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The Costs of Not Knowing the Radius
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Matthias Kohl, Peter Ruckdeschel
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5 October 2001

Abstract

We determine the increase of the maximum risk over the minimax risk in
the case that the optimally robust estimator for the false radius is used.
This is done by numerical solution of the implicit equations which determine
optimal robustness, for location, scale, and linear regression models, and by
evaluation of maximum asymptotic variance and mean square error over fixed-
size symmetric contamination and infinitesimal asymmetric neighborhoods,
respectively. The maximum increase of the relative risk is minimized in the
case that the radius is known only to belong to some interval [ pr,r/p]. The
effect of increasing parameter dimension is studied for these models.

The minimax increase of relative risk in case p = 0, compared with that
of the most robust procedure, is 18.1% vs. 57.1% and 50.5% vs. 172.1% for
one-dimensional location and scale, respectively, and less than 1/3 in other
typical contamination models. In most of our models, the radius needs to be
specified only up to a factor p < % , in order to keep the increase of relative
risk below 12.5%, provided that the radius—minimax robust estimator is em-
ployed. The least favorable radii leading to the radius—minimax estimators
turn out small: 5%—6% contamination, at sample size 100.

Key Words and Phrases: Symmetric location and contamination; infinitesimal
asymmetric neighborhoods; Hellinger, total variation, contamination; asymp-
totically linear estimators; influence curves; maximum asymptotic variance
and mean square error; relative risk; inefficiency; subefficiency; least favorable
radius; radius—minimax robust estimator; location, scale, regression, AR(1),
MA(1) models.

AMS/MSC-2000 classification: 62F35, 62G35, 62G05, 62J05.

1 Introduction and Summary

1.1 Statistical Folklore

has it that robust procedures depend but little on the tuning constants regulating
the degree of robustness. However, the good-natured dependence has hardly ever
been documented nor has it been investigated theoretically.
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In robustness theory, the tuning constants are determined by the neighborhood
radius via certain implicit equations, and the radius appears as a one-dimensional
nuisance parameter of robust neighborhood models. More abstractly, model devi-
ations may be treated as values of an infinite dimensional nuisance parameter;
confer Rieder'(2000). But the more elementary case of the radius as a nuisance
parameter has not been considered by mathematical and semiparametric statistics.

Some textbooks even create an impression contrary to data-analytic experi-
ence. Witting and Miiller—Funk (1995; Anmerkung 6.44) declare the choice of the
‘clipping constant ¢’ to be of ‘decisive importance’ and continue: ‘If ¢ is large,
the efficiency at the ideal model is large but robustness is bad, and the other way
round for small ¢.” Despite of numerous quotations of the ‘occurrence of outliers’,
Anmerkung 6.44 and Beispiel 7.4.5 (declaring the radius to be unknown in practice)
are the only more mathematical appreciations of robustness in that book. Linked
up with one other, they shed a dubious light of arbitrariness on robust procedures.
But, apparently, the authors do not distinguish Ls- and Ly, -norms in this context.

As for a theoretical indication of the weak dependence, the adaptive clipping
by Beran (1981) and HR (1994; Remarks 6.4.6 and 6.4.9) may be recalled. The
adaptive modification of clipping constants by means of a goodness-of-fit statistic
would not show up in the asymptotic results. On closer inspection, this is caused by
the original clipping constants tending to infinity. Thus, the construction is essen-
tially bound to infinitesimal Hellinger balls, which are no gross-error neighborhoods;
confer Bickel (1981; Théoréme 8) and HR (1994; Example 6.1.1).

1.2 In Our Approach

the maximum risk of the estimator which is optimally robust for a neighborhood
of radius 79 will be evaluated over a neighborhood of radius r, and related to the
minimax risk for that radius r. On division, the inefficiency is obtained—the limit
of the ratio of sample sizes such as to achieve the same accuracy asymptotically.
The inefficiency as a function of r is called the inefficiency curve of the estimator
(1 at r =7¢). Inefficiency minus 1 is termed subefficiency (0 at r =1rg).

Numerical evaluations in all our models establish the inefficiency curves as bowl-
shaped, smoothly increasing from the value 1 at r = ry towards both sides to
two relative maxima at the interval boundaries. Determination of rg so as to
equate both boundary values will minimize the maximal subefficiency over r in the
respective estimator class ( M -estimates, asymptotically linear estimators).

The radius r¢ may be termed least favorable in the sense that the corresponding
optimally robust estimator—besides being minimax for the particular neighborhood
of radius ro—is radius—minimax, minimizing the maximal subefficiency over the
radius range. It is the recommended robust estimator in case that the true radius r
is unknown except to belong to the radius interval.

Remark 1.1 There is no saddle point though. The subefficiency of the radius—
minimax estimator is elsewhere worse (i.e., larger) than at ro, where it is 0, and
equally worst (i.e., maximum) at the boundaries of the radius interval. Y/

1HR, henceforth
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In addition to the true radius r being completely unknown (unrestricted radius
interval), we consider the cases that the user can specify the radius up to a factor
of 1/3 or 1/2, that is any r3 or ro such that the true radius r certainly would
stay within [%r3,3r3] or [%r2,2r2], respectively. For any such interval, the least
favorable ro (and thus, the corresponding radius-minimax estimator) may be found
as in the unrestricted case?. In a further step, least favorable values of r3 and
are determined; these are those radii that maximize the minimax subefficiencies
over [£r3,3r3] and [1ry,2r;], respectively.

In the course of these derivations, for the models considered, we also spell out
the minimax robust estimators and the minimum bias explicitly, which are given
in general form by HR (1994; Chap. 5 and 7).

1.3 One-Dimensional Robust Location

The results are summarized first for one-dimensional location and secondly scale.

In Huber’s (1964, 1981) approach, the ideal standard normal location model is
enlarged to symmetric contamination neighborhoods of any size s € [0,1); in his
model, we speak of ‘size’ instead of ‘radius’. As estimators, location M -estimates
are employed and judged by their maximum asymptotic variance.

In this setup, it is the optimally robust M -estimate for sy = 27.8% (least
favorable) that minimizes the maximum subefficiency over [0,1). The minimax
subefficiency of 18.1% improves on the 57.1% of the median (approximately opti-
mal as s — 100%), and it even more improves on the 90.8% subefficiency (at-
tained for s — 1, vs. only 3.7% at s = 0) that goes with Huber’s (1964) preferred
clipping height ms, = 1.5 (belonging to the optimally robust M -estimate for sym-
metric contamination size s; only 3.76% ). Rather, the HO7-estimate with clipping
height .70, which has survived in Sections 7.B.8 and 7.C.4 of the Princeton robust-
ness study by Andrews et al. (1972), comes (in fact, very) close to the size-minimax
M -estimate (mg, = .719) achieving maximum subefficiency 18.7% ~ 18.1%.

The subefficiency of the size-minimax M -estimate is the maximal 18.1% only
at the unrealistic size boundaries 0 and 1. On more realistic size intervals (about
so = .278), it stays well below 18.1%: below 2.5% for .12 < s < .50, below 5%
for .074 < 5 < .62, and still below 10% for .028 < s < .78.

Thus, using the optimally robust M -estimate for sq = 27.8%, as opposed to
the mean, median, or Huber’s proposal, one will not only stay within 18.1% of
the minimax asymptotic variance over a symmetric contamination neighborhood of
whatever size s € [0,1) but, at the same time, within 2.5% of the minimax risk
for any size 12% < s < 50%, within 5% for any size 7.4% < s < 62%, and still
within 10% of the minimax risk for arbitrary size 2.8% < s < 78%.

Remark 1.2 Via relation (1.1) below, sg = .278 corresponds to r9 = .62, and the
corresponding radius intervals about ry read:

37<r<1.01 (25%), .20 <r < 1.27 (5%), .17 <r < 1.92 (10%). i

2The interested reader may use access name radius and password unknown to draw our com-
puter program from http://www.uni-bayreuth.de/departments/math/org/mathe7/radius.
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1.4 The Infinitesimally Robust MSE-Setup

is the other and in fact more flexible approach. It includes possibly asymmetric
contamination of radius r/\/n at sample size n (of i.i.d. laws or stationary transi-
tion probabilities), and employs asymptotically linear estimators, which are judged
by maximum asymptotic mean square error; confer HR (1994; Sec. 5.5).

In the one-dimensional location model about the standard normal with i.i.d.
observations—despite of the conceptual differences to Huber’s approach—the same
well-known kind of optimally robust estimators are obtained. Not so well-known
however is that also the maximum risks in both models agree (up to a factor 1—s),
and hence the inefficiency curves coincide, via the following size/radius-relation:

(1.1)

Thus, the least favorable (starting) radius is ro = .62, which is just 6.2% conta-
mination at sample size n = 100. The minimax subefficiency again is 18.1%. The
subefficiency of the radius-minimax estimator stays below 2.5%, 5%, and 10%,
in the contamination intervals: 3.7%-10.1%, 2.9%-12.7%, and 1.7%-19.2%, re-
spectively, at sample size n = 100 (Remark 1.2). The 18.1% minimax subefficiency
may be cut down to less than 8.9% and 4.5%), if the user can specify any r3, 7o
such that the true radius r stays within [$rs,3r3] and [47rs,2r;], respectively.
The least favorable radii are r3 = .55 and ry = .57, defining the least favorable
contamination ranges 1.8%—16.5% and 2.9%-11.4%, at n = 100, respectively.

1.5 One-Dimensional Robust Scale

centered at the standard normal already demonstrates the limitations of the mini-
max asymptotic variance approach; confer Huber (1981; Sec. 5.7, p 124).

