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Abstract

How risky are investments in residential real estate? To answer this
question, information is needed about the behavior of house prices.
The hedonic methodology has become a standard approach for mod-
elling the prices of heterogeneous assets. Although intuitively appeal-
ing, it is often criticized that this approach has no sound theoretical
background. We have developed a model that partly circumvents this
criticism. Based on an approximation for the present value, our model
delivers a state space form for the determination of house prices. Thus,
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we can incorporate in an economically meaningful way other economic
variables like the inflation rate, mortgage rates and returns of other
assets. Under some restrictive conditions, our model reduces to the
standard hedonic approach. We use the EM algorithm with a final
scoring step to estimate our model with monthly data of single-family
house sales from the four South-West districts of Berlin for the years
1982:7 to 1999:12.

JEL Codes: C32, C43, G12
Keywords: Present value, Hedonics, Kalman Filter, EM Algorithm,
Model Selection, Cross-Validation Criterion

1 Introduction

In most industrial countries real estate is the greatest component of private

household’s wealth. For example, in Germany real estate’s share of total

wealth is about 53% (Deutsche Bundesbank 1999, p.43). For many house-

holds, owner-occupied housing is the single most important asset in their

portfolios. As a consequence, private households’ real estate investments are

at center stage in the ongoing discussion about private pension schemes and

optimal portfolio composition. Questions arising in this discussion are: How

risky are investments in residential real estate? How is this risk related to

the risk of other assets like stocks and bonds? Does real estate provide a

hedge against inflation? Potential house buyers, sellers and developers of

new houses are all interested in answers to these questions. Also banks want

to know more about the risk of real estate because they use houses as collat-

eral for mortgages. To answer these questions, a careful analysis of the time

series properties of real estate prices is needed.

In this paper, we study the movement of house prices in Berlin, Germany,

during a twenty year span. Our primary data source is a data base consisting

of all transactions of single-family homes in Berlin between January 1980

and December 1999. Studying the development of house prices, though, is

complicated by the fact that houses are heterogeneous assets. Indeed, it has

been said that no two houses are ever identical. It is thus imperative in the

empirical model to include variables that measure house characteristics. We
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therefore make ample use of the rich information in our data set describing

the properties of each unit sold.

The standard approach for constructing a model of the prices of hetero-

geneous assets is hedonic regression (e.g. Shiller 1993, Cho 1996, Sheppard

1997, Hill, Knight, and Sirmans 1997). Due to the fact that the so-called

repeat-sales approach derives from the hedonic methodology, we incorporate

it under this heading (Dombrow, Knight, and Sirmans 1997). A hedonic

model starts with the assumption that on average the observed price can

be explained by some function f(It,xn,t, βt). Here, It is a common price

component that “drives” the prices of all houses, the vector xn,t comprises

the characteristics of house n and the vector βt contains all—possible time

variable—coefficients of the functional form. Most studies assume a log-log

functional form and that It is just a period specific constant term. However,

although there is some theoretical work on the derivation of functional forms

(see the seminal paper of Rosen 1974), it is sometimes difficult to interpret

the hedonic coefficients in a plausible way. We build on this work but go

beyond the conventional specification in several important respects.

In our paper, we propose the well-known present value relation as a means

to explain the behavior of house prices. Our approach is quite similar to the

one used in Engle, Lilien, and Watson (1985). We generalize their approach.

First, we derive a hedonic regression equation from the well-known present

value model of asset prices, thus providing theoretical motivation and aiding

interpretation of the hedonic model. Still, present value theory does not ex-

actly pin down the functional form of the hedonic regression equation. We

therefore use a cross-validation criterion to choose between various possi-

ble transformations of the continuous explanatory variables in the empirical

work. Moreover we augment the hedonic equation by a model of the un-

observable component of house prices reflecting the general tendency of the

market for residential real estate. This component is assumed to be common

to all prices in a certain period after controlling for the heterogeneity of house

attributes. It is specified as an autoregressive process that also depends on

financial variables such as the spreads between mortgage and interest rates

with the same maturity or the returns of other assets such as stocks and

3



bonds. Our economic model associates this component of house prices with

(expected) deviations from the long run rate of return of single-family homes.

The key to handling an hedonic model that has been augmented by an

equation with an unobservable dependent variable is to write the model in

state space form. Once the model has been put into this form, the Kalman

filter can be used to estimate the unobservable price component and the

EM algorithm can be used to calculate maximum likelihood estimates of

the unknown coefficients of the model. Finally, we perform a scoring step to

improve the efficiency of the EM algorithm estimates and to obtain estimated

standard errors.

We estimate the augmented hedonic model using a subsample of the data

base of all transactions that contains 4410 sales of single-family houses in the

four South-West districts of Berlin between July 1982 and December 1999.

