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Abstract

This paper develops a new econometric tool for evolutionary autoregressive models where the
AR coefficients change smoothly over time. To estimate the unknown functional form of time-
varying coefficients, we propose a mdified local linear smoother. The asymptotic normality
and variance of the new estimator are derived by extending Phillips and Solo device to the
case of evolutionary linear processes. As an application for statistical inference, we show how
Wald tests for stationarity and misspecification could be formulated based on finite-dimensional
distributions of the kernel estimates. We also examine the finite sample performance of the
method via numerical simulations. As an empirical illustration, the method is applied to the

real data of US stock returns.
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1 Introduction

Stationarity has been a fundamental assumption in time series analysis. In a stationary system,
the statistical properties of the process do not change over time, which has some appeal if the data
measure deviations from what is believed to be a steady-state equilibrium. However, the notion of
stationarity is best considered to be a mathematical idealization which is often too simple to capture
the complicated dynamic structure of economic time series. The availability of longer historical data
series only serves to increase doubts about the realism of such restrictions. A more serious case occurs
in practical applications when the period of interest tends to experience frequent structural changes.
For example, the long term behavior of most economies tends to show what appears to be a slow but
steady adjustment process, which cannot be properly analyzed by using the stationary approach. In
this paper, we seek to widen the empirical diversity of time series models by adopting a general class
of evolutionary processes that can accommodate a variety of complicated forms of nonstationary
behavior. Specifically, we extend the application of AR models to a general nonstationary process
by allowing the autoregressive coefficients to change smoothly over time. An evolutionary AR(p)

process, {y;};_, is defined to have the following DGP
p
Yt = Zak (t/n) yi—i + &1, (1)
k=1

where &; is 1.i.d.(0, 02).

Unrestricted nonstationarity, however, may entail so much arbitrariness in the time-dependent
behavior of a process that it is impossible to develop a meaningful asymptotic theory. When a
process is evolutionary, increasing the number of observations over time does not necessarily imply
an increase in information. In particular, one cannot expect an ensemble average to be consistently
estimated by the corresponding temporal average'. To avoid pathological cases arising from extreme
nonstationarity, we impose some restrictions on the process to control the extent of the deviations
from stationarity. A natural way of doing so, is to embed a stationary structure on the process in the
vicinity of each time point. This idea is similar to notion that underlies the nonparametric technique
of fitting a line locally to a nonlinear curve. In this case, a smoothness condition on the curve is
required to validate the approach. Likewise, in the present case, the imposition of local stationarity

involves the use of a smoothness constraint on the evolution of the nonstationary processes. A rigorous

! This breakdown might seem to be linked more directly to the violation of ergodicity rather than stationarity. But

note that under stationarity, one still has convergence to ensemble averages conditional on the invariant algebra.



definition of local stationarity was recently made by Dahlhaus (1996), who imposed a smoothness
condition in terms of the components in the spectral representation of the process. Heuristically, we
can say that a process is locally-stationary if the law of motion is smoothly time-varying. Thus, a
locally stationary process behaves like a stationary process in the neighborhood of each instant in
time, but has global nonstationary behavior. In the example (1) above, the evolutionary AR model
is locally stationary, if the coefficients are smooth functions of time. It will be shown that, as far as
the local properties of this model are concerned, the statistical tools for stationarity can be used in
deriving the asymptotics (see Section 3).

The efforts to search for a framework for nonstationary processes have a long history in statistics
and other applied sciences. In early empirical works, Granger and Hatanaka (1964) and Brillinger and
Hatanaka (1969) advocated the spectral analysis of nonstationary processes in the frequency domain.
Priestley and his collaborators (Cramér(1961), Priestley(1965, 1966), Subba Rao and Tong (1972),
Priestley and Tong (1973)) gave the first theoretical treatment of nonstationarity by defining time-
dependent (or, evolutionary) spectral density and estimating the spectral functions. The monograph
by Priestley(1981) collected these main results. Since the early nineties, the field has undergone
some breakthroughs following a series of recent developments by Dahlhaus (1996a, 1996b, 1996¢),
which provided a more rigorous definition and treatment of locally stationary processes. Under this
framework, Neumann and Von Sachs (1997) applied wavelet methods for adaptive estimation of
evolutionary spectra.

