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Abstract

Two types of unit root tests which accommodate a structural level shift at a known point in time
are extended to the situation where the break date is unknown. It is shown that for any estimator
for the break date the tests have the same asymptotic distribution as the corresponding tests under
the known break date assumption. Different estimators of the break date are compared in a Monte
Carlo experiment and a recommendation for choosing the break date in small samples is given.
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Nelson-Plosser data set are used to illustrate the performance of our tests.
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1 Introduction

Unit root tests are commonly used at the beginning of an econometric time series analysis.
Therefore suitable tests for different situations have been proposed in the literature. In
particular, a number of articles consider unit root tests in the presence of possible structural
breaks. In the related literature two alternative assumptions regarding the possible dates
of the structural breaks have been made. Some authors assume that the break date is
known a priori whereas others assume that the break date is endogenous and is therefore
unknown to the analyst. The known break date assumption has been made by Perron (1989,
1990), Saikkonen & Liitkepohl (2001a), Liitkepohl, Miiller & Saikkonen (2001) and Lanne,
Liitkepohl & Saikkonen (2001) (henceforth LLS) among others. An unknown break date is
assumed, for example, by Evans (1989), Christiano (1992), Perron & Vogelsang (1992), Zivot
& Andrews (1992), Banerjee, Lumsdaine & Stock (1992), Leybourne, Newbold & Vougas
(1998) and Saikkonen & Liitkepohl (2001b) (henceforth S&L).

If the break date is unknown, it has to be estimated from the given time series. In this
study we will consider unit root tests in the presence of a level shift and compare the impact
of different proposals for specifying the break date on the properties of the tests. We will
do so in the context of unit root tests proposed by LLS for the case where the break date
is known. These tests will be extended to the unknown break date case. The reason is that
LLS show that their tests have favourable properties if the break date is known. Therefore,
we expect them to work well in the unknown break date case as well. Furthermore, the
tests have the advantage that they allow for very general shift functions and not just an
abrupt shift as assumed in some of the related literature. The model considered by LLS
is sometimes referred to as additive outlier model in the literature. We will also consider
innovational outlier models and present the corresponding unit root tests. An important
advantage of the tests proposed in the following is that the asymptotic distribution does not
depend on the break date or the estimator of the break date.

In the literature on unit root tests for series with a structural shift at unknown time,
different estimators for the break date have been proposed. Keeping in mind the objective
of testing for a unit root, the break date is chosen in such a way that the considered tests
apply. Perron & Vogelsang (1992) and Zivot & Andrews (1992) propose to estimate the

break date such that the unit root test becomes least favourable to the null hypothesis of a



unit root and they develop the asymptotic distribution theory of the resulting test statistic.
Banerjee, Lumsdaine & Stock (1992) consider the asymptotic distributions of unit root tests
based on recursively computed test statistics. In contrast, Leybourne, Newbold & Vougas
(1998) estimate the deterministic part of the assumed data generation process (DGP) first,
including possible structural shifts and then they apply unit root tests to the residuals. In the
present study we will compare different approaches for choosing the break date in a Monte
Carlo study. The DGP is assumed to have an autoregressive (AR) structure. Therefore, we
will also discuss strategies for choosing the AR order.

The structure of the paper is as follows. In the next section two general models for
univariate time series with a shift in the mean and a possible unit root are presented. The
models are those treated by S&L. Section 3 considers estimation of the nuisance parameters
of the DGP and the tests for unit roots and estimators for the break date are presented
in Section 4. In Section 5 a Monte Carlo comparison of different tests and strategies for
choosing the break date is discussed. Examples are considered in Section 6 and conclusions
are contained in Section 7. Proofs are given in the Appendix.

The following general notation is used. The lag and differencing operators are denoted by
L and A, respectively, so that for a time series variable y;, Ly; = y;_1 and Ay; = y;—y;_1. The
symbol LN signifies convergence in distribution. Independently, identically distributed will
be abbreviated as #id(-, -), where the first and second moments are indicated in parentheses
in the usual way. Furthermore, O(:), o(+), O,(:) and o,(-) are the usual symbols for the order
of convergence and convergence in probability, respectively, of a sequence. We use A, (A)
to denote the minimal eigenvalue of a matrix A. Moreover, ||-|| denotes the Euclidean norm.
LS is used to abbreviate least squares and sup and inf are short for supremum and infimum,

respectively. The m-dimensional Euclidean space is denoted by R™.

2 DGPs

Two alternative models for the DGP of a time series with a possible unit root and a level

shift are considered. The first one is

yt:u0+ut+ftn(9),7+xta t:1727"'7 (21)



where the scalar p, the (m x 1) vector # and the (k x 1) vector 7 are unknown parameters
and fy,(0) is a (k x 1) vector of deterministic sequences depending on the parameters ¢ and

on the break point which is denoted by 7, that is, a shift occurs in or just before period

n € {1,...,T}. The stochastic process z; is assumed to have an AR representation of order
b,

b(L)(1 — pL)xy = &y, (2.2)
where b(L) =1 —b; L —--- — b, 1LP~" has all its zeros outside the unit circle if p > 1, while

—1 < p < 1. A unit root is present if p = 1. The initial values z;, t < 0, are assumed to
be independent of the sample size T. The error terms &, are assumed to be 7d(0, 0?) with
Elet|* < oo for some « > 4.

The second model has the form
b(L)y: = po + pt + fin(0)' v + vt t=1,2,..., (2.3)

where

Vg = pUy_1 + & (2.4)

is an AR process of order 1 and the other notation is as before. Again, if p = 1, v; and,
hence, y; has a unit root. The presample values y_,41,...,% in (2.3) are assumed to be
observable in addition to the sample values.

