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Abstract

This paper considers the introduction of stock options in an (dy-
namically) incomplete securities market made up of a riskless bond
and the stock. The stock price follows a geometric Brownian motion
with constant drift. However, there is incomplete information about
the unknown stochastic volatility. The option price is determined by
a uniform-price auction. Thus an option pricing formula results from
the interaction of market participants relying on private information on
the unknown stochastic volatility under an explicit market structure.
This paper incorporates market microstructure considerations into an
extended Black-Scholes model with incomplete information on the un-
derlying volatility. It relies on the growing importance of auctionlike

trading rules in financial markets.

JEL classification: G13, D44, D82, C72



1 Introduction

Since the seminal work of Black and Scholes (1973) and Merton (1973) on
the pricing of stock options their arbitrage pricing approach has been used
extensively to derive pricing formulae for various kinds of options and general
contingent claims. In the Black/Scholes (1973) framework an option can be
priced in a preference-free way if its cash-flow at maturity can be created by
a continuously adjusted self-financing portfolio in the underlying stock and a
riskless asset. Thus the option is a redundant asset. This paper addresses the
problem of pricing a non-redundant option, which seems by far to be the more
realistic case. There are essentially three strands of research in dealing with
non-redundancy. First, a consumption-based representative consumer frame-
work can be employed (for example see Amin/Ng(1993)). Second, in models
with stochastic volatility, volatility is assumed to be uncorrelated with aggre-
gate consumption (for example see Hull/White (1987)) or a "market price of
the stock’ s volatility risk” is assumed (for example see Heston (1993)). Third,
a mean-variance framework for hedge portfolios can be employed (for example
see Follmer/Leuckert (1999)).

The purpose of this paper is two-fold. First, it presents an alternative to
the outlined set-ups on pricing of non-redundant options. Second, it aims at
determining the influence of private information about parameters of the un-
derlying stock price distribution on option pricing. It starts out by a risk
neutral seller who is interested in selling non-redundant stock options to in-
vestors. The seller uses a standard selling procedure for financial instrument,
namely a uniform-price auction. This pricing procedure is chosen in analogy
to IPO markets, where the market price is primarily determined by auction-
like procedures. The option is introduced to an incomplete financial market
made up of the stock and a riskless bond. The distributional assumptions are
kept simple in order to allow for comparisons with the standard option pricing
models. In fact, we use the Black/Scholes model with a stochastic volatility.
However, in contrast to earlier models in the literature, there is incomplete
information. Every investor has some private information about the unknown
stochastic volatility. The distributional assumptions can be relaxed to general
price processes provided the main modelling issue of private information about

parameters of the stock price distribution is retained.

The paper proceeds as follows. Section 2 introduces the model and explains



price determination in the uniform-price auction. Section 3 gives two results.
First, the bidding behavior of market participants is derived. It is shown that
bidders submit Black/Scholes analogous bids. From this the (ex ante) expected
selling price of the option follows. It is a weighted Black/Scholes formula with
the weights being determined by bidding behavior. Finally, section 4 concludes.
In order to make the exposition more accessible, all proofs are collected in the

appendix.

2 Model

For ease of exposition there is only one European call option written on a risky
stock with exercise price K and expiration date 7" in a financial market made
up of a riskless bond and the stock. The option is sold at time ¢ = 0 by a
risk neutral seller in a (sealed-bid) uniform-price auction', i.e. it is allocated
to the bidder with the highest price bid at a price which equals the highest
unsuccessful bid. For the sake of simplicity, there are two risk neutral bidders
competing with each other in the auction. These assumptions could be relaxed
provided every bidder is restricted to one unit. However, the analysis gets

technically more involved.

The following assumptions on security price dynamics are standard in the

option pricing literature. The bond price at time ¢, 0 < ¢ < T, is given by
R, = exp(rt), (1)

where r denotes the continuously compounded rate of interest. Stock prices
are given by
1
St = S() exp(aWt + (,U/ — 502)t), (2)

where S; denotes (state-dependent) stock prices at time ¢ , 0 < ¢ < T, S,
4 positive constants and W a standardized Brownian motion. However, in

contrast to the Black-Scholes model, where ¢ is constant, it is assumed that
1
o= §(X1 + X5) (3)

holds true. X;, ¢ = 1,2, are i.i.d., uniformly distributed on [0, 1] and indepen-
dent of W.