The main contribution of this paper is to present nonparametric kernel estimation of time varying
AR coefficients of an evolutionary process defined in (1). Dahlhaus (1997) takes a fully parametric
approach and assumes specific functional forms for AR coefficients, when constructing a local Whittle
likelihood. In a practical sense, however, it is realistic to assume that we have no prior information
on the time dependency of the parameters. Often, to empirical economists, the finding of evolution
in the coefficients is itself of direct interest. Thus, the approach chosen in the paper is to impose no
functional restrictions on the coefficients and estimate them as unknown functions of time by applying
nonparametric kernel methods. The second contribution lies in the novelty of the statistical theory
used in deriving the asymptotic properties for locally stationary processes. In Dahlhaus (1997), the
asymptotic results are derived based on a somewhat complicated theory of evolutionary spectra. By
contrast, in our approach, the structure of local linear smoother makes the derivation of the limiting
theory relatively easy. The intuition is that, in a limiting case, kernel methods allow us to be

only concerned with local properties of locally stationary processes. Therefore, the well-established



results for stationary processes can be utilized in deriving the asymptotics of the kernel estimates. To
demonstrate the validity of this argument, the Phillips-Solo device (1992) is extended to the case of
generalized linear representations of locally stationary processes and is used intensively as a standard
machinery.

The rest of the paper is as follows. Section 2 defines the local linear smoother for estimating
the AR coefficients. In section 3, an asymptotic theory is derived for the time-varying coefficient
estimators and tests for stationarity and misspecification are suggested, based on finite-dimensional
distributions of these estimates. Section 4 reports some results from numerical simulations and

empirical illustrations. Technical conditions and proofs are collected in Section 5.

2 Kernel Estimation

Throughout the paper, we will use the following notation to represent coefficients as functions
of a rescaled time index, i.e., o, = a(t/n) with a(-) : [0,1] — R To estimate a(-) =
(a1 (-), . ap (-))", we apply the nonparametric method of local linear smoothing. If ay(-) is dif-

ferentiable at u, ag(u) can be approximated locally by
ag(t/n) ~ ag(u) + o (u)(t/n — u).

Let Kp, (+) = %K (E) be a nonnegative weight function on a compact support. Given the observations

{y:};°F, define the kernel-weighted least squares estimator of aj(u)’s and their first derivatives,

o/ (u)’s, as
~ ! p
{a’k(u)a ak(u) k=1 (2)
n+p p " 2 ¢
= arg min E —g Ao + @ ——u _ Ky|——u).
gako,am =, {yt 2 { k0 k1 (n )} Yt k} h (n )

Minimizing (2) w.r.t. the ax’s and ay;’s gives @(u) of the form,

a(u) = [ay(u), ... ap(u), &, (), ., aw)]" (3)

= (Z"Wz)™ (Z"Wy),
where

y = (yp-f-la"':yn)Ta



Vior = (y-1, --aytfp)Tay = (Y,--,an)T
Z = [I,,D,]Y with D, = diag|[(1/n —u), .., (n/n — u)],
W = diag[Kp(1/n—u),..,Ky(n/n—u).

The first p-elements of &(u) are an estimate for the level of time-varying coefficients, and the remain-
ing elements for their first derivatives. The latter property can be regarded as a unique benefit from
local polynomial regression. By concentrating on the level of « (-), not its derivatives, we denote the

estimates of a (u) by
a(u) = [@1(w), .., ap(u)]" = By (Z7W2) " (ZTWy), (4)

where Ey = [Ip, Opxp|. Now, if we rewrite eq.(4) in terms of sample moments, the estimator is
understood exactly the same way as weighted least squares estimator in a linear model. Letting D),
be a (2p x 2p) diagonal matrix whose first p diagonal elements are one with other diagonal elements
being h. Observe that

a(u) = EyDp[(ZDy)"W Z Dy [(ZDy)"Wy| = EyS,, 'y, (5)

where S,, is a 2p X 2p matrix [Sp(iyj_2) (u)]ij:1 5 and t, = [tno(u), tnr(w)]", with
n+p l
1 t 1 (1
Su(u) = — Y K, (5 —u) [E (ﬁ —uﬂ YV, for1=0,1,2,
n+p 1 ¢ l
tu(u) = — Z K, (— - u) [E (ﬁ - u)} Y1y, for 1 =0,1.

t=p+1

Here, the estimation errors, @(r) — «(r) are not so simple as those associated with the usual least
squares framework, since the coefficients, a;,, depend on the time index, ¢. The kernel estimate
are subject to some bias as in standard nonparametric method. The following lemma, verifies this
argument by decomposing the estimation error from the modified local linear fit into two parts: the

bias term and the leading stochastic term.

Lemma 1.(Decomposition of Estimation Errors) Under E.1,

a(u) — a(u) = By + tn + 0p(h?), (6)



where

h2
Bn = _EO I[SnQa SnS] (07 ( )
%/n = E()Sn Tn,
f7\:n = [?Ona?ln]Ta

n-+p l

~ 1 t 1/t
= a2 () [5G o

t=p+1

3 Statistical Results

The asymptotic properties of our estimator, dy(-) are derived by generalizing the device of Phillips
and Solo (1992) to the case of evolutionary linear processes. In the appendix, we first show that
the locally stationary AR process in (1) is a special case of evolutionary process, and then develop
the second order Beveridge-Nelson decomposition for the sample moments of S,; and 7, in (6).
Let a function ¢, : [0,1] —> R to be defined as ¢ (u) = lim, o ¢ ([nu]/n) with ¢ (t/n) =
Y ie0 PriPre+r)k+g)- Also, let I'(u) be a symmetric p x p matrix with the h-th off-diagonal elements
being [¢,(v), .., ¢h(“)]1x(pfh) ,for h=1,..,p—1, and the diagonal, [¢y(v), .., By(u)],,,- The results in
the following lemmas give the probability limits of S,; and the bias term, as well as the asymptotic

distribution of the stochastic term 7,.