The sequence f,(#) is assumed to satisfy the following conditions adapted from LLS for

the presently considered case of an unknown break date.

Assumption A.

(a) The parameter space of 6, denoted by ©, is a compact subset of R™ and N7, the space
of n, is a subset of {2,...,7 — 1}.

(b) For each ¢t =1,2,... and each n € Ny, f;,(0) is a continuously differentiable function
in an open set containing the parameter space © and, denoting by Fy, () the vector of
all partial derivatives of fy,(6) with respect to 0,

T

T
sup sup Z||Aftn(0)||<oo and sup sup Z||AFM(9)||<OO

T 0€O,neNT | T 6€0,eNT |

where fo,(0) = 0 and F,(0) = 0.



(c) fin(@) == fpr1,(0) =0 for all # € O© and all n € Ny. Moreover, defining G, (0) =
[fin(0) : Fy,y(0)') for t =0,1,2,..., there exists a real number € > 0 and an integer 7.
such that, for all T" > T,

T
: !
06@12£NT )\min { E Ath(H)Ath (0) } 2 €.

t=1

In Assumption A(a) it is specified that the break date cannot be at the very beginning
or at the very end of the sample but it may be confined to a subset of the remaining sample
if, e.g., prior knowledge about the period exists where it may have occurred. The other
assumptions are related to the types of shift functions that may be considered. Roughly
speaking, abrupt shifts as well as smooth shifts from one level to another are permitted. For
instance, for n > p + 1, possible functions fy,(#) satisfying Assumption A are

0, t<n

fin(0) = dy == , (2.5)
L, t=2n

0, t<nm
fen(0) = (2.6)
1—exp{~0(t —n+1)}, 1>
or
0, t<n
exp{—0(t - m)}, t >

where 6 is an unknown parameter with 0 < # < constant < co, and

ftn(e) =

!
dt,n e dt—qm

o) T el)]”

where the components of § are given by the unknown coefficients of (L) =1— ¢ L —--- —

ftn(e) =

o, L", which is a lag polynomial with all its zeros outside the complex unit circle.

In Assumption A(c) the condition f,(0) =--- = fy11,(0) = 0 for n € Ny is satisfied for
these functions if 7 is known to be greater than p+ 1 (i.e., Np C {p+2,...,T — 1}). This
condition together with the last condition in Assumption A(c) implies that

in mm{Z[b )AGH, (0)][b(L )Ath()]}Zﬁ

€O nEN;
s1 T t=p+2
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for T" > T, which is needed for some of the estimators used in the following to be well-defined.

Our unit root tests proceed by estimating the parameters of the deterministic part first
and subtracting it from the series. Then standard unit root tests are applied to the adjusted
series. In the next section, the estimation procedures for the parameters of the deterministic

part from S&L are reviewed and the unit root tests are discussed in Section 4.

3 Estimation of Nuisance Parameters

We begin by discussing the estimation of the nuisance parameters in model (2.1)/(2.2).

Applying the filter A =1 — L yields the model

Y = Z,0)6 + U, (3.1)
where YV = [y : Ay -+ Ayp)|, & = [ po = 'y Z,(0) = [Z1 : Zoy(0)] with Z; = [1 :
-+ 1) and Z9)(0) = [914(0) : Agey(0) : -+ 1 Agpy(8)]" with g4,,(0) = [1 : fi,;(#)]. Finally,
U=[uy:--:ur] is an error term such that u; = z; — x; 1 = b(L) ‘&, if a unit root exists.

Under this assumption, for any given values of n and p the parameters 6 and ¢ as well
as the parameters b = [by,...,b,_1]" in the error covariance matrix of U can be estimated by

minimizing the generalized sum of squares function

Qn,p (¢; 0, b) = (Y - Zn(0)¢)12p(b)_l(y - Zn (9)¢)a (3-2)

where %,(b) = 072Cov(U). The properties of the resulting estimators are given in S&L.
For estimating the parameters of the model (2.3) we also premultiply by A and get

Y =W, (0)8+€, (3.3)

where 8 = [V : ¢'|', W, ,(0) = [V, : Z,(0)] with V, the (T" x (p — 1)) matrix containing
lagged values of the regressand. Furthermore, £ = [¢1 : - - - : ep|" if the unit root hypothesis

is satisfied. For given n and p, the estimators are obtained by minimizing

S,m,(ﬁ, ﬁ) = (Y - me(e)ﬂ)’(Y - Wn,p(e)ﬂ)- (3-4)

The asymptotic properties of the resulting estimators are also given in S&L.
An estimator of 7 is, of course, needed to make the estimators of the nuisance parameters

feasible. If 7 is some estimator of 7, feasible counterparts of the nuisance parameters are

5



defined in an obvious way. It turns out that the asymptotic properties of the unit root tests
to be studied in the next section do not depend on the choice of the estimator 7. However,
the choice of 7 may be important in finite samples and this is what we intend to explore in

Section 5.

4 Unit Root Tests

4.1 Tests for Given p and 7

For given AR order p and shift date estimate 7 we can estimate the nuisance parameters
as described in the previous section and obtain adjusted series on which the unit root tests
may be based. For model (2.1) we get &, = y, — oy — fiat — f1:(85)'4; and for model (2.3)
@ = bp(L)ys — fiog — fint — f1s(05) 7 There are several possible unit root tests that can be
used. We focus on versions which performed well in a simulation comparison by LLS. In
these tests adjustments for the estimation uncertainty in the nuisance parameters are made.

