~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Hardle, Wolfgang; Herwartz, Helmut; Spokoiny, Vladimir G.

Working Paper
Time inhomogeneous multiple volatility modelling

SFB 373 Discussion Paper, No. 2001,7

Provided in Cooperation with:

Collaborative Research Center 373: Quantification and Simulation of Economic Processes,
Humboldt University Berlin

Suggested Citation: Hardle, Wolfgang; Herwartz, Helmut; Spokoiny, Vladimir G. (2001) : Time
inhomogeneous multiple volatility modelling, SFB 373 Discussion Paper, No. 2001,7, Humboldt
University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of
Economic Processes, Berlin,

https://nbn-resolving.de/urn:nbn:de:kobv:11-10048628

This Version is available at:
https://hdl.handle.net/10419/62713

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:kobv:11-10048628%0A
https://hdl.handle.net/10419/62713
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Time Inhomogeneous Multiple Volatility Modelling

Hardle, Wolfgang *
Humboldt-Universitidt zu Berlin, Spandauerstrasse 1, D-10178 Berlin, Germany

haerdle@wiwi.hu-berlin.de

Herwartz, Helmut
Humboldt-Universitat zu Berlin, Spandauerstrasse 1, D-10178 Berlin, Germany

helmut@wiwi.hu-berlin.de

Spokoiny, Vladimir
Weierstrass-Institute, Mohrenstr. 39, 10117 Berlin, Germany

spokoiny@wias-berlin.de

January 26, 2001

Keywords: stochastic volatility model, adaptive estimation, local homogeneity
AMS 1995 Subject Classification. Primary 62M10; Secondary 62P20.

Abstract

Price variations observed at speculative markets exhibit positive autocorrelation and cross cor-
relation among a set of assets, stock market indices, exchange rates etc. A particular problem
in investigating multivariate volatility processes arises from the high dimensionality implied by a
simultaneous analysis of variances and covariances. Parametric volatility models as e.g. the mul-
tivariate version of the prominent GARCH model become easily intractable for empirical work.
We propose an adaptive procedure that aims to identify periods of second order homogeneity
for each moment in time. Similar to principal component analysis the dimensionality problem
is solved by transforming a multivariate series into a set of univariate processes. We discuss
thoroughly implementation issues which naturally arise in the framework of adaptive modelling.
Theoretical and Monte Carlo results are given. The empirical performance of the new method
is illustrated by an application to a bivariate exchange rate series and a 23-dimensional system
of asset returns. Empirical results of the FX-analysis are compared to a parametric approach,

namely the multivariate GARCH model.

*Financial support by the Deutsche Forschungsgemeinschaft, SFB 373 ” Simulation and Quantification
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1 Introduction

Price variations observed at speculative markets exhibit positive autocorrelation which
is typically found in the empirical autocorrelation function of squared returns. Periods
of higher and lower volatility alternate. This phenomenon is well known and generated
a vast body of econometric literature after the seminal contributions by Engle (1982),
Bollerslev (1986), and Taylor (1986) introducing the (generalized) autoregressive condi-
tionally heteroskedastic ((G)ARCH) process and the stochastic volatility model, respec-
tively. The large variety of existing (univariate) parametric models already indicates
that particular specifications fail to cover all dynamic properties of return processes. In
other words, none of the existing parametric models may be strictly correct in empirical
practice. To estimate latent volatilities by means of parametric models structural invari-
ance of a particular specification has to be assumed a priori. Among others, Hamilton
and Susmel (1994) and Mikosch and Starica (2000) point out that invariant paramet-
ric specifications, GARCH say, are often inconvenient to model long return series and,
thus, advocate GARCH-type models with switching parameters. Moreover, Mikosch and
Starica (2000) show that GARCH-models with parameter shifts may generate typical
autocorrelation patterns of squared returns falsely indicating long range dependence of
volatility. For the same reason Fan, Zhang and Zhou (2000) introduce a rather wide
class of nonparametric and time dependent diffusion models to capture stock price dy-
namics. Following these lines Fan et al. (2000) are able to embed numerous prominent
diffusion models as, for instance, the Geometric Brownian Motion (Merton (1973)) and
specifications going back to Hull and White (1990) or Black and Karasinski (1991).

Apart from serial correlation patterns of price variations cross correlation over a
set of financial assets is often observed. Cross section relationships may be directly
implied by economic theory. Interest rate parities, for instance, provide a close relation
between domestic and foreign bond rates. In addition, news affecting a particular market
are often relevant for more than one asset. Many problems in financial practice like
portfolio optimization, hedging strategies or Value-at-Risk evaluation rely on multivariate
volatility measures. By means of a dynamic version of the Capital Asset Pricing Model
(see Bollerslev, Engle and Wooldridge (1988)) Hafner and Herwartz (1998) investigate
news sensitivity of single asset betas for the German stock market. Analyzing global
volatility transmission Engle, Ito and Lin (1990) found evidence in favor of volatility
spillovers between the worlds major trading areas occurring in the sequel of floor trading
hours. For these reasons volatility clustering observed for financial time series may be
better understood within a multivariate context.

To analyze time varying variances and covariances jointly requires a multivariate



model. Adopting a parametric framework, as for instance, a multivariate GARCH model,
becomes easily intractable for practical purposes since the parameter space of such mod-
els is quite large even when considering small systems of bi- or trivariate vector returns.
Moreover, specifying a multivariate volatility model the existence of underlying indepen-
dent innovations is often assumed. Thus (higher order) moments of estimated innova-
tions may be used as diagnostic tools to test a particular volatility model. In practice,
however, it turns out that estimated standardized innovations implied by a parametric
model are not independently distributed. Alternatively volatility matrices may be esti-
mated directly from cross products of ex-post vector returns. Introducing the concept of
realized volatility Andersen, Bollerslev, Diebold and Labys (1999) and Andersen, Boller-
slev, Diebold and Labys (2000) illustrate that daily volatility can be estimated accurately
by summing cross products of vector returns measured at sufficiently higher frequencies.

In sum, the shortcomings of structurally invariant models and the poor tractability of
parametric multivariate specifications motivate a new approach to volatility estimation
that focuses simultaneously on dimension reduction and on adaptation to local homo-
geneity of volatility clustering. Local homogeneity means that for every time moment
there exists a past stretch of the process where the volatility structure is nearly identical.
This local homogeneity may change from time to time and thus within such a modelling
framework, the main task is both to describe the interval of homogeneity and to estimate
the corresponding volatility structure.

Building on the idea of local homogeneity our procedure is particularly designed to
provide short run forecasts of the covariance matrix of interest. The proposed method
is feasible even if large systems of vector returns are considered. The latter feature is
of particular interest for financial practioners since we provide a sound statistical theory
for risk assessment and forecasting on the basis of historical returns. Modelling local
homogeneity requires the choice of tuning parameters. We illustrate the dependence of
empirical results on the choice of these parameters and provide guidelines for practical
applications. The adaptive techniques that we employ go back to previous work by Lepski
(1990), Lepski and Spokoiny (1997) and Spokoiny (1998).

The remainder of the paper is organized as follows. The next section introduces
the adaptive modelling procedure and addresses the issue of choosing global parameters
necessary to implement the method. A few theoretical properties of the approach are
also given. The so—called change point model is used in Section 3 to further motivate
the choice of smoothing parameters. In addition, this section provides Monte Carlo
experiments illustrating the empirical properties of the new method. Section 4 discusses
briefly the multivariate GARCH model which is used as a benchmark specification to

evaluate the empirical performance of the adaptive method. In Section 5 we employ



the adaptive model to investigate a bivariate exchange rate series. The performance of
our model is compared with the multivariate GARCH model. Furthermore the adaptive
approach is applied to a 23-dimensional system of asset returns. Section 6 summarizes

the results and concludes. Mathematical proofs are given in the Appendix.

2 Adaptive modelling

In this section we specify the considered problem and describe the procedure for multiple

volatility modelling.

2.1 Model and Estimation Problem

Let R; be an observed process of vector asset returns, R; € IR*. We model this process

via a conditional heteroskedasticity structure
Rt = E;/26t (21)

where €;, t > 1, is a sequence of independent standard Gaussian random vectors in
R? and ¥; is the volatility dxd symmetric matrix which is in general a predictable
random process, that is, ¥y ~ F;_1 with F;_1 = o(Ry,... ,R;_1) denoting the o-field
generated by the first ¢ — 1 observations. Note that estimation of ¥; conditional on
Fi—1 allows the natural interpretation of being a one-step ahead forecasting problem.

Time-homogeneity in totalis means that ¥, = ¥, ¢ < T, i.e. the matrix ¥; is

constant. In this case
ERR] = Ex'/%¢;e/ 21?2 = £12Beje] 21?2 = %

which leads to the obvious estimate
1 T
S T
= ; RiR/. (2.2)

If the time homogeneity assumption is fulfilled only in partialis in some time interval
I = [t —m,7[, then a reasonable estimate is
~ 1 -
3, = i YRR,
tel
where |I] denotes the number of time points in 7. The method we discuss below is based
on a data-driven choice of an interval I where the assumption of local homogeneity allows

to fit reasonably the observed data. As a first step of the procedure the dimension of the

multivariate process is reduced to conveniently transformed univariate processes. For



these random sequences we identify periods of homogeneity by means of a weighting
scheme relating total variation in I and variation measures obtained for subperiods of 1.
This weighting scheme itself is implemented using global smoothing parameters which

have to be fixed a priori.

2.2 Dimension reduction and power transformation

Suppose now that we are given a finite family W of unit vectors w1, ... ,w, in IR? with
r < d. The dimension reduction step consists in replacing the original d-dimensional
data R; by the r-dimensional vector (w' Ry)yeyy. Such a dimension reduction usually
assumes that r is much smaller than d and that the vectors w € W are selected in a
special way to avoid an essential loss of information.

