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Unit Root Tests for Time Series with Level Shifts:
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Abstract

A number of unit root tests which accommodate a deterministic level shift at a known point in time
are compared in a Monte Carlo study. The tests differ in the way they treat the deterministic term
of the DGP. It turns out that Phillips-Perron type tests have very poor small sample properties
and cannot be recommended for applied work. Moreover, tests which estimate the deterministic
term by a GLS procedure under the unit root null hypothesis are superior in terms of size and
power properties relative to tests which estimate the deterministic term by OLS procedures.
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1 Introduction

Testing for unit roots is common practice at the beginning of any analysis of economic time
series because the trending properties of the series determine to some extent the models and
inference procedures to be used in later stages of the analysis. Suitable unit root tests for
different situations have been proposed. One group of tests allows for a level shift in the
data generation process (DGP). Surprisingly little seems to be known about the relative
performance of some of the tests in this class. In this study we intend to compare some of
these tests and thereby we will close this gap at least partly.

There are a number of tests which allow for various kinds of shifts in the mean of the
DGP (see, e.g., Lanne, Liitkepohl & Saikkonen (1999) for a range of tests allowing for very
general shift functions). However, the original proposals focus on the case where there is
a one time shift which can be captured by a dummy variable (e.g., Perron (1989, 1990)).
Moreover, procedures are available for cases where the time of the shift is unknown. In this
study we compare unit root tests for DGPs with a shift in mean which can be described by a
shift dummy and for which the break date is known. The reason is that we expect tests which
perform well under these relatively simple conditions are also preferable in more complex
situations. In turn, tests which do not perform well in simple situations are not expected to
do well in difficult circumstances. Assuming a known shift date is also of practical relevance
because there are many time series with changes in their construction or definition which
occur at a known point in time. Examples are German macroeconomic time series which
have a shift at the time of the German unification or exchange rates for which currency
adjustments have occurred.

In the next section we present the tests without explicitly describing the DGP. Of course,
a special DGP is assumed in deriving the tests. In practice, however, for a given time series
a special test is usually applied under the assumption that it is suitable for the time series
at hand. It is a different question whether the true DGP has actually generated the given
time series. Clearly, the true DGP will be unknown because otherwise a test would be
unnecessary.

The study is organized as follows. A number of unit root tests allowing for a level shift
are reviewed in the next section. In Section 3 a Monte Carlo comparison is performed and

conclusions follow in Section 4.



2 The Tests

The tests are described for the case where a linear time trend is included in the model. If
a time trend is not required for a time series of interest, it can simply be dropped. The
adjustments are obvious and straightforward. Different tables for the critical values have to
be used in that case, however. It is also assumed that the shift can be modeled by a dummy

variable
DU, = 0, t<Tg ’
1, t>1Tg
where T'g is the shift date.
In the time series literature two generating mechanisms of shifts are distinguished, ad-
ditive outlier models and innovational outlier models. The former result in an abrupt shift

in the level, whereas the latter allow for a smooth shift from the initial level to a new level.

We will treat tests for the two model types in turn starting with additive outlier models.

Additive Outlier Assumption

Most of the tests derived in the additive outlier framework may be viewed as adjusting the
original time series, say y1,...,¥yr, in a first step. Then augmented Dickey-Fuller (ADF) or
Phillips-Perron (PP) tests are applied to the adjusted series. In other words, denoting the

adjusted series by 71, ..., ¥, the following four test versions are considered.

o ADF tests

Consider a regression
P P
Agt = ¢gt—1 + anADUt—] + Z bjAgt_]‘ + ETTOorTt (21)
j=1 j=1

and denote the OLS estimator of ¢ and its ¢-statistic by ¢ and tg, respectively. Using
the notation ZN)(l) =1—b—--— lN),,, where i)j is the OLS estimator of b; (j =1,...,p),
the ADF statistics are T¢/b(1) and t; (see Perron & Vogelsang (1993)).

o PP tests

Denote the residuals of a regression ¢, = ag; 1 +e; by é (t =1,...,T) and define



and

T k T
F =T &G+2T7 ) wli) Y &by
t=1 j=1 t=j+1

with wg(j) =1 — 335 (Newey-West estimator). Then two versions of PP tests are

2@) =T( 1) - 55" - ) (T* ng_l)

and
-1

. |' - 1/2
_ T ~2 =2y | = —2 ~9

Z(ta) = gt& - 5(0 - d;) |f7 (T ;yt—1>
(see Phillips & Perron (1988) for the tests and Perron & Vogelsang (1993) for critical

values).