Define w; = b(L)x; so that wy = pw;_y + €. Thus, if we condition on yy, ..., y,, a version
of the test statistic in the context of model (2.1) may be based on the auxiliary regression
model

Wy = pWy_1 + errory, t=p+1,...,T,

where 1, = by(L)Z;. To adjust for the estimation errors in the nuisance parameters LLS find

that a test based on the auxiliary regression model

P
Wy = v+ piby 1 +[by (L) A foq (05) 11 + (b3 (L) Ay (0) Tma+ Y | ayAdy e, t=p+2,...,T,
= (4.1)
is preferable. The unit root test statistic is obtained as the usual ¢-statistic for the hypothesis
p = 1 based on LS estimation of this model. It will be denoted by 7(7, p) if a linear trend
term is included and by 7°(7), p) if u = 0 a priori.
To formulate a test based on the model (2.3) we consider mean-adjusted variables Ay,_; —
i (3 =1,...,p) where [i; = ﬁﬁ/gﬁ(l)- Detining (ﬂﬁ = [AYp—1 = flaiy ©*++  AYppy1 — [heg),

we consider the auxiliary regression model

’at =v+ Pﬁt—l + Aftﬁ(~ﬁ),7rl + AFt’f](é’f})lTrZ + qvéf)ﬂ-?) + 61: t= 27 s 7T7 (42)



and propose to use the relevant ¢-statistic denoted by t(7, p) for a unit root test. The corre-
sponding statistic based on a model without time trend (z = 0) will be denoted by t°(7), p).
In the next theorem the asymptotic distributions under local alternatives p =1+ 7, ¢ <0,

are given for an arbitrary estimator 7 of the break point 7.

Theorem 1.

Suppose that Assumption A stated in Section 2 holds and assume that, for some ¢ > 0,
b(L) # 0 for |L| < 1+ ¢, that is, the roots of b(L) are bounded away from the unit circle.
Moreover, suppose that the matrix Z, () is of full column rank for all # € ©, all n € Ny
and all T > k + 2. Then, denoting by By(u) a standard Brownian motion and using
the Ornstein-Uhlenbeck process B.(s) = [ exp{c(s — u)}dBy(u) and its mean-adjusted

counterpart B.(s) = B.(s) — fo B.(u)d

/ B.(s)dB.(s). (4.3)

0

Moreover,
—1/2
(7, p), t( ( / Ge( 2d5> G 5)dG.( (4.4)

where G.(s) is a mean-adjusted version of G.(s) = — sB.(1). O

The asymptotic distributions in the theorem are precisely the same as for the correspond-
ing tests based on series with known break date (see LLS for the asymptotic distributions
of the 7 tests when the break date is known). Therefore the critical values from Table 2
of LLS may be used in the tests. Note that LLS also consider estimation of the nuisance
parameters under local alternatives which results in more general versions of the asymptotic
distributions. Because LLS found that estimation under local alternatives does not improve
the small sample properties of the tests, we do not consider these generalizations here. LLS
also present a number of other tests which we do not discuss here because they were found
to have inferior small sample properties in the case of a known break date. As mentioned
previously, the 7 tests presented here are those which performed best in the additive outlier
model of LLS.

In practice, the AR order p and the break date estimate 7 have to be chosen in such a

way that the actual small sample distributions of our test statistics resemble the asymptotic



null distributions as closely as possible and best possible power is obtained. Alternative

strategies for choosing p and 7 are presented in the following subsection.

4.2 Specifying p and Estimating 7

There are a number of different ways for choosing p and 7. The choice of the AR order used
in estimating the nuisance parameters may in principle differ from the choice used in the
unit root tests in (4.1) and (4.2). In this section we will present some strategies which will
be compared in the simulation section. It will be seen that the choice of p is not critical for
the unit root tests as long as it is chosen reasonably large. We will therefore focus on the
estimation of the break date first and then briefly comment on AR order selection.

The following estimators for 1 will be considered for some given AR order p:

e 7)(p) = argmin,en, Q,p(9,0,b) or 7(p) = argmin,en, S,p(4, 5), depending on which

model is used.

o 7i(p) = argminyen,, 7(n, p) [or 7i(p) = arg mingen, 7°(n, p)] or 7j(p) = arg mingen, t(n,p)
[or 7j(p) = argmin,en, t°(n,p)], depending on which model is used. The idea here is
to choose the shift date such that it is least favorable for the unit root null hypothesis.

Both selection strategies require the estimation of the nuisance parameters for many
values of 7 if Nr is a large set. The first estimator is equivalent to choosing the break date
such that the F-statistic for testing the null hypothesis v = 0 is maximized. The latter
estimation method was considered by Perron & Vogelsang (1992).

In estimating 7, a reasonably large p should be chosen to ensure that the residuals of
the model with break date 7(p) or 7(p) are white. Choosing the order slightly too large
does not seem to be critical (see the simulations in the next section). Alternatively one
may determine 7j(p) or 7(p) for p = 1,. .., Pmax and choose p such that it minimizes a model

selection criterion
Co(p) = log Qi(,0,b) + crp/T
or
Cs(p) = log Syp(8, 6) + crp/T
depending on the model used. Here c¢r = 2, 2loglogT or logT for the well-known model
selection criteria AIC, HQ or SC, respectively (see, e.g., Liitkepohl (1991) for a more detailed

8



discussion of these model selection criteria). Yet another possibility is to determine 7)(pmax)
or 7(pmax) and reduce the order p only if the corresponding unit root test cannot reject the
unit root null hypothesis and the desired model selection criterion permits a reduction. This

strategy may be helpful in reducing the computational burden.