'For a single option, the uniform-price auction reduces to a second-price or Vickrey
auction (cp. Vickrey (1961). For a general discussion on this and other auctions cp. Miiller
(2001).




Note that the option payoff at expiration is given by
Vr = max(Sy — K, 0). (4)

Thus the option is of common value (or of quality uncertainty), i.e. the mone-
tary value bidders attach to it is the same for all bidders. This value, however,

will generally be unknown at the time the auction takes place.

Bidder 7 gets to know the realization z; of her information variable X;.
Bidders are distinguished solely by their private information; otherwise they
are identical. It is assumed that the number of bidders and the joint distribu-
tion of all random variables is common knowledge. When preparing their bids

bidders do not cooperate.

A rational bidder takes the bidding behavior of her competitors into ac-
count and behaves strategically. Since a bidder has only incomplete information
about the relevant features of the bidding situation, the auction is to be consid-
ered a non-cooperative game with incomplete information among the bidders.
We rely on the Bayes-Nash equilibrium concept due to Harsanyi (1967/68) to
analyze this game. For that purpose, a bidder’s strategy is defined as a real-
valued function mapping possible realizations of her information variable into
bids. A Bayes-Nash equilibrium (Bjy, ..., B,,) of bidders’ strategies is defined as
follows: B; maximizes bidder 7’s expected gains assuming bidding strategies
By,..., B; 1, Bi11,..., B, of her competitors and the assumed bidding behavior

1s correct.

3 Results

3.1 Bidding strategy

Intuitively, bidders consider the decision problem as one, where they form an
estimate of the unknown volatility with the understanding that bids increase
with an increasing volatility estimate.? Note that forming this estimate and
submitting a bid on the basis of it has two opposing effects. On the one hand,
a high volatility estimate increases the probability of getting the option. On
the other hand, a high volatility estimate increases the loss from being the one

who overvalued the volatility and thus suffering from the winner’s curse (cp.

2See also Bergman/Grundy/Wiener (1996) for general properties of option prices.



Milgrom/Weber (1982)). The optimal bid will be such that it balances those

two effects.?

Since bidders differ only by their private information, bidding behavior
can be described by a common bidding strategy. Note that different bids are
the result of different information only. The resulting bidding strategy in the

uniform-price auction is given by Theorem 1.

Theorem 1
The unique symmetric Bayes-Nash equilibrium in strictly increasing and dif-

ferentiable strategies is given by (B*, B*) with
B(z) = 5®(g7(x)) — K exp(=rT)®(h"(z)), (5)
where ® is the distribution function of a standard (mean 0 and variance 1)

normally distributed random variable and g¢*(x) and h*(x) are given by

So 1,
In — —x°T
nK+(+2x )

9 (z) = e (6)

and

Proof: See the Appendix

A bidder with information x submits a bid which equals the Black/Scholes
formula with a volatility z. Note that the bidder with the highest information

value is the one who gets the option.

3.2 Option pricing

By Theorem 1 and the rules of the sale, the seller sells the option at a price
which is given by a Black/Scholes formula with a volatility min(z,x2). This

31t is well-known (cp. Milgrom/Weber (1982)) that in common value auctions unsophisti-
cated bidding leads to the effect that the successful bidder tends to be the one who overvalued
the good. Substantial losses are quite often attributed to this effect. Thus rational bidders
shade their bids downwards when preparing their bids in order to account for the winner’s
curse effect.



is due to the fact that the bidder who submits the highest bid is the one with
the highest information. However, she is charged the bid of the unsuccessful
bidder. According to Theorem 1, this bid is given by the Black/Scholes formula
with the lowest information min(z1, z5) on volatility. Taking this into account,

the expected selling price of the option can be derived. We have

Theorem 2

The expected selling price Cy of the option is given by

1

Co = S / ®(g"(2))2(1 — 2)dz — K / o(h* (2))2(1 - z)dz. (8)

