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Weak approximation of stochastic differential delay equations

Evelyn Buckwar* Tony Shardlow!

September 26, 2001

Abstract

A numerical method for a class of Ito stochastic differential equations with a finite
delay term is introduced. The method is based on the forward Euler approximation and
is parameterised by its time step. Weak convergence with respect to a class of smooth
test functionals is established by using the infinite dimensional version of the Kolmogorov
equation. With regularity assumptions on coefficients and initial data, the rate of conver-
gence is shown to be proportional to the time step. Some computations are presented to
demonstrate the rate of convergence.

Key words Theoretical approximation of solutions, Stochastic partial differential
equations, Stochastic delay equations, Stability and convergence of numerical approxi-
mations.

AMS Subject Classifications 60H15, 34K50, 651.20, 34A45.

1 Introduction

Consider stochastic differential delay equations on R% of the form

0
dy (1) :[/_ a(ds)Y (t+ s) + f(Y(t))] dt + b(Y (2)) dW (2), W

Y(0) =Ys, Y(s)=Yp(s) for -7 <s <0,

for initial conditions Ys € R? and Yp € La([—T,0], R?), where a(-) is a d x d measure valued
function on [—7,0], f(-): R? = RY, b(-): RY — R%9 and W(:) is a Brownian motion on R?
with covariance I. The delay is 7, which should be finite and positive. The equation should
be interpreted in the sense of It6.

We now define the forward Euler method for (1.1). Let

0
a; = / a(ds) 1 i+1)at)(8), i=—|T/At],..., 1,

where 1j;, 4,)(s) is the d x d identity matrix on [t1,?2) and is zero otherwise. Let AS, be inde-
pendent and normally distributed with mean zero and variance Atl. Generate approximations
Y, to Y(nAt) forn =1,2,... by

Yn—|—1 - Yn = [ Z aiYn—l—i + f(Yn)] At + b(Yn)Aﬁna (1'2)
i=—|7/At]
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with initial conditions Y; = Yp(iAt) for ¢ = —|7/At],...,—1 and Y = Y.

In a series of papers, strong approximation methods for stochastic differential delay equa-
tions were considered by C. and M. Tudor [13, 14, 16, 15, 17]. Recently this topic has gained
more attention, see [11], [2], [1], and [9]. The theory gives convergence rates of order At'/?
for the forward Euler method, which is optimal, and applies to delay equations more general
than (1.1). The aim of this work is to understand the weak convergence properties of the
forward Euler method for (1.1). It is hoped that the theoretical grounding developed for the
Euler method in this paper will make it possible to understand higher order weak approxi-
mation methods for stochastic differential delay equations. We now describe the hypothesis
needed for our weak convergence analysis. The hypothesis are more restrictive than those
needed for strong convergence, but give better convergence rates.

Hypothesis 1.1 (i) Suppose that f: R? — R? is four times continuously differentiable
with £/, f", f™. f"" bounded. Suppose that b: R — R%*% is bounded with four bounded
derivatives.

(ii) Suppose there exists a strictly positive continuous density a(s) on [—7,0] such that for
all g € Ly([—T,0],R%)

| [ s < [ aolatelins as

-7
(iii) Suppose that there exists K > 0 so that for all g € Lo([—7,0], R%),

H /_OT a(ds)d%,g(s) dsHRd < K9l £y (=00, RS-

For an integer p > 0, introduce the space G, of test functions ¢: R? — R that are four
times continuously differentiable and satisfy ||¢(n)(h)||L(Ran’R) < K(1+||hllga"), for h € H
and some constant K, for n = 0,1,2,3,4. Thus the derivatives of ¢ can be bounded like a
polynomial.

For z = (Ys,Yp)T, write ||z|| := (||YS||%{d+||YD||%2([
Yp: [-7,0] = R4, let

1/2 : :
0 Rrd))/?- For a continuous function

Yp(t) — Yp(¥' d
Yollp = sup 1220 =¥0E)me
—T<tt'<0 |t —t|

Theorem 1.2 Let Hypothesis 1.1 hold. Consider Ys € R® and a globally Lipschitz function
Yp : [-7,0] — Re. Let Y(t) (respectively, Y,) denotes the solution of (1.1) (resp., (1.2))
corresponding to initial data x = (Ys,Yp)?. For T > 0 and ¢ € Gp, p > 1, there exists a
constant K, > 0 such that

E¢(Y(T)) - E¢(YN) < K,At, NAt=T
and a constant K independent of the initial data such that

Kz < K1+ |l2|P) + K1+ 2P~ A + YD £ip)-



This is the main result of the present paper. The proof is built by developing the delay
equation (1.1) as a stochastic evolution equation on an infinite dimensional space. We review
the theory in §2. Two corollaries of the It6 calculus are established in §3 concerning certain
functionals of the solutions. The Kolmogorov equation is introduced in §4 and developed
in full for the delay equation (though in fact, only a regularised version of the Kolmogorov
equation is used directly in the proof of Theorem 1.2). A number of regularity results are
established. It is important to establish sufficient time and spatial regularity of v(t,z) :=
E¢(Y (t)), where Y (¢) is the solution of (1.1) for initial data z := (Ys,Yp)7, and the terms in
the Kolmogorov equation, to apply again the It6 formula. To gain the necessary regularity,
Hypothesis 1.1 (iii) was introduced. This hypothesis excludes the important case of discrete
delays, a(ds) = Y d;,(ds). The proof is completed in §5.

Weak approximation has been established for many numerical approximations of SDEs by
looking at the Kolmogorov equation. The argument given in this paper follows closely [10];
an alternative that makes use of the Malliavin calculus is given in [8]. The difference in the
present case is the introduction of a delay term so that the equation must be phrased on
an infinite dimensional phase space to achieve a Markov process and a Kolmogorov equation.
The authors are unaware of any previous use of the infinite dimensional Kolmogorov equations
to analyse the weak convergence of numerical methods. It remains to be seen whether the
technique can be more widely applied, for example to numerical methods for a heat equation
forced by a Wiener process.

The Kolmogorov equation is difficult for evolution equations forced by a Wiener process.
The drift terms in the underlying evolution equation frequently involve a differential operator
A which is unbounded. Further, the covariance of the Wiener process may involve an infinite
number of non-trivial eigenvalues. In our case, the Kolmogorov equation is simplified as there
are only finitely many noise terms and the operator A has a nice structure. Though A is
unbounded, we can take advantage of A being bounded in its first component. To do this,
we have taken a particularly simple space of test functions by working over averages at the
current time and keeping the test functions independent of the delay. The averages of these
test functions carry no information about the correlation between the state variable over the
delay interval, but are a natural space of functions to use in this situation.