Let w be a nonzero vector from IR%. Then the scalar product w' R; is (conditionally

w.r.t. F;—1) Gaussian and it holds

E(jw RP|F1) = B(o RERw|F)
= w'E (25/26756;2;/2 |-7:t—1> w

= 'U)thw.

Define 0752,71) = w' B;w. Then, for every t, the variable w'R; is conditionally on F;_;

normal with parameters (0,07,) and the variable w'R;/o;, has (conditionally on

Fi—1) a standard normal distribution. This particularly implies that for every v > 0,

2
B (Jo R - Cyoly | Fit) = otLB (" - C,)* = of}, D

YW

where ¢ denotes a standard Gaussian random variable, C, = E[¢|7 and D3 = Var [¢]7.

Therefore, the process |w' R;|? allows for the representation
|wTRt\7 = nyazw + D,yazwg,w (2.3)
where (., has conditionally on F;_; the distribution (|¢|” — C,) /D, . Define now
Yiw= |wTRt\7, Ot = C7|wTth|7/2.
The decomposition (2.3) can then be written as a linear model
Yiw = Otw + 570twCtw (2.4)

with s, = D, /C,.



The mapping R; — {Y;,,w € W} can be treated as a combination of dimension
reduction and power transformation. Both steps are frequently applied in data analysis.
The power transformation is usually applied to reduce the skewness of the observed data,
see Carroll and Ruppert (1988). Mercurio and Spokoiny (2000) argue that v = 0.5 is
a suitable choice for the univariate conditional heteroskedastic model (2.1) providing a

nearly Gaussian distribution for the ‘noise’ variables (4, .

2.3 Approach based on local homogeneity assumption

Local time homogeneity means that the matrix 3J; is nearly constant within an interval
I =[r—m,7[,ie. 3 isroughly equal to a matrix X; for all ¢ € I. As a consequence the
process Y; ., = |lw" Ry|” is also homogeneous within I for all w. Therefore the constant

trend in (2.3) Or, = 01,0 = CA,|'wT2]Iw|'Y/2 can be estimated:

~ 1 1
Orw = W R = — Y Vi (2.5)
1] & 1] &

By (2.4) this estimate has the properties

~ 1 s
9[,11) = m Z 9t,w + ﬁ Z et,th,w (26)
tel tel
so that
~ 1
Eel,w = E— Zet,w ’ (27)
U=
2 2 2
S S 9
—LE Z(h,wg,w = I—VQEZ()t,w. (2.8)
1P\ 1P 4
In view of the last equation, the value v%’w with
2 s 2
UI,w =172 Z gt,w (29)
P i

is called the conditional variance of 5171,, . Under local homogeneity it holds 0; ., = 07, =
C, (wTEIw)7/2 for ¢ € I, and hence,

Eg],w = el,w )

202
5 _ _ 379,@
Varfr, = Vi = 7]




2.4 Some properties of the estimate 51,1‘,

The variability of the function 6;,, within an interval I can be measured by the value

Ay, defined as follows:

A7y = 17D (01w — Or)” (2.10)
tel

Local homogeneity within I would mean that A, is small for all w € W.

Theorem 2.1 Let the volatility matriz X, satisfy the condition
b<w'Sw<bB, Vtel, (2.11)

with some positive constants b, B and unit vector w. Then it holds for some fized a,

and every A >0
~ 22
P (1010 — Or0] > At + Mvrw) < 4veA(1 + log B) exp (_ﬁ> .
Remark. For more details on a, see Lemma 7.1 in the Appendix. The result given
above can be slightly refined for the special case when the matrix ¥; is a deterministic
function of time, see Section 3 for a specific example. Then, for every w € W, the
function 6;, and hence, the conditional variance 'u%w from (2.9) is also deterministic
and it holds
~ 22
P (1010 — Orl > Araw+ Morw ) < 2exp <_R> .
The result of Theorem 2.1 bounds the loss of the estimate 51,11, via the value Ay,
and the conditional standard deviation vy, . The latter term depends in its turn on
the unknown target function 6;,,. Taking the result in (2.9) into account and assuming
Ar, to be small, however, one may replace the conditional standard deviation vy, by

its estimate
~ 5 —1/2
Vw = Sy01,w|1| /2,

Theorem 2.2 Let Ry,...,R; obey (2.1) and let (2.11) hold true. Then it holds for the

estimate ’a},w of Or4:

P (101 = 0wl > Ar(1+ Asy |172) + 2o )

)\2
< 4+/eX(1 + log B — .
< 4VeA(l+log )e"p( 2a7<1+Asv|I\—1/2)2)



2.5 Adaptive choice of the interval of homogeneity

We start by reformulating the considered problem. Given observations Ri,...,R,_1
following the time-inhomogeneous model (2.1), we aim to find in a data-driven way a
time interval I of the form [r — m,7[ where the time-homogeneity assumption is not
significantly violated and then apply this interval I for constructing the estimate of the
target volatility matrix ;.

The idea of the method can be explained as follows. Suppose I is an interval-
candidate, that is, we expect time-homogeneity in I and hence, in every subinterval
of I. This particularly implies that the values Az, and Ay, , J CI w € W are
negligible. Mean values of the 6;, ’s over I or over J nearly coincide for all w € W.
Our adaptive procedure roughly means a family of tests to check whether gl’w and
0. Jw differ significantly for any subinterval J of I. The latter is done on the base
of Theorem 2.2 which allows under homogeneity within I to bound |51w —y Jw| by
AT + AUj,, provided that X is sufficiently large. If there exists an interval J C I
such that the hypothesis 5I,w =0 Jw cannot be accepted we reject the hypothesis of
homogeneity for the interval I. Finally, our adaptive estimate corresponds to the largest
interval I such that the hypothesis of homogeneity is not rejected for I itself and all
smaller intervals.

Now we present a formal description. Suppose a family Z of interval-candidates I is
fixed. Each of them is of the form I = [t —m,7[, m € N, so that the set Z is ordered
due to m . With every such interval and every w € WW we associate the estimate 51,1,, of
the parameter 6., due to (2.5) and the corresponding estimate 7, of the conditional
standard deviation vy, .

Next, for every interval I from Z, we suppose to be given a set J(I) of testing
subintervals J (one example of these sets Z and J(I) is given in the next section). For
every J € J(I), we construct the corresponding estimates ] 7w from the ‘observations’
Y;w for t € J according to (2.5) and compute vy, , w € W.

Finally, with two constants A and p, define the adaptive choice of the interval of

homogeneity by the following iterative procedure:

Initialization Select the smallest interval in 7

Iteration Select the next interval I in Z and calculate the corresponding estimate 51,1”

and the estimated conditional standard deviation v7,, for all w € W;

Testing homogeneity Reject I, if there exists one J € J(I) and one w € W such
that

O — O] > ATjw + 1070 (2.12)



Loop If I is not rejected, then continue with the iteration step by choosing a larger

interval. Otherwise, set T = 7the latest non rejected I7”.

The adaptive estimate 5 7 of X is defined by applying this selected interval T:

N 1
Sr=-—=Y RR/.
i
tel
It is supposed that the procedure is independently carried out at each time point
7. A possibility to reduce the computational effort of the selection rule is to make an
adaptive choice of the interval of homogeneity only for some specific time points t; and
to keep the left end-point of the latest selected interval for all 7 between two neighbor

points t; and %y, see the next subsection for a proposal.

2.6 Choice of the family W

In some applications, one or more testing ‘directions’ w can be given a priori, for instance,
it could be portfolio allocations. In general, a natural way for the choice of the set
W is based on the idea of principal component analysis. Namely, we define w; such
that the projection w{ R; contains as much information as possible among all vectors
w € IR%. Similarly, wy is selected orthogonal to w; and containing at most information
among all such vectors etc. Under such an approach, the vectors w € W can be viewed
as different indices providing dimension reduction of the considered high dimensional
data. The formal definition is given via the diagonal decomposition of the matrix iT =
IR DHIND %, = UTAU where U is an orthogonal matrix and A is a diagonal matrix
with non-increasing diagonal elements. Then w; is defined as the first column of the
matrix U (or, equivalently, the first eigenvector of f]T) Similarly wy is the second
column of U etc.

Non-stationarity of the data would lead to a variable index structure. However, one
may expect much more stable behavior of the indices as compared to volatility changes
since indices mimic structural relationships between single components of vector processes
of financial market returns. In the empirical part of the paper we provide an illustrative

discussion of the issue.

2.7 Choice of the sets Z, J(I)

The presented algorithm involves the sets Z and J(I) of considered intervals and two
numeric parameters A and p. We now discuss how these parameters can be selected
starting from the set of intervals Z. The simplest proposal is to introduce a regular grid

G = {tx} with t, = mok, k € N, for some natural number mg and to consider the



intervals I = [tg,7[ for all ¢, < 7. It is also reasonable to carry over the adaptive
procedure only for points 7 from the same grid G. The value my can be selected
between 5 and 20, say.

If 7 =ty for some k* > 1, then clearly every interval I = [tx, 7| contains exactly
k* — k smaller intervals I' = [ty, 7[ for all £ < k' < k*. Next, for every such interval
I = [tg, [, we define the set J(I) of testing intervals J by taking all smaller intervals
I' = [tg, 7| with the right end-point 7 and similarly all smaller intervals [tx,tx:[ with
the left end-point ¢, k < k' < k*:

TJIy) ={J = [tp, [ or J = [y, tp|: k <K < Kk*}.

Let N; denote the number of subintervals J in J(I). Clearly, for I = [t, [, the set
J(I) contains at most 2(k* — k) elements, that is, Ny < 2(k* — k).

2.8 Data-driven choice of parameters A and p

The behaviour of the procedure critically depends on the parameters A and p. The
simulation results from the next section indicate that there is no universal ‘optimal’
choice. Below we discuss two possibilities: one is based on a more detailed consideration
of a change-point model, see Section 3.3. Another one, based on minimization of one-step
ahead forecast error, is discussed right now.