Our estimates of the coefficients of the hedonic equation provide plausible

and easily interpretable values of the premiums or rebates that different

house characteristics command. The estimated process of the common price

component is highly persistent and sluggish.

The remainder of this paper is organized as follows: we motivate and

derive a hedonic regression model in Section 2 with the help of present value

theory. Because the present value formulae are highly non-linear, we use a

well-known approximation. We also propose an equation for the unobservable

price component. In the following section the empirical model is put into

state space form and the estimation strategy is laid out. It basically consists

of combining the Kalman filter and the EM algorithm to get estimates of the

unknowns in our model. Section 4 contains the empirical part of the paper.

Section 5 interprets the results. The last Section concludes. An Appendix

contains some derivations of used expressions.

2 Present Value Relation

We start with the assumption that the sales price of a house is equal to

the sum of the discounted net proceeds that the investor expects in the
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future. The economic reasoning for the relation is as follows: the buyer of a

house accrues a “dividend” from holding the house whereas the seller incurs

opportunity costs of not receiving this “dividend”. The dividend is simply

the rent of the object. The process of the rent gives the cost of “shelter”.

This process must be discounted with a rate that compensates for the risk of

holding a house. The discount rate is identical to the marginal return of other

investments with the same level of risk. Due to this fact, we use “discount

rate” and “return rate” as synonyms. That is the standard framework of the

well-known present value relation (see Cochrane 2001)

Pn,t =
∞

∑

j=1

Et

[

Dn,t+j
∏j

i=1(1 + Rt+i)

]

. (1)

Here Pn,t denotes the sales price of house n that is sold in period t. Et[·] is a

shorthand notation for the expectation taken conditional on the information

available at time t. The net proceeds are given by the net rents Dn,t for the

house. Given the gross rents, one can derive the net rents by accounting

for maintenance and running costs. The net rents are discounted with time-

varying rates Rt+j. Due to the last assumption, the above stated relation

can be seen as a pure identity. Later on, we have to put structure on the

process of the discount rate.

Instead of working with equation (1) directly, we use a log-linearized

version of it (cf. Campbell, Lo, and MacKinlay 1997, Cochrane 2001). Let

rt denote the log of one plus the return rate and dn,t the log rent. The first

order approximation for the log price is

pn,t =
k

1− ρ
+ dn,t +

∞
∑

j=0

ρj
(

Et[∆dn,t+1+j]− Et[rt+1+j]
)

(2)

with ρ ≡ 1/(1 + θ), k ≡ ln (1 + θ) − θ ln θ/(1 + θ). Here, θ is the geometric

average of the rent-price ratio during the sample period. We have θ > 0 and

ρ < 1. It is easy to see from (2) that ρ can be interpreted as a discount

factor. The discount rate is given by θ. As usual, ∆ denotes the difference

operator. So, ∆dn,t gives approximately the growth rate of the rents.

Under the assumptions of the well known Gordon growth model (cf.

Campbell, Lo, and MacKinlay 1997, p.256) the approximation of the log
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price is exact. The assumptions of this model are that the discount rate and

the growth rate of the expected rents are constant. Thus, (1) boils down to

Pn,t =
(1 + G)Dn,t

R−G
(3)

with the rent growth rate G and the discount rate R. With the constant

rent-price ratio θ = (R−G)/(1 + G) we obtain

pn,t = dn,t − ln θ . (4)

It is easy to check that (2) reduces to this equation with rt+1+j = ln (1 + R)

and ∆dn,t+1+j = ln (1 + G). Here, θ is the inverse of the so-called capital-

ization rate. To derive the price one merely needs to capitalize—that is: to

multiply—the rent with this rate.

Because we have data on owner-occupied houses it is impossible for us

to observe the rents for the different objects. However, we have data on the

rent index for Berlin. We will refer to the notional object that corresponds

to this index as reference house. Let d0
t denote this rent index. We assume

that there exists a close connection between the unobservable rents of house

n and the rent for the reference house. This connection is given by

dn,t = δ + d0
t + (xn,t − x0)T β + εn,t (5)

where εn,t is white noise. The constant δ absorbs the normalization of the

rent index. x comprises the—possibly transformed—characteristics for every

object such as its age or its floor size. The characteristics of the reference

dwelling, x0, are unobservable whereas the characteristics of house n, xn,t,

are observable. The rent for house n is thus given by the rent for the reference

dwelling plus a premium for differences in characteristics. The differences are

evaluated with the implicit prices β. If we assume that the differences remain

constant over time or that the characteristics switch to the characteristics of

the reference object immediately after the sale we obtain with (5)

Et[∆dn,t+j] = Et[∆d0
t+j] for j > 0 . (6)

The assumption that the differences in characteristics remain constant is

problematic if the reference object does not age. In that case, the valuation
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coefficient for the age appears as a constant in (6). An example for a switch

in characteristics is easily given: the house is vacant at the date of sale but

the reference house is an occupied one. However, immediately after the sale

the new owner will move in.