From now on, therefore, including scale, the infinitesimal robust setup is used,
employing neighborhoods of radius r/y/n at size n of the i.i.d. laws, asymptoti-
cally linear estimators, and asymptotic mean square error. In the scale model, the
neighborhoods may also be restricted by symmetry.

If r is totally unknown, the minimax subefficiency is 50.5%, to be compared
with the 172.1% of the median absolute deviation, and ro = .50 is the least
favorable radius (5% contamination at n = 100). If the radius is known up to a
factor of 1 or ;, the value 50.5% may be lowered to less than 20.7% and 9.9%,
respectively. The corresponding least favorable radii r3 = .48 and ry = .55 define
least favorable contamination ranges 1.6%-14.4% and 2.7%-11.0%, at sample
size n = 100, respectively.

Remark 1.3 Our numbers obtained in the asymptotic minimax MSE approach
refer to contamination neighborhoods. For univariate location with shrinking total
variation balls instead, the same estimators are optimally robust for radii one-half
those for contamination. The inefficiency curves thus agree and the radius—minimax
robust procedure stays the same. The coincidence extends to the k-dimensional
location and regression models of our study. Y/
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Due to asymmetry of the scale scores, the relation between the infinitesimal conta-
mination and total variation systems does not extend to the scale model. Also the
optimally robust influence curve for total variation (spelled out here seemingly for
the first time) differs from that for contamination of twice the radius; in particular,
the new solution always involves clipping from below; confer Subsection 2.3.

Nevertheless, the 1 : 2 relation seems to hold at least approximately for the least
favorable radii; by numerical evaluation, they are rg = .27, r3 = .24, and r, = .25.
But the subefficiency numbers, too, are only about one half those for contamination:
The minimax subefficiency 25.4% in case p = 0 compares with 85% maximum
subefficiency of the most robust estimate, and drops to 11.5% and 5.6%, respec-
tively, if p = 3, ; confer Subsection 5.2.

Thus, robust scale estimation becomes even more stable under radius misspeci-
fication if it is based on, and employs the optimally robust procedures devised for,
the larger total variation balls.

1.6 Two Conclusions

may be drawn from these results, which extend to higher dimensional location and
regression (whose summary is postponed to Subsections 1.9 and 1.10):

(i) The minimax subefficiency is small. Small in comparison with the most
robust estimator, and small for practical purposes. Adaptive estimation of the
radius hence seems neither necessary nor worthwhile—provided however that the
radius—minimax robust estimator is employed.

(ii) The least favorable radii are small. This surprising fact seems to confirm
Huber (1996; Sec. 28, p 61) who distinguishes robustness from diagnostics by its
purpose to safeguard against—as opposed to find and identify—deviations from the
assumptions; in particular, to safeguard against deviations below or near the limits
of detectability. Like Huber (loc.cit.), the small least favorable radii we obtain
might question the breakdown literature, which is concerned only with (stability
under) large contamination and, at most, (efficiency under) zero contamination.

1.7 Comparison With Semiparametrics

Although the radius is a one-dimensional quantity, in connection with the robust
neighborhoods it has infinite dimensional features. Therefore, a comparison with a
basic semiparametric case suggests itself.

We assume the classical univariate location model with unknown symmetric
error distribution F' and density f of finite Fisher information Z12¢ = [(ARR¢)2dF,
where AR = —f'/f and consider the location M -estimate defined by some odd
function g: R — R; for example, g = AIF"OC for some other such law Fy.

Then, provided certain weak regularity conditions are satisfied by vy and F,
the M -estimate under observations i.i.d. ~ F' will be asymptotically normal with
asymptotic variance

J Y5 dF

Variee F)=—""7—
ar, (¢0 ) (f woAlFoc dF)2

€ (0,00) (1.2)
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However, if 1y, on some nondegenerate interval, is absolutely continuous with a
bounded derivative, we can show that

sup  Vare(o, F) - IR =  Vee (0,1) (1.3)
FeUZ' (Fo,e)

where U3 (Fp,e) = { (1 —¢)Fp +¢ H | H symmetric, Z}3° < 00 } .

Thus, if only the nuisance parameter F' changes arbitrarily little (in L; ), the
inefficiency of the location M -estimate defined by 19 may become infinite. For
the proof, and the similar result for scale, confer HR (2001 b).

In comparison with the radius as a nuisance parameter in robust statistics—the
results of this study—the highly unstable situation is just the opposite. Further
relations with semiparametrics are derived in HR (2000).

1.8 Uniform Convergence To The Normal Limit

is an issue, in particular in connection with the large families of probabilities which
make the models in semiparametrics and robustness, respectively.

But adaptive, fully efficient estimators cannot achieve the desirable uniformity.
Using equivariance, Klaassen (1980) derives such a finite-sample result for the
one-dimensional location model. Bickel (1981; Note, p 51) asks for extensions.
Consequences are noted by Bickel (1982; Remark 5.5) and Huber (1996; Sec. 28).
Pfanzagl and Wefelmeyer (1982; Sec. 9.4) derive an asymptotic version for real-
valued smooth functionals. The following extension to k-dimensional linear regres-
sion provides the asymptotic lower bound 1 —2~* in Kolmogorov distance.

Consider the regression model Py(dz,dy) = f(y — 2'8) dy K (dz) with unknown
parameter 6 € R¥  univariate error law F(du) = f(u)du of finite Fisher informa-
tion of location, and regressor law K such that the k x k matrix K = [ zz' K(dz)
is regular. Then, for fixed F', the model is L, -differentiable at each 6 with scores
function Agy(z,y) = A'%°(y — 2'0) x and Fisher information Zy = ZI° K.

By definition, the standardized laws of an adaptive estimator (S,) are asymp-
totically standard normal such that, for each main/nuisance parameter pair (6, F'),

Vi = Lo p{Vn Ty p(Sn—0)} —— N(0,I1) (1.4)

weakly, as n — oo, where Iy = k x k identity matrix.
Fix 6 and Fy. Then, if (S,) is an adaptive estimator, ande, € (0,1) any
sequence tending to 0, we can show that, in Kolmogorov distance d ,

1
liminf  sup  de(Vip, N(0,Ii)) >1— — (1.5)

" FeUS (Foen) 2¢
where US(Fp,en) = { (1 — en)Fy +en H | H symmetric, 719 < oo } .

Remark 1.4 The result is contained in HR (2001b), where it is proved for more
general i.i.d. models of location or scale structure, and shown to hold also for
MA(g)-models. An extension to AR(p)- and ARMA(p, ¢)-models we prove with
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the bound > 1 — 2% weakened to > 0 and assuming continuity of each S, .
The weaker result suffices to render the convergence of the adaptive estimators of
Beran (1976) and Kreiss (1987) nonuniform as above. Y/

On second look not so much the estimators are to be blamed for (1.3) and (1.5).
Actually, the law of any estimator S,, is uniformly continuous in total variation
since the distance decreases under a transformation of the measures. Rather the
standardization by Fisher information in (1.4) should be questioned because of
discontinuity in this strong metric: Fisher information of location/scale is vaguely
lower semicontinuous, hence lower semicontinuous in total variation d,, but not
d, -upper semicontinuous.

In robust statistics on the contrary, risk is evaluated uniformly, replacing asymp-
totic variance by its maximum, and Fisher information by its minimum, over sym-
metric contamination neighborhoods; likewise, asymptotic mean square error is
maximized over asymmetric shrinking neighborhoods. But, by simple set inclu-
sions, the passage to the supremum g(z,r) = sup{ f(y) | y € B(z,r)} of any
function f over balls B(z,r) already implies continuity of g(.,r) at z for almost
all radii; namely, for those r such that g(z,r —0) = g(z,r +0).

Uniform weak convergence of optimally robust estimators over neighborhoods
with bounded radius has been established by Beran (1981), Millar, P.W. (1981),
Bickel (1981; Théoréme 5), Huber (1981; Sec. 3.2, p 51), and HR (1994; Chap. 6).
This uniformity also underlies the present investigation of asymptotic risk.

Both uniform convergence and the availability of a low-cost minimax strategy
against misspecification of the radius, in the last analysis, seem to be consequences
of the uniform risk evaluation over total variation type neighborhoods in robustness
theory, and theoretically founded advantages of robust statistics in practice.

A summary of the results in the selected k-dimensional location and regression
models follows.

1.9 k-Dimensional Robust Location

about the k-variate standard normal enlarged by r/,/n -contamination neighbor-
hoods has the minimax subefficiency of r € [0,00) unknown decrease from 18.1%
for k=1 to 12.1% for k = 2, and to 9.1% for k = 3. As k increases, the rela-
tive MSE-risks are squeezed towards 1 near the origin but, due to arbitrarily large
supnorms of the optimally robust influence curves, spread out to the right. The
minimal standardized bias of asymptotically linear estimators under contamination
(the minimal supnorm of their influence curves) is

min _ _KLG) vk k— (1.6)
wpll = ——=2— as o0 .
EINCE S
and is achieved by the minimum L, -estimate. Also the trace of the covariance
of this estimate equals approximately trace k of the inverse Fisher information;
intuitively speaking, only one out of k spherical coordinates (length) is sacrificed
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by its influence curve. Consequentially, the minimum L; -estimate becomes the
nearly optimal choice for larger dimension. For k£ > 5, its maximum subefficiency
over the full radius range is less than 10.4%, for k > 10 less than 5.1%, and it
stays within a factor of 2 of the minimax value, both subefficiencies decreasing to 0
as k — o0o; confer Subsections 3.6 and 5.1.

1.10 Infinitesimal Neighborhood Regression

will be about the classical k-dimensional linear regression model, in which the
normally distributed errors and the regressors are stochastically independent. The
regressor distribution K is assumed spherically symmetric; especially we choose
the uniform Ufog(0,m) on a centered ball of radius m in R¥, and N(0,02%;), a
scalar multiple of the k-dimensional standard normal.

