n is small, n = 10, because the adjusted method leads to significant under coverage
while the smoothed method is conservative. For larger n(> 30), the adjusted method

is better.

5.2. Case 2: d =2

We considered the linear model (1.1) with d = 2, 3 = (1.5,2.2)T and X generated
from the standard bivariate normal distribution. The surrogate variable X was
generated such that X = 1.25X + d¢, where € is distributed as a bivariate normal
with zero mean vector and covariance matrix

1 0.5

0.5 1

and ¢ is the standard deviation of the measurement error. Results for 6 = 0.4,0.6
are reported. Simulations were run with validation and primary data sizes (n, N) =
(20,60), (60,120) and (100,300). The bandwidth h,, was taken to be n~5 and
b, = n‘i, and the kernel density function was taken to be the product kernel

K(x1,29) = Ko(z1)Ko(z2), where

Bl—-22? -1<z<1
—] 16 ’ T4
Ko(z) { 0, otherwise

12



The coverage probabilities, computed from 5000 simulation runs, are presented in
Table 3. We have not calculated the volumes of the confidence regions because it
could take a lot of computational work. As a result, our simulation study for d = 2

is limited in scope.

Insert Tables 3 here

In Table 3, the empirical coverage level of the normal approximation confidence
region was calculated from the Wald statistic based on B, where B is given by
(2.6). It is clear that the standard bootstrap empirical likelihood performs poorly
with coverage probabilities substantially lower than the nominal level of 0.95. This
result again shows that the distribution of the empirical likelihood might not be
well-approximated by that of its standard bootstrap empirical likelihood. Secondly,
the normal approximation method leads to coverage probabilities significantly lower
than the nominal level 0.95 when n is not large. Among the remaining methods,
the adjusted empirical likelihood, the smoothed bootstrap empirical likelihood and
the improved Rao-Scott adjusted empirical likelihood seem to perform better than

the estimated empirical likelihood.

6. CONCLUDING REMARKS

When the dimension of X and hence of X is large, the curse of dimension-
ality may occur because of the estimation of E[X|X]. In this case, a more ap-
pealing approach is to consider a dimension reduction model by assuming that
E[X|X] = (1(X" 1), -, 9a(XT74)). The parameters 7y, ---,74 can first be es-

timated by sliced inverse regression techniques due to Li (1991). Then, we can esti-

mate g1(-),- - -, ga(-), respectively, by the univariate kernel regression method. After

13



obtaining the estimator of E[X|X], we can develop empirical likelihood methods
and obtain results similar to those in the previous sections. Asymptotic inference

theory in this setting is worth further investigation.
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APPENDIX 1

Regularity conditions

For any vector a, denote by ||a|| the Euclidean norm. Let D™ be the class of all

continuous function ¢(-) on R?% m > d, such that the derivatives

ail aiz aid
axil 8xi2 e axidQ(a:l;xQ)" 'axd)
1 2 d

are uniformly bounded for 0 < #; + 49 + -+ + i3 < m. The following assumptions
are needed for the proofs of Theorems 1-3.

Cl: E||X|? < oo,

C2: EY? < oo,

C3: fx(@) e D™,

C4: u(-) e D™,

C5: /by [(1u(@) [PI[5(@) < b)) & — 0,

C6: K(-) is a nonnegative and bounded kernel function of order m with bounded
support,

C7: binh%® — oo,

. nham
C8: o — 0,

14



APPENDIX 2
Proofs

Sketch of Proof of Theorem 1. Applying Taylor’s expansion to (2.4), we get

1(9) = 23 AN Zia(B) = 5O Zin(9)} + (1), (4.1
By (2.5), it follows that
0= iizm—(ﬂ): iiz (5)_iiz. (8)2 )“"ii BN Zin(B)}?
NS1+XZu(8) Ng™7 Ng™ N&Z 1+ XZ,(B)
(4.2)
This implies that
SR ORACEAC I WACET I (4.3)
and
> AZin(B Z{)\TZm B)} + 0p(1) (A.4)
by using the results maxi<;<, || Zin(B8)|| = op(n%), Ly Zin(B)ZE(B) = Op(1) and
A= 0p(n3).
Let
T10) = (e L 2a0)) 770) (5 2 209))
Then, (A.1), (A.2), (A.3) and (A.4) together yield
1(B) = Wi(B) + 0p(1). (A.5)