The following possibilities for adjusting y; have been proposed in the literature. Perron

(1989, 1990) proposes to run a regression
Yy = po + it + 6DU, + errory (t=1,...,T). (2.2)

The regression residuals §7 = y; — jio — jiut — 0DU; (t = 1,...,T) are the adjusted ;. The
ADF versions T'¢/b(1) and ¢ ; of the resulting unit root test statistics will be denoted by P%,
and P!, respectively, and the Z(a) and Z(tz) versions are denoted as PP$, and PP},
respectively.

Based on a unit root test of Schmidt & Phillips (1992), Amsler & Lee (1995) use a La-
grange Multiplier (LM) approach and propose to estimate y; and § under the null hypothesis,
that is, (2.2) is multiplied by the differencing operator A and then an OLS regression

Ay; = py + 6ADU; +errory (t=2,...,T) (2.3)

is performed. Denoting the resulting parameter estimators by fi; and § and defining ji, =
Y1 — [, the adjusted series is ' = y, — jip, — fut — 6DU,. The resulting test statistics
corresponding to T'¢/b(1), ts, Z(&) and Z(tz) will be denoted as ALYy ALY ppy ALY
and AL, respectively.

Extending the ideas of Saikkonen & Liitkepohl (1999), Lanne, Liitkepohl & Saikkonen
(1999) (henceforth LLS) propose to estimate the parameters of model (2.2) by a GLS ap-

proach under local alternatives or the unit root null hypothesis as in (2.3). We focus on



estimation under the null hypothesis because in small sample simulations this turned out
to work better than estimation under local alternatives (see LLS). Assuming that the errors
in (2.3) have an AR(p) serial correlation structure, they propose to estimate the relevant

parameters 6 = (u, 41, 0) by minimizing
Qu(0,8) = (Y — Z0Y'S,(6)7 (¥ — 26), (2.9

where ¥, (b) = 072Cov(U) with U being the error vector of (2.4), Y = [y; : (y2 — 1) : -+ - :
(yr—yr-1)|'and Z = [Z, : Zy : Z3| with Z; = [1,0,...,0]', Z, = [1,1,...,1] and Z3 = [DU, :
(DUy—DU,) : - - -« (DUp—DUrp_1)]. Although the adjusted data §225 = y,— fig— jiyt—d DU,
could be used in the ADF and PP approaches, LLS propose a slightly different procedure
which adjusts for the estimation errors in the nuisance parameters and worked quite well in
small sample simulations. Denoting the AR polynomial by 6(L) =1 —b,L —--- — b,L? and
its estimator from (2.4) by b(L), LLS define @, = b(L)§"* and base the unit root test on

the auxiliary regression model

P
AWy = v + ¢ty + 7b(L)ADU, + Z ajAgfij +errory (t=p+2,...,7T). (2.5)

j=1
The unit root test statistic is again obtained as the usual ¢-statistic of the estimator of ¢

based on OLS estimation of this model. It will be denoted by LLS 40.

Innovational Outlier Assumption

Under the assumption of an innovational outlier the parameters of the deterministic terms
can be estimated jointly with the parameter on which the unit root test is based. This was

proposed by Perron (1989). He suggests using the regression model

D
Ay = ¢yr—1 + pto + put + 6DU, + 8" ADU, + > b;Ay,_j +error, (t=p+2,...,T) (2.6)

j=1
without prior adjustment of the data series. Again the ¢-statistic of ¢ is the relevant unit
root statistic. As mentioned earlier, the advantage of model (2.6) is that the level shift is
gradual rather than abrupt. The resulting ADF type unit root test statistics will be denoted
by P%, and P,.

Based on ideas of Liitkepohl, Miiller & Saikkonen (1999), LLS also consider a second

possibility for estimating the nuisance parameters under the unit root null hypothesis using
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a regression model

P
Ay, = poDy + 1 + 0ADU; + Z bjAy,_;j+errory (t=1,...,T), (2.7)

j=1
where D; = 1 for t = 1 and zero elsewhere and y; = 0 for ¢ < 1. From this model the

parameters are estimated by OLS. The unit root test is based on 7; = E(L)yt—ﬂo —fut—6DU,

using the auxiliary regression
A’Dt =v+ (ﬁ’l’jt,l + ADUﬂTl + c]£7r2 + ETTOT¢ (t = 2, . ,T), (28)

where ¢ = [Ay;1 — fix = - 1 AYy_py1 — jio] and i, = fiy/b(1). Again the t-statistic of the
estimated ¢ is used as the unit root test statistic. It will be denoted by LLS;o. All the tests
are listed in Table 1. In the next section we will explore their small sample properties using

a Monte Carlo experiment.