The adaptive procedure proposed for selecting the interval of homogeneity is local
in the sense that it is performed at every point 7 independently. Such procedures are
also called pointwise or spatially adaptive, among them: kernel smoothers with plug-in
bandwidth selector (see Brockmann, Gasser and Herrmann (1993)) or pointwise adap-
tive bandwidth selector (see Lepski, Mammen and Spokoiny (1997)), nonlinear wavelet
procedure (see Donoho, Johnstone, Kerkyacharian and Picard (1994)). All these pro-
cedures have been shown to possess some spatial adaptive properties. However, every
such procedure contains some free parameter(s) which have strong influence on their be-
haviour. The most well known example is given by the thresholding parameter for the
wavelet method. The values A and p of the above procedure have the same flavor as the
threshold for wavelets. These parameters are global in the sense that there is no way to
select them optimally for one specific point but they determine the global performance of
the procedure on a large observation interval, and, therefore, they can be selected via the
following cross-validation rule. Namely, for every pair A, u we can build a corresponding
procedure (estimator) @y"“ ) of 01 = Cylw' Syw|?/? at every point ¢ from the obser-
vations Ry,...,R;_1 as described in Section 2.5. Due to the representation (2.4), 6,
is the conditional mean of the ‘observation’ Y;, = |’LUTRt|7/2 given Ri,... ,R;_1, so

that the estimate @,w can be used as a one-step forecast for Y;,, . This leads to the

10



following selection rule based on the minimization of the corresponding squared one-step
forecasting error:
T 2
NP A
(3.7 = inf > (Yt,w—éﬁ “))

A
T wewt=to

where infimum is taken over all considered pairs A, and tg is taken to provide enough

data for the starting estimates gto,w . Similarly one can choose the grid step my .

2.9 Accuracy of the adaptive estimate

The convenience of the proposed procedure can be characterized by the following two
features: stability under homogeneity and sensitivity to changes. The first one means
roughly a reasonable quality of estimation when the underlying model is really time
homogeneous. The second property describes the properties of the procedure in the
opposite situation when the underlying process spontaneously changes.

We characterize the variability of the underlying matrix-function ¥; within an inter-
val I by the values A, for w € W, see (2.10). In the light of Theorem 2.1, an interval
1 is ‘good’ if these values are not too large compared to the corresponding conditional
standard deviations vy, . Our next result presents a bound for the probability to reject

such an interval.

Theorem 2.3 Let (2.11) hold true and let I be an interval such that

A Ajw
A = - ——>0 VJ e J(I), weW.
S L+ Xsy|J[71/2 0wy T, w

Then it holds for the procedure from Section 2.5 with pu > A:

)\2
P (L is rejected ) < 3> 4y/eAs(1 + log B) exp <_ﬂ)_

2a7
wEW JeJ (I

Let I be the interval selected by our adaptive procedure. Then, for every w € W,

one may consider §w with

0“’ = gf W
as an estimate of 6, = |wTRTw|7/ 2. The next question would be about the accuracy
of this estimate. A combination of the last result and that of Theorem 2.2 leads to
the following bound which we formulate under one additional technical assumption. By
definition vy, = sy |*1/ 2§1,w so that vr,, typically decreases when |I| increases. We

shall suppose further that v7,, <wj, for JCI andall we W.

11



Theorem 2.4 Let (2.11) and (2.13) hold true. Then it holds for the procedure described
in Section 2.5 with p > \:

~ )\2
P (|0w —Orw| > 2(A + p)vy,w) < Z Z 4v/eXju(1 + log B) exp (—#) .(2.13)

weW JeJ () Gy
Remark. We say that an interval I is ‘good’ if the quantity

Ag
Dy = max ol
weW Ul ,w

is not too large which provides the balance between the error of approximating the
underlying functions 6;,, by constant functions within this interval I and the stochastic
error of the estimates 5][7w, w € W. By Theorem 2.1, the application of this interval
leads to the estimation error bounded by (X + Dy)vp,, provided that A is sufficiently
large. In spite of the fact that we never know precisely whether an interval-candidate
I is ‘good’ Theorem 2.4 claims that the losses of the adaptive estimates §w are of the

same order vy, as for any of ‘ideal’ estimates Op , -

3 Change-point model

An important special case of the model (2.1) is the so-called change-point model corre-
sponding to the piecewise constant volatility matrix ¥; which yields piecewise constant
functions 6;,, for all w € W. For this special case, the above procedure has a very
natural interpretation: when estimating at the point 7 we search for the largest interval
of the form [r — m,7[ not containing a change-point. This is done by means of a test
for a change-point within the interval-candidate I = [r — m,7[. It is worth mention-
ing that the classical maximum-likelihood test for no change-point in the regression case
with Gaussian N(0,0?)-errors is also based on comparison of the mean values of obser-
vations Y; over the whole interval I = [t — m, 7| and every subinterval J = [r — j,7[
or J' =[r—m,T — j[ for different j, so that the proposed procedure has strong appeal
in this situation. However, there is an essential difference between testing for a change-
point and testing homogeneity appearing as a building block of our adaptive procedure.
Usually a test for a change-point is constructed in a way to provide the prescribed type
I error (in the change-point framework such an error is called a “false alarm”). Our
adaptive procedure involves a lot of such tests for every candidate I, which leads to a
multiple testing problem. As a consequence, each particular test should be performed at
a very small level, i.e., it should be rather conservative providing a joint error probability

at a reasonable level.

12



3.1 TypelI error

For the change-point model, the type I error would mean that the interval-candidate I
is rejected although the hypothesis of homogeneity is still fulfilled. In opposite, the type
IT error means that interval I is not rejected in spite of a violation of homogeneity, so
that the type II error probability describes the sensitivity of the procedure to changes.

The arguments used in the proof of Theorem 2.3 lead to the following upper bound
for the type I error probability:

Theorem 3.1 Let I be selected by the adaptive procedure with > A. If I = [t—m, 1|
is an interval of homogeneity, that is Xy = X, for all t € I, then

)\2
P (I is rejected) < Z Z 2exp (— —7 2) .
JeT() wew 2a,(1 + Asy|J|71/2)

This result is a special case of Theorem 2.3 with Aj, = 0 taking Remark 2.4 into
account.

As a consequence of Theorem 3.1 one can immediately see that for every fixed value
M there exists a fixed A providing a prescribed upper bound « for the type one error

probability for a homogeneous interval I of length M . Namely, the choice

Mr

2
A> (1 2a-~ |
> (1+¢€)4/2a,log moa

(3.1)

leads for a proper small positive constant ¢ > 0 to the inequality

AZ
2 — < .
2 2 e""( 2a7(1+xsfyu|1/2)2)—“

JET(I) weW

Here 2M/my is approximately the number of intervals in 7 (I) and r is the number of
vectors in V. This bound is, however, very rough and it is only of theoretical importance
since we estimate the probability of the sum of dependent events by the sum of single
probabilities. The problem of finding A providing a prescribed type I error probability

is discussed in Section 3.3.

3.2 Type II error

Next we consider the case of estimation immediately after a change-point. Let a change
occur at a moment T, . It is convenient to suppose that T, belongs to the grid G on
which we carry out the adaptive choice of the interval of homogeneity. This assumption
is not restrictive if the grid is ‘dense’, that is, if the grid step mq is not too large. In
the case with T, € G, the ‘ideal’ choice I is clearly [Tcp,7[. We consider the most

interesting case of estimation immediately after the change-point and we are interested
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to evaluate the probability to accept an interval I which is essentially larger than I .
Such situation can be qualified as type II error.

Denote m' = |II|, that is, m' = 7—T¢, . Let also I = [Tcp —m, 7[= [T —m/—m, 7[ for
some m, so that |I| = m+m', and let ¥ (resp. X’) denote the value of volatility matrix
¥ before (resp. after) the change-point Tt . This provides 0y, = 0, = C7|wTEw\7/ 2
for t < Tep and 6, = 0, = Cylw"S'w|7/? for t > T, for every w € W. The
magnitude of the change-point in ‘direction’ w is measured by the relative change b, =
2(0), — 0| /0w -

The interval I will be certainly rejected if, for some w € W, either |5I,w -y Jw| or

|§1,w — 5y7w| is sufficiently large compared to the corresponding critical value.

Theorem 3.2 Let X; = X before the change-point at Te, and ¥y = X' after it, and let
by = |0y, — Ow|/0w for weW. Let also m' = |I| =7 —Ty and I =[1 —m' —m,7[.
Then

A2

P (I is not rejected) < 4e 2*v

provided that 6 =

__ A mfill
v/min{m,m'} Fuifills

W
1—6—A—\/§6(1+6)>0 (3.2)

and there exists w € W such that
5+6(1+5)+AL\/§5(1+5)

by >
1= 06— 3L=0(1+9)

(3.3)

The result of Theorem 3.2 delivers some additional information about the sensitivity
of the proposed procedure to change-points. One possible question is about the minimal
delay m’ between the change-point 7T, and the first moment 7 when the procedure
starts to indicate this change-point by selecting an interval of type I = [T, 7[. Due to
Theorem 3.2, the change will be certainly ‘detected’ if the value § = s,/ Vvm! fulfills
(3.2) and (3.3) for some w € W. With the fixed b, > 0’s, A\ and p, condition (3.3)
leads to § < Cpb, b = maxyeyy by where Cy depends on u/A only. The latter condition

can be rewritten in the form

b—2)\2g2
m' > i

- Cg .
We see that the required delay m' depends quadratically on the maximal change-
point magnitude b,, and on the threshold A. In its turn, for the prescribed type I error

a of rejecting a homogeneous interval of length M , the threshold A can be bounded by
C/log 2M7 "see (3.1). In particular, if we fix the length M and «, then m/ = O(b2).

moa ?
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If we keep fixed the values b and M but aim to provide a very small probability of a ‘false
alarm’ by letting « go to zero, then m' = O(loga!). All these issues are completely
in agreement with the theory of change-point detection, see Csorgé and Horvath (1997)
or Brodskij and Darkhovskij (1993).