Unconditional, or errors-in-variables, neighborhoods are about the joint law of
regressor and error; in particular, the regressor distribution may be distorted, too.
Conditional, or error-free-variables, regression neighborhoods, which go back to
Huber (1983) and Bickel (1984), on the contrary keep the ideal K to have only
the conditional error distribution given z distorted—by an amount re(z)//n .
As for more details on infinitesimal regression neighborhoods, unconditional and
conditional, radius curves, confer Subsubsection 2.1.2 and HR (1994; Chap. 7),
who also provides the required MSE-optimality.

We employ conditional, or error-free-variables, neighborhoods with any radius
curves £ subject to Ly (K)-norm |lg||la <1 for @ = 1,2,00. These cases obtain
the attributes average, average square, and constant conditional, respectively.

1.10.1 Average (Square) Conditional Contamination

For square average conditional contamination, Huber M -estimates are optimally
robust. Independently of the regressor distribution, their relative risks turn out
identical to those in the one-dimensional location model with (unconditional) infi-
nitesimal contamination neighborhoods, thus, inefficiencies and least favorable radii
are the same as for one-dimensional location; confer Subsubsection 2.5.2.

The Hampel-Krasker estimates are optimally robust in the case of average con-
ditional, as well as unconditional, contamination. The minimax subefficiency over
the full radius range descends from the values 27.1% (K uniform) and 34.7%
(K normal) for k =1 to the value 18.1% (one-dimensional location) as k — oc.
Related numbers, e.g. the minimax subefficiency in case the radius can be specified
up to factor 3 or 2, converge likewise. The least favorable radii ro approach the
value .62 (one-dimensional location) from below. For all dimensions, the minimax
subefficiency cuts down the maximum subefficiency of the most robust estimate to
less than 1/3 its value; confer the tables in Subsubsection 5.3.1. The convergence
of the inefficiency curves to those of the one-dimensional location model (limit in
case a = 2 attained for each k) seems to hold also in the case a = oo, and is
visible at least in the case K uniform (first table of Subsection 5.5.1).
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1.10.2 Constant Conditional Neighborhoods

The regression neighborhood models with a = oo of either contamination or
Hellinger type may be reduced to the constant radius curve ¢; = 1. They appear
atypical in several respects: (i) nonattainability of the infimum bias, (ii) infimum
bias zero in the case of normal regressor distribution, (iii) unbounded Ls-norm of
order o(r?) as r — oo of the estimator which is optimally robust for radius r,
(iv) slow convergence of the inefficiency curves as k — oo, and (v) relatively large
least favorable radii; confer Subsections 2.7 and 5.5.

1.10.3 Average (Square) Conditional Hellinger Neighborhoods

as already mentioned, are essentially smaller than gross-errors neighborhoods of
the same radius. They lead to a different type of robust influence curves and
estimators (regressor clipped, residual unchanged). Contrary to the scale model
(with total variation vs. contamination balls), estimation in the smaller Hellinger
neighborhood system is more stable under radius misspecification in comparison
with contamination neighborhoods, as the inefficiency numbers and least favorable
radii we compute are smaller. For increasing dimension, the limit (with respect to
inefficiency) is that of k-dimensional location with contamination neighborhoods.

For robust regression based on average conditional infinitesimal Hellinger balls,
the inefficiencies are identical ( K normal), respectively ( K uniform) tend, to those
for k-dimensional location and infinitesimal contamination neighborhoods (rescaled
by v8), as k = oo. The convergence also holds true with conditional Hellinger
neighborhoods of type a = oo, though at a slower rate. For average square con-
ditional Hellinger balls, the minimax subefficiency is zero, which, as in the case
of average square conditional contamination neighborhoods and one-dimensional
location as the corresponding limit, already is the limiting case of k-dimensional
location with contamination neighborhoods for & — co.

Remark 1.5 The two limits for increasing dimension (different for the Hellinger
and contamination systems) depend on our choice of regressor distributions, and
may explained by the fact that the norm of the spherically symmetric regressor is
about vk in the case of the k-variate standard normal, and about 1 in the case
of the uniform distribution on the unit ball in R¥, if & is large. /i

The paper proceeds as follows. In Section 2, the theoretical setup is formulated:
For a selection of ideal models and neighborhood systems, the optimally robust
estimators and their risk functions are determined by specialization of the general
results in HR (1994; Chaps. 5 and 7). Some relations between the inefficiency curves
in different models are derived.

Section 3 contains the mathematical proofs. The numerical algorithms to eval-
uate the theoretical formulas are described in Section 4.

The computed numbers are presented in the tables of Section 5. A selection of
plots is attached.
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2 Optimally Robust Estimates and Their Ineffi-
ciency Curves

2.1 Robust Setup
2.1.1 Ideal Models With The Normal Distribution
(a) k-dimensional normal location:
yi=0+u; (2.1)
with parameter § € R* errors u; i.i.d. ~ N(0,021}), scale o, € (0,00) known.

The scores are Ag(y) = o, 2(y —6) and Zy = 0,21} the Fisher information.

(b) one-dimensional normal scale:

yi = 0u; (2.2)
with parameter 6 € (0,00), the errors u; i.i.d. ~ A(0,1). The scores and Fisher
information are given by 8Ay(y) = 072y%2 —1 and Zy = 267 2.

(c) k-dimensional normal linear regression:
yi = Tp0 + u; (2.3)

with parameter § € R*, the random regressors z; iid. ~ K (dr) and errors u;
iid. ~N(0,02) stochastically independent; scale oy, € (0,00) known. Scores and
Fisher information are Ay(z,y) = o,2(y —2'0)z and Ty = 0,2 Ex x2’.

For K we employ K = N(0,02];) and K = Ufoy(0,m,), the uniform on a
centered ball of radius mg; o, my € (0,00).

(d) order one autoregression and moving average:

Yi = O0yi—1 + u; (2.4)
respectively
Yi = u; — Gu,-_l (25)

with parameter |f| < 1, innovations u; i.i.d. ~ N'(0,02), scale o, € (0,00) known.
The scores are Ag; = (+)o,%u; Yo ui1—j and Zp = (1 - 6%)~! the Fisher
information, in the two models.

In models (a)—(c), the observations are i.i.d.. The inefficiencies turn out invariant
under rescaling of the u; and z;, respectively. So we may fix

0w =1, o, =1, my =1 (2.6)

Moreover, § = 0 may be fixed in models (a) and (c), and 6 =1 in model (b), due
to equivariance of these models.

In models (d), the normal N (0,02) with 62 = o2 /(1 — 6?) plays the role of
the regressor distribution. Therefore, by the invariance stated for model (c), the
inefficiencies turn out the same for all values |f| < 1 and o, € (0,00).

In the sequel, expectation will always be taken under the fixed ideal model distribu-
tion P = Py; similarly, we put A = Ay (scores) and Z = 7, (Fisher information).
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2.1.2 Neighborhoods

(a) symmetric contamination neighborhoods of fixed size s € [0,1) about
the ideal P, assumed symmetric about zero, consist of the convex combinations

Q=01-s)P+sH (2.7

with arbitrary unknown probability H , symmetric about 0.

These fixed neighborhoods, whose size does not depend on the sample size,
are bound to one-dimensional location and Huber’s (1964) minimax asymptotic
variance approach.

(b) infinitesimal neighborhoods of starting radius r € [0,00) are given as the
sequence of shrinking contamination (* = ¢) neighborhoods about P at sample
size n, consisting of all

Qn=Q-r,)P+r,H, (2.8)

where H,, may be arbitrary unknown probabilities, and r, = r/\/n .

Likewise, infinitesimal total variation (x = v) and Hellinger (* = h) neighbor-
hoods are the sequences of shrinking balls about P, of radius r, = r/A/n at sample
size n, defined by

di(Qn,P) <rp (2.9)

where 1
4.(@.P) = ; [ 14Q - 4P| = sup|Q(4) - P()| (2.10)
$@Q.P) = [|ViQ-Vir |’ (2.11)

Infinitesimal neighborhoods are employed in the location, scale, and regression mod-
els (a), (b), and (c¢). In the scale model (b), they may as well be restricted by
symmetry (that is, P, H,, and @, all symmetric). In regression, these neighbor-
hoods about P(dz,du) = ®(o,'du) K(dz) are termed unconditional, or errors-in-
variables, neighborhoods, since also the regressor marginal is subject to distortion.

(c) conditional regression neighborhoods on the contrary, keep the ideal re-
gressor distribution K, and only the conditional error law given x may change; to
any Markov kernel @, (du|z) which, for each z, is in the neighborhood about the
ideal ®(o;'du) of radius re(x)//n . The function e: RF — [0, 00), which weights
the radius depending on the regressor, is called radius curve.

We employ conditional, or error-free-variables, neighborhoods with varying ra-
dius curves ¢ subject to Ly(K)-norm [lg|lo < 1 for a = 1,2, 00, respectively.
The cases a = 1,2 are named average, respectively average square, conditional
neighborhoods. The case a = oo reduces to the fixed radius curve ey = 1.

Special treatments of error-free-variables regression neighborhoods go back to
Huber (1982) and Bickel (1984). In general, confer HR (1994; Chap 7), where
also the required MSE-optimality is obtained. HR (1987) derives a finite-sample
minimax estimator for this type of regression neighborhoods.
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With the past of the observations process serving as regressor, the conditional
neighborhoods extend from regression to neighborhoods of transition probabilities
in time series models; confer HR, (2001 a).