Lemma 2. Assume that E.1 through E.3 and A.2 hold. If h — 0 and nh? — oo, then,

nl—)( /K rdr) [(u), for 1 =0,1,2,3.

Lemma 3. Assume that all the conditions in Lemma 2 hold. Then,
h? » h?

B, = ?EO ~1[Spe, n3]T o' (u) — E,u%(o/’(u).

Now, it remains to derive asymptotic distribution of the main stochastic term, EyS;, '7,. Since FyS,*

converges to [ (u), Opx,] by Lemma 2, we only have to deal with the first term of 7,,.
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Lemma 4. Assume that E.1 through E.3 and A.1 hold. If h — 0 and nh? — oo, then,
VinhF,e = N(0, %),

where ¥ = o([ K? (r) dr)I'(u).

Since B, = O, (h?) and T, = O,(v/nh), the above results means that &(u) is a consistent estimator,
when h — 0 and nh? — oco. Note that the asymptotic bias in Lemma 3 has the same form as the

standard local linear fit. Lemma 3 and 4 gives the following theorem.

Theorem 5.  Assume that E.1 through E.3 and A.1 through A.2 hold. If h — 0 and nh — oo,
then,

Vnh[a(u) — a(u) — B,) 2 N(0, 2, (),

where 3y, (u) = || K|[5T (u).

For a stationary AR(1) case, I'(u) is simplified to be 3522 ¢ = 3272 a* = 1/ (1 — o?), which implies
that ¥, (u) of Theorem 5 can be interpreted as a nonparametric generalization of the asymptotic
variance of ordinary least squares in a stationary AR model. Let €, = y; — > v_, @ (t/n) y4—x and

G2 =3 1,416/ (n—p). By Lemma 2, I'(u) is consistently estimated by

T(w) = So () 82—0212Kh( )Y’

and X, (u) by

Za (u) = IK 5T (u) = 1K S, (u) 52
Since @(u1) and a(us) are asymptotically uncorrelated for u; # us, their joint distribution is also
asymptotically normal with a covariance of diag{X%, (u;),X (u2)}. Thus, the normalized sum of

squared errors over d time points follows a Chi-square distribution of degree dp.



Corollary 6. Assume that all the conditions in Theorem & hold. Then,
d
Hy =" nh{@o(u:) - a(w) = By (w)]' S5 (us) [@o(w) = alw) = B, (w:)] = x*(dp),
i=1

where u; € [0,1], for all i =1, ..,d.

Remark 7. ( Tests for Misspecification and Stationarity) Corollary 6 is related to the
construction of a Wald test for misspecification. Consider the null hypothesis of Hy : o (u;) = o (u;)
for all 7 = 1, .., d, against the general alternative. A feasible Wald test statistic is given by
d
By ="k o) — o (ws) — Bu] S5 [o(us) — o (ws) - By (7)
i=1
and follows a x?(dp) asymptotically, under the null hypothesis. Since |a(u;) — a*(u;)| # 0 under
the alternative, ?[n goes to infinity as n — o0; i.e., the test is consistent. In a similar way, we can
set up a test for stationarity against general nonstationarity, by assuming a null hypothesis, Hy :
a(u;) = o for alli = 1,..,d. Since Corollary 6 still holds for a constant coefficient case, the average
of coefficient estimates converges to the true value, a*, at a faster rate than v/nh under Hy. The
same effect can be achieved by applying least squares whose convergence rate is v/n under Hy. In

this case, the test statistics is given by
~ d — ~ 7! ~ — ~
Hy =" nh Go(us) = @ = Ba| 57 [Go(ws) @ = By, (8)
i=1

where & = n%p Y ipi1 Qo(t/n), or a= (YY) 'Yy, H, weakly converges to x%(dp) under Hy, and
# 0, under Hy,.

the test is consistent, since ‘&O(Ui) - x‘ 2 ‘a (u;) — 52?21 a (uy)

4 Numerical Studies

Simulations We carry out some numerical simulations to investigate the finite sample performance
of the kernel estimator defined in Section 2. In the simulations, we used three different types of
time-varying AR(1) models with y; = a(t/n)yi—1 + 0.5, t = 1,...,n,where g; are i.i.d N (0,1)
and
Model I : «(r)= —1.6r+ 0.8,
Model II (r
Model III (r

8

) = 0.9 cos(nr),
) = 0.9sin(27r).