1.1 Notation

We will work on the space H := R? x Ly([—7,0], R?) with norm |(Xs, Xp)| := (IXslza +
| Xp ||%2([7T70]’Rd))1/2, which consists of the state variable and delay function. If X = (Xg, Xp)7,
let 1¢X := Xg and mpX := Xp. The norm induced on a linear operator between normed
vector spaces Hy to Ho is denoted by || - || z(m,,m,)- Let || X||s := [| Xs||ge and

Xy = | Xsllpe + H /_O a(ds)Xp(s) ds)

R4

Then |-|, is a well defined semi-norm on H. Note that, for a constant K, we have | X |, < K|/ X],
all X € H. For an orthonormal basis e; of R% and B € L(R%, H), define the Hilbert-Schmidt
norm

d
1BlEs = D IBei>.
i=1

Let LY be the £L(RY, H) valued operators with finite Hilbert-Schmidt norm ||-|| zzs. Throughout
the paper, we will make use of a generic constant K, which will be independent of the time
interval [0,7], the initial data z, and k, the parameter of the Yosida approximant Ay. Let



§ := At[s/At], the largest multiple of At less than s. For ¢ € G, and X € H, we will write
H(X) for g(rsX).

2 Background

2.1 Stochastic Evolution Equations

For the analysis, it is convenient to present (1.1) as a stochastic evolution equation on the
infinite dimensional space H as follows. Consider

dX(t) = [AX(t) + F(X(t))] dt + B(X(1) dW(t), X(0) =z:= (Ys,Yp)T, (2.1)

where for X = (Xg, Xp)?

- () o= ()

and A is a densely defined linear operator with domain D(A),
D(A) = {(XS,XD)T eR? x WL2([—1,0]; RY):
Xp absolutely continuous and Xp(0) = X 5}

and for X € D(A)

0 C 0
AX = (O d)X, CXp ::/ a(ds) X (s).
dt —T

WbH2([-1,0],R%) is the Sobolev space with norm (||f||%2([_7,0],Rd) + Hfl”iz([—r,o],Rd))l/Q' For
further details see [12] and for delay equations [7] and [4]. The evolution equation (2.1) has a
unique mild solution subject to Lipschitz conditions on f and b. That is, we can find X (¢; z),

an adapted H valued process such that
t t
X(t;z) =S{t)z + / S(t—s)F(X(s;z)) ds+ / S(t—s)B(X(s;z)) dW (s),
0 0

where S(t) is the semigroup with generator A. The solution X (¢; z) corresponds to the solution
of (1.1), in the sense that 7s X (t;z) = Y (¢).

The process X (t; ) is a Markov process [6]. Note that, under Hypothesis 1.1(iii), C% is
a bounded operator from Ly ([—7,0], R%) to R

2.2 It6 Calculus

For reference, we state two basic results of the It6 calculus on infinite dimensional spaces.
Let A(t) be a H valued predictable process, Bochner integrable on [0,7]. Let B(t) be an L3
valued process such that fg |B(3)||% ds is finite almost surely. Consider X (¢) such that

dX () = A(t) dt + B(t) dW (2),

where W () is a Wiener process on R¢ with covariance I. The next two results are dealt with
by [5].



Theorem 2.1 (Ité6 Formula) Consider a function ®: [0,T] x H — R. Suppose that ® and
its partial derivatives @y, ., Ppyp are uniformly continuous on bounded subsets of [0,T] x H.
For 0 <t < T, almost surely,

t
B(t,X(1)) = D0 X(0) + [ Bals, X(:)B(s) dW (o)
t
[ {6, X(60) + @l XA + 5 T By, X(3))B:)BLo)* } s,
0

where (for an orthonormal basis e; of RY)

d
Tr ., (s, X (s))B(s)B(s)* = Z D,.(s,X(5))(B(s)e;, B(s)e;).

=1

Lemma 2.2 The Ito Isometry:

B[( [ "Bl aw(s))] - / " BB s ds.

The Burkholder-Davis-Gundy Inequality: for p > 0, there exists a constant c, with

p/2

E[ sup ( / B(s) W (s)'] < o8| / " IB(s) s ds

0<t<T

2.3 Regularity of solutions

Theorem 2.3 (dependence on initial condition) Let Hypothesis 1.1(i) hold. There ex-
ists a unique mild solution X (t;x) of (2.1), which is four times continuously differentiable in
the initial condition x and whose derivatives are mild solutions of the corresponding variational
equation (obtained by differentiating (2.1) with respect to the initial condition). For T > 0,
the solution X (t;x) of (2.1) obeys for 0 <t <T
E|X(tz)|]P <K(1+ [lz]")
(Bl X () — X(t2)))/? <Kllz — 2'||(1 + ||=])-

Moreover the derivatives are bounded in the following sense. The quantities
E(HXz(t,w)Hi(H,H)), E(HX:c:u(t;w)“]Z(HxH,H))a

E(|| X2z (t; 2) ||12(H><H><H,H))’ E(|| X322z (t; x) ||12(H><H><H><H’H))
are bounded for 0 <t <T.
Proof See Da Prato—Zabczyk [5] Theorem 9.4. The higher order derivatives are understood

by writing the appropriate variational equation. The bound is uniform in x because of the
boundedness of the derivatives of f and b in Hypothesis 1.1. QED

Corollary 2.4 Let Hypothesis 1.1(i) hold. Consider ¢ € G, and let v(t,z) := EH(X(t;x)).
The function v and its derivatives vy, Vpg, Vegz, 0Nd Vgprr are uniformly continuous in x on
bounded subsets of RT x H. For 0 <t<T

[o(t, 2)| < K(1 + |[]|?)



and

HU:CHL‘,(H,R)a H'waHL(HXH,R)a ”'U:cw:cHL(HxHxH,R)a vawwwHL‘,(HxHxHxH,R)

are all bounded by a constant times (1 + ||z||P~!) on the interval [0, T].

Proof Clearly, |v(t,z)| < KE(1 + || X (¢;2)|”) < K(1 + ||z||’) from Theorem 2.3. Similar
estimates follow for vy, vy, Vprr, and vzgee given the estimates on Xz, Xpp, Xppr and Xpppn
in Theorem 2.3 and the hypothesis on ¢.

To argue for uniform continuity, consider data z,z’ with ||z, |z'|| < M and choose € > 0.
Choose R sufficiently large that P(|| X (¢;z)|| < R, 0 <t <T) >1—e. Then, as ¢ is locally
Lipschitz, for a constant Kg,

[v(t,z) — v(t,2")| <eK(1+ |z|P) + Kr(B|X () — X (t;2")[|*)"/?
<eK(1+ MP) + Kp(1+ M)||lz — 2'||.

This can be made arbitrarily small by choosing € small (viz. R large) and then ||z —z'|| small,
and implies uniform continuity of v(¢,z) in = on bounded subsets of R x H. The argument
extends to vy, Vzz, Uzer, and Ugpz, given the continuity in the initial condition of X, X,
etc. described in Theorem 2.3. QED

2.4 Yosida approximations

The operator A is unbounded due to the differential operator in the second component. We
will frequently approximate A by its Yosida approximant Ay (defined shortly). By use of the
Yosida approximant, we find strong solutions of an SDE that converge to the mild solutions
of (2.1) and that yield to the It6 formula. For a review of these ideas, see [12].