2.1.3 Risk and Inefficiency

The asymptotic maximum MSE of the asymptotic linear estimator with influ-
ence curve (IC)3 n,, that is optimal for an infinitesimal neighborhood of (starting)
radius rg € [0,00), evaluated over an infinitesimal neighborhood of another (start-
ing) radius r € [0, 00) is

maxMSE (n,,,7) = E |nyo|* + r*w2 , (11r,) (2.12)

where * = ¢,v,h and a = 1,2,00. The bias terms ws o(7y,) for the different
models are defined and evaluated in HR (1994; Subsections 5.3.1 and 7.3.2).

The MSE-Inefficiency is then obtained by division through the minimax asymp-
totic MSE for radius r,

maxMSE (1, 1)

relMSE (nT07T) = maxMSE (TI T)

(2.13)

2.2 One-Dimensional Location
2.2.1 Minimax Asymptotic Variance

We consider the ¥ = 1 dimensional standard normal location model 2.1.1 (a) first
with symmetric contamination neighborhoods 2.1.2 (a).
The minimax M-estimate for size s € [0,1) given by Huber (1964) is defined by

Ps(u) = (—ms) Vu Ams, =5 ms = B (Jul —ms) (2.14)
For size s =1, we take ¢y from the median,
1 (u) = sign (u) (2.15)

The maximal asymptotic variance of s, (that is, of the M-estimate based
on 1, ) for fixed size sg € [0,1) evaluated over a symmetric contamination neigh-
borhood of fixed size s € [0,1) is

(1- s)EzbgO —I—smgo

maxVar (¥, 5) = 5 (2.16)
[(1—s)Evrp, ]
respectively, in case of the median,
m
maxVar (¢, s) = PR (2.17)

31In the following, influence curve is abbreviated by IC.
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The Var-inefficiency, for sq € [0,1] and s € [0,1), is

maxVar (¢s,, s)

relVar (¢5,, 8) = maxVar (95, )

(2.18)

Although maxVar (11,1) = oo, the median is approximately optimal for neighbor-
hood size s — 1, as not only s/ms; — 91 pointwise but, more conclusively, we
show that

lim relVar (¢1,s) =1 (2.19)
s—1

2.2.2 Minimax Asymptotic MSE for r/y/n -Contamination Balls

We consider the k¥ = 1 dimensional standard normal location model 2.1.1 (a)
secondly with infinitesimal contamination neighborhoods 2.1.2 (b).
The minimax IC 5, for radius r € [0,00) is

nr(u) = Ajumin {1, ¢,u|7*} (2.20)

where

1= A, E |u|min {|u|, ¢ }, r?e, = E (Jul — ¢) (2.21)

+

as given by HR (1994; Theorem 5.5.7). For r = co, HR (1994, Theorem 5.5.1.b)
supplies

oo (1) = " sign (u) (2.22)

which is the IC of the median and achieves minimum bias

WP = (BIA]) = /2 (2.23)

For rg,r € [0,00), the maximal risk (2.12) is
maxMSE (n,,,7) = A7 Emin {v*, ¢} } + r*AZ &, (2.24)

In Subsection 3.2 we prove the following relation between the maximum risks
of the optimal estimates in the two models 2.2.1 and 2.2.2,

(1 — s) maxMSE (1, ,7) = maxVar (¢, 5) (2.25)
where the radii rq,r € [0,00) and sizes sg,s € [0,1) are connected by
s=r’/(1+1%),  so=r3/(1+13) (2.26)

Consequentially, by (2.25) and (2.26), the inefficiency curves coincide in the two
models,

relMSE (n,.,,7) = relVar (5, , $) (2.27)
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2.3 One-Dimensional Scale
2.3.1 r/4/n -Contamination Balls

We consider the one-dimensional standard normal scale model 2.1.1 (b) first with
infinitesimal contamination neighborhoods 2.1.2 (b).
The minimax IC 5, of HR (1994; Theorem 5.5.7) for radius r € [0, 00) is

_ 2 2\ Cr
nr(u) = Ap(u® — o) min {1, m} (2.28)
where
_ 2 2y . c
0 = E(u® — o) min {1, M} (2.29)
1=A,Eu?— o2 min{|u?® — 2|, ¢ 2.30
T (g rly ~T
and

r? e, =E (|u* — 2| —¢) (2.31)

+

The parabola u? — a2 in (2.28) is clipped only from above for radius r < 0.920,

T
and for r > 0.920 from above as well as from below. The centering constant «,

decreases from ap =1 to as = ®71(3/4) ~ 0.674.
For r = oo, from HR (1994; Theorem 5.5.1.b) we take

Noo (1) = W™ sign (u? — o) (2.32)

which is the IC of the median absolute deviation med (|u;|)/@oo , attaining minimum
bias
c

Wit = (Blu? - o |) ™ = (4ocop(as))” ~ 1.166 (2.33)

For rg,r € [0,00), the maximal risk (2.12) is

maxMSE (1,,7) = A2 Emin {|u® — o2 |, 2, } + r?A% 2, (2.34)

2.3.2 r/4/n -Total Variation Balls

We consider the one-dimensional standard normal scale model 2.1.1 (b) secondly
with infinitesimal total variation neighborhoods 2.1.2 (b).
As minimax IC for radius r € [0,00), HR (1994; Theorem 5.5.7) supplies

nr(u) = Ac{lgr VU* A (gr +¢,)] — 1} (2.35)
where
0=E(gr - u2)+ - E(u2 —g9r—Cr)y (2.36)
1= ATEuz{[nguz/\ (.%"‘FCT)] - 1} (237)
and
r? ¢, = B(g, —u®)4 (2.38)

For r = oo, HR (1994; Theorem 5.5.5.b) provides

Noo (1) = W™ {P(u® < 1)I(u® > 1) — P(u® > 1) I(u? < 1)} (2.39)
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with minimum bias

Wt = (EA4) ™" = /T e~ 2.066 (2.40)

For rg,r € [0,00), the maximal risk (2.12) is

maxMSE (1,,,7) = A2 B {[gry VU? A (g + cr)] = 1} 402423, (2.41)

2.4 k-Dimensional Location, Contamination

We consider the k-dimensional normal location model 2.1.1 (a) and infinitesimal
contamination neighborhoods 2.1.2 (b).

The minimax IC 7, for radius r € [0,00) given by HR (1994; Theorem 5.5.7),
due to spherical symmetry (Lemma 3.3 below), is

nr(v) = apumin {1, ¢, |u 1} (2.42)
where
k = a, E|u|min {|u], ¢, }, r? ¢, = E (Ju| - c")+ (2.43)
For r = 00, we put
in U
o = W H— 2.44

which is the IC of the minimum L;-estimate, and attains minimum bias w™";
confer HR (1994; Theorem 5.5.1.b). In Subsection 3.4 we show that

w_ k_ kD()
R = 2.45
T EIN T V() .

For rg,r € [0,00), the maximal risk (2.12) is

maxMSE (1r,,7) = o2 Emin{|ul*, ¢} + r*al ¢}, (2.46)

) )
For increasing dimension, we prove in Subsection 3.6 that

min E 002
lim Ye  _ lim oo =

1 (2.47)
Thus, the squared minimum bias is about the same as the MSE in the ideal model, in
which the minimum L;—estimate becomes approximately efficient. Since, moreover,

im maxMSE (n,,,r)
k—oco maxMSE (7, )

=1 (2.48)

where the convergence is uniform on bounded r¢-, r-intervals, this most robust
estimate also becomes approximately radius—minimax.
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2.5 Regression, Average (Square) Contamination
2.5.1 Average Contamination Neighborhoods (¥ = ¢, a = 1)

We consider the k-dimensional normal regression model 2.1.1 (¢) and average con-
ditional regression neighborhoods 2.1.2 (¢) of type contamination.

The minimax IC n, for radius r € [0,00) given by HR (1994; Theorems 7.4.13
and 7.5.15), and using spherical symmetry (Lemma 3.3), is

N (2,u) = apzumin {1, ¢ |zu[ '} (2.49)

where

k = a, E|zu|min {|zul, ¢, }, r? ¢, = E (Jzu| — ¢;) (2.50)

+
For r = oo, HR (1994; Theorem 7.4.13.c) supplies

min

Noo (T,u) = wey |£ sign (u) (2.51)

z|
which achieves minimum bias wg‘,‘}“. Analogously to (2.45) we show that

min _ k |z k
o =g =3 B (252

For rg,r € [0,00), the maximal risk (2.12) is

(3

maxMSE (n,,,r) = a2, Emin {|z*v?, ¢} + r’al c’ (2.53)

’» “rg T0 "To

In Subsection 3.6, for increasing dimension k — oo we prove that the MSE-
inefficiency tends uniformly on bounded rg -, r-intervals to the MSE-inefficiency in
the one-dimensional location model 2.2.2,

lim relMSE (n,,r) = relMSE (n;,'°, r) (2.54)
k—o00

where n:1°¢ is given by (2.20) and (2.21).

To

2.5.2 Average Square Contamination Neighborhoods (x = ¢, a = 2)

We consider the k-dimensional normal regression model 2.1.1 (c) and average
square conditional regression neighborhoods 2.1.2 (c) of type contamination.