(0%
(0%



For each model, we applied the local linear smoother to estimate the AR(1) coefficients and report
their basic statistical results. Two sets of simulated data with different sample sizes (n = 150, 300)
are generated from each model. There were 2500 and 1000 replications with sample sizes of n = 150
and 300, respectively. For the kernel estimators, Epanechnikov kernel function was used with a
bandwidth, h = bo,n~'/%, where o, is a standard deviation of {¢/n};_, and the constant b ranges
from 1.4 to 2.5. Fig. 1 shows the estimates for a typical sample (n = 150) along with asymptotic

confidence intervals.

X Figure 1, here***

Considering the nonparametric nature of our smoothers, the estimators seem to work relatively well
even in a sample as small as n = 150. Fig.1(c) indicates that the estimation of a sinusoidal trend in
the coefficient involves more biases than others. The constant coefficients in Fig. 1.(d) is efficiently
estimated by the parametric least squares, but the nonparametric fits are close to the truth except
at the boundaries. The asymptotic confidence intervals cover the true functions at almost all the
points, but seem somewhat narrow, especially for the sinusoidal specification. This is partly due
to the disregarded biases in constructing confidence intervals. To check with the asymptotic results
of Theorem 5, we also compute the probability that the true coefficients are included in the 95%
asymptotic confidence intervals in the case of Model I. Table 1 shows that the real coverage rate is
close to the value suggested by theoretical asymptotic distributions. In Table 2, we summarize the
average mean squared errors of kernel estimates for various bandwidth choices when the true DGP
is Model II.

Table 1.: Coverage of True values in the 95% CI (Model I)

at the whole points | at the randomly-chosen points
Pr. | 94.6% 94%

Table 2: Average Mean Squared/Absolute Errors



Bandwidth | nh | AMSE | AMAE
p=1 p=1
0.6 9.6 |0.16 0.13
0.9 14.4 1 0.13 0.11
1.2 19.2 | 0.12 0.10
1.5 24.0 | 0.11 0.10
1.8 28.8 | 0.11 0.09
OLS 0.59 0.52

Real Application To illustrate an empirical example, a time-varying AR(1) model is fitted to
to the monthly returns of the S&P 500 stock index.(1926:1-1997:12). A Gaussian kernel was used
with bandwidth A = 0.1472. Fig 2 depicts both the kernel and OLS estimates. The OLS estimate
is less than 0.1 with standard error, 0.034 and statistically significant (p-value = 1.5%). If the stock
market is efficient, the returns follows a martingale difference process. So, the OLS estimate does
not seem to be compatible with the efficient market hypothesis. In contrast, our kernel estimates
indicate that the hypothesis contradicts the real data only during the pre-world-war period (¢ < 229,
in the graph ). Interestingly, the coefficients converge to zero along with the time, and seem to be

insignificant at least in the latter periods.

*Figure 2, here***

5 Conditions and Proofs

5.1 Section 2

Conditions:

E.1. The function {ax(-)Yi_, is twice continuously differentiable in u with uniformly bounded second

order derivatives, and the roots of > % _, oy (u) 27 are uniformly bounded away from unit circle

E.2. The kernel K (-) is a continuous symmetric nonnegative function on a compact support, satis-

fying sup, |K(r)]” = || K|[%, < oo.
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2

E3. [K(r)dr=1, p} =

Proof of Lemma 1

Ey (Z"W2Z)™ (2"WZ) ET
Ey (Z"™WZ) " (Z™WZ) ET

it follows that

a(u) = Ey (Z"WZ) ™ (Z"W Z) ETa

and
0=Ey (Z2™W2)" (Z"WZ) ET o (u)

The estimation error is then

a(u) - a(u)

I

I

Using the definition, [bx],_o; = [b1, bo]", we rewrite

[ K (r)r¥dr < oo, [ K?(r)dr = |K||5 < o0, and [ K?(r)r?dr < oo.

From the basic equations: with E = [Opxp, Ip]

L, ZEf =,
Opxp, ZET = D, Y,

(u) = By (Z7W2Z) ™ ZTWY al(u),

=By (Z™WZ) ' ZTWD, Y (u).

Ey (Z"WZ) ™ (Z™Wy) — Eo (ZTW2Z) ™ ZTWY o(u)
By (Z"WZ) ' ZTW(y — Yo(u)] =
EoDu[(ZDy)*WZDy | 1 (ZDp)* W [y — Ya(u) — D, Yo/ (u)]
Ey[(ZDn)"WZDy]™(ZDn)"W [y — Ya(u) — DY/ (u)] .