5 Monte Carlo Study

We have compared the unit root tests for different estimators of the break date and we have
investigated the impact of varying the AR order via a simulation experiment based on the

following two processes:
Y = ’}/dtn —+ Ty, (1 — blL)(l - pL).Tt = &4, 1= ]_, PN ,T, (51)

and

(1 - blL)yt = "}/dtn + Vt, VUt = PUt—1 + Et, t= 1, ceey T, (52)

with e; ~ itd N(0,1), p =1,0.9,0.8, T = 100, 200 and different values of . Here dy,, is the
shift dummy variable defined in (2.5). The processes are similar to those used in a Monte
Carlo study by LLS. In the simulations we also generated 100 presample values which were
discarded except that presample values were used in the estimations underlying model (2.3).
The first process (5.1) is a special case of the model (2.1) with an abrupt shift at time 7
so that the 7 tests are the appropriate tests whereas in general the model underlying the t
tests can only approximate the DGP (5.1). Thus applying this test as well should give some
indication of the flexibility of the framework and of the consequences of using a misspecified
model. In turn, the DGP (5.2) is a special case of (2.3). For b; # 0, it generates a smooth
shift in the deterministic term. The t tests are designed for this process, whereas the 7
tests are approximations only. To capture the smooth transition from one regime to another
the 7 tests may be combined with a smooth shift function. For both types of tests we use
different shift functions from the collection given in Section 2. Although there is no linear
trend term in the DGPs we allow for such a term in computing some of the test statistics. In
other words, in some of our simulations we assume that the absence of a linear trend is not
known a priori. The more important results from our simulations are presented in a series

of figures.



In Figure 1, the frequency distributions of estimated break dates are shown in histograms
with 15 bins of equal length, using the true AR order p = 2 and assuming that the type of
DGP including the shift function is known. Thus, we are operating under ideal conditions.
Notice, however, that we have considered every fifth observation only as a possible shift
date in order to economize on computer time. Obviously, / finds the true break date of
n = 50 more often than 7. Note, however, that for small shifts (y = 1) both estimators
have problems finding the shift date whereas for v = 3, /) locates the shift date with a very
high probability. Similar results were also obtained for other shift dates and are not shown
to save space. Specifically, we have also performed simulations for n/T = 0.1,0.3,0.7 and
0.9 and found that the relative performance of the break date estimators is similar to that
shown in Figure 1. Of course, strictly speaking the frequency of correct choices of the break
date may not be the best performance criterion here because we are eventually interested
in the implications for the unit root tests. It turns out, however, that the estimator 7 also
results in the best performance of the unit root tests. Therefore, we will focus on 7 in the
following.

In Figure 2, power functions for different break dates n are displayed. Again we are
working under ideal conditions because we assume that the type of DGP and the type of
shift are given. In other words, the shift function is represented by a simple shift dummy
variable. Also the true AR order p = 2 is used. In addition to the power functions of our 7
and t tests we also show those of standard augmented Dickey-Fuller (DF) tests which do not
take the shift into account. It turns out that for the DGP (5.1) our tests are not sensitive to
the shift date whereas the size and power of the DF tests clearly depends on the location of
the shift. In the figure we only show results for tests without time trend. The results for our
tests with time trend were similar whereas the DF tests with a linear trend are somewhat
less sensitive to variations in the break date than the DF tests without time trend. In this
respect the sensitivity of our tests as well as that of the DF tests is greater for the DGP (5.2)
as can also be seen in Figure 2. Obviously, the DF tests may suffer dramatic size distortions
and total loss of power for this DGP. From a practical point of view the tests become useless.
In the following analyses we place the break date in the middle of the sample because this
choice is the worst case for our tests in terms of power.

The impact of the size of the break on the power of the tests is shown in Figure 3. Not

10



surprisingly, the tests perform best if the DGP is the one assumed in their derivation. In
other words, the 7 tests may loose their power if (5.2) is the DGP and the t tests tend to
perform poorly if (5.1) is the actual DGP. The deterioration in power increases with the size
of the shift. Another feature of the tests is also seen in Figure 3. It turns out that a priori
knowledge of the absence of a linear trend is helpful for improving the power for DGP (5.1).
In other words, for this DGP 7° and t° have larger power than 7 and t, respectively. On
the other hand, somewhat surprisingly, a corresponding power advantage is not obtained for
DGP (5.2).

Because the shift generated by (5.2) is actually a smooth one it is tempting to expect
the performance of the 7 tests to improve if they are used together with a smooth shift
function. Therefore we have applied both types of tests with a shift function (2.6) which
produces an abrupt shift if # is very large and may also capture smooth shifts in the mean
for smaller values of . Some results are shown in Figure 4. Here 6 is estimated along with
the other parameters of the deterministic part. Obviously, in this case the performance of
the tests deteriorates substantially. Both size and power are affected. In particular, the
actual rejection frequencies of the t tests exceed the nominal 5% substantially if there is
actually a unit root. Moreover, the power of the 7 tests is quite low in all the situations
shown in Figure 4 in comparison to the corresponding cases in Figure 3. In other words,
the additional flexibility in the shift function has a negative impact on the properties of the
tests. It may be worth noting, however, that the performance of the tests with flexible shift
functions improved markedly for larger sample sizes. Still, with samples of the size T' = 100
it may be preferable to use the tests in conjunction with a simple shift dummy if the shift
date is unknown. Given that the relative performance of our tests strongly depends on the
type of DGP, applying both tests simultaneously may be a good strategy in practice where
the true DGP is unknown. A unit root is then rejected if one of the tests rejects the null
hypothesis because that test is regarded as the more powerful one.

