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Abstract

The utility maximization problem of ’ratchet investors’ who do not
tolerate any decline in their consumption rate is solved explicitly for all
felicity functions in a Markovian framework which includes Brownian
motion and Poisson processes as special cases. The optimal consump-
tion plan turns out to be the running maximum of the optimal plan
a conventional time–additive investor would choose.
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Introduction

Intertemporal preferences are fundamental for the microeconomic theory of
intertemporal consumption and investment, the theory of financial markets
and asset pricing, as well as macroeconomic growth and business cycle theory.
The assumptions imposed on preferences have a decisive impact, of course,
on the shape of these theories.

Conventionally, temporal economic models are built on time–additive ex-
pected utility. There, the utility of a multiperiod consumption plan is given
by the expected discounted sum of period utilities, and the period utility
depends only on the consumption of that period. In continuous time, the pe-
riod utility is a function of the rate of consumption, that is the infinitesimal
consumption per unit time.

Time–additivity is, of course, a strong assumption. In particular, it ex-
cludes any path dependence of utility from consumption and does not allow
to model phenomena like habit formation. Moreover, models based on time–
additive preferences lead to results which are hard to reconcile with the data
on prices and consumption behavior. Consumption is much too volatile in
time–additive models, and the equity premium too high, the short interest
rate too low, to cite just a few ’puzzles’ derived from time–additive models.

Several other utility functionals have been proposed to overcome these
weaknesses of time–additive utility. A prominent class form the habit forma-
tion preferences (see (Constantinides 1990) and (Sundaresan 1989)) where
period utility is a function of current consumption and an index of past con-
sumption. Intuitively, the index of past consumption represents a floor for
future consumption rates. This idea is pushed to its extreme by (Dybvig
1995) where the investor does not accept any decline in his consumption
rate. The investor keeps the time–additive utility functional to evaluate con-
sumption plans as long as these are nondecreasing, while assigning a value of
negative infinity to all other consumption plans. Dybvig derives an explicit
solution when investors have constant relative risk aversion and can invest
in a complete financial market driven by Brownian motion. He also dicusses
extensions to multiple goods, intolerance beyond some rate of decline and
portfolio constraints.

This paper studies the utility maximization problem of the investor with
Dybvig’s preferences, or the ratchet investor, as we will call him here. We
extend Dybvig’s analysis in several directions. First, the problem is solved
for all separable felicity functions explicitly. This is remarkable because in
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non time–additive models closed-form solutions are usually available only for
restricted classes of preferences, as constant relative risk aversion, e.g. As
an important new insight, the result shows that the consumption plan of
the ratchet investor is the running maximum of the consumption plan of a
corresponding time–additive investor. The ratchet investor derives therefore
his demand from equating period marginal utility and current price as the
time–additive investor does, but uses ratchet and pawl to avoid any decline
in his consumption.

Second, we derive this result in a more general stochastic framework.
Dybvig considers a complete financial market driven by Brownian motion.
Thus, log–returns of assets are assumed to be normally distributed. We
drop this assumption while keeping the convenient homogeneous Markovian
structure. We only assume independent and stationary increments for the
stochastic process which describes the underlying risk.

A minor improvement is that this paper removes Dybvig’s assumption
that the minimal level of consumption be strictly positive.

Our method of proof does not rely on dynamic programming. Instead,
we use the usual concavity argument from demand theory as well as the
regularity of consumption paths required by the ratchet investor. Essentially,
the proof rests on two integrations by parts, made possible by the fact that
consumption plans are nondecreasing, and the calculation of some expected
values where the Markovian structure plays a role. In this sense, the present
approach delivers a more elementary proof of the result.

Recently, (Skiadas and Schroder 2001) have established a duality between
ratchet preferences and Hindy–Huang–Kreps preferences. In principle, there-
fore, the paper’s result could have been derived by combining this duality
with my own work with Peter Bank, (Bank and Riedel 2000). However, the
present approach is more direct and shorter.