Eo (Z"W2Z)™ Z"W [y — Ya(u) — DY/ (u)]

the numerator of a(u) — a(u) as

(ZDp)™W [y — Ya(u) — D, Y/ (u)]
AL ¢ 1/t A t
— oY w (o) [ (Bee) | v e - (£ ) )
t=p+1 L da=0,1
n+p i AT
1 t 1 [t t
= = Z K, (ﬁ — u) A (ﬁ — u) Y, Y, {a(—) —a(u) — <ﬁ — u) a'(u)}
t=p+1 L I =01
n+p A
1 t 1 [t
+— Z Kh (H — u) [ﬁ (5 — U) ] nflgt
t=p+1 A=0,1

t

Due to the Taylor expansion of o (n

t=p+1

11

) around u, the first term is approximated by

h2

A
> ] }/;571}/?:1 [2

2,3

()]

A=



and thus the estimation error is decomposed into two parts:

a(u) — a(u)

_ Eo[(ZDh)TWZDh]‘l%gKh (% —7") [% (% —T)A] Y. YE, [h;a"(u)]

A=2,3

+E0[(ZDh)TWZDh]_1% i K, (% — r) li (f — u> A] Yi_161 + 0,(h?).

h* \n
=1 A=0,1

5.2 Evolutionary Linear Processes and BN-Decompositions

When the roots of Y ?_, aj (u) 2/ are uniformly bounded away from unit circle, it follows under
the conditions on the bounded derivatives for a4 () and o(-) (see Miller, 1969; Hallin, 1978, 1984;
Mélard, 1985) that the difference equations in (1) have a solution of the form

o0
Ytn = E PjtmnEt—i>
Jj=0

where

o
Z |90j,t,n| < 00, uniformly in ¢t and n .
§=0

Lemma P.1 If o (+)’s are continuous and differentiable in « with uniformly bounded derivative,
then, for {y;,} in (1), there exists a (unique) sequence of differentiable functions, {¢;(-)|¢; : [0,1] —
R}22, such that

i) Sup |y - D oit/n)e ;| = 0y(1/n), 9)

Jj=0

ii) sgpz |g0j(t/n)| < 0.
=0

Proof of Lemma P.1 Let

A(u, ) = \;’;_Wu " o (u) exp(—ik)] "t and f(u, A) = [A(u, N)?

12



Observing that for a given u, f(u,A) is the spectral density function of a stationary AR(p)
process, we define {¢,(-)}32, to be a MA coefficients given by the MA representation of the AR
process. Then, from the stability condition, ii) is satisfied, and, by construction, it holds that
7= > i ¢;(u) exp(—iAj) = A(u, A), for all u. The smoothness of ¢;(-) comes from the differentia-

bility of {ay (-)}. To show i), consider a spectral representation of (1),

o ™
R M) AY (N dZx (V)
yt, \/%/_'Trexp (IL ) t,n( ) X( )

where A, (\) = \(/%Eﬁo ©jun(t/n)exp(—iAj). Since {y;,} in (1) is locally stationary with a
time-varying spectral density of f(u, A)-by Dahlhaus (1996, Theorem 2.3), it follows that, for some

constant K,

stu}) A, ()\)—A(%,)\) < Kin™t, for all n,
which implies
= o " t
su n— (t/n)es_; su : exp (iAt) [AY (A) — A(=, N)]dZx (A
v = 35| = sup | [ enp 0 45 () = ANz (O
< Kosup |48, () = A(L,)
A ’ n

< Ksn™', foralln,

where Zx (A) is a stochastic process of orthogonal increments on [—m, 7] with Zx (A) = Zx (—)).

In a simple AR(1) case, ¢, , is equal to izoa[(t — k) /n], but ¢;(t/n) = o (t/n)?. The above
lemma means that 22 [¢;,, — ¢;(t/n)le; ; = 0 does not hold in a finite sample, but it does

asymptotically.

The approximate MA representation in Lemma P.1 now allows us to apply the Phillips-Solo device
of the second order Beveridge-Nelson decompositions to the sample moments of S,; and 7,; in (6).
Recall that a function, ¢, : [0,1] — R is such that

G, (E/n, (E+ ) /n) = @;(t/n)p;p((E+ h)/n)

Conditions:

13



A1 g isi.i.d (0,02 Kky), where k4 is finite fourth cumulant.

A.2. (a) sup;c, 37372, 5205 (t/n) < oo, (b) supic, 3752, 5295 (E/n)]” = o(n?).

Since ¢(-) is defined on compact set, it is bounded and square integrable, fol ¢ (r)dr < co. The
summability conditions in A.4.1 (a) is, except for some generalizing modifications, of the same kind
used in Phillips and Solo (1992) for the validity of the Beveridge-Nelson decomposition. A.4.1 (b) is
an additional condition required to restrict the changes in the time-varying coefficients. Note that
#,,(+) is continuously differentiable, i.e., #(-) € C?. We now show the validity of BN decomposition
when applied to an evolutionary AR process. From Lemma P.1.; it follows that

o0

YtYsrn = Z @;(t/n)er; Z or((t+ h)/n)erin—r

k=0

= > 0 (t/m) et +h) /)l

j=0

303 gi(t/n)e((t+ h) /n)erjerini

j=0 k=0,k#h+j

= Z ©;(t/n)pn((t+ h)/n)af_j
+ Z Z ij(t/n)()@j+h+r((t +h)/n)er_jet—j—r, (10)

j=0 r=—o00,r#£0

where it is assumed that gpj(-) =0, for all s < 0. Following the same argument by Phillips and Solo

(1992), we consider the second order BN decomposition as follows.