3.3 Choice of parameters )\, and p for the change-point model

It has been already mentioned that a reasonable approach for selecting A, and pu is by
providing a prescribed level « for rejecting a homogeneous interval I of a given length
M . This would clearly imply at most the same level a for rejecting a homogeneous
interval of a smaller length. This choice can be made on the base of Theorem 3.1, see
(3.1). However, the resulting upper bound for the error probability of the type I is rather
conservative. More accurate choice of the parameters A and p can be made on the base
of Monte-Carlo simulation for the time homogeneous model. We examine the procedure
described in Section 2.5 with the sets of intervals Z and J(I) on the regular grid with
the fixed step mg. The time homogeneous model assumes that the volatility matrix 3,
does not vary in time, i.e. ¥; = ¥ with some non-degenerated matrix 3. We consider
one specific case with ¥ =14 i.e. ¥ is the unit matrix, so that the original model (2.1)
is transformed for every w € W into the regression model Y}, = 1 + s,(;, with the
constant trend and homogeneous variance s, . It is easily seen that the same results will
be obtained for a homogeneous model with an arbitrary symmetric matrix 3 provided
that w; and we are different eigenvectors of this matrix.

The model (2.1) with X; = 14 is completely described and therefore, one can define
r1(A, ) as the probability for this model to reject a homogeneous interval of length
M if the parameters A and p are applied. This probability can be evaluated e.g. by
generating n* (say 1000) independent samples of size M + 1 and by carrying out the
procedure with the given parameters for the very last time point. Within our simulations
we varied 0.1 < A < 3.9 and 0 < p < 10 with step size equal to 0.1. The percentage of
rejections of an interval of length M can be used as an estimate of the value r1(A, u) .

Define now the set S, of ‘admissible’ pairs (A, ) providing the prescribed level «
for the probability to reject an interval I of length M under homogeneity. It follows
immediately from the definition of the procedure that larger values of A and u lead to
a smaller probability of rejecting the interval I. One therefore can describe this set by

finding for every A the minimal value p = p(A) such that 71 (A, u(A)) < «a.

Remark. The result of Theorem 2.3 is stated under the assumption p > A. Note,
however, that if I is essentially larger than J, then v;, is essentially smaller than

v, and in such a situation the contribution of the term vy, in the critical value
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AUjw+ P01 can be compensated by a slight increase of A in the first term Avjy,, . We

therefore consider all nonnegative combinations (A, u) including p = 0.

The functions p(A) with @ = 0.05, M = 40,60,80, and mg = 5,10,20 for
0 < X\ <3.9 are plotted in Figure 1. Two alternative specifications of the set W were em-
ployed, namely W; = {w;} and Wy = {w1,wy} where w; and wsy denote the eigenvector
corresponding to the largest and smallest eigenvalue of 3 as defined in (2.2), respectively.
It is worth mentioning that A >3 (W) and A > 3.7 (W) provide the prescribed error
probability of type I even with g = 0 in all cases. The estimated functions p(A) turn
out to be almost linear indicating that a decrease of A can be compensated by a propor-
tional increase of y. As mentioned the probability of rejecting a homogeneous interval of
length M decreases for given A with the smoothing parameter y and also with the grid
length mg. The latter relationship is easily seen in Figure 1. Obviously smaller choices
of my simultaneously require larger choices of the smoothing parameters to guarantee
the prespecified type I error probability. In addition, the probability of rejecting homo-
geneity within a given interval increases with the magnitude of WW. Thus the function
A(p) shifts to the left when comparing the results for W, and W, indicating that ceteris
paribus larger parameter choices for () are required for the multiple testing rule (W)

to satisfy the overall type I error probability @ = 0.05.

M =40 M =60 M =80

mo =5

m0:10

0O 1 2 3 4 5
/
0 1 2 3 4 5 6 7
/
z
Q 1 2 3 4 5 6 7
-

01 2 3 4 5 6 7
’
e

01 2 3 4 5 6 7
/

0123456789
/

0.4 1.2 2.0 2.8 3.6 0.4 1.2 2.0 2.8 3.6 0.4 1.2 2.0 2.8 3.6

Figure 1: Estimated functions p(\) providing type I error probability of falsely identifying a
homogeneous interval of length M as heterogeneous. Alternative parameters mg and two sets W,

namely W; (upper panels) and W (lower panels) are distinguished.

Since an increase of A or u reduces the sensitivity of the procedure, see Theorem 3.2,
we would recommend to select for practical applications any pair of the form (A, (X)) .
This would lead to the prescribed type I error. A particular choice of A may result in a
smaller or larger type II error. The result of Theorem 3.2 is not sufficiently informative

for this selection. Hence, to analyze the influence of the parameter A on the sensitivity of
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the procedure we conducted a small simulation study for the simplest change-point model
with different magnitude of changes. Procedures with different values of the parameter A
and p = p(\) are compared for three different criteria: averaged quadratic risk (MSE),
average absolute deviation risk (MAE), averaged large deviation probability (MLDP),
and also for their empirical analogs based on the one step ahead forecast error: mean
squared forecast error (MSFE), mean absolute forecast error (MAFE) and mean large

deviation forecast error (MLDFE) defined as:

T
* 1 ry 2
MSE = E T—t+1 YD Brw—6w)

weW t=to
T
1 ~
MAE = E*— — b1, — 0
T—to—i—lz_zlt’w t,w|a
weW t=to
T
]_ ~
MLDE = E*m Z Zl(|0t,w_0t,w‘ >0t,w/2)a
wEW t=to
T
1 ~
MSFE = Ef-———— Ot — Yiw)?
T—to+1w;w;( b~ V)
=to
MAFE = B*-— > il@w—Y{:wl
T—to+1 & & v
=to
T
* 1 n )
MLDFE = E'z———= 3 > 1w~ Youl > Ou/2).
0 weW t=to

Here T indicates the sample size and E* means the averaging over different realizations
of the model. Note that the estimates (/9;,“, are conditioned on previous observations
Ri1,Rio,....

3.4 Some simulated data-sets

We examine 3 different two-dimensional change-point models each with two changes only,
Yy =1y for t € [1,3M[ and ¢ € [5M,7M] and ¥} = %', 25’ and 3%’ for ¢ € [3M,5M],
o()
0 .5
The parameters M , my and « have been set to M = 40,60,80, my = 5,10,20 and
a = 0.05. The sample size is taken equal to T'= 7TM with the changes at T¢, 1 = 3M
and T¢p 9 = 5M . For different values of the parameter A and for ;1 = p(X), we carry over
the estimation procedure for all 7 € [tg,T'] where t9 = M . Each model was generated
1000 times.
Table 1 displays MLDFE estimates obtained for alternative implementations of the
adaptive model employing W5. We concentrate on this measure since the probability of a

large forecast error is closely related to the type II error probability of identifying a het-
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Table 1: MLDFE estimates for alternative adaptive model implementations and 3 different data
generating processes (W = Wh).

M =40 M =60 M =380

mo | 5 10 20 5 10 20 5 10 20
A ¥’
0.1 | .4717 AT17 4720 .4700 .4696 .4694 .4689 .4686 4679
0.5 | .4703 .4709 4720 .4686 4691 .4694 .4676 4678 4677
1.0 | .4687 .4698 4722 4672 4682 .4690 .4661 4674 4675
1.5 | 4675  .4691 4718 | .4666 4675 4687 .4655 .4668 4672
2.0 | .4678 .4689 .0000 4665 4670 .4682™ | .4654"  .4663 4671
2.5 | .4680 4687 .0000 .4665 4667 .0000 .4658 .4663"  .4670"
3.0 | .4683 .4690 .0000 .4667 .4667 .0000 .4656 .4663 .0000
3.5 | .4688 .0000 .0000 4673 .0000 .0000 .4660 .0000 .0000
A 2%
0.1 | .4776 4762 4773 | 4756 4739 4737 4745 .4730 4716
0.5 | .4755 4758 4774 4735 4734 4733 4726 4716 4712
1.0 | 4739 .4749 4776 4716 .4720 4732 .4702 .4706 .4709
1.5 | 4732 4744 4776 4705 4712 4731 .4690 .4692 4707
2.0 | .4728*  .4743"  .0000 .4700 4704 4726 | .4681 .4681 .4705
2.5 | 4730 4744 .0000 4697 4697 .0000 4677 4671 .4701"
3.0 | 4733 4752 .0000 .4696"  .4692"  .0000 4671"  .4668"  .0000
3.5 | .4743 .0000 .0000 4698 .0000 .0000 4673 .0000 .0000
A 3%
0.1 | .4825 4814 .4832* | .4798 ATTT 4782 .4788 4764 .4755
0.5 | .4808 .4806 .4836 4776 4766 4778 .4764 .4750 4750
1.0 | 4785 4797 .4838 4757 4751 4776 4737 4734 4747
1.5 | 4776 .4789 .4837 4744 4741 AT76 4721 4720 4743
2.0 | 4773 4782 .0000 4734 4726 A774* | 4703 .4704 4741
2.5 | 4764 4776*  .0000 4721 4716 .0000 .4693 4691 4739*
3.0 | .4762* .4779 .0000 4711 4705 .0000 .4680 .4676"  .0000
3.5 | 4768 .0000 .0000 4709 .0000 .0000 4675 .0000 .0000

erogeneous time interval as being homogeneous. Corresponding results for the remaining
statistics or the modelling performance using W, are available from the authors upon
request. The Monte Carlo results are very similar for the alternative data generating
models. First observe that the probability of large forecasting errors is negatively related
to the employed grid length mg. Overall minimum values of the MLDFE statistic are
uniquely obtained by selecting m = 5. In addition, given that myg is not to large relative
to M we obtain that choosing larger values of A\, A > 2.0 say, decreases the probability
to obtain one step ahead forecast errors which are large in absolute value. Small choices
of X outperform the remaining implementations only for mg = 20 if the type I error

probability of « holds for intervals of length M = 40.
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The sensitivity of the adaptive procedure to structural shifts is illustrated in Figure 2.
Since the results from employing W; and W, are very similar we provide only results
for the latter model. For all estimated models the smoothing parameter A\ was chosen
to be equal to A = 1.5. We selected p according to the function p(A), i.e. a priori
we take the probability of rejecting a homogeneous interval of length M to be equal to
a = 0.05. Note that the function p()) essentially depends on the parameters M and my.
Selecting alternative values of A and varying the parameter p accordingly would obtain
almost identical results as those shown in Figure 2. In addition to estimated quantities
(median estimates and interquartile range of é\t,wl) the graphs show also the pattern
of the underlying true quantities 6;,,. To economize on space we display only results
obtained for M = 40.