The Yosida approximant Ay := kAR(k: A) = k?R(k: A) — kI, where the resolvent
R(k: A) := (kI — A)~!. A simple calculation shows that

_ (0 Ck(kI—%)"1\ . 0

where P, X = h, the solution of kX = kh — £h on [—7,0] for h(0) = Xg.
Define Sj(t) = e** and S(t) = e/, the semigroups generated by Ay and A. The following
properties hold.

Proposition 2.5 (Yosida approximants) (i) Axh — Ah for h € D(A) as k — .

(ii) Sk(t)h — S(t)h as k — oo for h € H and Sk(t) is bounded in L(H, H) uniformly in k.
Moreover, ||Sk(t)z — Si(t)z| < K|| Az — Apz|| for k,£=1,2,... and 0 <t <T.

(iii) TsAy is an operator from H to R uniformly bounded in k. Further mgAph converges
in RY for every h € H to a limit, which we denote by wsAh. In practice, for ¢ € Gp,
this means ¢'(X)Ah is well defined as the limit of ¢'(X)Agh.

Proof The first two properties are standard results from Cj semigroups (see §1.5 of [12]).
The third property follows from property (i), if ||7TSAk||L(H’Rd) is bounded. But wgA, = CP;,
a product of two operators, both of which are bounded for k large. QED



Lemma 2.6 Consider the mild solution X (t;x) of
dX = [AX + F(X)] dt + B(X) dW, X(0) =z,

and the strong solution X*(t;x) of

dx* = [AkX’“ + F(X’“)] dt + B(X*) dw, X*(0) = . (2.3)
Then,
sup B[ X(t;z) — X*(t2)||P -0, ask — co.
0<t<T
Proof Proposition 7.5 [6]. QED

2.5 The numerical method on H

To perform the convergence analysis, we need an interpolant of the numerical solution Y;, in
H. We will denote the interpolant by X*(¢;z) and will also consider a smoothed process
XAbE(t: z). Introduce W (t), an R¢ valued Wiener process with covariance I such that the
increments generate AS, in (1.2). Thus, W((n + 1)At) — W(nAt) = AB,. Consider nAt <
t < (n+ 1)At. Then, define X2 = (X5, X541 by

-1
X§62) =Ya+ | D a@Vari+ F(Va)](t = ndt) +b(Ya) (W(2) = W(nA)
i=—|7/At]
-1
=X§Ea)+ | D aXp(Bo)Al) + F(Xs(ha)] -1
i=—|7/At
+b(Xs( 12)) (W(t) ~ W(E))
, | Xs(t+s3), t+s>0,

X5t z)(s) == {Yp(t—i—s), Cr<iis<O,

(2.4)

—7<s<0.

It is necessary to develop this equation as a well defined H valued stochastic integral.
However, the delay term is not well defined for Xp € Ly([—7,0],R%). We smooth out the
delay term by using Py, as in (2.2) and writing for a continuous function Xp: [~7,0] — R¢

-1
CAtXD = Z CI,Z'XD (ZAt)
i=—|7/At]

The expression C24FPy, is a well defined operator from H to R?. Introduce

A= (g %) (2.5)

and denote the Yosida approximation of A by Ay (in fact, Ay = A[0,Pg]T). Let X2bk(t; z)
solve

Atk
0
+ B(XAk(§:2) dW(t),  XAF(0;2) = 2.

XA (t55) =[ A XA (10) + (C )PkX A (E5z) + (XA (1 52))] at

(2.6)



This equation admits a unique strong solution, which converges to Xt as described in the
following Lemma. Notice that the effects of smoothing and applying the numerical method
to A is that the integral term acts on at the frozen function X (f;z) rather than X (t;z); the
time derivative is smoothed as in (2.2).

Lemma 2.7 The solution X2U*(t;) of (2.6) converges to the interpolant X2 (t;z) defined
in (2.4) in the sense that

sup B[ X2 (t;z) — X2t 2)]|2 - 0, ask — oc.
0<t<T

We now state some properties of the interpolant and then explain two Lemmas that will
be used later to understand the approx1mat10n of the integral [ a(dr). Let (-,-) denote the
standard Euclidean inner product and o(k~!) denote a real valued functlon that tends to zero
as k — oo. The following estimates for the numerical solution are easily established: for
0<t<Tandzz' € Handp>2,

E[| XA (8 2) P <K(1 + ||=]|)? (2.7)
E| X2 (At z) — EXAYH (At 2)|)” <K (14 ||=])?
E[| X% (t;2) — XA (62" <K (1 + |l])? [|= — 2| (2.9)
Lemma 2.8 For 0 <t<T,
E|ms(X20F(t; 2) — X204 (1 2)) | je <K (1 + ||2]])* At (2.10)

For —|1/At] <i# 7 < —1 and t + min(i, j)At > 0,

(i+1)At . .
I1:=E|( / a(dr)ms (XAHR(§ 4 ryz) — XAUR(E 4 7 7)),
1At
G A A .11
/ aldr)ms (XA (i + v 2) = XAR(E 4 7:2)) )] < K(1L+ |al])2A¢%
JjAt

Proof The process X% solves (2.6) and hence satisfies
XAkt z) — XAME(E ) = (St — 8) — DXk ()
& CALF At(g s Atk
-I-/ Sk(t —s) ( 0 ) P Xt 2) ds +/ Si(t — s)F(X24k(E; 2)) ds
i i

' Atk (1. T
+/ Si(t — 8) B(X2*(F; ) dWW (s),
t

where Sj; is the semigroup with infinitesimal generator Ag. As Fsgk( ) equals the identity
matrix acting on R¢ and ||Sk||£ g,m) is bounded and [t — t| < At, this implies (2.10).
Consider integers j < i with t+ ]At > 0. Let F; be the o-algebra generated by {W (s): s <

t}. Because X (£ + jAt +r) for 0 <r < At is F,;», measurable,

At
I E[</ (dr)wSE[(XAtk(t+zAt+r z) — XU (G 4 iAt x)) ‘Ft—HAt]

At
/ a(dr)ms(XAHE(E + AL + 73 z) — XAt’k(f+jAt;x))>].
0



Now, almost surely,

B[ X+ A+ 132) = XAK(E + i )| Fpyn]
Atk

=(Sk(r) — XAV*(F + iAt; z) —I—/ Si(r — s) < 0 ) P XL +iAt; z) ds
0

,
+ / Si(r — s)F(XAY5(E + iAt; z)) ds.
0
Let X2bE(ty,¢1;2) be the solution to (2.6) at time ¢ with initial condition z at time ¢; for

0 <ty <ty <T. Then, XAt’k(tg,O;x) = XAt’k(tz,tl;XAt’k(tl,O;x)) expresses the Markov
property. Let

At
Ly, (7) := /0 a(dT)WSE[XAt’k(t2 +r,t151) — XAt’k(t2,t1;$)‘-7:£2]

At r At r
- / a(dr) / CALRD, XD, 312 7) ds + / a(dr) / reF(XAE (D, £ ) ds.
0 0 0 0
It is easy to show from (2.9) that for 0 <ty —t; <T
(B||Tt, 1, (2) = Tip, (&) I)V2 < K1 + |l |2 — o[ A% (2.12)

We have, dropping two integrals which are easier to bound, |I| < |[Tperq| + K(1 + ||z]|)2A%*
and

At t+jAt+r Atkos _
Tnara =B (Trriaco(@), / a(dr) / rsB(XA (i + jAt; 2)) dW (s) )]
0 i+jnt

We consider the case t + jAt = 0; the general case is similar.