By defining
n(t/n, (t+h)/n; L) =Y @;(t/n)ggim((t+h)/n) L,
j=0
we get
Yeorn = Oy (t/n, (t + h)/n; L)e} + Z Gnar(t/n, (T + h)/n; L)eres—r. (11)
r=—00,r#0

Observe that

Oner(t/n (4 1) /15 L) = p(t/m, (E+ B) /15 1) = Gy (t/n, (8 4+ h) /s L)(1 = L)

14



= Gnar(t/n, (t+1)/n;1) = (1= L)y, (t/n, (t + h)/n; L)

HOnir (t/m, (t + 1) /1 L) = By (8 = 1/, (E+ b — 1) /m; D)L,

where

Brr(t/m, (E+B)/m; L) = 25h+r,j(t/na (t+h)/n)L’

=SS et ((t 4+ B/

7j=0 s=j+1

This implies the two level BN decomposition:

Dhsr(t/n, (E+ h)/n; L)eres
= Guar(t/n, (t+ B) /s Dererr — (1= L)y, (t/n, (¢ + h) /m; L)erer
HOnir (t/7, (E+ 1) /15 L) = By (t = 1/, (b = 1) /05 Doy 18151
= Guart/n, (t+ h)/m3 e — (1= L)Gpy (t/m, (¢ + h)/n; L)ergry + 0p(1)

whose validity depends on the condition:

(i) per(t/n, (t+h)/n; e, € L2,

(i) [Bnir (/1 (¢4 R /05 L) = By (8 = 1/, (84 h = 1) /05 D)]er-r-r1 = 0p(1).

To prove (i), we first consider

[© SR o]

Onir (t/m, (E+ 1) /15 Dy = Y[ D @u(8/1)0snr(t + 1) /0)]Et-s80-r—s-

7=0 s=j5+1

Then, it suffices to show that

DY ut/m)esin (4 R) /)

=0 s=j+1

= U 0 tn)es (4 B)/m) /s

7=0 s=j+1

Z ( Y s/ ) (Z wf+h+r((t+h)/n)/8”2)

j=0 =j+1 s=j+1

ZSW <(t/n) (Z > w§+h+r((t+h)/n)/8”2>

7j=0 s=j+1

IA

IN

15
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= 231/2 2(t/n) (Z%+h+r ((t+h)/n) /51/221>
= 281/2 2 t/n (Z (ps+h+r (t+h)/n) 1/2>

s=1

2
< (suszl/2 21§/n) < 00

To prove ii), noting that
[Brr(8/7, L) = Gt = 1/, D)]er-161-r1

= {3 sl Wl
j=0 Us=j+1
we only need to show that

0

j:

{ S Adlioy(t/m) s nenl(t+ h)/n)]} = o(1).

First, observe that

Aglpy(t/1)0sinn((E+ h)/n)
= Ao, (t/n)Pginir (T + R)/0) + 0 (t — 1/n) Avo i ((E+ B) /1),

and then it holds that

Z ( Z At[@s(t/n)ws—i—h—i—r((t + h)/”)])

7=0 \s=j+1

2 {Z ( Z At(nps t/n)(tps+h+r( t+ h /’I’L ) Z ( Z (Ps t_ 1/”)Atws+h+r((t+ h)/’l’b)) }

j=0 \s=j+1 s=j+1

IA

IN

2{2 s 2 (A, (t/n))” (Z Orinir (t+h)/n)s'/

+st2 (¢~ 1/n) (Z[At%mr((wh)/n>]2s1/2>}

s=1

IN

281;1)25”2 @5 (t/n) {Zs“ Bt/ + S B (¢4 W)} 1/2}

s=1 s=1

16



< 4 (supzsl/2 <(t/n) ) (SHPZSU [Apy(t/n)] )

s=1

— 4 (supz:sl/2 2 ) e (SliPZSl/Q[SD;(T)F)

— 0,

as n goes to oo (with ¢ = [nr]), since [M] — [ (r)]? and sup, Y22 s/2[¢!(r)]? = o(n?).