As one may imagine the sensitivity of the method depends on the magnitude of
the assumed structural shifts. Median estimates of (/9;,“,1 begin immediately to increase
(decrease) after occurrence of the first (second) structural shift in time ¢t = 3M (¢ = 5M).
The median estimates show different slopes for the models generated with ¥/, 2%’ and
3%’ as the true covariance matrix during the period ¢ = 3M + 1...5M. The largest
(smallest) slope of the median estimates is observed for the model specified with 3%/ (
Y)') as moment matrix during this period. The sensitivity of the method depends also on
the employed grid length myg. This result, however, mirrors directly the dependence of
the estimation results on the choice of the smoothing parameters A and . Note that we
performed the Monte Carlo experiment for a prespecified probability of falsely identifying
a homogeneous interval as being heterogeneous. Thus, using a small (large) grid length
implies for given A a relative high (small) smoothing parameter u. It appears that the
procedure is somewhat more sensitive if the y is relatively small. Noting that u governs
the impact of the variance estimate for the candidate interval I on the critical value
the latter finding is not surprising since this variance estimate does not depend on my.
Since the simultaneous choice of y and A guarantees a uniform type I error probability,
however, only slight sensitivity improvements are realized by choosing small values of
. Concerning the dependence of the adaptive procedure on the length parameter M
a similar argument holds as for the dependence on mg. Given a particular value of A
and a type I error probability the smoothing parameter u is positively related with M.
Thus, guaranteeing a prespecified type I error probability in only a small interval also
increases the sensitivity of the adaptive procedure to structural changes. Due to the
latter argument the slope of the median estimates for M = 80 is smaller compared to

the corresponding quantity for M = 40.
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Figure 2: Median estimates and interquartile ranges for gt,wl obtained for the adaptive modelling
procedure. The sample size of the generated processesis T = 7M, M = 80. The adaptive models

are implemented using W = W,. Solid curves show the underlying true quantities.
4 A parametric benchmark model

The generalization of the univariate GARCH-process towards a dynamic model describing
the conditional covariance matrix of a d—dimensional vector of asset returns (R;) requires

to relate second order moments to an information set which is available in time ¢t — 1, i.e.
Rtlj:t—l ~ (O,Et)

In such a multivariate model, however, dependencies of second order moments in ¥; on
Fi—1 become easily intractable for practical purposes. This can be seen in a multivariate
GARCH model. Let vech(.) denote the half-vectorization operator. The multivariate
GARCH(q, p) is given as

q D
vech(Sy) = c+ Y Ajvech(R; iR ;) + > Givech(Zy ), (4.1)
i=1 i=1
where g, and é, are d* xd*, d* = %d(d—l— 1), parameter matrices and the vector ¢ accounts

for deterministic variance components. Due to the large number of model parameters
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the general model in (4.1) is almost inappropriate for applied work. Prominent proposals
reducing the dimensionality of (4.1) are the constant correlation model (Bollerslev (1990))
and the diagonal model (Bollerslev et al. (1988)). In the latter approach A; and G; are
assumed to be diagonal matrices.

A specific issue for the general model in (4.1) and its diagonal version is to specify
convenient restrictions on the parameter space to guarantee positive definiteness of condi-
tional covariance matrices. Within the BEKK representation, named after Baba, Engle,
Kraft and Kroner (1990), the moment matrix 3; is determined in quadratic terms and,
hence, yields positive definite covariances given convenient initial conditions. Engle and
Kroner (1995) discuss thoroughly the BEKK version of the GARCH(q, p) model which

may be given as:

K ¢ K p
De=CoCo+ Y > ALR R A+ > GiSiGhi (4.2)
k=1 i=1 k=1 i=1
In (4.2) Cy, Ag; and Gy, are d x d parameter matrices where Cj is upper triangular. Since
these matrices are not required to be diagonal the BEKK model is convenient to allow
cross dynamics of conditional covariances. The parameter K essentially governs to what
extent the general representation in (4.1) can be approximated by a BEKK-type model.
For the parametric benchmark model that we are going to provide we set K = ¢ =p = 1.
In this case the model in (4.2) still contains for 11 parameters in case of a bivariate series.

As in the univariate case the parameters of a multivariate GARCH model are esti-
mated by quasi maximum likelihood (QML) optimizing numerically the Gaussian log-
likelihood function. Bollerslev and Wooldridge (1992) discuss the issue of obtaining
consistent t—ratios within the QML—framework. In contrast to the univariate framework
the asymptotic distribution of the parameter estimators in multivariate volatility models
still seems to be unknown.

Apart from specification and estimation issues a particular feature of the parametric
GARCH model is that the dynamic structure is usually assumed to be time invariant.
Since empirical data sets typically cover a long sample period, however, it is a priori not
trivial to assume structural invariance of a volatility process. In the univariate framework
tests on invariance of a parametric model are available (see e.g. Chu (1995)). Empirically
it turns out that the hypothesis of GARCH-type homogeneity is often rejected. For a
particular application of GARCH processes exhibiting structural shifts see e.g. Herwartz
and Reimers (1999). Note that the adaptive procedure only states local homogeneity of
the volatility process. Thus estimation of ¥; within the latter framework only requires
knowledge of the near history of R; whereas estimating 3; in a GARCH framework is

also based on knowledge of future observations Ryip,h > 0.
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5 Empirical Applications

In this section we present some applications of the proposed adaptive procedure and the

parametric benchmark model to real financial data.

5.1 A foreign exchange rate analysis

To illustrate our method and to compare it with the parametric model we analyze daily
quotes of two European currencies measured against the US dollar (USD), namely the
Deutsche Mark (DEM) and the British pound (GBP). The sample period is December
31, 1979 to April 1, 1994, covering T' = 3720 observations. Note that a subperiod of our
sample has already been investigated by Bollerslev and Engle (1993) discussing common
features between volatility processes. First differences of the respective log exchange

rates are shown on the left hand side of Figure 3. The empirical means of both processes

are very close to zero (-4.72E-06 and 1.10E-04, respectively).
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Figure 3: Exchange rate analysis.First differences of log exchange rates (left hand side panels)
and elements of recursive eigenvectors corresponding to maximum eigenvalue (upper and medium

right). Lower right: Centered process Yy 4, -

5.1.1 Multivariate GARCH estimation

Estimating a BEKK specification for the bivariate series of exchange rate returns we
obtain the following QML parameter estimates and ¢—ratios (in parentheses). Note that

the latter quantities have to be carefully interpreted within the framework of multivariate

22



volatility modeling.

1.15E-03 4.27E-04 280 —.049 938 .023

Cy = (9.41) (2.11) A= (12.6)  (—1.82) G, = (104.6)  (1.73)
0 7.13E-04 —.064 .292 025 943

(4.78) (-3.24)  (9.40) (3.01)  (66.8)

The maximum value obtained for the Gaussian log-likelihood is -28601.543. The pa-
rameter estimates given above suggest the presence of cross equation dynamics in the
sense that lagged price variations and volatility of one variable have some nonzero impact
on current volatility of the remaining variable. The parametrically estimated volatility
paths are displayed in the upper left panels of Figure 4. For convenience all second
order moments are multiplied by 10°. Periods of higher and lower volatility are distin-
guished for both series of exchange rate returns. The volatility process of the DEM /USD
exchange rate returns appears to be somewhat more erratic compared to the variance
of DEM/GBP returns. The process of the conditional covariance between the two re-
turn series takes on positive values almost during the entire sample period. A negative

covariance is estimated at the end of the first trading year of the sample period.

5.1.2 The adaptive procedure

The adaptive procedure was applied with the following specifications.

Selection of W We estimate the sequences of eigenvalues of recursive covariance esti-

mates, i.e.

The sequence of elements of the eigenvector (w;) corresponding to the maximum eigen-
values of iT* are shown in the right hand side panels of Figure 3. Both components
stabilize quickly. Similar results can be obtained for elements of the second eigenvector
(w2) and are not shown here to economize on space.

Determining the set W we used alternatively Wy = {w1} and Wy = {w;,ws}. Using
the entire sample period we obtain in particular the following results: w; = (0.715,0.699)’
and wy = (0.699, —0.715)". The centered univariate process Y3, = |w{ Ry|? is also avail-

able from Figure 3.