The minimax IC 7, for radius r € [0,00) given by HR, (1994; Theorem 7.4.15,
Corollary 7.5.14) and Lemma 3.3 below is

nr(z,u) = epzumin {1, ¢ u| 7'} (2.55)

where

k=a, E|z|?>-E|u|min {|u|, ¢, }, r? e, = E (Ju| - ¢) (2.56)

+

For r = 0o, HR (1994; Theorem 7.4.15.c) provides IC of minimum bias,

x .
Moo (T,u) = }C_lm sign (u) (2.57)
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with £ =Ezz' = v for some v € (0,00) (Lemma 3.2), where

min  VtrK-1 k
Wey = Bl (2.58)

For rg,r € [0,00), the maximal risk (2.12) is

maxMSE (1r,,7) = E|z[?a2 (Emin {u?, 2 } + r*c2,) (2.59)

Comparing (2.20), (2.21) and (2.55), (2.56), we obtain the following relation to
maxMSE in the one-dimensional location model 2.2.2,

kZ

maxMSE (n,,,7) = B a2

———maxMSE(n},"*, ) (2.60)

where nr01°° denotes the corresponding minimax IC for radius 7¢; in fact, the
constants in (2.20), (2.21) and (2.55), (2.56) are connected via

— l.loc —
Cro = C’I‘O ’ Qry =

k 1.loc
5 |x|2AT° (2.61)

Consequentially, by relation (2.60), the MSE-inefficiencies coincide with those in
one-dimensional location, independently of the regressor distribution K (dz).

2.6 Regression, Average (Square) Hellinger Balls
2.6.1 Average Hellinger Neighborhoods (* = h, a = 1)

We consider the k-dimensional normal regression model 2.1.1 (¢) and average con-
ditional regression neighborhoods 2.1.2 (c) of type Hellinger.

The minimax IC 5, for radius r € [0,00) given by HR (1994; Theorems 7.4.19
and 7.5.7), using spherical symmetry (Lemma 3.3) and Eu? =1, is

nr(2,u) = apzumin {1, ¢, |z} (2.62)
where
k=a, Elzglmin{|z[, ¢;}, 8¢ =E(|z[-¢), (2.63)
For r = 0o, HR (1994; Theorem 7.4.19.c) provides the minimum bias IC
1 T
T,u) = winin 2.64
where
=8 — (2.65)

E |~’U|
For ro,r € [0,00), the maximal risk (2.12) is

maxMSE (n,,,7) = o2, Emin {|z|*, ¢ } + 8r°al ¢’ (2.66)

7'0
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On rescaling 7o, r by 1/A/8 , in the case K = N(0,02I), alook on k-dimensional
location 2.4 reveals that (2.63), (2.66) agree with (2.43), (2.46) if z and u are
exchanged. Consequentially, the maxMSE (n,,,r) and the reIMSE (7,,,r) are the
same in both models. In particular, the convergence result (2.48) is available for
the present model (x = h, @ = 1) if K = N(0,0%I;); but we prove (2.48) for
model (* = h, a = 1) also in case K = Ufog(0,m).

2.6.2 Average Square Hellinger Neighborhoods (* = h, o = 2)

We consider the k-dimensional normal regression model 2.1.1 (c¢) and average
square conditional regression neighborhoods 2.1.2 (c) of type Hellinger.
According to HR (1994; p 277), the minimax IC 5, for radius r € [0,00)
invariably is
ne(z,u) =T7'A (2.67)

Consequentially, relMSE (5,,,,r) = 1 for all r¢,r € [0, 00).

2.7 Constant Conditional Neighborhoods (a = o)
2.7.1 Contamination Neighborhoods (* = ¢, @ = 00)

We consider the k-dimensional normal regression model 2.1.1 (¢) and conditional
regression neighborhoods 2.1.2 (¢) of type contamination with o = co.

The minimax IC 7, for radius r € [0,00) given by HR (1994; Theorems 7.4.11
and 7.5.10), and using spherical symmetry (Lemma 3.3), is

nr(z,u) = epzumin {1, ¢, (z)|u|™"} (2.68)
where
k=a, E|z|* E, |u|min {|ul, c¢.(z)} (2.69)
and )
E. (Jul - er(2)), = |%| E |z|c, () (2.70)

with ¢,(z) = 0, if the RHS in (2.70) is larger than E, |u| = \/2/7 . As for (2.70)
confer Lemma 3.1. By E, we denote integration over u ~ N (0,1), with 2 fixed.
Concerning r = oo, we show that the infimum bias is

W =0 if K=N(0,0%T)) (2.71)
respectively
wmin — \/§ ko if K = Ufog(0,m) (2.72)

and, in both cases, cannot be attained.
For rg,r € [0,00), the maximal risk (2.12) is

o2 E|z]? B, min{u?, & (2)} + 1202 [E|z[cr(2)]” (2.73)

In Subsection 3.6, for k — oo, we sketch an (incomplete) argument for the conver-
gence (2.54) of the MSE-inefficiencies in the present model (% = ¢, @ = 00) to the
corresponding ones in the one-dimensional location model 2.2.2.
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2.7.2 Hellinger Neighborhoods (* = h, @ = )

We consider the k-dimensional normal regression model 2.1.1 (c) and conditional
regression neighborhoods 2.1.2 (c¢) of type Hellinger with a = co.

The minimax IC for radius r € [0,00) given by HR (1994; Theorems 7.4.18
and 7.5.3), using Lemma 3.3 and Eu? =1, is

nr(z,u) = ez u(l — cr|:t:|_1)Jr (2.74)
where
k=a Elz|(jz] - ), (2.75)
and
¢ =81 E (|x| — cr)Jr (2.76)
As for (2.76), confer Lemma 3.1.
Concerning r = 0o, we show that the infimum bias is
Wi =0 if K =N(0,0°T) (2.77)
respectively _
wiin =8k if K = Ufo,(0,m) (2.78)
and, in both cases, cannot be attained.
For rg,r € [0,00), the maximal risk (2.12) is
2 2 5 s
maxMSE (n,,,7) = i E (|z] — ¢,), + =07, cr, (2.79)

+ 8}
In Subsection 3.6, the convergence (2.48) of the MSE-inefficiencies to one, as the

dimension increases, is proved also for this model (¥ = h, @ = 00).

Remark 2.1 In our models—except scale—the results for r/\/n-total variation
neighborhoods (* = v) agree with the results for 2r/i/n-contamination neighbor-
hoods (* = ¢); confer also Remark 1.3. W

3 Lemmas and Proofs

3.1 Optimization

With the help of the following lemma, we can derive the solutions to the original
MSE problems (with bias squared) from the solutions given (for linear bias) in
HR (1994; Theorems 7.4.11.b, 7.4.12.b, 7.4.16.b, and 7.4.18.b), if we set y(u) := u?.

Lemma 3.1 Given a real vector space X , a convex subset A of X , consider three
convex functions f: A —- R, g: A — [0,00), and :[0,00) = [0,00); v increasing.
Let By € [0,00). Suppose zp € A minimizes the Lagrangian Lo = f+ fpyog
over A. Assume that ~ is differentiable at go = g(z0), and put

B1 = Bo'(90) (3.1)

Then 2y also minimizes the Lagrangian L1 = f + 31 g over A.
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Proor Employ the convex combinations z; = (1 — s)zg + s21, 0 < s < 1, for
any z3 € A. Then 29 minimizes a convex function ¢ over A iff the right-hand

derivatives ¢ = 4L 4o t(#5) at zero are all nonnegative. But
OLo = df + Bo~'(90) 8g = OL1 (3.2)
because O(y o g) = v'(go) Og [chain rule]. W

3.2 One-Dimensional Location

Proof of (2.19) To ¢ for s € [0,1), integration by parts applies so that

/ () B(du) = / wis (u) B(du) (3.3)
Therefore we can rewrite (2.16) as

(1 —s) ['m, i (u) B(du) + 5

B ) S i ) 3] .

Consequentially, the Var-inefficiency of the median is

[ [um;ts(u) @ du)]2

relVar (91,8) = 5 [(1— 5) [ ms 242 (u) ®(du) + 5] (3-5)

As 9 /ms — 11 = sign pointwise for s = 1 and |¢s/m,| < 1, it follows that
l1_>rr% relVar (¢1,5) = g(E ul )2 =1 (3.6)
by the dominated convergence theorem. /i

Proof of (2.25)—(2.27) By (2.15) and (2.21), ¢, = ms, if 7 and s are related by
(2.26): 72 = 5/(1 — s). Using (2.21) we can rewrite (2.24) as

Emin {u?, ¢ } +r’c2,
[E |u| min {|u], c}]?
_ Emin {u?, m} } + smj /(1—s)
[E |u| min {|u], m,}]?
_ (1—5)E¢Z +sm?
(1= s)[Evyy, 2
= (1 — s)maxVar (¢)5,, 5)

maxMSE (n,,,r) =

by (3.3)

which proves (2.25) implying (2.27). Wi
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3.3 Invariance Under Rescaling

As mentioned in Subsubsection 2.1.1, the inefficiency in models 2.1.1 (a)—(d) is
invariant under rescaling of the errors u; and the regressors x;, respectively. We
prove this invariance for k-dimensional regression and average conditional conta-
mination neighborhoods 2.1.2 (¢) (* = ¢, @ = 1), even allowing general error distri-
bution F(du) and regressor distribution K(dz) as in HR (1994; Theorem 7.4.13).
The proofs for the other models considered here are similar.