Note that Vp(3) 2 Vo(8) and X", Zin(8)/+/n = O,(1). By (A.5), we have

= ﬂ)ilZm(ﬂ)> Fo(l)  (AS)



where D(f3) is defined in Theorem 1.
Let D = diag(ws, - -+, wp), where w; for 1 < 4 < p are defined in Theorem 1.
Then, an orthonormal matrix Q exists such that Q" DQ = D(3). By (A.6), we have

1

Jn

Let U; = (X;, &) and V; = (X, X;). First, it can be proved that

9= (=ev 0% zm(m)TB( QHO X Z(3) +0,) (A7

N
T 2 2l ) = e S (U Vi) +04(1), (49
where
~ K(#) (X —u(X3))ns
U (Ui, Vis b)) = u(Xi)mi + W)
K (’7,,—"71> (X —u(X3))T Bu(X;)
+ hd f=(Xs) '

Note that @ is an orthonormal matrix. Then, by (A.8), using arguments similar to

those used in Wang (1999), we can prove that

- z QVH(8)Zin(B) -5 N(0, 1)), (4.9)

where I, is the p x p identity matrix. (A.7) and (A.9) together prove Theorem 2.1.
Sketch of Proof of Theorem 2 Let

T

—~ 1 X ~ 1 X
W(8) = |—=_ Zin VHB) | —= D Zin(B) | -
Recalling the definition of ,4(8), by (A.5) it follows that

laa(B) = Wa(B) + 0,(1). (A.10)

Notice that V(3) -2 V(). This together with (A.9) proves that W(8), and
hence l,q(3) by (A.10) is asymptotically distributed as X3
Sketch of Proof of Theorem 8 Let E* denote the bootstrap expectation. Let

f%..(-) be the probability density of X* and u*(-) = E*(X*|X* = .). Standard
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arguments can be used to prove that

1 n+N ws
E'|X*P =~ > Xl = B X|® <oco, EY™= ZYQ

z N+1

and

f%..() € D™ and u*(-) € D™ with probability 1.

Next, we prove that

Vitbn [ (@)FF(@) < ba] dF 425 0

Observe that
Vg [5 i (@) |PI1fa (%) < by] dF

= Vb, [5|Un(Z )HZI[fn( ) < bn, f53(Z) < bp] dZ

/by [ @) PIF(3) < b, f3(&) > 2b,] di

= Anl + An? + An3-
By assumption C5, C3, C4, C6, C7 and C8, we have
D < 2y/nby [5|Un(Z) — u(@)|PI[f2(Z) < ba] dZ + 0,(1)

< 2y/mby (sup; [|in(@) — w(@)I)? [5 I[f2(&) < ba] dZ) + 0p(1)

= 2V/nbn (O, ((nhgb})™") + Op (k™)) S5 I[f5(F) < ba] dZ + 0p(1) = 0p(1).
1

Similarly, we can prove that

An2 = Op(l)-

It is easy to see that

By < Vb, [_0(@) 2111 Fa(@) = £(3)] > ba) d.