Now, (11) and (12) imply

Yeen = Op(t/n, (t+h)/n;1)ef + Z Onir(t/1, (E+h) /0 1)ese (13)
r=—00,r#0
(1= Do t/m 4 WML = (1=L) Y Bpt/m, (t+ h)/ms Dererer +0p(1),
r=—00,r#0

Lemma P.2 (The validity of second order BN decomposition) Under E.1, A.1 and A.2, the
BN decomposition in (18) is valid, i.e.,

Z¢h+r] t/n (t+ h /7’L Z[ Z Ps t/n (ps+h+1‘((t+h’)/n)]

7j=0 s=j+1

Z { Z Ao, (t/n)@ginsr ((t+ h)/n)]} = o(1).

7=0 \s=j+1

5.3 Section 3

Proof of Lemma 2  We only prove the case for the representative element of S,

1 & t 1 [t :
Snig = - Z Ky <; - U) 7 (g - U) Yt—1Yt—1+d

t=p+1

1"& (41 1 (t+1 :
= — Z K, ——u i —— — U YtYi+d
n



BN decomposition in Lemma P.1, when applied to Sy 4 gives

Snl,d = Mln + M2n + M3n7

where
n+p—1 !
1 t+1 1 [t+1
Mo = 23w (B ) (B ) et o+ a2t
n o= n n
n+p—1 l
1 t+1 1 /t+1 é
My, = - Z K, (T_u>ﬁ<7_u> EtE¢ »
t=p
ef = D bult/n (t+d)/n; e,
r=—00,r#0
M3n = _M31n_M32na
n+p—1 l
1 t+1 1 /t+1
My = 23 K, (——u) L (T_“> (1= L) (t/m, (¢ + d) i L)e2,

n+p—1 l 00 "
Mo = 23 K (T ) () D) G4 ) D

t=p r=—00,r#0

(i) Since &, is i.i.d., the standard argument of LLN implies

n+p 1 l
M, B z K () o (B = ) outefm e+ a1

n
l
— / Ky (r—u [ (r —u)] Gq(r,r; 1)dr
= Ug/ K (s) s'¢y(u— hs,u — hs; 1)ds
— o2y (u, u; 1)/ K (s) s'ds,
where the last equation is given by Dominated Convergence Theorem.

(ii) Since E(My,) = 0 (from E(g4e4—,) = 0, Vr # 0), we show E(M3,) — 0 for My, = o,(1).

First, observe that

B =02 S Grlt/n (¢ +d)/m1)

r=—o0,r#0

04,a(t/n)

18



(e o]

2> {z% ¢y ]M)((Hd)/n)}

r=0(r#d)
< o,

by the same argument used in Lemma P.2. (The second equality is due to (10)). From E(g,ee,e%) =
0, Vt # s, it follows that

pory = {25 he (S ) [ (2 )] term

whose negligibility is obvious from

Ly i (% - u) [% (% - u>]2l P2alt/n) = 72a(w) [ K2(5)s™ds < o

(iii) For the negligibility of M3, we only show Ms;,, = 0,(1). The same argument is valid to show
M35, = 0,(1). Observe that

n+p 1 [
My, = + Z (K (ﬂ - u> L (# = u) Gaan(t/m, (¢ + d)Jm; L)e2

hl
K, (3 _ u) % (% _ u)lgdw(t —n, (t+d—1)/m; D)2 )
AT (§-) g () - () ()

X(/bd—H( - 1/7},, (t +d — 1)/”? L)‘ngl

_ 1 "
= M31n + M31n’

respectively. The telescoping sum Mj3,,, becomes

1 n+p-—nu n+p-—nu . ,
nh [ ( nh ) ( h > bgrr(n+p/n, (n+p+d)/n; )5n+p]

n

_ — lN
_% [K (p n:u) (p n}?u> qsd—l—r(p - 1/”7 (p -1+ d)/n’ L)gi_l

Both terms in the above are negligible, 0,(1), since 5d+,, (t/n, (t+d)/n; L)e? = O,(1), by Lemma P.2,
and K (-) is compactly supported and bounded by E.2.
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Next, for the negligibility of MY, , we apply Taylor expansion on K* (s) = K (s) s',

. LY _ K (s) 1
K <8+E>_K (s)+ o +O(n2h2)’

and obtain

under the assumption that nh? — oco. Now,

S IIHES R A
X |Gt = 1/n, (t+ d = 1)/ L)ed |
= o,(1),

since ¢y, (t/n, (t + d)/n; L)e? = O,(1).