Finally, in Figure 5, the impact of the AR order on the properties of the tests is illustrated.
Clearly, under the ideal conditions underlying the figure (type of DGP and shift function
known, actual AR order finite), overstating the AR order a bit reduces the power of the
tests slightly. A much stronger effect may be induced by understating the order (see p = 1
and DGP (5.1)). In that case the power in particular of the 7 and DF tests may drop

11



substantially. Therefore, it may be a good strategy to choose an AR order which ensures
white residuals in the fitted model. For example, in a first step one may choose a fairly large
order which is regarded as reasonable for a given time series. If the unit root hypothesis is
rejected, no further adjustments are necessary. On the other hand, if the unit root is not

rejected, it may be worth checking if a rejection is obtained with a smaller AR order.

6 Examples

We use annual U.S. time series from the well-known Nelson & Plosser (1982) data set as
extended by Kleibergen & Hoek (1999) to illustrate the performance of the tests in practice.
Similar data have been analyzed by a number of other authors as well. A comparison with
some previous results will be given later.

We have chosen ten series which start in the 19th century or in the early part of the 20th
century and terminate in 1988. The precise sample periods are given in Table 1 together with
the results of unit root tests. In addition to the sample values there are presample values
for each of the series which are used in the estimation. All series are in natural logarithms
and they are such that including a linear time trend seems justified.

In Table 1 results of DF, 7 and t tests are given. The lag order is chosen by estimating
models up to order p — 1 = 4 with a linear trend and without break and we have then
considered the t-ratios of the coefficients associated with the largest lags. The greatest order
is selected for which the coefficient of the largest lag is significant at conventional levels.
In some cases we also give results for models with larger lag orders if there is a specific
reason for that. A discussion will be provided later. According to our simulation results,
the choice of the AR order is not crucial and therefore we believe that the present approach
is justified. For the given AR orders the break dates for the 7 and t tests are estimated
using the estimator 7 in conjunction with a shift function consisting of a simple shift dummy
variable as suggested by our simulation results.

The DF tests reject the unit root null hypothesis for four of the ten series at a 10% level
of significance. In contrast, the 7 tests reject for six of the series. In fact, they reject for all

the series for which the DF tests also reject and in addition they indicate stationarity of the

We thank Frank Kleibergen for providing the data.
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Table 1. Unit Root Tests for Annual U.S. Data

Sample T test® t test?
Variable period p— 1| DF test® | statistic 7 | statistic 7
Real GNP 1914 - 1988 1 —-3.60" | —2.89* 1933 | —2.24 1923
2 —3.48* | —=2.72 1933 | —2.67 1933
Nominal GNP 1914 - 1988 1 —2.00 —2.56 1922 | —2.18 1922
—-1.73 —2.29 1922 | —1.91 1922
Real per capita GNP 1914 - 1988 1 —3.68"* | —2.89* 1933 | —2.32 1923

2 —=3.57* | =2.73* 1933 | —2.71* 1933

Industrial production 1865 - 1988 0 —3.42* | =3.56™ 1922 | —3.50"" 1922

1 =3.71* | —4.28" 1922 | —3.91* 1922

Employment 1895 - 1988 1 —4.10" | =3.11* 1947 | —2.93* 1947
GNP deflator 1894 - 1988 1 —1.58 —1.89 1922 | —2.31 1922
Consumer prices 1865 - 1988 2 —1.60 —1.98 1921 | —1.47 1922
3 —1.89 —-3.37* 1921 | —1.67 1922

Nominal wage 1905 - 1988 1 —2.25 —2.60 1909 | —2.82* 1922
Money stock 1894 - 1988 1 —2.91 —3.06™ 1922 | —2.96* 1922
—2.82 —2.73 1922 | —3.27* 1933

Velocity 1874 - 1988 0 —1.57 —-1.39 1882 | —1.56 1882
1 —1.72 —1.46 1882 | —1.82 1882

@Critical values: —3.41 (5%), —3.12 (10%) (see Fuller (1976), Table 8.5.2, 7, n = 00).
bCritical values: —3.03 (5%), —2.76 (10%) (see Lanne et al. (2001), Table 2, T = 1000).
“*’ and “**’ indicate significance at the 10% and 5% level, respectively.

consumer price index (CPI) and the money stock. This result is in line with our simulations
which indicate that the DF tests are unreliable if there is a break and in particular they may
have low power. It may be worth noting, however, that the 7 tests reject the unit root for
the CPI and the money stock only for one of the two AR orders given in Table 1. Although
the third lag has a t-value of around 1.5 and is hence not significant at conventional levels,
including it results in a substantial increase in the 7 statistic. Given our simulation results,
such a behaviour would be expected if the order p — 1 = 2 is in fact too small to capture the
short-run dynamics adequately.

For the money stock variable, the situation is just the other way round. In this case the

unit root is rejected by the 7 test for the smaller lag order p — 1 = 1. Notice, however, that
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the test value for p — 1 = 3 is very close to the critical value for a 10% significance level.
Thus, in this case there may be a power decline due to the increase in the order. Both orders
are given although the lag three coefficient is not significant at the 10% level because varying
the order has a sizeable impact on the t test. Not only does it reject the unit root with more
confidence when the AR order is increased but it also picks a quite different shift date in
this case. For order p — 1 = 1 the shift year is estimated to be 1922 whereas forp —1 =3
an estimate 77 = 1933 is obtained. The result may be an indication that the shift is not very
severe or that the model underlying the t test is not a good representation of the DGP. Of
course, it is also possible that there is more than one shift. Because we can reject the unit
root even when only one shift is allowed for, there is no reason for a further exploration of
that possibility.