The next section describes the model, states the main result, and consid-
ers some case studies— the deterministic case, a model with Poisson jumps,
and Brownian motion. In Section 2, we study conditions under which the
candidate solutions have finite prices, an assumption made in the main the-
orem. Section 3 contains the proof of the main result and the final section
discusses some possible extensions and concludes.
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1 Model and Result

We consider an investor who chooses a rate of consumption (ct)t≥0 within
an infinite horizon. Following the approach initiated by Dybvig (1995), we
assume that the investor does not accept a decline in his period rate of
consumption. A simple way to model such preferences is given by

V (c) =

{
E

∫∞
0
e−δtu(ct)dt if c nondecreasing and c0 ≥ c0−
−∞ else

.

Thus, the investor uses the time–additive expected utility function with dis-
count factor δ > 0 as long as the additional requirement of monotonicity
is satisfied. c0− ≥ 0 is the minimal level of consumption required by the
consumer. The expectation is taken with respect to a probability measure P
of a suitable filtered probability space

(
Ω,F ,P, (Ft)t≥0

)
.

We will assume that the the felicity function u is strictly increasing, con-
cave, and continuously differentiable with a strictly decreasing derivative u′

satisfying u′(∞) = 0. The strictly decreasing inverse of u′ is denoted by i.
Note that we do not need to assume that marginal felicity at zero is infinite.
The important case of felicity functions with constant absolute risk aversion
is thus included.

The investor is endowed with initial capital w > 0 which he uses to buy
a consumption plan1 (ct)t≥0 on a complete market with Arrow–Debreu price
functional

Ψ(c) = E
∫ ∞

0

ψtctdt .

Moreover, we assume that the Arrow–Debreu price density ψ has the follow-
ing structure:

ψt = exp (−rt− θZt − π(−θ)t) .

Here, r > 0 is the interest rate, θ is the market price of risk. Z is a Markov
process with stationary and independent increments starting in Z0 = 0. The
function π is the Laplace exponent which is given by E exp(ξZ1) = exp(π(ξ)).

Such a structure arises canonically from a financial market driven by the
Markov process Z2. Dybvig uses the widespread Samuelson–Merton model

1Consumption plans are adapted, nonnegative processes.
2On the relation between dynamically complete financial markets and Arrow–Debreu

price densities in continuous time, see (Cox and Huang 1989), (Karatzas, Lehoczky, and
Shreve 1987) for the Brownian framework and (Back 1991) for general processes.
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of the asset market where Z is a Brownian motion. The model presented
here is more general in that we drop the assumption of normally distributed
increments while keeping the convenient Markovian structure. Our setup
includes, beyond the Brownian model, also the case of jump processes like
the Poisson process (cf. Section 1.1).

In the following, we study the investor’s maximization problem:

maximize V (c) subject to Ψ(c) ≤ w . (1)

Since the budget set is empty when the perpetuity value of the minimal
consumption plan ct ≡ c0− exceeds the initial capital, we assume throughout
that

w >
c0−
r
.

Before the solution to the utility maximization problem is presented, it
may be useful to recall the optimal consumption plan when the consumption
rate is not constrained to be nondecreasing. Time–additive investors just
equate marginal felicity and current price at time t. For a suitable Lagrange
parameter K > 0, the optimal consumption plan m(K) is given by

e−δtu′(m(K)t) = Kψt , (2)

if e−δtu′(0) ≥ Kψt and m(K)t = 0 otherwise.
The following theorem provides a complete solution to the investor’s prob-

lem.

Theorem 1.1 For a positive constant K, let m(K)t be the optimal consump-
tion plan of an unconstrained time–additive investor with Lagrange parameter
K, that is m(K) solves (2). Denote by c(K) the maximum of the minimum
consumption level c0− and the running maximum of the time–additive in-
vestor’s optimal plan,

c(K)t = max

{
c0−, sup

0≤s≤t
m(K)s

}
.

c(K) solves (1) for initial capital w = Ψ(c(K)) , as long as Ψ (c(K)) <∞.

The proof of the theorem is given in Section 3. Here, we discuss and
interpret the solution.
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The above theorem provides a complete and explicit solution. In order
to find a solution for given initial capital w, one has to compute the prices
Ψ(c(K)) for all parameters K (which play the role of Lagrange multipliers).
These prices are a decreasing function of K and it remains to determine the
value of K which matches the initial capital. Of course, this method requires
that the prices of the candidates c(K) are finite. In general, assumptions on
the parameters of the problem are required to ensure this. This question is
studied in detail in Section 2.