0

Proof: See the Appendix

Note that formula (8) generalizes the Black/Scholes formula while retaining
most of its attractive features. In particular, it is of closed form and option
prices are easily calculated. This is in contrast to most formulae accounting
for stochastic volatility in the literature. (cp. Hull/White (1987), Stein/Stein
(1991), Heston (1993a) and Amin/Ng (1993)). The formula of Theorem 2 in-
herits most of the properties of the Black/Scholes formula. This includes the
well-known comparative statics with respect to Sy, K, and r. However, it
might have the potential to account for the empirical biases that are doc-
umented for the Black/Scholes formula in the literature (cp., for example,
Bakshi/Cao/Chen (1997), and Dumas/Fleming/Whaley (1998)).

How does (8) compare to other stochastic volatility option pricing formulae
in the literature? Hull/White (1987) address the stochastic volatility problem
for a diffusion model with the volatility being determined by a second diffusion.
They arrive at a series not a closed-form solution. However, they argue that
their formula could be interpreted as an expected Black/Scholes formula, where
the expectation is taken over the distribution of ”mean variances”. Stein/Stein
(1991) and Heston (1993a) use a diffusion model with the volatility being gov-
erned by an Orenstein-Uhlenbeck process. They succeed in deriving closed-form
solutions. Again, it is argued that the admittedly rather complicated formulae
could be interpreted as an ”average Black/Scholes formula over different paths
of volatility”. Unfortunately, the mixing distributions are difficult to obtain.
Similarly, Amin/Ng (1993) argue in favor of their formula as expectation of the
Black/Scholes formula with respect to ”the average variance” (cp. Amin/Ng

5



(1993), p. 890). Even setting apart the different distributional and modelling
assumptions, all formulae discussed above are fundamentally different when it
comes to the mixing distribution applied to the Black/Scholes formula. (8) is
the only option pricing formula that uses a market microstructure set-up to
determine the mixing distribution. As such, the resulting mixing distribution
can be easily derived. Summing up, (8) differs both in form and derivation

from the formulae given in the literature.

4 Conclusion

This paper considers an extended Black/Scholes framework with a stochastic
volatility, where market participants have private information on certain as-
pects of the volatility process. It determines the revenues that a seller of a
European call option can achieve in a uniform-price auction. In order to do
this, the bidding behavior of market participants is derived. It is shown that
bidders use Black/Scholes analogous bidding strategies. From this the (ex ante)
expected selling price of the option is derived. It is a weighted Black/Scholes
formula with the weights being determined by bidding behavior. This weigh-
ing scheme distinguishes the derived formula from those in the literature. The
analysis is not limited to call options. In fact, any (European-style) contingent

claim can be priced accordingly.

Our model uses certain simplifications. First, stochastic volatility is inde-
pendent of the basic uncertainty represented by W. This assumption is made
for ease of exposition and can be relaxed. Second, there are several assumptions
which, when relaxed, give rise to technical problems. Certainly, risk neutrality
matters. Furthermore, results for an endogenous quantity to be sold cannot
easily be achieved. Also, allowing for price-quantity bids on the bidders part

will lead to problems.

The considered set-up gives rise to an incomplete financial market. In an
incomplete financial market there is a plethora of alternative option prices
consistent with an arbitrage-free environment. In order to sort out these prices,
different approaches have been used. In that respect, this paper adds to the

on-going discussion on this topic by using a market microstructure approach.
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6 Proofs

As usual (cp. Black/Scholes (1973), Merton (1973), and Miiller (1985)), the
proof will be given for the case y = 0 and r» = 0. This is done in order to save
on notation. The arguments will exactly go through for arbitrary parameters.
Let n(z) denote the normal density

72

1
n(z) = —exp(——).
(#) = 5= exp(= )
Furthermore, the following notation is used.

1
ln&—i-—(x;y

K 2
YT

s

gz, y) = Tt
2

hz,y) = g(x,y)—x;ry\/f

v(z,y) = So®(g9(z,y)) — K(h(z,y))

v (z) = vz, )

First, regularity conditions will be proved.