Trara =B[(Fpaeat@), [ atar) [ wsBe) aw(s)]

=B [(Ti_janar(X 24 (A42)) = T janalBXAH (AL 2)),

/0 ™ () /0 " reB(2) 4w (s))].

because for all h € H the average E(F(i_j)At,At(h),foAt a(dr) [, 7sB(z) dW(s)) = 0 by the
independent increment property. Now, from (2.7)-(2.8) and (2.12),

2
Thardl <(E|T-panal X4 (A82)) = T para XAt 2)|

><EH/OAta(dT) /OTWSB(:B) dW(s)‘;)lﬂ

1/2
< (EK(l + | XA5F (4 2)||) | X AR (At 2) — EXAYF (At ) ||2At4At3)
<K(1+ ||z|)%At.

QED



Lemma 2.9 Suppose that the delay function of the initial data is globally Lipschitz, ||Yp| Lip =
|mpz||Lip < 0o. Let a(s,r;x) := PpXA(s;2)(r) — P XA (s;2)(7). For 0 <t < T and
—-7<5<L0,

Ella(f, 5;2)lge <K (1+ |2l + 7| £ip)*At + o(k™")

and for —|T7/At] <i#j< -1

EK /i(H—l)At a(dr)a(f,r;x),/(jﬂ)m a(dr)a(f,r;x)>]

At jAL
< K(1+ ||| + [|7pel £ip)* At* + o(k™1).

(2.13)

Proof To prove the Lemma, we interpret the inequalities in Lemma 2.8 for the delay func-
tion mpX2H* (¢, £)(-). For small time, the delay function carries information from the initial
condition as in (2.4). The Lipschitz assumptions on the initial delay function can be used to
derive the required estimates for small time. For larger time, the state variable translates into
the delay function as described by X5 (¢ + s;2) = X5!(t;z)(s) for —7 < s <0 and t+s > 0.
If this statement held for the smoothed process X2%¥ and P, = wp, the Lemma would be
immediate from Lemma 2.8. We see that Py — 7p in L(H,Ly([-7,0],R%)) by examining
its definition (2.2). Now, from Lemma 2.7, we have Py X2bk(t; 2)(r) — X5%(t + r;x). This
introduces a small error that goes to zero as k goes to infinity, which accounts for the o(k~!)
term in the final result. QED

3 Corollaries of the Ito calculus

We wish to apply the following Corollary to gain time regularity of functionals of X (¢;z) and
its spatial derivatives. The corollary is set up for an abstract equation, but we have in mind
the application to say Z(t;x) = (X (¢;z), Xz (¢; z)h), which obeys

dZ; = [AZ1 + F(Zl)] dt + B(Zy) dW(t), Z1(0) =z

3.1
dZ; :[AZ2 + Fw(Zl)Zg] dt + By(Z1)Z2 AW (1),  Z(0) = h. (1)

A similar equation can be written down for the second derivative Xz, (¢;z)(h, g) involving four
equations.

Corollary 3.1 Consider locally Lipschitz functions F; : H™ — H and B; : H™ — L3 for

i=1,...,m such that Fy(Z1,...,Zp) and Bi(Z1,...,Zy) are independent of mpZ;. Suppose
that there exists a unique strong solution Z*(t;z) in H™ of

Azt = [Asz + E(Z’“)] dt + B;(ZF) dW, Z%(0) = 2k(x), (3.2)
and a mild solution to

dZ; = [AZi + E(Z)] dt + By(Z) dW, Zi(0) = z(z), (3.3)

where the initial data z;(),zF(z) € H are parameterised by x € H. Suppose that

sup sup B|Zi(t;z) — ZF(t;z)]2 =0, ask — oco. (3.4)
0<t<T i=1,sm

10



Suppose further that, for 0 <t <T andi=1,...,m,
E|ZF(t2) <K(1+ o) (3.5)
and that F; and B; satisfy
E|F(Z*ta) P <KL+ |2))?  E|Bi(Z*(2))lhs < K. (3.6)

Consider continuously differentiable G: H™ — R such that G(Z1,...,Zy,,) is independent of
wpZ; and the first derivatives G; and second derivatives G;; obey

G2 < K1+ 1Z5 1), leu@I<K(1+D 01z 7). (37

{=1 =1

Let w(t,z) := EG(Z(t;z)) and wk(t,z) := EG(Z*(t;x)). Then, wy and wf are uniformly
continuously differentiable in time on bounded subsets of RT x H and

i (t,2)],  |w(t,2)] <KQ+||z]?),  0<t<T.

Proof Let wk(t,z) := EG(Z*(t;z)). Because G is continuously differentiable and Z*(¢;x) is
a strong solution, the It6 formula implies that

mo et
wh(t,z) — w*(0,z) ZEZ/ Gi(Z*(s;2)) (AL ZE (s; 3) + Fi(Z5(s;2))) ds

+3 Z /Ter] (5:2))Bs(Z*(s;2)) B; (2% (s;2))" ds.

4,j=1

We attain limits from the dominated convergence theorem because, under (3.5) and (3.7),
E‘/ Gi( N(ARZE (s;2) + Fy(ZF(s; z))) ds‘ <K t(1+]=|P)

B| /0 T Gig (7)) Bi(Z* (53 2)) B (2" (s:2))" ds| <K ¢ (1+ |laf|?).

Thus,
wi(t,z) =B Y Gi(Z*(t;2)) (A Zf (t; ©) + Fi(Z5(t; )
=1
+1 in: GU(Zk(t z))B (Zk(t z))B (Zk(t x))
1,j=1

The convergence of Z¥ to Z; in | - |, implies the convergence of each term in the limit k& — oo.
This convergence depends on G, F;, and B; being independent of the the delay part of the
space H™ so that Lemma, 2.5 can be applied. The second component of Ay Z*(t;z) does not
converge in H. We now have

EZG N(AZ;(t; z) + Fi(Z(t;2)))

+3 Z Tr ¢ij(Z(t; 7)) Bi(Z(t; ) B (Z(t; 7))

2,j=1
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i From this expression, it is easy to derive the required growth bound on wy(¢,z) in ||z||.
Similar estimates hold for w} with bounds uniform in & — oco.