The main insight provided by the above theorem is that consumption
rate of a ratchet investor is the running maximum of the consumption rate
a suitable time–additive investor would choose. In fact, with time–additive
utilities, the solution is given by equating period marginal felicity and price,
that is, by m(K). The ratchet investor copies the behavior of the time–
additive type while introducing the ratchet — his consumption rate cannot
decline. It increases whenever the time–additive type reaches a new running
maximum in his consumption rate.

Since the consumption rate of the time–additive investor is either
m(K)t = i

(
Kψte

δt
)

or zero, and i is strictly decreasing, the optimal plan of
the ratchet type can be written as

c(K)t = max

{
c0−, i

(
K inf

0≤s≤t
ψse

δs

)}
(3)

= max
{
c0−, i

(
e− sup0≤s≤t(θZs+(r−δ+π(−θ)))s

)}
. (4)

The consumption behavior of the ratchet type is thus determined by the
running maximum of the Arrow–Debreu price process ψ adjusted by the time
preferences of the investor. The consumption rate increases when the ratio of
the price process and time preference ψt/e

−δt reaches a new minimum. This
implies, in particular, that the times when the consumption rate increases
do not depend on the investor’s risk attitude, but only on price level and
time preference. All investors with the same time preference increase their
demand at the same points in time.

The second formula (4) shows that the running maximum of the Markov
process Xt := θZt +(r − δ + π(−θ)) t determines the optimal behavior of the
ratchet investor. As a caveat, we emphasize that the Markovian assumption
plays an important role here. Whether the investor optimally increases his
rate of consumption forever or not, depends, of course, on the expected future
evolution of the price process. Due to the Markov assumption, the current
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value of the price process is a sufficient statistic for that decision and it
sufficies therefore to base one’s behavior on this one variable.

The nature of the underlying risk structure of the financial market leads
to several possible consumption patterns as is illustrated in the following case
studies.

1.1 Case Studies

1.1.1 Deterministic Case

Our setup includes the deterministic case (θ = 0). There, the time–additive
investor’s optimal consumption plan is given by

e−δtu′(m(K)t) = Ke−rt

for a suitable Lagrange multiplier K, or, equivalently,

m(K)t = i
(
Ke(δ−r)t

)
,

where i denotes the decreasing inverse of marginal felicity u′.
This leads to two cases. When the discount factor is greater than the

interest rate, δ > r, the time–additive agent exhibits a decreasing consump-
tion pattern. Accordingly, the corresponding consumption rate of the ratchet
investor is constant over time, c(K)t = max {c0−,m(K)0} . When, instead,
the investor is relatively patient, δ ≤ r, then m(K) is nondecreasing. Thus,
the monotonicity constraint of the ratchet investor does not bind, and both
types exhibit the same consumption behavior:

c(K)t = max {c0−,m(K)t} .

1.1.2 Poisson Jumps

Next, we consider a world in which positive shocks of a fixed size occur at
unpredictable random times. Such a scenario is well described by a a financial
market whose risk structure is given by a Poisson process Z. The Laplace
exponent of a Poisson process with intensity λ is given by π(ξ) = λ

(
eξ − 1

)
.

A Poisson process jumps by one at independent exponentially distributed
random times. For a positive market price of risk θ > 0, this means that the
price process has negative jumps when the Poisson process jumps.
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In this case, the relevant process Xt = θZt + (r − δ + π(−θ)) t is non-
decreasing when r ≥ δ + π(−θ), and so is the optimal rate m(K) of the
time–additive investor. The monotonicity constraint does not bind, there-
fore, and the ratchet investor exhibits the same consumption behavior as the
time–additive type — the consumption rate steadily increases and jumps by
a certain size when a price shock occurs.

In the case r < δ + π(−θ) the process X has a continuous negative drift
and jumps upwards whenever the Poisson process jumps. If this jump is
large enough to induce a new running maximum of that process, the ratchet
investor reacts with a discontinuous upward increase of his consumption rate,
while his consumption rate is constant otherwise.