Generally, the t tests reject the null hypothesis less often than the 7 tests in our data set.
Given the power results obtained from the simulations in the previous section this outcome
is clearly not surprising. It may be a bit surprising, however, that there is even one series
for which the DF test rejects whereas t does not at a 10% level of significance. This occurs
for real gross national product (GNP). Again in this case the sensitivity of the break date
estimate with respect to the lag order is substantial. For p — 1 = 1 a break date of 1923
is obtained whereas p — 1 = 2 results in 7 = 1933. Hence, in this case again the model
underlying the t test may not be adequate here for different reasons. Notice, however, that
the test values are quite close to the 10% critical value. Hence, even the t test offers some
indication that there may not be a unit root in the series.

The t test also rejects the unit root in the nominal wage series, in contrast to both other
tests. Thus, as in our simulations, the t test may have power advantages in some situations.
Notice, that the 7 test value is close to the 10% critical value. The results for the wage
series clearly show the virtue of applying both tests simultaneously because it depends on
the DGP which test is preferable.

Generally our examples show the virtue of allowing for a break in the DGP when testing
for a unit root and they are also in line with the simulation results of the previous section.
The break dates vary substantially, however, which is clearly a consequence of the very long
observation period covering a number of important events such as two world wars and the

Great Crash at the end of the 1920s. For velocity the most important shift seems to have
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even occurred in the 19th century. Given our theoretical results the tests should not be
sensitive to estimating the break dates poorly. Moreover, the simulation results show that
the break date is important in small samples only if the break is quite sizable. Hence, overall
the results in Table 1 illustrate some of the asymptotic and small sample properties of our
testing procedures.

As mentioned earlier, the unit root properties of similar series were analyzed by a number
of other authors as well. For example, Perron (1989), Zivot & Andrews (1992) and Amsler
& Lee (1995) have considered the Nelson-Plosser data. It has been argued by Perron (1989)
that there may be a break in the slope of the linear trend function in some of the series. Our
framework does not cover that type of structural break. Therefore it may be of interest to
note that our results are well in line with those of Zivot & Andrews (1992) who also allow for
an unknown break date. For instance, for our set of variables, they reject a unit root for real
GNP, nominal GNP, real per capita GNP, industrial production, employment and nominal
wages (see Zivot & Andrews (1992, Table 6)). Consequently, except for nominal GNP, our
tests reject the unit root for all the series as well. In addition we find evidence against a unit
root in the CPI and money stock. In the aforementioned study the AR orders are partly
larger than in our study. Based on our simulations it seems reasonable to use fairly small lag
orders, however, to improve the test power. It may also be worth noting that our estimated
break dates differ from those obtained by Zivot & Andrews (1992). Obviously, this does not

affect the conclusions from the unit root tests substantially.

7 Conclusions

In this study we have considered tests for unit roots in time series which have a structural level
shift at unknown time. The shift is assumed to be representable by a deterministic function.
We consider tests which proceed by estimating the shift function and other deterministic
terms in a first step, adjust the series for deterministic terms and then apply standard
unit root tests to the adjusted series. A test version based on an additive outlier model
with known break date is extended to the unknown break date case and a corresponding
version for an innovational outlier model is proposed. It is shown that, under our conditions,

for any estimate of the break date, the tests have the same asymptotic properties as the
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corresponding tests that assume knowledge of the break date.

In a Monte Carlo study the following small sample results are found. Despite the fact
that all estimators of the break date lead to the same asymptotic properties of the tests,
in small samples it is best to choose the break date which leads to the minimal objective
function in the estimation algorithm of the nuisance parameters. The choice of the AR order
is of limited importance for the properties of the tests as long as a reasonably large order
is used, that is, as long as the order is not understated and not overstated substantially.
This result is likely to depend on the sample size and was obtained for a sample of size
T = 100 in our simulations. A possible strategy for empirical work may be to choose a fairly
large AR order in a first round and try also smaller orders if the resulting test does not
reject the unit root null hypothesis. Although the asymptotics work for very general shift
functions, choosing flexible shift functions may lead to a dramatic loss of power for samples
as large as T" = 100. Therefore it may be best to use a simple shift dummy variable as
shift function and apply both types of tests. Depending on the DGP, their relative power
may vary substantially, sometimes leading to superior performance of one of the tests and in
other situations giving the lead to the other test. Surprisingly, test versions which assume
that there is no linear trend in the DGP do not necessarily have sizable power advantages
over tests which allow for a linear time trend. Therefore, if there is uncertainty about the
possibility of a linear trend, it is preferable to include such a term. Finally, ignoring the
break and applying standard DF tests can lead to more or less arbitrary results and is not
advisable in practice.

A set of annual U.S. series from the Nelson-Plosser data is used to illustrate the perfor-
mance of the tests in practice. It turns out that allowing for a break at unknown time, the
unit root null hypothesis can be rejected in some cases where rejection at usual significance
levels is not possible with standard augmented DF tests. These results indicate that our

tests are a useful addition to the toolkit of macroeconometrics.

Appendix. Proof of Theorem 1

In the proof of Theorem 1 we focus on the limiting distribution of the test statistics 7(7, p) and

t(7), p). The limiting distribution of the test statistics 7°(7, p) and t°(7, p) can be obtained
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by making straightforward modifications to these proofs.