Proof of invariance under rescaling (* = ¢, &« = 1) According to HR (1994;
Theorem 7.4.13.b and Remark 7.4.9), the minimax MSE solution is of form

o) = A Ay ) =0, @) min {1, (j; ) 6D
0= E.[A;(w) ~ 9, (2) min {1, ywry (z) =¥l } (3.8)
IA2 : bT
I = A, E 'A% (u) min {1, (4, 210 (a) — 0, @)] } (3.9)
12 b, = B (|A.alA(u) - 9,(2)] - b)), (3.10)

For regressor z = 72 and error v = ou, rescaled by any 7,0 € (0,00), we put

n(210) = Az (A f0) = 902 min {1, ——2— e

with . ) - ~
A =%A,  b=%b,  Bi(2) = $0.(2) (3.12)

where Az(v) =0~ 'As(vjo) and Ay = —f'/f.
Then it is easy to verify conditions (3.8)—(3.10) for 7, in the rescaled model,
so 7}, is indeed the optimum IC there. Using the relations (3.12) we obtain

2
maxMSE (7j,,,r) = G—2maXMSE (Mro>T) (3.13)
T

for any rg,r € [0,00). The factor ¢%/7? cancels in relMSE. W

3.4 Spherical Symmetry

We consider models whose scores function A at Py is spherically symmetric; that
is,

L(GA) = L(A) (3.14)
for all orthogonal matrices G € R**¥ | Fisher information of such models satisfies
GIG =E(GAN)(GA) =EAN =T (3.15)

for all orthogonal G € R***  hence, by the following lemma, is a multiple of the
identity: Z =~1; v € [0,00) since Z is positive semidefinite, and v > 0 if Z has
full rank (which is the case in our models).
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Lemma 3.2 Let A € R¥* be symmetric and GAG' = A for all orthogonal
matrices G € R¥** . Then there exist some a € R such that A = alj.

PROOF Since A is symmetric, there is an orthogonal Matrix G € R*** such that
A = GAG' = diag(ay,...,ax); so A is diagonal. Now consider a permutation
matrix G € R¥** (any matrix with a single one and otherwise zero entries). Such
G being orthogonal, again A = GAG'; so necessarily a3 =... = ag. /i

The second application of Lemma 3.2 is to

Optimally robust influence curves as given by Theorems 5.5.7, 7.4.11, 7.4.13,
7.4.15, 7.4.18, 7.4.19 of HR (1994).

Lemma 3.3 Under assumption (3.14) the standardizing matrix A (to achieve
Fisher consistency) satisfies A = aly for some a € (0,00).

ProOOF We will prove this for k-dimensional regression and conditional conta-
mination neighborhoods 2.1.2 (c¢); that is, for the cases * = ¢ and a = 1,2,00.
The proofs in the other cases are similar.

(*=¢, a =1) For r € [0,00) define ¢, € (0,00] and then a, € (0,00) by

r’e.=E (|:c u| — cr) (3.16)
k= o, E|zu|min {|zu|, ¢} (3.17)

and put
ne(z,u) = ayrumin {1, c|zu| "} (3.18)

As for all orthogonal G € R¥**. GEn,A'G' = En,A' by spherical symmetry
of K, Lemma 3.2 tells us that En, A’ = 81 . Passing to the trace, (3.17) yields
that 8 = 1. Because of symmetry of the error distribution, E_ 5, =0 a.e. K(dz).
Thus, with b, := a,.c¢., 1, in fact is an IC as in HR (1994; Theorem 7.4.13.b),
which form is sufficient to minimax asymptotic MSE.

(* = ¢, « = 2) Since the median of Ay is unique, the minimax IC is given
by equation (134) in HR (1994; Theorem 7.4.15.b), with D = I, where ¢ = 0,
by symmetry of the error distribution, and X = Z = ~I; for some v € (0, 0)
(Lemma 3.2 and I}OC = 1). This gives (3.16)—(3.18).

(* = ¢y, @ = 00) An argument as in the case (* = ¢, & = 1) and in addition using
Lemma 3.1 shows that 7, of form (2.68)—(2.70) is an IC of the form of HR (1994;
Theorem 7.4.11.b) and satisfies condition (3.1) of Lemma 3.1 below. Thus, 7, is
the (unique) minimax IC. Y/

Minimum Bias
Proof of (2.45) and (2.52) According to HR (1994; Theorems 5.5.1.b and

min

7.4.13.c), minimum bias w" in model 2.4 (k-dimensional location) and w}
in model 2.5.1 (k-dimensional normal regression) are, with D =T,

: tI'A k kxk
min _ R®. A € RFX 1
W max{E|AA_a|‘a€ A€ \ {0}} (3.19)
respectively
wpn = max { trA ‘A e R\ {0} } (3.20)
ol E|Az|E|A; —m)| '
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In our case, the median m of Ag(u) = u under F = N(0,1) is zero. Also in
(3.19), we may put a = 0. Indeed, by triangle inequality and (spherical) symmetry
of £ (A), the zero centering vector 0 = $a+1(—a) would decrease the denominator
E|AA —a| =E|AA + q|.

Despite of different scores functions, we can now handle both models in one
proof, only drawing on the spherical symmetry of £(A).

By the singular value decomposition, U'AV = diag(as,...,ar) = V'A'U for
some orthogonal matrices U,V € R¥*¥ . Then

E|AA| = E[U'AVA| = E|V'A'UA| = E|A'A| (3.21)

Putting A, := £(A + A’), the trace stays fixed, while E|AA| decreases (triangle
inequality). So we may limit attention to symmetric matrices A. Since

trGAG' =trA, E|GAG'A|=E|AA| (3.22)

for any orthogonal matrix G, and especially for G obtained from the spectral
decomposition of A, we may further suppose A diagonal, and then with all diagonal
elements nonnegative.

To complete the proof, we show that I, minimizes E|AA| among all such
diagonal matrices of trace 1. Consider the Lagrangian L:[0,00)* — R,

L(a) =E|AA| - Atr A (3.23)

where a = (aq,...,ax)" and A = diag(a’). The multiplier A is chosen as
A=E{|A|7'A?} (3.24)

which, by spherical symmetry, is the same for all coordinates i =1,...,k.

The function L is convex on [0,00)¥. Applying the mean value theorem and
the bound

(a; + Th)A?  2a;A?

[AzA[ 7 el

with some 7 € (0,1), some intermediate A, , and sufficiently small increment h,
the dominated convergence theorem applies. Thus we obtain the partials

(9L Cl,'Az2
E:E{MA'}—A (3.26)

which vanish at a1 = ... = ap = 7. m

=

3.5 Constant Conditional Neighborhoods (a = o)

Proof of (2.71), (2.72) and (2.77), (2.78) The solutions are given in HR (1994;
Theorems 7.4.11.c and 7.4.18.c), we only have to determine

1
SUPK (dx) |Az|

for K = N(0,T;), respectively K = Ufo;(0,1).

oA = infr(gp) |[Az| ! = (3.27)
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In the normal case, we have sup K(dz)|A$| = 0, thus o4 = 0 and consequen-

: min min H
tially both wg'll and wp's are zero. Then, since

Weo(m) = Esup.nl,  whoo(n) = VBE(E. n?)""* (3.28)

an IC 7 achieving zero bias would have to vanish a.e.; thus, the infimum bias cannot
be attained.
In the uniform case, we obtain that

SUP e (az) | A2[* = Sip. | Az|* = [|Allop (3-29)

Hence we have to find the minimum of ||A||,p under the side condition tr A =1.
Applying the triangle inequality to (4 + A'), A may be assumed symmetric.
Then, since

|Al2, = sup |Az| = sup |G'AGz] (3.30)
lz[<1 lz|<1

for any orthogonal matrix G, it suffices to consider A diagonal (spectral decom-
position). Thus, [|A]|2) = max;—; o}, and consequentially Amin = + I and
| Aminllop = % , which yields o4 = k. According to HR (1994; Theorems 7.4.11.c
and 7.4.18.c), an IC 7 achieving the minimum bias would necessarily have to be
of form (75), respectively (220), there; in particular, 7 could be nonzero only for
1 = o4|Az| = |z|. This however, is a set of measure zero in the present cases.
Therefore, the infimum bias cannot be attained. Y/

3.6 Increasing Dimension k£ — oo

Proof of (2.47) We have A ~ N(0,T;,), s0 2[AP = 13" A? 5 EA} =1 ae,,
hence also |[A|/Vk — 1 ae., as k — oo (SLLN). (%|A[?) is uniformly integrable
(Vitali, E[A]> = k). Because [A|/Vk < 1+ L|A[?, also (JA|/Vk) is uniformly
integrable. Consequentially, E[A| ~ vk and E|nw|?> = (k/E |A|)2 ~k. i
Proof of (2.48) We first give the proof for the k-dimensional location model 2.4.
For A(u) =u ~ N(0,I;), both #|u|? and |u|//k tend to 1 in Ly, as shown.

Putting ¢, = ck,r /\/E , the second equation of (2.43) reads
2 & = E (ju| VE — Ehr) (3.31)

In the case r = 0, we have ¢, o = co. Assume that r > 0, and suppose that
¢k,r = v € [0,00] along some subsequence. Since the RHS in (3.31) is bounded,
necessarily v < co. Then the noted L;-convergence implies that

Py =B1-7)y=01-7)4 (3.32)

from which it follows that 7%y = 1—+. Hence (1+72)~! is the unique accumulation
point of the sequence (é,,), which therefore converges,

m &, = (3.33)

k—o00 14 r2
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The first equation of (2.43) reads

a,;i = E &k u|? min {1, |uc~|l7\r/E} (3.34)

In the case 7 = 0 we have a0 = 1. Now let r > 0. Obviously, the integrands
in (3.34) converge to (1+r%)~! a.e. and are uniformly integrable (being dominated
by z|ul?). Thus, and consistently with axo =1 in case r =0,

lim ag, =1+1r? (3.35)

k—o0

The arguments leading to (3.33) and (3.35) obtain if the fixed r € (0, 00) is replaced
by any sequence 74, with limit r € (0,00). In addition, we can argue in a similar
way in case 1y | r = 0 to obtain that

liminfég ., > 1= lim o, (3.36)
k—o0 k—o0

Therefore, (3.33) and (3.35) hold uniformly on bounded r-intervals. Now (3.33)
and (3.35) entail convergence of the risk (with the previous r replaced by rg),

k™! maxMSE (n,,,7) = aiwo Emin {k[ul?, 5%,”,} + rzaﬁ’roéﬁ’ro
— 1472 (3.37)

Consequentially, and in addition using (2.47), we get

maxMSE (777-0 3 ’f') _ E |A|2 maxMSE (nro ) T)
maxMSE (,7)  k k(1 +72)

— 1 (3.38)

And this convergence is uniform on bounded rg- and r-intervals.