1.1.3 Brownian Motion

When Z is a Brownian motion, the consumption rate of the ratchet investor
is given by the running maximum of a Brownian motion with drift r−δ+ θ2

2
.

This is a continuous, yet not absolutely continuous, increasing process. The
lack of absolute continuity should come as no surprise here. Indeed, the time–
additive investor’s consumption rate in this model is a monotone function of
Brownian motion with drift and, therefore, nowhere differentiable.

When δ is small compared to interest rate r and market price of risk θ,
the drift is positive. In this case, the investor’s consumption rate increases to
infinity as time goes on. When δ is large, the agent starts at a higher initial
level, but his rate stays constant from a (stochastic) point in time on.

2 Finiteness of Prices

In this section, we provide general conditions under which the price of the
candidate solution is finite. To this end, it is useful to introduce the equiva-
lent martingale measure P∗. Its density with respect to P on Ft is given by
dt = ertψt. The price of a consumption plan is equal to its expected present
value under P∗, that is3

Ψ(c) = E∗
∫ ∞

0

e−rtctdt .

3compare, e.g., (Duffie 1992, Chapter 9.E).
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Note that the discount factor e−rt is proportional to the density of an expo-
nentially distributed random variable τ with parameter r. With this auxiliary
random variable τ , independent of c, the price of a consumption plan can be
written as Ψ(c) = 1

r
E∗cτ .

We have the following

Lemma 2.1 The price of the consumption plan c(K) is finite iff one of the
following conditions holds true:

E∗
∫ ∞

0

e−rt max
{
c0−, i

(
Ke− sup0≤s≤t Xs

)}
dt <∞ (5)∫ ∞

0

max
{
c0−, i

(
Ke−ξ

)}
G(dξ) <∞ , (6)

where G is the distribution function of the random variable sup0≤s≤τ Xs un-
der P ∗ and τ an independent exponentially distributed random variable with
parameter r.

The process X is smaller for larger values of the discount factor δ. The
first characterization (5) implies therefore that if prices are finite for some δ,
then they are finite for all larger values δ′ > δ. As plausible in infinite horizon
models, the discount factor must be large enough to ensure wellposedness of
the problem.

The second characterization (6) is very useful in situations when the dis-
tribution function of the running maximum of X stopped at an independent
exponential time is known. This is trivially the case when X is nonincreas-
ing or when X is a deterministic drift, that is Xt = At for some constant
A. When X has no upward jumps, the running maximum process is still
a continuous process. This continuity, the Markov property and the lack
of memory of the exponential law allow to identify the distribution of that
maximum as exponential, see (Bertoin 1996, Chapter 7).

Theorem 2.2 The price of the candidate solutions c(K) is finite for all K >
0 in the following classes of models:

1. X is nonincreasing;

2. X has no upward jumps and the agent has constant absolute risk aver-
sion.
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3. X has no upward jumps, the agent has constant relative risk aversion
α, and

δ > δ∗ := (1− α)(r + π(−θ)) + απ

(
(1− α)θ

α

)
(7)

holds true. Condition (7) holds true for α > 1.

Proof : When X is nonincreasing, the candidate c(K) is constant, and its

price is thus Ψ(c(K)) = c(K)0
r
.

From now on, assume that X is not a nonincreasing process and has no
upward jumps. In this case, an important theorem from the theory of Markov
processes (Bertoin 1996, Chapter 7, Corollary 2) tells us that the distribution
G of the running maximum of X stopped at an independent exponential time
τ is exponential. Its parameter is the unique positive solution k of π∗(k) =
r, where π∗ is the Laplace exponent of X under the equivalent martingale
measure P∗. The Laplace exponent π∗ can be calculated as follows:

E∗eξX1 = EeξX1−θZ1−π(−θ)

= Ee(ξ−1)θZ1+ξ(r−δ)+(ξ−1)π(−θ)

= Eeπ((ξ−1)θ)+ξ(r−δ)+(ξ−1)π(−θ) .