We now turn to establishing uniform continuity of wy (¢, ) with respect to time (the analysis
for wf is similar). Consider

¢
S(t):z:—z:A/ S(s)z ds, z € H.
0

Hence, using Hypothesis 1.1(iii),

Rd

1S(t)z = ol <K]|m» /Ot S(s)z ds)Lz([—T,O],Rd) N /OTG( ) d% ( /Ot”D ()0 d') 5

<K t |z

It follows easily that Z is uniformly continuous in time in the following sense: for R,T > 0,
there exists K with

E|Z(t;z) — Z;({t;z)2 < K|t —t|, 0<t,t' <T, |z|<R. (3.9)

In particular mgAZ(¢; z) is uniformly continuous in time on bounded subsets of H.

Fix R the radius of a ball in H and consider z € H with ||z|| < R. For any ¢ > 0, there
exists L large by (3.5) and the Chebyshev inequality so that if O := {||Z;(¢t;z)||s < L,0 <
t <T,i =1,...,m}, the probability P(O) > 1 — . Consider the expectations defining w,
in (3.8) split as a sum over O and O°. On the set O, G;,G;j, F, B are all Lipschitz and the
expectations in the difference wy(t, z) — w;(t', z) may be bounded by K|t — #'|'/2 using (3.9).
By using (3.5), the expectations on the set O¢ are bounded by d|w(t,z)| < 6K (1 + RP).
Thus to show uniform continuity on the bounded set of H of radius R, pick L large enough
that 6K (1 + RP) < €/2 (a bound on the integral over O¢). Then, for |t — t/| < €2/2K? and
0<tt <T,

|wi(t, z) — we(t', z)| < €/2+€/2, if |z]| < R.

This gives uniform continuity of w; on bounded subsets of RT x H. QED

The following Lemma gives an order At estimate on a functional of the numerical inter-
polant XAtk

Lemma 3.2 Consider the strong solution X2V (t;x) of (2.6) under the condition that F is
globally Lipschitz and that B is bounded. Consider a function w: RT x H — R with one
time and two spatial derivatives that are uniformly continuous on bounded subsets of RT x H.
Further suppose, for 0 <t < T and for a constant K, that

lwe(t, )| <K(1+ ||z[[?), (3.10)
lwe(t, 2)lcmrys  Nwae(t, )| caxmr) <KL+ [lzP71), (3.11)

and that for h € H the following holds uniformly in k
jwz (8, 2) Axh| < K(1 4+ [[|P~") (|- (3.12)
Then, the following bound holds uniformly in k,

‘E[w(s,XAt’k(s;:v)) . w(§,XAt’k(§;w))] ‘ <K+ |z|P)At, 0<s<T.

12



Proof This is Lemma 14.1.6 of [10]. Apply the It6 formula to the strong solution X2%*:
E [w(s, X2 (s;2)) —w(3, X2 (5;2))|
g / (s, X5 2)
3
+wg (s, XA (' ) (ilkXA““(sf; z) + (cmpk ;gAt(éa w>) + F(XAtk(s; x)))
+ L Trwgg (s, XAME(s'; 2)) B(X A (3; 1)) B(X A0k (3 :1:))*} ds'] .
Now using (3.10)—(3.12) with the boundedness of B and the Lipschitz property of F', we have
Efu(s, X2 (5;)) — w(3, X24(332))] |
=y KA XA ) [7) + K (L [ XA 2) [P (14 X2 s 2)]) de].
8
By using (2.7), we have
‘E [w(s, XA (5; 1)) — w(8, XAUR (5 w))] ‘
SE/S K(1+ [ X353 2) P71 (1 + E|X25*(3;2)|)) ds’
§
< [(K(+ lalp) as'
5

As |s — §| < At, this completes the proof. QED

4 The Kolmogorov equation

We introduce the Kolmogorov equation for the stochastic evolution equation (2.1). The back-
ground theory is developed in Da Prato and Zabczyk [5] (1.1), where further references are also
given. The Kolmogorov equation is described in Theorem 4.2. We also discuss the regularity
of the terms in the equation so that the It6 formula applies to v(t, z) = E¢(X (¢;z)) and to the
terms in the Kolmogorov equation. Throughout this section, we assume that Hypothesis 1.1
holds.

Lemma 4.1 Let £¥(t,z) := XE(t;2) Aph, where X*(t;z) is the strong solution to (2.3). Then,
forp>2,

sup B|ER (4 2) — 4P (4 z) P — 0 as k, £ — 0. (4.1)
0<t<T
For0<t<T,
lim (B¢ (8 2)[7) '/ < K||R]. (4.2)
k—o0
Moreover, the limit of Wng(t;x)A%x exists with respect to || - ||s and
lim (BJ| X7 (t; 2) ARz|§)"? < K||z. (4.3)
k—o0

Proof ¢* is a strong solution of

dk () = [Axg (2) + Fo(X* (t2))€ (12)| b+ Bo(X*(t50))¢" (t5.0) aW (1),

13



with initial condition £¥(0) = Axh. The variation of constants formula:
t
E(tia) =Sy Auh+ [ St = 5) (X (510))¢*(s10) ds
0

t
4 / Su(t — 8) Bo(X* (53 2))E* (s.2) dW (s).
0

Using the fact that |X|, < K||X|| on the stochastic integral, the Burkholder-Davis-Gundy
inequality gives

(BiEH 6D <I Ayl + (B [ 1S4t = )P (X (s12)H i) as]) "

+ (B [ 1540 - ) B s e sl o] )
<1xSy @t + (] [ 1840~ )X i) 500 d5])
+ K (B [ 150t~ 9)BaXH 55 50y d5)

N.B., ApSk(t) = £5k(t) so that by using Lemma 2.5(iii) and Hypothesis 1.1(iii)

0

A8l | AcSu(Obls + | [ alas)moasiom o),
0

<Kokl + | [ alds) ] moSe(ms)

<K||h|| + K||7pSk(t)h 1, (-0, R
<K|lh||-

Rd

Thus, using the boundedness of F,, and B,
¢ 1/p
(Blg*(52))' < Kbl + K ([ Bleh(ssa) ds) .
0
Note in particular that the choice of K can be made independent of the particular Yosida

approximation Ay. By applying the Gronwall Lemma, for each T' > 0, there exists K > 0
such that for each &

E& ()2 < KR, 0<t<T. (4.4)

Note that the is uniform in k£ and gives the estimate (4.2).
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We show that the sequence in Cauchy with respect to |- |4 for p = 2. Consider

E|¢¥(t; 1) — €(t;2)|2 < Kage(t; h)?