First consider the test statistic 7(7,p). We start by showing that the appropriately
standardized moment matrix in the LS estimation of the parameters in (4.1) is asymptotically
block diagonal between by (L)AG:;(6:) = [ba(L)Afin(8;) : ba(L)AF;;(65)'] and the other
regressors. To this end, we first note that (see (A.33) of S&L)

By =2 — (fig — 1)t — 912(05)' &4 + gin(0)' (A1)

where ¢ = [119 : 7']" and @5 = [jlos : 4;)"- S&L use this identity and their Lemma 3.1 to show
that
Tﬁl/Qi[Ts} i) wGC(S) (AQ)

where w = 0/b(1). Next conclude from (A.1) that
Ady = Azy = (jig = 1) = Dguq(03) (65 — ©) = Aguq(03)' ¢ + Agun (6)' .

Here fi — pn = Op(T7"/?) and @53 — ¢ = 0,(T°) where 1 < a < 1 (see Lemma 3.1 of S&L).

Thus, because Assumption A(b) implies that max;<;<r ||gs,(€)]| is bounded uniformly in 6,

1 and T we have
max;<;<r |AZ| = maxjc<r |Aze| + 0,(T%) (43)
= op(T).
Here the latter equality can be justified by writing Az, = T 'cx;_; + b(L)"'e; and using
(A.14) of S&L and well-known properties of near integrated processes.
Now write Wy = by(L)&; = by(1)3; + b;(L)A%, and recall from (3.7) of S&L that the
coefficients of b;(L) are consistent estimators of the coefficients of b(L). Using these facts in

conjunction with (A.2) and (A.3) we readily find that
T_I/QI?J[TS] i) wG.(8). (A.4)

Because the roots of Bﬁ(L) are bounded away from the unit circle by assumption, the coeffi-
cients of this polynomial can be bounded by a constant. This fact together with (A.4) and
Assumption A(b) shows that

1T 320, 4o -1 [0 (L) AG; (0)']]

< const. x (T~ max; <7 |104]) Zthl ||AGtﬁ(é)|| (A.5)

< const. x (T~ max; ;<1 [ty]) SUPyeo peny Soret 1AGH(0)]]

= Op(Til/Z)-
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Making use of (A.3) instead of (A.4) one can similarly show that, for 1 < j < p,

1742 S5 Ay {ba (L)AGH 6|
< const. X (T2 max; ;<7 |AZ4)) SUPgco,neNr Zthl 1AGHO)] (4.6)
= Op(Ta'_l/Q).

Furthermore, replacing AZ;_; by unity in these derivations yields

1=t Z [b3(L)AGH ()]l = Op(T2). (A.7)

t=p+2
Combining (A.5) - (A.7) shows that the off-diagonal block of the standardized moment
matrix we are considering is of order 0,(7%/2) = 0,(1). Using this fact and the inversion
formula for a partitioned matrix one can readily see that the same is also true for the inverse
of this matrix, provided the smallest eigenvalues of the diagonal blocks are asymptotically
bounded away from zero. For the diagonal block corresponding to the regressor AGtﬁ(é)
this follows from Assumption A(c) and for the other diagonal block this becomes clear later

in the proof. Thus, since 2a — % < 0 and since it will be shown shortly that

Z [ba (L) AG 15(8)]r, = 0,(T%) (A.8)

t=p+2
we can conclude that the asymptotic properties of the LS estimators of the parameters v,
p and ¢ obtained from the auxiliary regression model (4.1) can be derived by ignoring the
regressors by (L)Af,:(A) and by (L)AF;(6).

To justify (A.8) we first conclude from (A.1) after straightforward but somewhat tedious
algebra that

A C _ 7
Awt — th,1 = bﬁ

where we can further write
by(L)Azy = b(L)Azy + (bs(L) — b(L))AZy + (bs(L) — b(L))(Azy — Ady).

Now identify «; in (4.1) as the j-th coefficient of Bﬁ(L) — b(L) and m as —; + 7. Then,

defining the intercept term v in an appropriate way, we find from the above that the error
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term r; has the representation

Ty = b(L)Axt‘i‘[b( ) — b(L)|(Azy — Ady) — £by(L)wsy
by (L )[Afm(é 3) — Afu(0)]"y — by(L) AFy;(05)'m (A.9)
+(fg — ) £bs (L) — 1) + £b3(L) g 1,4(07)'Pq — £b3(L) g 1,4(8)' .

The discussion following equation (4.2) of LLS shows that my is a function of éﬁ but not a
function of other estimators. Thus, m = O,(1) by the compactness of the parameter space
© and, because the coefficients of b;(L) are consistent estimators of those of b(L), it follows
from Assumption A(b) that the contribution of the fourth and fifth terms on the right hand
side of (A.9) to the left hand side of (A.8) is of order O,(1). These arguments and those
used to obtain (A.3) also show that the contribution of the first three terms on the right
hand side of (A.9) to the left hand side of (A.8) is of order 0,(7*). Because the sequence
G15(0), - .., gry(0) is bounded uniformly in 0, 7, and T, the same conclusion can be drawn for
the last term on the right hand side of (A.9). Finally, the same is also true for the sixth and
seventh terms on the right hand side of (A.9) because fi; —pu = O, (T~'/?) and ¢, = o, (T*)
by Lemma 3.1 of S&L. Thus, we have justified (A.8). In summary, we have shown that the
regressors by (L) fus(0;) and by(L)AFy;(6;) can be ignored when asymptotic properties of the
LS estimators of the parameters v, p and «; in (4.1) are derived.