We obtain therefore π∗(ξ) = π((ξ − 1)θ) + ξ(r − δ) + (ξ − 1)π(−θ).
Consider next the case of constant absolute risk aversion α, that is u(x) =

− 1
α
e−αx, and i(x) = max

{
0,− 1

α
log(x)

}
. Applying (6), we obtain that the

price of c(K) is finite iff∫ ∞

0

max

{
c0−,

1

α
(ξ − logK)

}
ke−kxdx <∞ ,

which is obviously the case.
With constant relative risk aversion α, one has u(x) = x1−α

1−α
, and i(x) =

x−
1
α . It is easy to see from (6) that the price of c(K) is finite iff

∫
e

ξ
αG(dξ) <

∞, that is, iff α−1 < k. Since π∗ is convex and increasing when positive, this
is equivalent to π∗(α−1) < π∗(k) = r, or (7).

Finally, note that for α > 1, the convexity of π∗ yields (1 − α)π(−θ) +

απ
(

(1−α)θ
α

)
≤ π∗(0) = 0, and one obtains δ∗ ≤ (1 − α)r < 0. Hence, the

condition δ > δ∗ is always satisfied. 2

It may be interesting to note that the critical value δ∗ in the case of con-
stant relative risk aversion is the same as for time–additive utility functions
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(see (Merton 1990, Section 4.6)) as well as for Hindy–Huang–Kreps prefer-
ences, see (Bank and Riedel 2000, Theorem 4.9). For the Brownian case, we
recover, of course, Dybvig’s condition (7)4.

3 Proof of the Main Theorem

The proof is relatively straightforward in that it requires only partial integra-
tions and the calculation of expected values. Here is an outline. It suffices, of
course, to consider nondecreasing consumption plans only because all other
plans lead to negative infinite utility. In a first step, we use a partial inte-
gration to show that the price of a nondecreasing consumption plan can be
written as

Ψ(c) =
1

r

(
E

∫ ∞

0

ψt dct + c0−

)
. (8)

Now let c(K) be our candidate solution and take another nondecreasing
consumption plan c with Ψ(c) ≤ Ψ(c(K)) . Concavity of the felicity function
u implies that

V (c(K))− V (c) ≥ E
∫ ∞

0

e−δtu′(c(K)t) (c(K)t − ct) dt ,

and partial integration leads to

V (c(K))− V (c) ≥ E
∫ ∞

0

E
[∫ ∞

s

e−δtu′(c(K)t)dt|Fs

]
(dc(K)s − dcs) . (9)

Then, we show that the definition of c(K) leads to the following inequality
for all (stopping) times s and some constant L:

E
[∫ ∞

s

e−δtu′(c(K)t)dt|Fs

]
≤ Lψs . (10)

It is furthermore shown that equality holds true whenever c(K) has a point
of increase in s, that is dc(K)s > 0. By plugging (10) into (9), one obtains

V (c(K))− V (c) ≥ LE
∫ ∞

0

ψs (dc(K)s − dcs) ,

4Dybvig expresses the condition as a critical value for the parameter 1 − α. In terms
of the discount factor, this is equivalent to (7), compare p.295 in (Dybvig 1995).
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and (8) yields then

V (c(K))− V (c) ≥ L

r
(Ψ(c(K))−Ψ(c)) ≥ 0 ,

and the proof is done.
The remainder of this section is devoted to the proofs of (8), (9), and

(10).

Proof of (8) As a preparation, note that the conditional expectation of
the price process is

E [ψt|Fs] = ψse
−r(t−s) . (11)

Let c be a nondecreasing consumption plan with a finite price, Ψ(c) <∞,
and c0 ≥ c0−. Fubini’s theorem or partial integration shows that for 0 < T <
∞ ∫ T

0

ψtctdt =

∫ T

0

ψt

(∫
[0,t]

dcs + c0−

)
dt (12)

=

∫ T

0

∫ T

s

ψtdtdcs + c0−

∫ T

0

ψtdt . (13)

Taking expectations, we get with the help of (11)

E
∫ T

0

ψtctdt = E
∫ T

0

E
[∫ T

s

ψtdt|Fs

]
dcs + c0−

∫ T

0

e−rtdt ,

where we may take the conditional expectation under the integral on the
right side because c is an adapted process (cf. (Jacod and Shiryaev 1987,
Lemma I.3.12)).