+ K [ 15400~ )X ()€ (557) — St — ) X s5)€ o) s

+ KB [ 8400 =) E(XH(552)€F 5:0) = St = o) Ex (45 )€ (5 ) s

L KE /Ot S0t — ) Fa(X*(s32))€"(552) — Selt — 5) (X" (53 2))€" (53 2)) |2 di

+ KB [0 - ) B (X (552)€" (5:3) = Sut o) BelX¥ 5525 0) [y s
+ KB [ 8006 - ) B (528 539) — S1lt = ) B (53 2)€ (52 iy s

t
+ KE/ 1Se(t — ) By (X*(s;2)) (53 ) — Se(t — 8) Bu( X (552))6" (5 2) | s ds
0
where
ae(t; h) := [AgSk(t)h — ApSe(t)hlx-
Note that

are(t; h) < [|Ax(Sk(t) — Se(t))hlls + [|(Ax — Ae)Se(t)hlls
0 0
+ /_ a(ds)(mp Ak (Sk(t) — SUe)) )|, + | /_ a(ds)(mp(Ax — A¢)Selt)h)(s)]

By using Hypothesis 1.1(iii) and the definition of Ay in (2.2), it is possible to show that
age(t;h) — 0 as k, £ — oo.

For 0 < ¢t < T, we have that Si(t) is a bounded operator from H to H. Temporarily
dropping the (s;z) argument on X and &, we have

|Se(t — 5)Fp (XF)EX — Se(t — 8) Fo(XF)E ], < K|EF — €5

R4’

Similarly,
1Se(t — 8)Bo(X*)E* — Sy(t — ) Bo(X*)E | ms < K|1€F — 5.
We also have that
|Se(t — 8)Fp(X*)ER — Sy(t — 5) Fo(XO)EF|, < KIIXF — XO)| 51651
and
|Sk(t — 8) Fa(X*)EF — Sy(t — 5) Fu(X*)ER |, < [|(Sk(t — 8) = Se(t — 8)) P (X*) |1, 16511

After writing the similar expressions involving B, we find that for 0 <t < T,
t
BIEH(t0) — ()} < Kaweti )P + K [ BleH(siz) - sl ds
0
t 1/2
+ K/ (BIXE (532) — X4 (si2)]*)  ds
0
¢ k A 1/2
K [ (BISE—5) = Slt NP i) ) s

+K/0 <E||(Sk(t_8)_Se(t_S))Bx(Xk(s;w))”i(H’Lg))l/Z ds.
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using boundedness of ¢* in E|| - ||*. Note that ||(Sk(t) — Se(t) Fe(M)|lca,my < K|[(Ax —
Ag)Fr (M)l z(a,y — 0 uniformly in h € H as Fy(h) is bounded and equal to zero in the second
component. Hence Gronwall’s lemma and Lemma 2.6 applies to give convergence of &¥(t; z)
in the sense of (4.1).

In a similar way, it is easy to establish the limit for X¥(¢;2) A2z with respect to || - |s by
exploiting

1AZSk®Rlls = 1Ak & Sk@hlls < KIC (o r01re)Re) 1TDSk(OR L, (7.0, Ra)-

The bound E|| Xk (¢; 1) A%z||s < K||z|| follows easily.
QED

Theorem 4.2 Let ¢ € G, and set v(t,z) = BH(X(t;x)). Then v satisfies for x € H and
0<tLT
wi(t,z) = L Tr [vm(t, 2)B(z)B(z)*| + vs(t, 2) Az + vy (t, 2) F(z)

where
ve(t, ) Az := lim B¢ (X (t;2)) X% (t; 2) Ap.
k—o00

The functional v is two times in space and one time in time uniformly continuously differen-
tiable on bounded subsets of RT x H.

Proof Apply Ité’s formula to X* with the function ¢:
E¢(X*(t;2)) =Ep(X*(s; 7))
B[ [ §00 (520 456 2) + (KK (52 FXE'2) ]
s
+ %E[ / tTrqS"(Xk(s';x))B(Xk(s';a:))B(Xk(s';:v))* ds'].
By hypothesis on ¢, F, and B,

B / lim ¢'(X*(s';2)) (A X" (s, 2) + F(X*(s';2))) ds’

k—00

<K(1+z]]?) (¢ - s)

< K1+ |2|P7) (¢ - s).

B| [ (X(s52) BOX (5500 B (X5 0)

Thus, dominated convergence applies, to give

0

5 EO(X" (8 7)) =B¢' (X" (t; 2)), Ae X" (t;2) + B! (X" (8 2)) F (X" (8 2))

+ 3B Tr¢"(X*(t;2)) B(X* (t; 2)) B(X* (t;2)) "

Now standard arguments apply to give the Kolmogorov equation for the process X*(t; z):
v*(t;z) ;== Ed(X*(t;2)) obeys

o (t,2) = § Tr [0, (t,2) B() B(2)"| + vk (¢, ) Ay + 0 (t, 2)F(3),
where

vy (t,x) Apz = B¢ (X*(t; ) X3 (t; 7) Ag .
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The limits in each term converges as k — oo. The only difficult convergence is that of v¥,
which exists by Lemma 4.1. For convenience, we replace X*(¢;z) by X (¢;z) in the ¢/(-) term
in the definition vy (¢; z).

The spatial regularity is described in Corollary 2.4. To establish time regularity, apply
Corollary 3.1 with Z(t;z) = X(;2) and Z*(t;z) = X*(t;z). Theorem 2.3 certainly gives
convergence of X to X with respect to | - |4. QED

Lemma 4.3 Let v(t,z) := E¢(X*(t;x)) where ¢ € G,.

(i) Consider a function v: H — H that is globally Lipschitz with two uniformly continuous
derivatives. Let w(t,x) := vg(t, )y (x). Then wy, wy, and wyy exist and are uniformly
continuous on bounded subsets of RT x H such that, for a constant K independent of
k, |lwe(t, z)| is bounded by K(1 + ||z||?) and

|lwz (t, ) || cr,R) |lwez (8, 2) || cerrxar) < K(1+ ]P~).

(ii) Consider a function ¥: H — L(R%, H) that is bounded with two uniformly continuous
derivatives. Let w(t,z) = Trvg,(t,z)¥(z)¥*(z). Then wy, wy, and wyy exist and are
uniformly continuous on bounded subsets of RT x H. For a constant K independent of
k, ||wi(t,x)| is bounded by K(1 + ||z||?) and

lwa(t, )| cmrys  NWaa(t, @) | cuxmry < K(L+ [lz]P7H).