Selection of A and y Further parameters which have to be fixed are A, and the

grid length mg. The latter parameter was chosen alternatively mg = 5, 10,20. We select
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p = p(A) as described in Section 3.3 such that the probability of rejecting the homogeneity
hypothesis within an interval of length M is equal to a = 0.05. As candidate lengths of
homogeneous time periods we choose alternatively M = 40, 60, 80 corresponding roughly
to trading periods of two, three, and four months, respectively. As motivated before we
use cross validation (CV) to evaluate the empirical performance of candidate parameter
selections. For both alternative selections of W the CV estimates are shown in Table 2.
Minimum values are indicated with an asterisk. The obtained values of the CV criterion
differ gradually across alternative implementations of the adaptive procedure. This result
may be attributed to the dependence of the criterion on a few outlying forecasting errors
which are large in absolute value. In general the criterion function turns out to be
negatively related to the grid parameter mg. Minimum CV values are often obtained
for mg = 20 which can be directly related to the choice of relatively small smoothing
parameters A and u(\) implied by this grid length. Choosing W = W; (W = W)
the overall minimum of the CV function is obtained for M = 80, m¢ = 20, A = 0.1, and
u(A) = 3.8 (M =60,mp =20, = 0.5, u(A) = 2.8). Note however, that the CV minimum
values are very close for M = 80 and M = 60. In the following we concentrate on the
discussion of empirical results obtained from alternative parameter choices M = 40 and
M = 80.

Volatility Estimates Analogously to the parametric estimates the upper right panels
of Figure 4 show the adaptively estimated second order moments of bivariate FX-returns
for a particular implementation, namely W = Wy, M = 40, mg = 20, A = 1.5, u(A) =
0.4. In addition, the smoothed versions of Y;,,, and the estimated lengths of homoge-
neous time intervals obtained from this parameter choices are shown in the lower left
panels of Figure 4. Complementary to the latter results we provide the estimated lengths
of homogeneous time intervals obtained from another implementation of the adaptive
method, namely W = Wy, M = 80, my = 20, A = 0.5, u(A\) = 3.4. The adaptive proce-
dure yields estimated processes of second order moments which are somewhat smoother
compared to the parametric approach. This result mirrors directly the dependence of
3 on single lagged innovations parameterized by means of the GARCH model. In spite
of their relatively smooth pattern the time paths of second order generated by adaptive
estimation clearly identify periods or clusters of higher and lower risk.

With respect to the time dependent pattern of the estimated moments both ap-
proaches yield similar results. The lengths of identified homogeneous time intervals shown
in Figure 4 indicate that the smoothness of the volatility processes is positively related
with the parameter M. Note that the probability of falsely identifying a homogeneous
interval of length M is still fixed to be oo = 0.05.
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Table 2: Cross validation estimates for the adaptive model applied to a bivariate exchange rate

series.

M =40 M =60 M =80

mo | 5 10 20 5 10 20 5 10 20
A W =W
0.1 | 1.441 1.441 1.425 1.435* 1.437* 1.421 1.440 1.433*  1.420"
0.5 | 1.437" 1.443 1.424™ | 1.436 1.441 1.421* | 1.439* 1.439 1.425
1.0 | 1.453 1.441*  1.427 1.445 1.447 1.423 1.443 1.444 1.422
1.5 | 1.465 1.446 1.425 1.453 1.447 1.424 1.446 1.448 1.423

2.0 | 1.479 1.446 - 1.471 1.447 1.426 1.478 1.446 1.426
2.5 | 1.481 1.449 - 1.477 1.444 - 1.481 1.447 -
3.0 | 1.486 - - 1.480 - - 1.494 - -

W =W,

0.1 | 3.209* 3.185 3.147 3.177*  3.159*  3.137 3.156" 3.163* 3.142
0.5 | 3.231 3177 3.147 3.182 3.172 3.132* | 3.170 3.168 3.140"
1.0 | 3.239 3.182 3.147 3.186 3.184 3.137 3.177 3.175 3.143
1.5 | 3.230 3.188 3.145" | 3.212 3.182 3.142 3.198 3.170 3.142

2.0 | 3.244 3.198 - 3.229 3.178 3.144 3.220 3.177 3.141
2.5 | 3.257 3.196 - 3.247 3.181 - 3.241 3.181 3.143
3.0 | 3.274 3.203 - 3.248 3.198 - 3.248 3.198 -
3.5 | 3.274 - - 3.261 - - 3.250 - -

In a considerable number of cases the adaptive procedure switches from identified
long periods of homogeneity to the smallest possible duration of homogeneity (mg = 20),
indicating the sensitivity of the method at the actual boundary. Note that this sensitivity
is even more obvious for the specification with M = 40 compared to its counterpart
employing M = 80. The method operates similarly sensitive at the left end of investigated
time intervals (7 — m). This can be seen from various reductions of the duration of

homogeneous periods from high to medium levels.

Standardized innovations From the definition of the multivariate volatility model it
is seen that the elements of the vector of innovations e, = 3, Y 2Rt should be independent

and identically distributed with mean zero and unit variance, i.e.

et ~ 1.1.d.(0, Iy). (5.1)
2,} /2 may be conveniently defined as

=2 =UTAV?Y,

where the elements of A are the eigenvalues of ¥; and the columns of U are the corre-

sponding eigenvectors. For the convenience of notation we skipped the time index ¢ in
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Figure 4: Elements of ¥; - 10* obtained from the BEKK model (upper left panels) and from
adaptive modelling with M = 40 (upper right). Smoothed estimates of Y;,, and estimated
lengths of homogeneous periods (M = 40, lower left, M = 80,lower right, mo = 20, W = Wh)).

the definition of Ziﬂ.
Complementary to the moment conditions summarized in (5.1) higher order expec-

tations are immediately derived from independence of ¢;; and €;, i # 7,

E[giﬂ?t] = 0, coskewness,
E[&‘Zzt&??t] = 1,1 # j cokurtosis.

Assuming a symmetric unconditional distribution of ¢;; it also follows that E[e3,] = 0 for
all i = 1,... ,d. Under conditional normality one also has E[e};] = 3,4 =1,... ,d. To
evaluate the accuracy of a multivariate volatility model one may now investigate whether

the empirical moments of estimated innovations match their theoretical counterparts or
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not.
Following these lines we collect empirical moments of standardized innovations for

alternative volatility models in Table 3. Estimation results obtained from the parametric

Table 3: Empirical moments of estimated innovation vectors obtained from alternative volatility
models. Standard errors in parentheses. For the adaptive model the multiple testing rule (W =

W) is applied.

M =40 M =280 BEKK
m0=5 m0=20 m0=5 m0=20
A 0.1 1.5 0.1 0.5
p(N) 6.4 0.4 9.4 3.4
Eis —0.00 —0.01 0.00 —0.01 —0.01
(.017) (.017) (.017) (.017) (.016)
Bt 0.03 0.03 0.03 0.03 0.03
(.016) (.017) (.016) (.016) (.017)
&2, 1.04 1.08 1.04 1.05 0.99
(.032) (.035) (.034) (.034) (.036)
£z, 0.99 1.05 0.97 1.01 1.02
(-030) (.035) (.033) (.037) (.040)
&, -0.13 —0.24 —0.19 —0.28 —0.29
(.117) (-142) (.131) (.170) (.170)
&3, 0.32 0.43 0.33 0.46 0.53
(-1086) (-141) (.129) (-178) (-209)
&l 4.94 5.73 5.33 6.06 5.72
(.458) (0.65) (.570) (0.994) (.993)
£a 4.40 5.51 4.95 6.03 7.00
(.407) (0.68) (.566) (1.058) (1.34)
E1:80: 0.02 —0.00 0.02 0.00 —0.01
(.021) (-024) (.023) (.027) (.026)
ghe2, | —0.08 —0.16 —0.113 —0.20 —0.21
(.054) (.085) (.078) (.130) (.107)
g2,8L, 0.13 0.19 0.16 0.24 0.24
(.057) (.087) (.077) (.130) (.113)
2,82, 1.63 2.17 1.99 2.73 2.56
(.18) (.40) (.329) (.839) (.600)

BEKK model and from four adaptive models are reported. Apart from empirical mean
estimates we also provide the corresponding standard error estimates in parentheses. The

following conclusions can be drawn:

e All volatility models succeed in providing standardized residuals with mean zero
and unit variance. The empirical moments obtained from the BEKK model appear
to be somewhat closer to the theoretical counterparts compared to the adaptively
computed estimates. Note, however, that the maximization of the Gaussian likeli-
hood function implicitly tries to match these moment conditions. Empirical inno-

vations 14 and €2 are also seen to be uncorrelated, i.e. the empirical mean 1&g
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is not significantly different from zero.

e Whereas innovations computed for the DEM/USD process (e1,4) appear to be sym-
metrically distributed the DEM/GBP (e2,) process is generated from innovations
which are significantly skewed to the right. Again this result holds for all employed
volatility models. It turns out, however, that the adaptive procedure yields mean
estimates g5 varying between 0.32 and 0.46 which are smaller in comparison to the
BEKK estimate of 0.53.

e Both innovation sequences exhibit excess kurtosis indicating that the conditional
volatility model under normality does not fully account for leptokurtic exchange

rate returns.

e With respect to the empirical coskewness measures we obtain a similar result as
reported above for the third order moments. Both coskewness estimates obtained
from the BEKK model differ from zero. Depending on the particular choice of the
smoothing parameters the corresponding moments obtained from the adaptive pro-
cedure cannot be distinguished from zero and are smaller than the BEKK estimate

in almost all cases.

e All models yield an empirical cokurtosis of standardized innovations which is sig-

nificantly different from unity. E.g. using the parametric approach the estimate

2e2 is 2.56. The standard error of this empirical mean is 0.6. Selecting rather mild

smoothing parameters A = 0.1,y = 6.4, m9 = 5, M = 40 and W = W the empir-
ical cokurtosis is 1.63 having a standard error of 0.18. Using a stronger smoother
(A=0.1,u = 9.4,my = 5, M = 80) we obtain e%¢3 = 1.99 with standard error 0.33.

Summarizing the properties of empirical moments of estimated innovations implied by
alternative volatility specifications we are led to conjecture that the selection of the
smoothing parameters is essential for the practical performance of the adaptive modeling
procedure. Selecting small smoothing coefficients adaptive modeling outperforms the
accuracy of the time homogeneous parametric approach namely the BEKK specification

that we use as a benchmark model.