By the coincidence mentioned in the k-dimensional regression model 2.6.1 for
x* = h and a = 1, the convergence (2.48) automatically holds for this model, too,
with 79 and r multiplied by +/8 , if the regressor distribution is K = N(0,T}).

In the second part of the proof we shall show (2.48) for the k-dimensional
regression model 2.6.1 (x = h, a = 1) with K = Ufo(0,1).

In this case, we have E|z| = k(k+1)~! and E|z|?> = k(k +2)~! which implies
that Var(z) = 0 as k — oo; consequentially, |z| = 1 in Ly and L;. The second
part of (2.63) reads

872 ckr =B (|a:| — ck,r) (3.39)

+

Suppose that ¢, — v € [0,00] along some subsequence; since |z| < 1 a.e.,
necessarily v < 1. Then the noted L; -convergence implies that

8r2y=E(1—7)y =1-1v (3.40)

Hence (14 872)~! is the unique accumulation point, therefore,

lim ¢, = ! (3.41)

k—00 1+ 8r2
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Plugged into the first equation of (2.63), this yields

k 1
= E |2| mi —
s || min {|z|, ck,r} 158

(3.42)

The arguments leading to (3.41) and (3.42) obtain if we replace r by a bounded
sequence 7. Thus (3.41) and (3.42) hold true uniformly on bounded r-intervals.
The convergences (3.41) and (3.42) now entail convergence of the risk (with the
previous r replaced by rg),

k™ maxMSE (ny,,7) = k%03 ,, Emin {|z|*, ¢} ., } + 87°k720% 1, % 1y

— 14872 (3.43)
Consequentially,

maxMSE (1, 1)

2 maxMSE (1,,7)
maxMSE (10, 7)

k2(1+ 8r2)

=E|z —1 (3.44)

And this convergence is uniform on bounded rg-, r-intervals.
In the third part of the proof, we shall show (2.48) for the k-dimensional re-
gression model 2.7.2 (x = h, a = 00).

In case K = N(0,1;), the L;-convergence |z|/vk — 1 inserted in equations
(2.76) and (2.75) by previous arguments imply that

. Ck,r 8r? . 9
v e A (3:49)
Consequentially,
1
lim —maxMSE (1,,,7) = 1+ 872 (3.46)
k—oo k

In case K = Ufog(0,1), the L;-convergence of |z| — 1 inserted in equations
(2.76) and (2.75) similarly imply that

812 ay,
: — _ i ! — 1 2 4
R A (347
Consequentially,
Jim k2 maxMSE (1, 7) = 1+ 872 (3.48)
—00

Both convergences (3.46) and (3.48) hold uniformly on bounded r¢-, r-intervals
(though convergence in the K normal case seems slow; Subsubsection 5.5.2).

Proof of (2.54) The second equation of (2.43), in case K = N (0,I}), reads
r* & = B (Jull2| VE =) (3.49)
where ¢, = cr,k/\/E, and in case K = Ufo,(0,1),

% cpr = E (|2 |u| — ck,r) (3.50)

+
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If » =0, we have ¢, 0 = 0c0. Now let r > 0, and suppose that, along some subse-
quence, € r, respectively c,j, tend to some v € [0,00]. Since the RHS in (3.49)
and (3.50) is bounded, necessarily v < co. Then the noted L;-convergence in the
proof of (2.48) implies that (in both cases)

r*y =E (|u| - 'y)+ (3.51)

from which it follows that v = cL1°¢ from (2.21). Therefore, respectively,

lim ¢, = cp1°¢ = lim Ch,r (3.52)
k—o0 k—o0

The first equation of (2.43) for K = N/(0,1}) reads

_ _ . Ch,r
a;! = Ek~!|z|?u® min {1, 7|u||;:|/\/E} (3.53)

and for K = Ufo(0,1)

= E |z|*v? min {1, Chyr } (3.54)

A Ju ]

For r =0, we have a0 =1 (K normal) and ayo = k+2 (K uniform). Suppose
that » > 0. Obviously, the integrands in (3.53) and (3.54) are uniformly integrable
(being dominated by |z|*u?, respectively by |z|?u?). In the normal case, we get
" ) Cl.loc 11 1
. -1 _ . r _ .loc
kll,r&ak,T =Eu mln{l, W} = (A7) (3.55)
with Al1°¢ = A, from (2.43), which is consistent with ajo = 1 = A§'°° in case
r = 0. In the uniform regressor case, again consistently with r =0,
cl.loc 1
lim = E 4 min {1, T—} = (4,7°9) (3.56)
k—oo Qg r |'LL|

The arguments leading to (3.52) and (3.55), (3.56) obtain if we replace the fixed
r € (0,00) by any sequence ry with limit r € (0,00). If rp, L r = 0, a similar
argument yields &, cr — cy'°, respectively. Thus (3.52) and (3.55), (3.56)
hold true uniformly on bounded r-intervals. (3.52) and (3.55), (3.56) now entail
convergence of the risk (with the previous r replaced by rg),

k™" maxMSE (nTO ’ T) = aiﬂ‘o E min {k_1|:c|2u2, Ei,ro} + rzai,roéi,ro

— maxMSE (n,,°%,r) (3.57)
k™? maxMSE (9, 7) = k7203 ,, Emin {|z*v*, ¢ ., } + r*k7%03 .G 1o
— maxMSE (,;°%, 7) (3.58)

in the normal and uniform case, respectively. Hence, the inefficiencies converge
accordingly,
Jim relMSE (y,,r) = relMSE (nyec,r) (3.59)
—00

uniformly on bounded ry-, r-intervals, in both cases.
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We shall sketch an argument for (3.57) and (3.58), hence (3.59), to hold also in
model 2.7.1 (x = ¢, a = 00).

Employing the L;-convergence |z|/vk — 1 and |z| — 1 for K = N(0,IL)
and K = Ufog(0, 1), respectively, equation (2.70) determing cg (z) uniquely may
be solved by ck-(x) — cL!°¢ in probability, where cL!°¢ is taken from (2.21).
At this instance, we assume but do not prove that the integrals E |z|ck,.(z)/VE
and E|z|ck,.(z) converge correspondingly; that is, to E1 - cl1°¢ = cl1°¢. Under
this asumption, however, equation (2.69) now entails (3.55) and (3.56), respectively.
Then (3.57) and (3.58) follow as before.

Due to variable c,r(z) (and matching the gap in the proof), the tables in
Subsubsection 5.5.1 indicate only slow convergence in (3.57)—(3.59), but in the
K uniform case, convergence is confirmed. Y/

4 Numerical Algorithms

We use S-Plus 2000 to implement the algorithms and to generate the graphical
output. In detail we use the following numerical procedures:

4.1 One-Dimensional Location

The results for the models 2.2.1 and 2.2.2 are obtained by the routines for the
k-dimensional location model 2.4 with k£ = 1. Note the coincidence (2.27) via the
relation (2.26).

4.2 One-Dimensional Scale
4.2.1 7 /y/n -Contamination Balls (Model 2.3.1)

The clipping bound ¢, and the centering constant a,. in (2.28)—(2.31) are calculated
by bisection methods.

4.2.2 r/y/n-Total Variation Balls (Model 2.3.2)

We evaluate the clipping constants g, and ¢, in (2.35)-(2.38) by bisection methods.

4.3 k-Dimensional Location (Model 2.4)

We compute the constants ¢, and «, in (2.42), (2.43) by using clipped absolute
moments of A (0,I). Because of the boundedness and the arbitrary smoothness
of these moments, we can apply a two dimensional Newton method to calculate c,
and «, simultaneously (cf. Ruckdeschel (2001); Definition D.2.4, Lemma D.2.5,
and Korollar D.2.9).
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4.4 Regression, Average (Square) Contamination
4.4.1 Average Contamination Neighborhoods (Model 2.5.1)

The determination of clipping bound ¢, in (2.49), (2.50) is performed by a bisection
method, where the integration of the outer integral is done numerically. In case
of the uniform distribution we use the Simpson rule, whereas in the normal case
we make use of the S-plus function integrate() due to the more complicated
integrands.

4.4.2 Average Square Contamination Neighborhoods (Model 2.5.2)

The procedures may be obtained from the one-dimensional location case.

4.5 Regression, Average (Square) Hellinger

4.5.1 Average Hellinger Neighborhoods (Model 2.6.1)

For K = Ufor(0,m), in view of (2.62), (2.63), we have to find the zero of
(1 +8r) (k+ 1)e, + k (4.1)

to determine ¢, in the interval [0,1]. Because of the boundedness of the above
expression (with r fixed in (0,00)) and differentiability in ¢,, we can do this
by a Newton method. In the normal case we can apply the routines from the
k-dimensional location model 2.4 by substituting ro by ro/A/8 and r by r/\/8.

4.5.2 Average Square Hellinger Neighborhoods (Model 2.6.2)

Nothing to calculate.

4.6 Constant Conditional Neighborhoods (a = o)
4.6.1 Contamination Neighborhoods (Model 2.7.1)

We introduce the further parameter
"2
Ti= 5 E |z|cr(z) (4.2)

and determine c¢,(z) for fixed 7 € (0,1///2m) in case K = Ufor(0,1), respectively,
for fixed 7 € (0, 00) in case K = N(0,T;), from the equation

zé =E.(|Ju| - ¢ (2)) (4.3)
Then r may be easily calculated back from (4.2).