Hence, for any € > 0 we have

P(|Ans| > €) < P(sup | fu(®) = f(Z)] > ba)-

17

2N EY? < 0
(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)



Standard arguments can be used to prove that

sup |/ (@) — £(@)] = Op((nhi))2) + Op(hi})

x

by C3 and C4. This proves that

sup; | fu(@) — f(@)]
by,

=0y H+0, ()=o) (419

m
n

as nhib? — oo and ’Z—n — 0, which are implied by C7 and C9, respectively. (A.17)
and (A.18) together prove A,3 = o0,(1). This together with (A.14), (A.15) and
(A.16) proves (A.13)

By (A.11)-(A.13), conditions C6-C10 and arguments similar to those used in
the proof of Theorem 1, we can prove that along almost all sample sequences, given
()N(Z-,Yi) for 1 <4< N and ()@,Xj) for N+1<j < N-+n,asmand M, and n and
N go to infinity f“*(,@) has the same asymptotic weighted chi-square distribution as

~

[(B). This together with Theorem 1 proves Theorem 3.
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Table 1. Coverage probabilities of confidence intervals on (3 for selected values of §
and sample sizes (n, N) when nominal level is 0.95

3=
>

(n,N) EEL AEL SBEL BEL NA

(10,30) 9124 9190 9754 9780 9938
0.4 (30,90) .9340 9373 9612 8574 9831
(60,180) 9427 .9489 9577 7682 9630

3
(10,30)  .9052  .9094  .9839  .9732  .9958
0.6  (30,90)  .9210  .9238 9737  .8321  .9863
(60,180)  .9414  .9428 9594 9911  .9682
(10,50)  .9180  .9220  .9742 6729  .9905
04  (30,150)  .9389  .9391 9583  .8925  .9800
(60,300)  .9486  .9494 9546  .9876  .9607

5

(10,50) 9096 9136 .9804 9758 9935
0.6 (30,150) 9253 .9284 9699 .9820 9827
(60,300) .9456 .9460 9587 .8954 9632

EEL: estimated empirical likelihood; AEL: adjusted empirical likelihood; SBEL:
smoothed bootstrap empirical likelihood; BEL: standard bootstrap empirical
likelihood; NA: normal approximation.
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Table 2. Average lengths of confidence intervals on B for selected values of 6 and
sample sizes (n, N) when nominal level is 0.95

3=
o

(n,N) EEL AEL SBEL NA

(10,30) 1.5600 1.5500 1.8900 2.0147
0.4 (30,90) 0.4900 0.4300 0.5700 1.0267
(60,180) 0.3300 0.3200 0.3800 0.5748

3
(10,30) 1.8200 1.7800 2.0200 2.9758
0.6 (30,90) 0.6900 0.6600 0.7300 1.3526
(60,180) 0.3600 0.3400 0.4500 0.7480
(10,50) 1.5400 1.5100 1.8100 1.9403
0.4 (30,150) 0.4500 0.3900 0.5200 0.9241
(60,300) 0.3100 0.3000 0.3300 0.3801

3

(10,50) 1.7900 1.7300 1.8800 2.0221
0.6 (30,150) 0.6100 0.5800 0.6200 0.9542
(60,300) 0.3300 0.3300 0.3500 0.4149

EEL: estimated empirical likelihood; AEL: adjusted empirical likelihood; SBEL:
smoothed bootstrap empirical likelihood; NA: normal approximation.
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Table 3. Coverage probabilities of confidence regions on (3 for selected values of o
and sample sizes (n, N) when nominal level is 0.95

o (n,N) EEL AEL IRSAEL SBEL BEL NA
(20,60) .8970 9060 9208 9814 .8670 .8824

0.4 (60,120) 9133 .9290 9257 9692 9072 9062
(100,300) 9432 .9429 9601 9575 .8902 9328

(20,60) .8820 9001 9134 9950 .8924 8674

0.6 (60,120) 9133 9192 9247 9820 9011 9028
(100,300) .9422 9427 9616 9579 .8728 9319

EEL: estimated empirical likelihood; AEL: adjusted empirical likelihood; IRSAEL:
improved Rao-Scott adjusted empirical likelihood; SBEL: smoothed bootstrap
empirical likelihood; BEL: bootstrap empirical likelihood; NA: normal
approximation.
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