5.2 Analyzing stock returns

The former investigation of a bivariate system of exchange rates provided a detailed
comparison of adaptive and parametric modelling. In this section we illustrate the per-
formance of the new method applied to a 23-dimensional system of log asset returns. Due

to high dimensionality we refrain from discussing a parametric benchmark specification.
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The investigated system is composed of log returns of German stocks. All series are
members of the DAX, the major German stock index. Our sample of daily observations
covers the period January, 1, 1973 to May, 31, 1999. For each stock price series 6891
quotes are available. The data are taken from DATASTREAM /primark’s database.

Regarding the unconditional covariance matrix of log returns we obtain a high degree
of contemporaneous cross correlation. The highly significant correlation measures vary
between 0.240 and 0.739. The eigenvalues of the unconditional covariance matrix turned
out to be rather small. In particular we obtain for the first two eigenvalues estimates
of 25.9E-04 and 2.82E-04, respectively. Two of the remaining 21 eigenvectors are larger
than 2E-04. For convenience we refrain from simulating the function g = u(\) for higher
dimensional systems. As before, we take the first two eigenvectors of T to specify the
sets W; and Ws. Given the magnitudes of the discarded eigenvalues this choice appears
to be somewhat artificial. However, the current implementation of adaptive modelling
may conveniently emphasize the scope of the advocated procedure.

CV-estimates for both sets W; and W, and alternative choices of M and mg are
displayed in Table 4. Similar to the foregoing application it turns out that the CV-
criterion increases with M. With respect to the multiple testing procedure W = W,
the overall minimum of the criterion is obtained for M = 40, my = 5, A = 1.0, 4 =
4.2. In the following we discuss the empirical performance of adaptive modelling for
this particular implementation. Figure 5 shows the centered process Y; ,,, smoothed
estimates thereof, and the estimated lengths of homogeneous time intervals obtained
from the aforementioned parameter selection. As periods of relatively high volatility we
identify the end of 1987, the beginning of 1991, and the last two years of the sample
period. The estimated lengths of homogeneous time intervals vary between 20 and 324.
The largest periods of homogeneity are obtained within the first half of the investigated
sample.

Empirical moments of estimated innovations (¢;;) are displayed in Table 5. All im-
plied innovations are distributed with mean zero and unit variance. Four innovation
processes, namely BASF, BMW, Hoechst, and Preussag, are significantly skewed. The
empirical third order moments differ from zero at the 1% significance level. Note, how-
ever, that the empirical skewness measures may be affected by a few outlying observa-
tions. All implied innovations exhibit excess kurtosis, estimated fourth order moments
are between 4.47 (MAN) and 11.95 (BASF).
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Table 4: Cross validation estimates for the adaptive model applied to a 23-dimensional system

of log asset returns.

M =40 M =60 M =80

mo | 5 10 20 5 10 20 5 10 20
A W=W
0.1 | b7.47* 57.51* 57.54* | 57.50* 57.52* 57.63* | 57.54* 57.57* 57.65"
0.5 | 57.58 57.58 57.57 57.59 57.61 57.67 57.65 57.65 57.70
1.0 | 57.70 57.70 57.60 57.74 57.72 57.67 57.78 57.75 57.73
1.5 | 57.83  57.83 57.66 | 57.87 57.86  57.78 | 57.90  b57.87  57.77
2.0 | 57.90 57.92 0.00 57.95 57.98 57.83 57.93 57.98 57.85
2.5 | 57.98 57.98 0.00 58.00 58.05 0.00 57.97 58.04 0.00
3.0 | 57.97 0.00 0.00 58.03 0.00 0.00 57.92 0.00 0.00
W =W,
0.1 | 59.99  60.07* 59.95" | 60.14  60.05* 60.15* | 60.18 60.11  60.21"
0.5 | 59.96 60.13 60.02 60.03 60.10 60.20 60.14 60.07*  60.22
1.0 | 59.91*  60.07 60.09 59.99 60.10 60.28 60.14 60.13 60.27
1.5 | 59.92 60.12 60.26 59.99 60.12 60.38 60.09 60.10 60.30
2.0 | 59.97 60.11 0.00 59.98* 60.14 60.43 60.04*  60.19 60.32
2.5 | 59.97 60.17 0.00 60.06 60.22 0.00 60.14 60.21 60.32
3.0 | 60.08 60.20 0.00 60.08 60.21 0.00 60.09 60.21 0.00
3.5 | 60.17 0.00 0.00 60.17 0.00 0.00 60.14 0.00 0.00

Table 5: Empirical moments of asset return innovations (g;). The investigated stock price series
are: Allianz, BASF, Bayer, BMW, Commerzbank, Deutsche Bank, Degussa-Hiils, Dresdner Bank,
Hoechst, HypoVereinsbank, Karstadt, Lufthansa, Linde, MAN, Mannesmann, Miinchner Riick,
Preussag, RWE, Schering, Siemens, Thyssen-Krupp, Veba, Volkswagen.

Stock € g2 el et Stock € g2 el €;
ALLI -0.015 0.983 0.204 5.150 | LIND 0.005 0.982 0.142 4.542
BASF 0.004 1.011 -0.821* 11.95 | MAN -0.002 0.999 0.101 4.465
BAYE | 0.009 1.000 -0.681 11.17 | MANN | -0.008 0.991 -0.151 5.560
BMW -0.005 1.003  0.296* 5.927 | MUER | -0.005 1.001 0.090 6.101
COBA | -0.004 0.963 -0.427 7.984 | PREU -0.003 1.005 0.286* 5.619
DEBK | -0.002 1.031 -0.241 8.666 | RWE -0.000 0.985 0.043 6.842
DEGU | 0.003 0.986 0.102 5.006 | SCHE -0.009 1.001 0.079 5.790
DRBK | -0.000 0.999 -0.275 8.073 | SIEM 0.004 0994 -0.172 6.766
HOEC | -0.012 1.001 -0.833* 11.19 | THYS 0.003 0995 -0.144 6.358
HYPO | -0.009 1.006 -0.078 5.508 | VEBA 0.006 1.011 -0.354 8.836
KARS | -0.009 0.989 -0.009 4.879 | VW 0.004 0984 -0.039 5.802
LUHA | 0.004 1.012 0.178 5.067
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We also estimate empirical cross moments. Since the number of pairwise comparisons
D(D —1)/2 = 253 is rather large we refrain from providing detailed results. Regarding
empirical cross moments €; £+, © 7 j, we observe that the estimated innovations do not
exhibit any contemporaneous correlation. For higher order cross moments Table 6 reports
rejections of the implied moment conditions which are significant at the 1% level. Since
we perform 253 single moment tests one would expect that in 2 or 3 cases the investigated
null hypothesis is falsely rejected. We obtain 10 (5) mean estimates of 6i’t6?’t (612’758]"13)
which differ significantly at the 1% level from a theoretical coskewness of zero. 8 of these
rejections are observed for pairwise comparisons of asset return innovations of firms
operating on the same market, namely the banking sector and the chemical industry.
11 empirical cokurtosis measures differ significantly from unity, 6 of these moments are
measured on the same market. Summarizing our results for the high dimensional system
of asset returns we regard the adaptive procedure to provide a convenient tool for risk

analysis in large systems of financial assets.
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Figure 5: Analysis of German stock returns. Centered proces Y ,, and smoothed estimates.

Lower panel: Estimated lengths of homogenous time intervals. mg = 5, M =40, W = Wh.
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Table 6: Pairwise comparison of empirical and theoretical higher order cross moments (coskew-
ness and cokurtosis). Particular entries indicate empirical cross moments which differ at the 1%

significance level from their theoretical counterparts.

gi€; giej ;e

i j i j i j
BASF BAYE | BAYE HOEC | BASF BAYE
BASF HOEC | BAYE VEBA | BASF HOEC
BAYE HOEC | COBA PREU | BASF SIEM
BMW RWE DEBK HYPO | BAYE HOEC
COBA DRBK | SIEM SCHE | BMW RWE

DRBK HYPO COBA DRBK
HYPO DRBK COBA MAN
LUHA MUER COBA SIEM
RWE VEBA DEBK DRBK
SCHE SIEM HOEC SCHE

LUHA RWE

6 Conclusions and Outlook

We introduce a new framework for modelling time varying volatility observed for a vector
of return processes. The covariance matrix of the multivariate series is regarded as being
locally homogeneous. The length of homogeneous periods, however, is allowed to be time
varying. The advocated adaptive model aims to identify periods of homogeneity for given
time moments. Once locally homogeneous periods are identified second order moments
are easily estimated and can be used for forecasting future volatilities.

The advocated method provides an appealing tool for the empirical analysis in com-
parison to parametric modelling of multivariate volatility processes for at least two rea-
sons: Similar to principal component analysis the large dimensionality of the dynamic
model is reduced by concentrating on a set of univariate processes. Second, nontrivial a
priori assumptions typical for parametric modelling as e.g. structural invariance of the
dynamic model are not made. Implementing the new model a set of global parameters
has to be specified which determine the estimation results. By means of a Monte Carlo
investigation we provide some guidelines concerning a sensible choice of global parameters
of the method.

The convenience of the adaptive model for applied work is illustrated for a bivariate
series of exchange rate returns. For convenience we compare our model with a competing
parametric specification, namely the BEKK representation of the multivariate GARCH

model. It turns out that the adaptive model provides accurate estimates of time varying
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variances and covariances. Turning to diagnostic tests based on multivariate standardized
residuals convenient implementations of the adaptive model are shown to yield superior
diagnostic results compared to the parametric GARCH specification. Applied to a set of
stock returns we illustrate the convenience of adaptive modelling for the analysis of high
dimensional systems of financial variables.