1
My, < 7, Sup

Proof of Lemma 3 By Lemma P.2 and E.3., it holds that

S, 2 o l I'(u)  Opxp
Opxp 15T (1)

and

-1 P -2
Sn O¢

F_l(u) Opxp ]
Opxp U;(2F_1(u)

By the continuous mapping theorem, the bias term,

2, YW 0,0

Fil(u) Opxp ]

20? Opxp :U'I_(Qr_l(u) OPXP
" 2
= e, = )

20




Let F; be the natural filtration of {y:};_, -

Lemma P.3 (CLT for martingale differences: Lipster and Shirjaev, 1980, Corollary 6) Let for every

n > 0, the sequence n™ = (nnk,Fk) be a square integrable martingale difference, i.e.,

E (1, Fe1) = 0, E(y) <00, 1<k <n (14)
and let .
> E(n2) =1,Yn>ne>0. (15)
k=1
The conditions
ZE(nik\fk_l) 231, asn — oo, (16)
k=1
> B 1] > €)[Feet]) 2 0,as . — 00, Ve >0, (17)

k=1

are sufficient for convergence

Proof of Lemma 4 Due to the Cramer-Wold device, it suffices to show
Vnha Ty 2 N(0,a"%a),

as n — oo, for any vector ¢ € R? with unit Euclidean norm, ||a|® = 1. Fix such a vector a € RP.
Now that E(Y;_1YZ e7) = E(Y;1 YL E(e}| Fi—1)) = 0iT(£1) < o0,, we define

Va(u) = Var (Vaha'7,) = % gi K’ (% (3 _ u)) ota (L),

n n
t=p+

Denote the normalized errors by

1 1/t
n, = Vn_1/2(u)ﬁK (E (ﬁ - u)) a’Y,_ie;.
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In the following, we will check with each condition of Lemma P.3 for asymptotic normality of 7,.
The first part of (14) is obvious from E(y; 164|F; 1) = 0, by A.1. Also,

B0 = Vi (5 (5= ) )t

n n
< 00, for1<t<m,

which implies (14). (15) follows immediately from the way we construct 7,, and E(n?,) < oo, for
1<t <n.

Next, to examine the condition(16), note that

n 1 o 1
Y EM|Fec) = Vi) — Y K|~
— (nnt‘ k 1) n (U) nh (h

t=p+1

= V’l(u)aTT/\;(u)a,

n

t
(— - u)) o2d"Y, 1 Y a
n

where V,,(u) = o2 3P K2 (3 (£ — u)) Vi1 V)", Applying the results from Lemma 2, we obtain

the convergence of V,,(u),

—_~

T (u) =2 o( / K2 (r) dr)T(u).

Also, using integration by substitution and Dominated Convergence Theorem,

Volu) = % g K? (% (% - u)> B N )

n
t=p+1

— og(/ K% (r) dr)a™T(u)a”,

which implies (16).
Finally, we turn to show (17). Since V,,(u) — a®a > 0, there exists ng such that V,(u) > sa”Za,

for all n > ngy. If we assume n > ng, we obtain

1 1/t
T Vn’l(u)%K2 (E (— — u)) a'V, YV, a"e]

2 | Kl (1 (2

= Vo(u) nh h ;—u a'Yi1Y,yag;
2 Kl (1 (1 : :

< o (= (- Y,

S Vi@ nh i\, Y [lall” [Yi—1e4]
1 1/t

= KIEK (ﬁ (ﬁ — ’LL)) ||th—1€t||2



where we used the facts that K(-) is bounded and compactly supported and [ja||*> = 1. The last

inequality relies on Cauchy-Schwartz inequality. Consider

E [nitf(\nm\ 2 5)|‘7'—t71}
1 1/t _ _
< ik (5 (5= ) ) ¥l BTl > 0 VAR KL )

nh h
1 1/¢ - .
T (z (E ) )) 1Yerd P BleFI(jer] = 6267 | K| 7 V)| ]
1 1/t - _
TRt (ﬁ (ﬁ ) “)) 1Verd P BT (Y| > 6727 [ K|S Vi) | Fia),

and

ZE [ﬂitl(|77m| > 5)|Ft—1i| < I, + IQna
t

1 1 /1 _ _
fn = “ln—ZK<‘ (ﬁ‘“))HYt1||2E[aff<|et|z51/%11/4||K||o:/4v‘nh)\fk1]

h h
t
1 © 1t - _
fon = “1@21((5 (ﬁ‘“))aiim1||21(||Yt1||z5“%1”4||K||o:/4v‘nh>.
t

Note that (i) since ¢; is i.i.d. with E(g?) < oo,
EletI(|et] > 827 | K| Vnh) | Fi ] = 0(1),

where o(1) does not depend on ¢, and (ii) by Lemma 2,

1 — 1/t
i 25 (5 (5 ) e 2 o,
which leads to
Iln == Op(]_).

Consider that I, > 0 for all n, and since E(||Y;|°) < oo,

E(lp) = mo2B(|[Yiul” 1([Yina]| > 8267 1K Vnb)
0.

This implies I,2 = 0p(1), which completes the proof for

n—+p
Z Nt L2, N(0,1) as n — oo,
t=p+1

23



ie.,

Vnh#, =5 N(0,%).

Proof of 5.  Lemma 4 with (?7) gives
Vnh[a(u) — a(u) — By = VRhES; 5, -2 N(0,5,),

and
T
Sa=| 02T (u) Opxp | oLIK|5T(u) | 0720 (u) Opo] = |K[l;T " (u).
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