Proof The differentiability and bounds of the derivatives in x follow from the hypothesis on
1, ¥ together with Corollary 2.4. To understand the time derivative, argue as follows:
(i) First note that v, (t,z) = B¢'(X*(¢;2)) Xk (¢;x). Thus,
vg (t, 2)(x) = B (X*(t;2)) X[ (4 2)9(2) = EG(ZF (¢ 2), Z5 (8 2)),
where G(Z1, Z2) = ¢'(Z1) Za, ZF(t;2) = X*(t;z), and Z¥(t; ) = XE(t;2)(x). Corollary 3.1
applies in this situation as (Z;, Z2) satisfies (3.1) with h = ¢(z). The growth condition (3.5)
is given by Theorem 2.3. The coefficients in (3.1) are locally Lipschitz and obey (3.6) by using
the boundedness of the derivatives given in Hypothesis 1.1. The regularity of test functional
G is easily derived from the conditions on ¢. Thus, we conclude that v, (¢, z)1(z) is uniformly
continuously differentiable in time on bounded subsets of R™ x H.
(ii) Similarly, for hy, he € H,
Vga(t 2) (h1, ho) =E¢" (X" (t;2)) (X5 (8 2)ha, X5 (8 2)ho)
+E¢ (X" (t;2)) X 5o (8 ) (ha, ho).
Thus,
Vga (8 2) (U (2)h1, U (2)ho) =E¢" (X" (t; 2)) (X5 (8 2) U (2)h1, X5 (£ 2) ¥ (2)hs)
+ B¢ (X" (t;.2) X5y (6 2) (U (2)h1, U(2)h).

Let e; be an orthonormal basis for R¢, so that

d
T vy (1) ¥ (2)* (2) =B 3 ¢ (X* (t:2)) (XE (1) ¥ (2)es, XE ()W (z)e)
i=1
+ ' (X (85 2) XE, (1) (W (@)es, W(w)es)]
d

=Y EBG(Zf(t;2), Z5,(t; ), Z,(t; )
i=1
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for G(Zl,ZQ, Zg) = ¢I,(Zl)(Z2, Z2) + ¢I(Z1)Z3 and
ZE(tx) = XM (a),  Z5,(6n) = Xp(ta)U(w)es,  Z5;(tw) = Xg,(62) (T(z)ei, U(z)e;).
Again, it can be shown that the processes Z¥, Zg’i, Zé“,i satisfy the hypothesis of Corollary 3.1
(for each i, case m = 3). The sum is finite, which means regularity of EG for each i gives the
same regularity for Trv,, U¥*. QED
Lemma 4.4 For h,ge H and 0 <t < T,
(Bl Xz (t2) (B, 9)13)'/* < Kllg|| |Ihl]

and for k large
(E| X (t; ) (Ah, Arg)l[3)'* < Kllgl| |-

Proof Denote X,(t; z)h by £*(t; z) and Xz (¢; ) (h, g) by n9(t; ). n/9 satisfies the following
variational equation:

9 =[An9 + Foa(X)EHE0 + Fo(X)n™0 | dt + (BualX)E"E0 + Bo(X)n2) dW
n"9(0) =0.

Again the variation of constants formula can be studied to gain a bound on 79 using bounds
on ¢ and X:

t
19(t0) = [ (= 8) (FeoX (6 0) (€ (1:2). € (6:0) + Fo(X (600 (5))

t
+ [ (= 5) (Bea (X 1)) (t52). €9(152)) + B(X (t5)"(152) ) dWW (s).

Thus, by the Burkholder-Davis-Gundy inequality,
1/p
(B[l 2113] )

t

1/
e X 50 Wy gt ey 1€ 55005 1955 )5 ] ) ™

El ' X P h.g P L/
||fz(7r5 (3;55))”[, Rd R4 ||77 ’ (S;.’E)“S ds
L/, (R4, R)

|
(

+K(E| /0 s X (550)) g g 162 (s12) 67 5 5] )
(

_ ot » hig » 1/p
B[ [ bo(ms X (550)) g gy 175 I ds] ) ™"
-J0
Hence,

1/ t 1/
(Bl owaly) ™ <& ( [ Bl ol el as)

1
-I-K(/O E||nh:9(s;x)||€1 ds)l/p

t 1/
([ Ble ol ol ds)

¢ 1/p
+K(/0 Bl (s;)|[} ds) "
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Apply the estimate on ¢” in Theorem 2.3 with E||&"|P||€9]|P < (E||&"||1%P)/2(E||£9]|%)1/2, to
derive (recalling that Fy, By, By, are bounded) for 0 <t < T

¢ 1/p
(Elln™9(t;2)|5)/7 <K [|hlls liglls + K ( /0 E|ln™9(s; 2)|[5 ds) "

Apply Gronwall’s inequality to prove that E|n™9(t; z)|s < K||g||’s ||h|%-
By making use on the bound on £4*" in Lemma 4.1, we may replace either h or g by Ag

or Aih in the definition of  and repeat the argument to prove the second inequality in the
Lemma. QED

5 Weak convergence

The following argument gives weak convergence of order At of the forward Euler method. The
argument follows that of Kloeden-Platen [10], Theorem 14.1.5.

Proof (of Theorem 1.2) Consider v*(t,z) := E(¢(X*(T — t;z)) and
LEo(t,z) == vy(t,z) + L Tr [vm(t, a:)B(a:)B(a:)*] + vg(t, 1) A + vy (t, 2) F(2).

As in Theorem 4.2, we have that Lv¥(¢,z) = 0 and that v* satisfies the hypothesis of Itd’s
formula. Apply the Ité6 formula to the approximations X*%* defined in (2.6):

oF (T, XAK(T; z)) — vF (0, X2F(0; 2))
At

:E[/OT {v’;(s,XAt’k(s;ac)) (AkXAt’k(s;w) + (CO ) ’PkXAt’k(§;ac))
+ oF (s, XOUF (5, 2)) F (X 20K (3; 1))
5 T [0k, (5, XA (53)) B(X A1 (55 0)) B(X A (55))"

+ oF (s, XA (s; 1)) ds]
(subtracting off 0 = LFv¥)

—E| /0 T [0, (5, X 50 (55 2) BOX A (55 2)) BOX A (5; )
= LT [0k, (5, XOK(s3.2)) (XA (552) B(X A (55 )
+ b (5, XA (53 2)) ([CAPLX A (33 2), 0] + F(XA(35.2)))
— v (s, X2 (55)) ([CPLX A (53.2), 017 + F(XA(552)) ) ds].

Define for hi,ho € H

wi (t, hy; ho) :=vF (t, b)) [CPLAo, 0]F + vF(t, hy) F(hg)
wo(t, hi; he) :=vE (t, h1)[CPLhy, 01T + vE (8, h)F(h1)
w3 (t, hi; he) :=3 Tr(vk, (t,h1) B(h1)B(h1)*)
wa(t, hishe) =1 Tr(vk, (¢, h1) B(ho) B(ha)*).
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Clearly,
E¢(X 20K (T; 7)) — B(X* (T 7)) = vF (T, X4 (T 3)) — v*(0, X204 (0; 7))
and hence

[Ep(XAH(T;2)) — E¢(XH(T; )
T 4
S/O Z|Ewi(s,XAt’k(s;m);XAt’k(é;:1:)) — Ew;(s, X2 (3, 2); XA0E (3, 2))| ds (5.1)

+ ‘ /OT Ev, (s, X2k (s; 1)) ((C B CAt)PO R XA (S $)> ds‘.