Next, note that the regressors Az;_; (j = 1,...,T) can also be ignored when asymp-
totic properties of the LS estimators of v and p are derived. To see this, first note that
from (A.1) and the arguments used to obtain (A.3) it is straightforward to conclude that
T35 i1 Adyj = 0,(1) whereas T2 3, Ady_;j =0,(1) (j =1,...,p) by (A.2).
Thus, the appropriately standardized moment matrix between the regressors [1 : ;1]
and Az,_; (j = 1,...,p) is asymptotically block diagonal, and, because the arguments
in the proof of Theorem 4.1 of S&L show that the smallest eigenvalues of the two di-
agonal blocks are asymptotically bounded away from zero, the desired result follows if
T-1/2 Zfzpw Az, jry = Op(1) (j = 1,...,p). This latter fact can be justified by using
equation (A.9) and arguments already used above. Thus, we have reduced the problem to
essentially the same one as treated in S&L. The main difference is that now an intercept
term is included in the auxiliary regression model on which our test is based. This, however,
is easily seen to have the same effect on the test as in conventional Dickey-Fuller tests, or, in

other words, the resulting limiting distribution becomes the same as its counterpart in LLS
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obtained by assuming a known break date. This completes the proof of (4.4) in the case of
test statistic 7(7, p).

Now consider deriving the limiting distribution of test statistic t(7, p). As can be expected
from S&L, some of the details are very similar to those in the preceding proof and will
therefore be omitted.

In the same way as in the preceding proof we first show that the appropriately standard-
ized moment matrix in the LS estimation of the parameters in (4.2) is asymptotically block
diagonal between AGtﬁ(éﬁ) and the other regressors with the off-diagonal elements being at
most of order 0,(T%/27%). As far as the regressors 9, ; and 1 are concerned, this can be seen

by arguments similar to those used for (A.5) and (A.7). So, we only need to consider §;.

From (12.A.10) of Liitkepohl, Miiller & Saikkonen (2001) we first conclude that
yt:ﬂ*t"'kt"'xt, t:]_,Q,..., (A]_O)

where g, = p1/b(1) and the sequence k; has properties similar to fy,(6) with 1 and 6 fixed.
In particular, when Assumption A(b) holds, supy Y, |k:| < co. From (A.10) one obtains

Ayp — fiay = Dky — (flaiy — ) + Ay, (A.11)

where fi.; — p. = O,(T~Y/2) by (3.15) and (3.16) of S&L. Thus, the above discussion and
arguments used in the case of (4.6) and (A.7) show that the standardized moment matrix
between the regressors AGy; (én) and ¢y; is asymptotically block diagonal and the off-diagonal
elements are of order o,(7T%"*/2). Combining these results we have therefore shown that
the standardized moment matrix between AGy(6;) and all the other regressors in (4.2) is
asymptotically block diagonal and the off-diagonal elements are at most of order o,(71/2).
An application of the inversion formula for a partitioned matrix then shows that the same is
true for the inverse of this matrix, provided the smallest eigenvalues of the diagonal blocks
are bounded away from zero. For the diagonal block corresponding to AGtﬁ(éﬁ) this can be
seen in the same way as in the preceding proof and for the other diagonal block this will
become clear later. Thus, the limiting distribution of the LS estimators of the parameters

v, p and 73 in (4.2) can be derived by ignoring the regressor AGy;(6;) if we have

ZT: AG(0)ef = 0,(T9). (4.12)
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Using equations (4.13), (4.16) and (A.11) of the discussion paper version of LLS to derive
an explicit expression for the error term eI in conjunction with (A.11) of the present paper,
one can justify (A.12) by arguments similar to those used for (A.8).

Next we demonstrate that the regressor g;; can also be ignored when asymptotic prop-
erties of the LS estimators of v and p in (4.2) are derived. To this end, note that arguments
used in the preceding proof in conjunction with the representation of v; given in the proof
of Theorem 1 of Liitkepohl, Miiller & Saikkonen (2001) and the consistency properties of
the nuisance parameter estimators given in Lemma 3.2 of S&L show that the standardized
moment matrix between the regressors [1 : 9;_1]' and ¢i; is asymptotically block diagonal.
Thus, the standardized moment matrix between the three regressors, [1 : @ 1]', AGy(6;)
and §; in (4.2), is asymptotically block diagonal. Furthermore, the smallest eigenvalue of
each block is asymptotically bounded away from zero. For the first block this will be made
clear below, so it suffices to consider the second block. Because fi; — pu = O,(T~'/?) was no-
ticed to hold, the desired conclusion is obtained by repeating the argument given in the proof
of Theorem 2 in the discussion paper version of LLS. Thus, applying the inversion formula

for a partitioned matrix we can conclude that the limiting distribution of the LS estimators

of the parameters v and p can be derived by ignoring also the regressor G;; provided that

holds. However, in the same way as in the case of (A.12), this can be seen by using the
explicit expression for the error term eI in conjunction with (A.11) and arguments used in
the preceding proof.

Summarizing, the above discussion shows that the limiting distribution of the test statis-
tic t(7), p) can be derived by ignoring the regressors AGtﬁ(éﬁ) and ¢, and, in the same way
as in the preceding proof, it can further be shown that the limiting distribution of the test
statistic t(7, p) differs from that of the test statistic 75 in S&L only in that it is obtained
from an auxiliary model augmented by an intercept term. Thus, the limiting distribution

is the same as in the case of a known break date treated in the discussion paper version of

LLS. This gives the desired result and completes the proof.
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Figure 1: Frequency distributions of estimators for the break date for DGP (5.1), T' = 100,

by = 0.5, p = 2, true break date 7 = 50 and different values of ~.
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Figure 2: Impact of break date on the tests without linear trend term for 7" = 100 and v = 1.
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