Due to (11), we have

E
[∫ T

s

ψtdt|Fs

]
= ψs

∫ T

s

e−r(t−s)dt ,

and

E
∫ T

0

ψtctdt = E
∫ T

0

ψs

∫ T

s

e−r(t−s)dtdcs + c0−

∫ T

0

e−rtdt

follows. The desired relation (8) is obtained by letting T → ∞ and using
monotone convergence.
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Proof of (9) Let c be a nondecreasing consumption plan with Ψ(c) ≤
Ψ(c(K)). Since the felicity function is concave, we have

u(c(K)t)− u(ct) ≥ u′(c(K)t) (c(K)t − ct) ,

and thus

V (c(K))− V (c) ≥ E
∫ ∞

0

e−δtu′(c(K)t) (c(K)t − ct) dt .

Another partial integration as in (12) and (13) above yields

V (c(K))− V (c) ≥ E
∫ ∞

0

E
[∫ ∞

s

e−δtu′(c(K)t)dt|Fs

]
(dc(K)s − dcs) .

This is (9).

Proof of (10) Since

c(K)t = max
{
c0−, i

(
Ke− sup0≤u≤t Xu

)}
for Xt = θZt + (r − δ + π(−θ)) t (cf. (4)), we have for all stopping times
s ≤ t

u′(c(K)t) ≤ K exp

(
− sup

0≤u≤t
Xu

)
≤ K exp

(
− sup

s≤u≤t
Xu

)
.

Moreover, equality holds true when c(K) has a point of increase in s because
in this case we have

c(K)t = max
{
c(K)s, i

(
Ke− sups≤u≤t Xu

)}
.

We thus obtain

E
[∫ ∞

s

e−δtu′(c(K)t)dt|Fs

]
≤ E

[∫ ∞

s

e−δtK exp

(
− sup

s≤u≤t
Xu

)
dt|Fs

]
= K exp(−Xs − δs)E

[∫ ∞

s

e−δ(t−s) exp

(
− sup

s≤u≤t
(Xu −Xs)

)
dt|Fs

]
= KψsE

[∫ ∞

s

e−δ(t−s) exp

(
− sup

s≤u≤t
(Xu −Xs)

)
dt|Fs

]
,
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with equality when c(K) has a point of increase in s. The Markov property
yields now that

E
[∫ ∞

s

e−δ(t−s) exp

(
− sup

s≤u≤t
(Xu −Xs)

)
dt|Fs

]
= E

∫ ∞

0

e−δt−sup0≤u≤t Xtdt ,

and we finally get (10) with

L := K E
∫ ∞

0

e−δt exp

(
− sup

0≤u≤t
Xt

)
dt .

4 Conclusion

Several extensions of the model have already been discussed in (Dybvig 1995).
For example, one could weaken the requirement of nondecreasing consump-
tion plans to intolerance beyond some positive rate of decline D, that is
dct

ct
≥ −Ddt. When the investor has constant relative risk aversion, this

problem can be transformed to the one solved above by a simple change of
variables. In a similar spirit, one could require that the consumption plan
does not decrease faster than at a certain speed, e.g. dct ≥ −Ddt for a pos-
itive constant D. A similar change of variables reduces this problem to the
original one when the investor has constant absolute risk aversion. Also the
case of multiple goods is easily solved as long as the felicity function is addi-
tive across goods. In this case, the investor distributes his wealth optimally
across goods and solves the corresponding optimization problem separately
for every good.

A more difficult task is to drop the Markovian assumption. In this case,
the main theorem above does not apply, and it might be difficult to obtain
explicit solutions at all. Still, as the proof of the main theorem shows, some-
thing can be said about optimal solutions. The careful reader will note that
the proof can be used to show that a plan c is optimal if it satisfies (10), that
is for all stopping times s and some constant L

E
[∫ ∞

s

e−δtu′(ct)dt|Fs

]
≤ Lψs

with equality if dcs > 0. Of course, it is in general difficult to obtain c
from this inequality. However, the methods I developed with Peter Bank in
(Bank and Riedel 2001) suggest that c can still be identified as the running
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maximum of some process L. One might conjecture that L will be related
to yet no longer be simply equal to the consumption plan a time–additive
investor would choose.
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