As outlined the new model is implemented using the unconditional eigenvectors of
the volatility process to reduce dimensionality. This approach is appealing in the light of
principal component analysis. Often the particular purpose of the analysis may lead the
analyst to apply other weights. A further issue arises from the assumption of modelling
locally constant volatility patterns. Considering locally trending behaviour of volatility,
for instance in the sequel of large unexpected price variations, may improve volatility
forecasts in practice. We regard both optimization of the method with respect to the
employed weighting scheme and allowance of flexible patterns of local homogeneity as

topics for future research.

7 Proofs

In this section we collect the proofs of the results stated above. We start with the
following technical statements describing some important property of the distribution of

the random variable ¢, = D;'(|¢]" — C,) with a standard normal ¢.

Lemma 7.1 For every v <1 there exists a constant a, > 0 such that
ayu?
2

For v =1/2, condition (7.1) meets with a, = 1.02 (see Mercurio and Spokoiny (2000)).
Y

log E expu(y < (7.1)

The next result is a direct consequence of Lemma 7.1.

Lemma 7.2 Let ¢; be a predictable process w.r.t. the filtration F = (Fy), i.e. every ¢
is a function of previous observations Ry,... ,Ri—1 : ¢ = ci(Ry,... ,Ri—1). Then for

every w € W the process

t t
a
gt,w = €xp (Z csCs,w - 77 Z Cg)
s=1 s=1
with (s = (|wTRt|7/on — C,) /D, is a supermartingale, that is,
E (& | Fio1) < &E-1. (7.2)

The next result has been stated in Liptser and Spokoiny (1999) for Gaussian martin-
gale, however, the proof is based only on the property (7.2) and allows for a straightfor-

ward extension to the sums of the form M; = 2221 CsCs,w -
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Theorem 7.1 Let M; = Zi:l csCs.w with a predictable coefficients c, . Let then T be
fized or stopping time. For every b >0, B>1 and A >1

A2

(\MT|>/\\/ Vv, b < /(M T<bB)<4\/_/\( +logB)e %
where (M) :Zcf.

Remark. If the coefficients ¢; are deterministic then the quadratic characteristic (M)
is also deterministic, and one derives directly from Lemma 7.1 using the Tschebysheff

inequality:

)\2

(|MT\ > )\\/—) <2 207,

7.1 Proof of Theorem 2.1

Define
tel

Then Eg_[,w = 0r,» and by the Cauchy-Schwarz inequality

1/2
Z(et,w - 97’,’(‘)) S {|I|_1 Z(et,w - 07,111)2} S AI,w (73)

tel tel

1010 — Or| = 1|7

and, since gl,w is the arithmetic mean of 6;,, over, I,
> Orw = 0rw)” < (0w — 0rw)” < [TAT,
tel tel
This yields
- - = - 2
> 07, = 10rw)* + > (Orw — 0rw)* < 1| (10rwl® + A% ,) < | (Orw + Arw)” - (7.4)
ter tel
Next, by (2.6)
~, T’UJ_|I| IZ otw_ T W +37|I| lzotht
tel tel
and the use of (7.3) yields

B 1/2
P (|9Lw —Or | > A+ Avl,w) <P ( > Oraliw| > A(Z 9§,w) ) :
tel tel
In addition, if the volatility coefficient o; satisfies b < 0't2 < bB with some positive

constant b, B, then the conditional variance U%w = S2|1|172 Y0, 07, fulfills

VI <wf, <U|I|7'B

with o' = bs? . Now the assertion follows from (2.11) and Theorem 7.1.
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7.2 Proof of Theorem 2.2

Clearly
1010 — Orw| < 1010 — Or| + 01,0 — O] < Ao + 1010 — 01,0
and hence,
P (|§I,w — O] > Afw+ A5y (Or0 + AI,w)|I|—1/2)
< P (010 = 10l > Aoy (Brw — 010 — Orul + Ar)|1]712)
<P (|§I,w — 010 > HQ,%@I’W + AI,w)ml/?) .
By (2.3)

Oras — Orao = 1|2 (w0 R — Op) = 11|57 Y 01y
tel tel

and the use of (7.4) implies

~ — AS — _
P (|91,w —0r,w| > W(el’w + Arw)|] 1/2>
A\ 1/2
<P 01.wCt| > —_( 6? ) ) ;
(; Y 1+ As,|I|71/2 g bw

Now the desirable result follows directly from Theorem 7.1.

7.3 Proof of Theorem 2.3

Let I be a “good” interval. We intend to show that

{I is rejected } C U {'é:Lw —pj,w| > /\J,wa,w}
JeJ(I)

which would imply the assertion in view of Theorem 7.1, cf. the proof of Theorem 2.1.

This statement is equivalent to saying that the inequality {Z is rejected} is impossible if

|§J,w — 07w < AJwViw vJ e J(I).
We utilize the following

Lemma 7.3 Let (7.5) hold true. Then, for every VJ € J(II),

ﬂ] > —Uj’w

T L sy |2

~ 1

Ve S @‘W)
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Proof. Define 0, = (J7)71 ZteJﬁgw)l/Q. Then vy, = 37“]‘_1/29{]@ and Uy, =
$,|J|"1/26,, . The definition of Az, implies

1/2
_ _ 1 _ _
|0<I]aw o 0‘]5“" = (9*]:“’2 + m Z(et,w - 9.],10)2) - 0J,w
teJ

< (sl +22,)"7 =0 < Ay
Along with (7.5) this implies

syl 7201

Vjw =
> sy (0~ 8s — Bl =100 — Ol
> Vg — 37|J|_1/2(>\J’w7)],w + Ajw)
~1/2
and the first assertion of the lemma follows. The second one is proved similarly. [

By definition

{I is rejected} = U U {\51,1,, - §J,w| > UL + AﬁJ,w} .
Ieg(I) JeJg(I)
Since [0, — gy,w| < Ajy =01V forall J e J(I), condition (7.5) yields for every
pair J CIe J(I)

|§I,w - 5J,w| S ‘al,w - gl,w' + |§I,w - 5H,w| + |§J,w - gJ,w' + |§J,w - 5ﬂ,w|

> ()\I,w + (51,111)7)[,111 + (>\J,w + 6],11))'”.],11)
AVT AV T
L+ sy |I|71/2 14 Asy|J|71/27

N

By Lemma 7.3

HUT w )\'UJ,w
+
As T2 T 1+ Asy|J| 172

Vi + AN0jw >
MU w Viw Z 11
so that the event {I is rejected} is impossible under (7.5) in view of p > A.

7.4 Proof of Theorem 2.4

Let I be a “good” interval. As in the proof of Theorem 2.3 it suffices to show that the
inequality |§w — 07| > 2(A + p)vr, is impossible under (7.5). Obviously

{|§w — O] > 200 + u)m,,w}

- {|§w —O0rw| > 20X+ p)vrw, I C f} + {I is rejected} .
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Since the event {I is rejected} is impossible under (7.5), see the proof of Theorem 2.3,
it remains to consider the situation with { C I}. In view of the definition of I, using

also the condition vy, > 5?111 for TCT , we get
|0f,w - 0H,w| < /\gl,w + N/ﬁf,,w < (/\ + ,U/)/'Jﬂ,w

and by Lemma 7.3

~ ~ 1
107, — 0wl < (A4 p)orw (2 - W)

Next, by (7.5)

|5I,w — 00 < |51,w — 0|+ |0n — 07| < ‘51,10 — 0| + Ar
A'Uﬂ,w

< A Aggy= —Mw
vl + 8w = T3 i

Hence, {I C T } implies
bu—0rwl < 167, = Onl + 1010 = Orul

1
< 2w + pv 2——
= I,w MU w ( 1 —|—)\S7‘I|_1/2>

< 2N+ p)vnaw-

This along with (7.5) yields the assertion.

7.5 Proof of Theorem 3.2

Let w € W be such that (3.3) meets. To simplify the exposition, we suppose that 6,, = 1.
(This does not restrict generality since one can always normalize each ‘observation’ Y},
by 6, .) We also suppose that €/, > 1 and b, = 2(6,, — 1). (The case when 0., < 0,
can be considered similarly.) Finally we assume that m’ = m. (One can easily see that
this case is the most difficult one.) Under the change-point model, the ‘observations’
Yiw= |wTRt|7 are independent for all £ and identically distributed within each interval
of homogeneity. In particular, it holds for ] Jw With J = [Tep —m, Tep |

~ 1 Sy
Orw = EtEZJYt,w :1+ﬁf’uh

with &, =m ™23, (w. Similarly, for I = [r —2m, 7|,

~ 1 146, s, N
HI,w = % Z Yl.&,w = 2 + % Z Ct,w + om Z Ct,w
tel ted tell

00 o1

2/m

37

_ 1+0§U+ Sy £t
- w

2 ' 2/m




with &, =m™1/2 Ct.w , and hence,
w tell Sty
87041)

8/7 ;
aym® t oymbe
Since E|¢,|? = E|¢!|> =1, by Lemma 7.1 (see also Remark 7

w

gI,w - §J,w = bw -

_A2
P (|gw| > ) + P (&, > A) <de >
and it suffices to check that the inequalities [£,| < A, |€),| < X and (3.3) imply
|§J,w - 5I,w| > )\5J,w + /Jl'T)I,w .

Since 146, = 2b,, and since Vs, = $,|J |-/ 29 7w and similarly for vy, , it holds under

the assumptions made:

ASy

-5

070 —Or] > by (1+46) =by(1—8) — 6,

S

Vrw = m(1+%§w>§/\15(1+5),

5 = Sy <1+0§D Sy (&w +94,)£1’U)> Sy 1+01'U(1+5)
v vV2m 2 2y/m ~V2m 2
(1 +by)d(1 +6)

A2 )

Now, the use of (3.3) implies

|0J,w - 91,w| - )\'T)J,w - ,Ufal,w

> by(1— 8) — 8 — (1 + 0) —Aiﬁ(ubw)a(”a)

_ p p
= by (1—5—A—\/§5(1+5)) —5—5(1+5)—A—\/§5(1+5)>0

and the assertion follows.
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