We derive now for (2) with (5) and (6)

pn,t = κ + p0
t −

∞
∑

j=0

ρjEt[rt+1+j] + xT
n,tβ + εn,t (7)

where κ absorbs all constants. Here,

p0
t ≡ d0

t +
∞

∑

j=0

ρjEt[∆d0
t+1+j] (8)

is up to a constant equal to the fundamental value of the reference house.

This value would equal the price if the return rate deviation is zero. As

such, it is just the sum of expected future rents, discounted at a constant

rate. With a slight abuse of terminology, we will designate p0
t directly as

fundamental value.

To make the model empirically applicable we need to find expressions for

the unobservable conditional expectations in expression (8). We propose that

the growth rate of the rent can be modelled with a VAR(1) that incorporates

lagged growth rates of the rent and perhaps other variables (building activity,

income development etc.). Let vt contain at least the current and some lagged

observations of the rent growth rate. Then we have

vt+1 = c + Avt + ut+1 , (9)

where c and A contain unknown coefficients, and ut+1 is noise. The first

element in vt is the current observation of the rent growth rate. Thus we get

with the unit vector eT
1 = [1 0 · · · 0]

Et
[

∆d0
t+1+j

]

= eT
1

(

j
∑

i=0

Ai

)

c + eT
1 Aj+1vt for j > 0 . (10)

If the roots of ρA are inside the unit circle we obtain
∞

∑

j=0

ρjEt
[

∆d0
t+1+j

]

=
1

1− ρ
eT

1 (I− ρA)−1c + eT
1 A(I− ρA)−1vt . (11)
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The expression for the constant term is derived in Appendix A.1. To replace

A and c, we estimate (9) for the whole sample period. After that, we are

able to calculate the value of the discounted expected rent growth rates.

Thus far we have not considered the pure benefit of being the owner of

a house. We have only controlled for the the differences in characteristics

with respect to the reference house. It can be argued that house-ownership

generates “value” per se, because it gives the owner the right to model the

object in accordance to her own taste. But ownership also means incurring

costs like transaction or property taxes. Furthermore, if the house is rented

out the owner has to expend maintenance cost. In addition to that, there

exists a principal agent problem between lessor and lessee. The unobservable

renter will handle the dwelling with less care than the owner. However, the

lessor commands a remuneration for this adverse effect and this will increase

the rent relative to the notional rent for owner occupied housing (Homburg

1993). If all those influences remain constant during our sample period,

they are captured in the constant κ. But, if they change during the sample

period—for example, because of changes in tax rates—we have to control

for them explicitly. Furthermore, there might be unusual circumstances—

e.g. personal relationship between buyer and seller, annuity payments—that

influence the price. We will consider such changes and unusual circumstances

explicitly through dummy variables in the vectors xn,t.

Finally, we must make assumptions about the behavior of the unobserv-

able return rate rt. One possible specification for the process of the return

rate is

rt+1+j = φrt+j + (1− φ)r∗ + sT
t+jγ + νt+1+j . (12)

The random component νt is white noise. The required return depends on

its own lagged values and on the long run rate r∗. Furthermore, the return

is influenced by shocks st of some financial indicators. These indicators are

spreads between mortgage and interest rates, the inflation rate, changes in

interest or tax rates, and returns of stock indexes. We assume that these

shocks are incorporated immediately into the return rate and thus Et[st+j] =
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0 for j > 0. We obtain after some manipulations

Et[rt+1+j] = r∗ + φjEt[rt+1 − r∗] for j > 0 . (13)

It is easy to see that the long run required rate is equal to r∗ for |φ| < 1. If

we substitute (13) into the present value (7), define re
t+1 ≡ Et[rt+1 − r∗] and

assume |φ| < 1/ρ we get (where—once again—all constants are absorbed by

κ)

pn,t = κ + p0
t −

1
1− ρφ

re
t+1 + xT

n,tβ + εn,t . (14)

The expected changes in the return rate, re, are unobservable. However,

rewriting (12) in deviation form for j = 0, taking expectations at t and using

rt − r∗ = re
t + νt, we derive

re
t+1 = φre

t + sT
t γ + ν̃t (15)

with ν̃t ≡ φνt.