The modulus of the integrand of the last term in this estimate is

<(Bllva (5 X2 (53 2)) 12 r.m))

< (B /_OTa(dm (PR (552)(r) = PLX A0 (550 (7) )|

2 \1/2

Rd) '
The term E||vz(s;XAt’k(s;m))H%(H’R) is bounded by K(1 + ||z|[P~!) by using Corollary 2.4
and (2.7). Let a(s,r;z) := PR X2k (s;2)(r) — PR X2 (s;2)(#). Using this notation and

assuming that 7 is an integer multiple of At,

H/_ (dr)a(s,r;)|

-y 0y w5

i=—|7/At] j=—|r/At] int

!

(i+1)At (j+1)At

a(dr)a(§,r;:c),/

jAt

a(dr)a(s,r; w)>] .

By the second part of Lemma 2.9, the cross terms (i # j) obey

(i+1)At (+1)At
E[</ a(dr)a(§,r;x),/ a(dr)a(§,r;x)>]
iAt jAL

<KL+ [l + lmpelLip) 2At* + o(k )
and by the first part of Lemma 2.9 the diagonal terms
Z+1 At 2 (i+l)At 2
EH/ a8 T;.Z‘)‘ SE[/ a(r)||le(8,r;z)||ga dr]
R4 iAt

(i+1)A 2
<B[  sp Jls,r50)ne / a(r) dr|
iA<r<(i+1)At iAt

<K+ ||lz]| + [7palluip)*At* + o(k™1).

E [H /_OT a(dr)a(s,r; J:)HQ]

<K(1+ ol + Impzluip)? (Lr/A AL + (Ir/At)2At) + o(k ™)
<K+ |lz]| + [7pzLip)*At? + o(k ™).
Thus the final term in (5.1) is bounded by K (1 + ||z||” + ||z||P~ |7 pz||Lip) At + o(k1).
We wish to apply Lemma 3.2 to show that each pair of terms in w; in (5.1) is order At.

Because s > 8, it is sufficient to apply the Lemma to w(t, z) = w;(t,z; ha). We now verify the
hypothesis of Lemma, 3.2.

Consequently,
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derivatives We require that w, w, wy, wg, exist, be uniformly continuous on bounded
subsets of R* x H, and obey the growth bounds specified in Lemma 3.2. In each case,
this is a consequence on Lemma 4.3. Part (i) of this lemma covers w; and we, while
part (ii) covers ws and wy. We make use of differentiability properties of F' and B in
applying this Lemma.

drift term in A We further require that in each case |wg(t, ) Axh| < K(1+ ||z|[P~") ||R|| for
h € H. We look at w(t,z) = wa(t, z;z) in detail; the others are similar. Note

we(t, ) Agh =vk (t, 2)[CPL Agh, 01 + v (t, ) Fy (z) Agh
+ ok (8, 2) ([CPya, 01T, Agh) + vk, (¢, ) (F(x), Agh).

By Hypothesis 1.1(iii), CPzA; is bounded from H to R? uniformly in k. Further
F,(z)A, = 0 because F is independent of the delay and the definition of A (see (2.5)).
By using the bound on v, in Corollary 2.4, we conclude that the first two terms are
bounded by K(1+ ||z||P) ||A]|-

Write out the terms in vX, using &9 = X%(t;z)g and n™9 = XE (t;2)(g,h) and Q =
[C’PMB,O]T

vk, (t,3)(Q, Aph) =E¢" (X* (t;2)) (€2, 6M") + By (X* (t; 2) ) @<
o, (t,3) (F(2), Ach) =B¢" (X" (t; 2)) (€7@, ¢4h) + B! (X (1 )y (@ Aeh,

Lemma, 4.1 derives bounds on £4%"; clearly the same technique gives bounds for fjkh.
Similarly, the techniques in Lemma 4.4 give bounds on the terms in 7. We conclude that
the required bound on |w(t,z)Agh| holds.

Thus, Lemma (3.2) applies to the terms in the summation in (5.1), giving bounds of the
form K(1+ ||z||P)At. Taking this observation with the bound for the last term in (5.1), we
have a bound on the weak error in the Yosida approximation of the form K (1 + ||z||?)At +
K1+ ||lz||P + |z||P~ |7 pz||Lip) At + o(k™'), where K can be chosen independent of k. Take

the limit in £ — 0o to complete the proof.
QED

6 Numerical Experiments

We present results of numerical experiments corresponding to examples of (1.1). Our objective
is to illustrate the convergence of the weak Fuler method with respect to decreasing step-size
by computing first or second moments, that is we compute E¢(Y (T)) for ¢(Y) = Y where
Y (T) denotes a solution of (1.1).

Example 6.1 Consider

dY (t) = [ til Y(s) ds+ exp(—l)Y(t)] dt + (o1 + 02 Y (t))dW (¢), (6.1)

for t € [0,7] and Y (s) = exp(s) for —1 < s < 0 and W (¢) is a one dimensional Wiener process.

Let m(t) := EY (¢) for ¢ > 0. Then, m(t) satisfies the delay-integro-differential equation

t
m! () = /t m(s) ds + exp(—1)m(t), (6.2)

-1
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with initial condition
m(s) =exp(s) for —1<s<0. (6.3)

Equation (6.2) subject to (6.3) has the solution m(t) = exp(t).
With a step-size At = T/N and k = 7/At = 1/At, the weak Euler method takes the form

n—1
VAL = YA+ At(exp(-)Y,M + AL 3 YA + (00 + oY) AW, (6.4)
j=n—k

forn =0,...,N — 1 and with YjAt = exp(jAt) for j < 0. The AW, denote IID N (0, At)
distributed random variables approximating W ((n + 1)At) — W (nAt). We have used the
composite explicit Euler rule to approximate the integral. To illustrate the convergence of
the method, we have simulated 10,000 sample trajectories with each of the step-sizes At =
273,274 .. and computed the error

uA(T) = [BYR' — BY(T)| (6.5)

at the final time 7' = 2. In Figure 1, we have plotted log,(u>*(T')) versus logy(At).

Figure 1: logy(u®Y(T)) versus logy(At) for (6.1) with left: o1 = 0.2, o9 = 0, right: oy =
0.0, o9 =0.2.

A well-known feature of weak approximation methods is that the Gaussian random num-
bers Af, can be replaced by simpler random variables AfS, (see [10]). We have performed
numerical experiments with two-point distributed random variables with

P(AW, = £VAt) = L.

In Figure 2 we present corresponding error-plots.

For illustration purposes we also include some trajectories in the following figure, the thick
line corresponds to m(t) = exp(t).

The computations follow the exposition in [3].
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