Lemma 1
(a)
Emax(Syt — K,0) | X; =z, Xy =y] = So®(9(z,y)) — K®(h(z,y)) (9)

(b) v(z,y) is strictly increasing in x and y and v*(z) is strictly increasing in
x.

Proof of Lemma 1:

(a) We will use the fact that the following holds true for a normally distributed

random variable Y with mean a and variance 72.

™ _a+7m—-InM
Blexp(Y) % Logysan] = espla+ 5 )p(" )



Plexpy > M}) = o(®=2M,

T

Let

+ 1o+
TEY oy, - LEEY

7 = )?T.

Z is normally distributed with mean

Loty
ElZ] = —= T
7= -5 ()
and variance
VarZ = (:r —; y)QT.

Then we get

E [ max(Sr—K,0) | X, =2,X; =y| = E[Sr X lig;>ky | X1 =2, X, = y]

— KE[ls>xy | X1 =1, Xo = y]

X Wr = () T) X Lep(ztnsmp—y (25215 &)

2 0

= SoE[exp(

- KE[l{exp(%u xWTf%(%y)zT)>S£0}]

K
= SpElexp(Z) x 1{epo>5£0}] — KP({expZ > S_o})

= S5y®(g(z,y)) — K®(h(z,y))

(b) Since
oh 89 VT
il M (10
and
Kn(h(z,y)) = Son(g(z, y)), (11)
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oL = Sunle(e, )5t — Kn(h(z, 1) 5"

= Suno(e,0) 2 — Kn(he, 1) 2 + Kn(h(a. )

= Kn(h(x,y))g >0

holds true, i.e. v(z,y) is strictly increasing in z. Similarly,

and

which proves the claim.

Proof of Theorem 1:

The proof is given in two steps. First, it is shown that B* of the form (5) is a
Bayes-Nash equilibrium. Second, uniqueness is established.

(a) (B*, B*) is a Bayes-Nash equilibrium*

We will show that the optimal bid b} of a bidder i is given by B*(x;) if her
competitor bids according to B*(X;) , j # 4, and z; is the realisation of bidder
7’s information variable. By symmetry, the analysis can be restricted to the
decision problem of bidder 1. Bidder 1 is successful with her bid b, if

b> (B*(Xy))
holds, and in that case she pays
B*(X)).
Thus bidder 1’s conditional expected gain from a bid b is given by

E [(Vr — B (X)) L~ (x5)<p} | X1 = 21]

(B)71(1)
- / (E[Vr | X1 =21, Xo = y] — B*(v)) f(y | 21)dy
0

(B*) 1(b)

= [ ) - vl )y | )y (12)
0
4The proof mimics the one of Milgrom/Weber (1982), p. 1101.
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by Lemma 1 (a), where f denotes the corresponding density. The integrand is
positive for v(z1,y) > v(y,y) and negative for v(zy,y) < v(y,y). Since v(.,y)
is strictly increasing for fixed y, the integral is maximized by choosing b such
that

(B) () =m
holds true. Consequently, the optimal bid b* is of the form b* = B*(z1).
(b) Uniqueness
To show uniqueness, let (B, ..., B) be a symmetric Bayes-Nash equilibrium in
strictly increasing and differentiable strategies. If bidder 2 bids according to

B(X3), bidder 1’s conditional expected gain from a bid b is given by

E (V= B(Xo)13xp<ny | X1 = 7]
B~1(b)
(v(z1,y) — B(y)) £y | z1)dy. (13)

Il
o

The necessary condition for a maximum is given by

v(zy, B7H(b*)) = b* =0

for the optimal bid b*. Since b* = B(z) holds true by the definition of equi-

librium

B(z) = v*(z1) = B*(x1)
follows. Q.E.D.

Proof of Theorem 2:

Using the bidding strategy derived in Theorem 1 we get

CO = E[B*(Xl)l{X2>X1}]+E[B*(X2)1{X1>X2}]

= QE[B*(Xl)l{X2>X1}]

1 1

= 2 / /B*(xl)dxgd:vl

x1=0 1
1

= 9 / B*(2))(1 — 21)dz:

r1=0

- So/@(g*(xl))Z(l — 2))dz — K/Cb(h*(xl))Q(l — 21)day.

0
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