Table 1. Unit Root Tests

Test statistic Estimation of References
deterministic terms
P%, OLS Perron (1989, 1990)
P, OLS Perron & Vogelsang (1993)
PP%, OLS
PP, OLS
ALY, OLS under H, Amsler & Lee (1995)
ALY pr OLS under H, Schmidt & Phillips (1992)
ALY, OLS under Hy
AL, OLS under H,
LLS 0 GLS under H, Lanne, Liitkepohl & Saikkonen (1999)
Py, OLS of full model Perron (1989, 1990)
Plo OLS of full model
LLSo GLS under Hj in full model Lanne, Liitkepohl & Saikkonen (1999)




3 Monte Carlo Comparison
We have compared the unit root tests using the following two DGPs:
Yt = DU, + 24, (1 =bL)(1 = pL)a, = & t=1,...,T) (3.1)

and

(1—=bL)y; = DU; + vy, Vp = U1 + & (t=1,...,7) (3.2)

with g, ~ 4id N(0,1), p=1,0.9,0.8 and 7" = 100, 200. Processes of this type were also used
in a Monte Carlo study by LLS. In addition to the sample values we have generated 100
presample values which were discarded except that some of them are used in the estimation
procedures for which presample values are required. The process (3.1) represents an additive
outlier model with an abrupt shift at time T whereas the model (3.2) corresponds to an
innovational outlier process if b; # 0. We apply all tests to the time series generated by
the two different DGPs although, strictly speaking, the tests designed for additive outliers
are not constructed to perform well for time series with innovational outliers and vice versa.
In practice, however, the type of DGP will be unknown in general and, hence, it would
be advantageous for a test to be robust with respect to the DGP. This is one issue to be
addressed in the simulation study.

Although the DGPs do not have deterministic linear trend terms, we have applied the
tests which allow for such a term and present some results for sample size T' = 100, break
point T = 49 and different values of b; in Tables 2 and 3. The figures in the tables are

rejection frequencies for tests with nominal significance level of 5% based on 1000 replications

of the experiment. Thus, the Monte Carlo standard error is /P (1 — P)/1000 for a true
rejection probability P. For instance, for P = 0.05 we get a standard error of 0.007.

A striking observation from Tables 2 and 3 is the very poor performance of the PP tests.
They are extremely conservative and, as a result, have very little power for b; > 0, whereas
they overreject dramatically under Hy for b; < 0 (see the p = 1 columns). Size problems of
PP tests were also observed by Schwert (1989) for DGPs without structural shifts. Although
the finite sample properties of these tests improve slightly for 7" = 200, their actual rejection
frequencies in the presence of a unit root are still far from the nominal 5% even for such
relatively large samples. In Tables 2 and 3, a truncation lag of £ = 2 has been used for the

tests. The problems persist, however, for other truncation lags such as £ = 4,6,8. Clearly,
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these findings make the tests useless for applied work.

The Pfo test also has size problems. It overrejects a bit too much in some situations
(see, e.g., by = 0.8) while its power is often no better than that of LLS 4o and LLS;o. Notice
that the power figures are not size-adjusted. Hence, Pjo is clearly inferior to LLS 40 and
LLS;o and, consequently, it cannot be recommended for empirical work either.

Since all other tests are conservative in some situations, it may not be surprising that
they are also inferior in terms of power to LLSso and LLS;o which tend to overreject
slightly in some cases. The magnitude of the gains in power obtained by using the latter
tests is remarkable, however. It is also noteworthy that the tests are superior even if they are
applied in situations where their underlying assumptions regarding the DGP are violated. In
other words, LLS 40 performs relatively well for DGP (3.2) and the same is true for LLSo
with respect to the DGP (3.1) although these processes are not the ones assumed in the
derivation of the tests, respectively. Thus, overall LLS 10 and LLS;o are clearly the tests

with the best performance in our simulations.