In case of the uniform distribution we evaluate ¢,(z) on a grid of x values by
using a bisection method and do the outer integration on the same grid applying
the Simpson rule. For normal regressors we use the S-Plus function integrate(),
which also performs the evaluation of ¢.(z), where the computation of ¢.(z) by a
bisection method is implemented as a vector valued function.
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4.6.2 Hellinger Neighborhoods (Model 2.7.2)

Similar to the average Hellinger case we have to find the zero of
At -+ i) (k+ e+ k (4.4)

on the interval [0,1], where r is fixed in (0,00). So this computation can again
be done by a Newton method.

Remark 4.1 In the case a@ = oo (model 2.7), for both contamination and Hellinger
neighborhoods, the MSE of 7,, at r =0 (ideal model) is unbounded as ry — 0.

In case K = N(0,0%I};), the least favorable radius ry cannot be determined
over the unrestricted interval [0, 00), because reIMSE (n,,,7) = oo as r — o0,
for each 79 € [0,00). This effect is connected with infimum bias 0. Therefore,
we instead compute the least favorable radius o for the bounded interval [0,2v/%]
(increasing with the dimension k). Y/

4.7 General Procedures

In all these cases, we use bisection methods to calculate the least favorable radius rg
for a given MSE-inefficiency relMSE(7n,,r) at » = 0, and to determine the least
favorable radius r, for a given interval [pr,r/p]. where p € [0,1] (in particular,
p=0, é,%) and r € [0,00]. To find the least favorable radii r» and 73, we use
the preceding procedure and search for the maximum on a increasingly finer grid
of r values.

4.8 Plots

The complete collection of risk- and inefficiency-plots for the models considered in
this study may be looked at, using access name radius, password unknown, un-
der http://www.uni-bayreuth.de/departments/math/org/mathe7/radius and
downloaded. A small sample of the plots is attached at the end of this paper.
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5 Tabulated Results

5.1 k-Dimensional Location

maxMSE over r/y/n -contamination neighborhoods (k > 1) and, in case k=1,
maxVar over symmetric s-contamination neighborhoods, where s = r2/(1 +r?).

k | relMSE (n5,0) | p=0]| p=1 | p=1 o T3 T9

1 1.571 1.181 | 1.088 | 1.044 | 0.621 | 0.548 | 0.574
2 1.273 1.121 | 1.063 | 1.032 | 0.627 | 0.527 | 0.558
3 1.178 1.091 | 1.049 | 1.026 | 0.611 | 0.496 | 0.529
b) 1.104 1.062 | 1.035 | 1.018 | 0.577 | 0.450 | 0.481
10 1.051 1.035 | 1.020 | 1.011 | 0.520 | 0.385 | 0.413
15 1.034 1.025 | 1.014 | 1.008 | 0.485 | 0.351 | 0.375

5.2 One-Dimensional Scale
5.2.1 r/y/n -Contamination Neighborhoods

relMSE (15,0) | p=0 | p=12% | p= ro | rs |
2.721 | 1.505 | 1.207 | 1.099 | 0.499 | 0.481 | 0.551 |

RO

5.2.2 r/y/n -Total Variation Neighborhoods

relMSE(noo,O) | p:O | p:% | p:% | To | r3 | ro
1.850 | 1.254 | 1.115 | 1.056 | 0.265 | 0.237 | 0.249 |

5.3 Regression, Average (Square) Contamination
5.3.1 Average Contamination Neighborhoods (* = ¢, a = 1)
K (dz) = Ufog(0,m)

k relMSE (77007 0) P = 0 = % = % To r3 Tro

1 2.094 1.271 | 1.122 | 1.060 | 0.566 | 0.517 | 0.540
2 1.767 1.227 | 1.107 | 1.053 | 0.595 | 0.532 | 0.558
3 1.677 1.209 | 1.100 | 1.049 | 0.604 | 0.536 | 0.562
5 1.616 1.194 | 1.094 | 1.047 | 0.611 | 0.540 | 0.565
10 1.584 1.185 | 1.090 | 1.045 | 0.617 | 0.545 | 0.570
15 1.577 1.183 | 1.089 | 1.044 | 0.619 | 0.546 | 0.572

K(dz) = N(0,0%1)

k | relMSE (0,0) | p= =z =1 To T3 )

1 2.467 1.347 | 1.146 | 1.070 | 0.515 | 0.474 | 0.496
2 2.000 1.287 | 1.127 | 1.062 | 0.555 | 0.499 | 0.525
3 1.851 1.258 | 1.117 | 1.057 | 0.569 | 0.506 | 0.534
5 1.735 1.231 | 1.107 | 1.053 | 0.583 | 0.514 | 0.542
10 1.651 1.207 | 1.098 | 1.049 | 0.598 | 0.526 | 0.553
15 1.624 1.199 | 1.095 | 1.047 | 0.605 | 0.532 | 0.558
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5.3.2 Average Square Contamination Neighborhoods (% = ¢, a = 2)

Same numbers as in one-dimensional location.

5.4 Regression, Average (Square) Hellinger
5.4.1 Average Hellinger Neighborhoods (¥ = h, a = 1)
K (dz) = Ufog(0,m)

k | reMSE (1,0) | p=0 =1|p=1 7o T3 To

1 1.333 1.101 | 1.055 | 1.029 | 0.255 | 0.231 0.238
2 1.125 1.055 | 1.032 | 1.017 | 0.247 | 0.211 0.220
3 1.067 1.035 | 1.021 | 1.011 | 0.232 | 0.191 0.199
5 1.029 1.018 | 1.011 | 1.006 | 0.207 | 0.162 0.169
10 1.008 1.006 | 1.004 | 1.002 | 0.170 | 0.124 0.129
15 1.004 1.003 | 1.002 | 1.000 | 0.149 | 0.104 | arbitrary

K(dz) = N'(0, 02L)
Same numbers as in k-dimensional location, but r, = rlg'l"c N3 .

k | relMSE (n5,0) | p=0 ] p=2%|p=3| 1o T3 o

1 1.571 1.181 | 1.088 | 1.044 | 0.220 | 0.194 | 0.203
2 1.273 1.121 | 1.063 | 1.032 | 0.222 | 0.186 | 0.197
3 1.178 1.091 | 1.049 | 1.026 | 0.216 | 0.175 | 0.187
) 1.104 1.062 | 1.035 | 1.018 | 0.204 | 0.159 | 0.170
10 1.051 1.035 | 1.020 | 1.011 | 0.184 | 0.136 | 0.146
15 1.034 1.025 | 1.014 | 1.008 | 0.171 | 0.124 | 0.133

5.4.2 Average Square Hellinger Neighborhoods (* = h, o = 2)
relMSE =1.

5.5 Constant Conditional Neighborhoods
5.5.1 Constant Contamination Neighborhoods (* = ¢, & = c0)

K (dz) = Ufog(0,m)

k| p=0 = % p=3 ro r3 ro

1 | 1.577 | 1.185 | 1.085 | 1.579 | 1.621 | 1.579
2 | 1.481 | 1.159 | 1.074 | 1.310 | 1.383 | 1.355
3 | 1.420 | 1.141 | 1.065 | 1.198 | 1.270 | 1.253
5 | 1.348 | 1.117 | 1.054 | 1.071 | 1.064 | 1.010
1.271 | 1.096 | 1.047 | 0.894 | 0.691 | 0.652
1.241 | 1.092 | 1.045 | 0.807 | 0.607 | 0.606

10
15
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K(dz) = N(0,0%I)

kE|0,2vE] [ p=3|p=4%] 10 r3 T

1 1.224 1.343 | 1.144 | 0.790 | 4.805 | 4.254
2 1.320 1.323 | 1.137 | 0.923 | 3.895 | 3.463
3 1.367 1.307 | 1.131 | 0.994 | 3.604 | 3.164
5 1.409 1.281 | 1.121 | 1.075 | 3.410 | 2.982
10 1.428 1.240 | 1.104 | 1.164 | 3.434 | 2.990
15 1.421 1.214 | 1.094 | 1.200 | 3.533 | 3.093

5.5.2 Constant Hellinger Neighborhoods (% = h, & = o)
K (dz) = Ufor (0, m)

k| p=0 =1 =1 o T3 T2
1 | 1.378 | 1.144 | 1.068 | 0.839 | 0.924 | 0.862
2 | 1.300 | 1.120 | 1.058 | 0.737 | 0.857 | 0.793
3 | 1.250 | 1.102 | 1.050 | 0.713 | 0.866 | 0.797
5 | 1.189 | 1.080 | 1.039 | 0.715 | 0.924 | 0.848
10 | 1.120 | 1.051 | 1.026 | 0.768 | 1.091 | 1.004
15| 1.088 | 1.038 | 1.019 | 0.822 | 1.240 | 1.147
K(dz) = N(0,0%1)
k [0,2\/1?] = % p= % To r3 T
1 1.312 1.332 | 1.140 | 0.672 | 2.198 | 1.938
2 1.427 1.313 | 1.133 | 0.720 | 1.784 | 1.559
3 1.474 1.297 | 1.127 | 0.743 | 1.636 | 1.420
5 1.505 1.273 | 1.118 | 0.772 | 1.530 | 1.317
10 1.497 1.233 | 1.102 | 0.813 | 1.499 | 1.277
15 1.472 1.208 | 1.092 | 0.841 | 1.528 | 1.296
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relVar, relMSE: 1-Dimensional Location (Var = 1.181 atr, s = 0)
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reIMSE: 1-Dimensional Scale (contamination)
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reIMSE: 1-Dimensional Scale (total variation)
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1-Dimensional Scale: IC-comparison for r=0.2 (*=c) with r=0.1 (*=v)
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1-Dimensional Scale: most robust IC (*=v,c)
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reIMSE: Regression (*=c, alpha=1, K normal, dim=3)
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