4 Conclusions

We have compared a range of unit root tests allowing for a structural break in their mean.
The tests are based on different methods for estimating the deterministic terms including
the level shift. They also differ in the way they account for short-term dynamics. Specif-
ically, ADF type tests which take care of short-term dynamics in a parametric way and
Phillips-Perron versions which use nonparametric adjustments for short-term dynamics are
considered. It turns out that Phillips-Perron type tests perform very poorly under our sim-
ulation setup. They are very conservative and consequently also have very low power in
some situations, whereas in other cases they overreject dramatically. Among the other tests,
those which estimate the deterministic part of the DGP by a GLS procedure under the unit
root null hypothesis have by far the best small sample properties overall. They have roughly
correct size although they sometimes overreject slightly. Moreover, their power is far better

than that of those competitors which also respect the nominal significance level.
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Table 2. Frequency Distributions of Unit Root Tests with Linear Trend Based on 1000
Monte Carlo Replications, Sample Size T' = 100 and Break Point T = 49

Test DGP (3.1) DGP (3.2)
p=10 p=09 p=08|p=10 p=09 p=02.8

by = 0.5

PS, | 0094 0205 0407 | 0.094 0196  0.405
Py | 0051 0137 0321 | 0051 0137  0.316
PP, | 0.001 0001 0014 | 0.001 0002  0.014
PP, | 0.003 0.007 0.028 | 0.003 0.009  0.028
AL, . 0021 0116 0318 | 0.021  0.111  0.314
ALhpm 0017 0.093  0.267 | 0.019  0.085  0.258
AL%, | 0.001  0.005  0.057 | 0.000  0.004  0.054
ALbp, | 0.000  0.005  0.046 | 0.000  0.003  0.043
LLS40| 0.080 0233 0526 | 0.075  0.216  0.499
Py, 0.031  0.138 0337 | 0.032 0137  0.338
P, 0.053  0.131 0310 | 0.056  0.139  0.316
LLSio| 0.081 0217 0455 | 0.079  0.216  0.468

by = —0.5

P¢, | 0045 0167 0560 | 0.045 0.168  0.564
Pi, | 0059 0150 0.508 | 0.058  0.153  0.503
PP$, | 0387  0.775  0.990 | 0.384  0.779  0.990
PP, | 0495 0865 0996 | 0.501  0.867  0.996
ALS, | 0.024 0094 0335 | 0.023 0.093 0.336
ALY, 0018 0072 0276 | 0.018  0.078  0.280
AL%, | 0180 0505 0795 | 0175  0.502  0.799
ALLp | 0199 0546  0.824 | 0196  0.557  0.822
LLSa0| 0.078  0.284  0.680 | 0.079  0.284  0.699
PS | 0018 0110 0449 | 0.018  0.109  0.435
Pl, | 0061 0158 0484 | 0.057 0.146  0.466
LLS;o| 0.070 0228 0578 | 0.075  0.250  0.610




Table 3. Frequency Distributions of Unit Root Tests with Linear Trend Based on 1000
Monte Carlo Replications, Sample Size T' = 100 and Break Point T = 49

Test DGP (3.1) DGP (3.2)
p=10 p=09 p=08|p=10 p=09 p=02.8

by = 0.8

P¢, | 0161 0227 0269 | 0158 0218  0.266
Pi, | 0032 0077 0170 | 0.030 0074  0.147
PP$, | 0.000  0.000 0000 | 0.000 0.00  0.001
PPi, | 0.001 0005 0.001 | 0.001  0.05 0.004
ALY, 0024 008 0170 | 0.025 0.079  0.145
ALYpe 0015 0071 0130 | 0.018  0.066  0.121
AL%p | 0.000  0.000  0.001 | 0.000  0.000  0.000
ALLp | 0.000  0.000  0.001 | 0.000  0.000  0.000
LLSx0| 0.065 0167  0.286 | 0.063  0.149  0.262
P, | 0035 0097 0178 | 0.040  0.096  0.185
Pl, | 0056 0116 0.181 | 0.054 0.112  0.184
LLSio| 0.077 0159 0268 | 0.079  0.161  0.269

by = —0.8

PS, | 0045 0164 0.583 | 0.046 0.167  0.588
Pi, | 0052 0153  0.517 | 0.050  0.151  0.512
PPg, | 0.883 0998  1.000 | 0.887  0.998  1.000
PP, | 0927 0999  1.000 | 0.926  0.999  1.000
AL%, .| 0.022 0061 0210 | 0.021 0068  0.212
ALhpm 0020 0.050  0.180 | 0.018  0.056  0.175
AL}, | 0584  0.880  0.972 | 0.588  0.885  0.969
ALLp, | 0627 0907 0981 | 0.627  0.905  0.980
LLS40| 0.081  0.294  0.696 | 0.080  0.292  0.719
Py 0.066  0.238  0.696 | 0.060  0.230  0.686
P, 0.060  0.162 0526 | 0.051  0.150  0.500
LLSio| 0.069 0227 0579 | 0.073  0.250  0.614
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