Let ψ denote 1/(1− ρφ) and multiply the above equation with this term,

one obtains eventually

∆0pn,t = κ− re
ψ,t+1 + xT

n,tβ + εn,t . (16a)

and

re
ψ,t+1 = φre

ψ,t + sT
t γψ + ν̃ψ,t (16b)

Here, ∆0pn,t denotes pn,t−p0
t . The subscript in the return equation indicates

the transformation. The first equation is easy to interpret: the deviation

between the current price and the fundamental price for the reference house

is a linear function of the characteristics of the object, and the cumulative

effect of the current return rate deviation. The second equation shows that

the cumulated return deviations are influenced by their previous value and

the shocks in the financial indicators. Because re
ψ,t is unobservable, we can

not use OLS to estimate the price equation. However by writing down the

system (16) as a state space model, we can apply the Kalman filter to estimate

re
ψ,t.
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3 State Space Form and Estimation Algorithm

The general state space form (SSF) is given as (with state and measurement)

αt = Ttαt−1 + εs
t (17a)

yt = Ztαt + εm
t . (17b)

with εs
t ∼ N (0,Rt) and εm

t ∼ N (0,Ht) (this notation mainly follows Harvey

1989). The disturbance vectors are distributed independently.

If the disturbance terms in (16) satisfy the above stated distributional

assumptions our model is easily arranged into SSF. Let Nt denote the number

of all houses sold at time t. There are Kβ house characteristics, and Kγ short

run influence variables. K = Kβ + Kγ + 1 is the number of constant state

variables and S = K + 1 is the number of all state variables. We obtain

αt ≡













re
ψ,t+1

γ

κ

β













, Tt ≡

[

φ sT
t 01×(Kβ+1)

0K×1 IK

]

, εs
t ≡

[

ν̃ψ,t

0K×1

]

(18a)

yt ≡









∆0p1,t
...

∆0pNt,t









, Zt ≡
[

−iNt 0Nt×Kγ iNt Xt

]

, εm
t ≡









ε1,t
...

εNt,t









.

(18b)

Thus, whereas the number of state variables per period is equal to S and

fixed, the number of observations per period—i.e. Nt—varies.

We are primarily interested in calculating the unobserved state vectors

αt. They contain the cumulated discount rate deviations re
ψ,t+1, the coeffi-

cients of the financial indicators γ, and the influences of the characteristics

β. If we knew all parameters of the SSF (17), we could use the Kalman

smoother to figure out the state vectors. On the other hand if we knew αt

the parameters could be readily estimated by maximum likelihood. In our

model the variances of the disturbances and φ are unknown. To estimate
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these coefficients we use the EM algorithm (Dempster, Laird, and Rubin

1977) and one subsequent step of scoring.

There is a vast literature about both methods and about some efficient

ways to combine both methods (cf. Engle and Watson 1983). Normally,

one should start with the EM algorithm and iterate until the parameter es-

timates converge. After this is done, these estimates can be used as starting

values for the scoring algorithm. This algorithm delivers as a by-product

an estimate of the information matrix. Both algorithms start with the log-

likelihood function of the state space form (17) and make extensive use of

the Kalman filter and the Kalman smoother. The filter equations are given

in Appendix A.2. However, we need some start values to initialize the esti-

mation algorithm. We use OLS for this task. Furthermore, we carry out the

necessary model selection for the rent equation (5) in the OLS framework.

In the next Subsection we discussion the estimation algorithm for the SSF.

Subsection 3.2 presents our model selection procedure.

3.1 The Estimation Algorithm for the SSF

To set up the log-likelihood we multiply the system of the state equations

with the S dimensional unit vector e1. The log-likelihood is, up to a constant

(cf. Wu, Pai, and Hosking 1996)

ln L(ψ) =− 1
2

ln |Σ| − 1
2
εT

0 Σ−1ε0

− 1
2

T
∑

t=1

ln |R̃t| −
1
2

T
∑

t=1

ε̃sT
t R̃−1

t ε̃s
t

− 1
2

T
∑

t=1

ln |Ht| −
1
2

T
∑

t=1

εmT
t H−1

t εm
t

(19)

with ε0 = α0−µ, R̃t ≡ eT
1 Rte1, ε̃s

t = eT
1 (αt−Ttαt−1) and εm

t = yt−Ztαt.

However, we do not observe the state vectors. The idea of the EM algorithm

is to maximize instead the expected value of the log-likelihood function. To

derive the expected value of (19), let us define for t 6 T

at|T ≡ ET [αt] (20a)
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Pt|T ≡ ET [(αt − at|T )(αt − at|T )T ] (20b)

Pt,t−1|T ≡ ET [(αt − at|T )(αt−1 − at−1|T )T ] . (20c)

Furthermore we rewrite

ε0 = (α0 − a0|T ) + (a0|T − µ) ,

ε̃s
t = eT

1

(

(αt − at|T )−Tt(αt−1 − at−1|T ) + (at|T −Ttat−1|T )
)

and

εm
t = (yt − Ztat|T ) + Zt(αt − at|T ) .

We have for our model Ht = σ2
εINt and R̃t = σ2

ν̃ψ
. The assumption of uncor-

related errors in the discount rate and the price equation allows identification

of the two variances (see Schwann 1998). After all, we obtain for (19) with

E[εTΩ−1ε] = tr{Ω−1E[εεT ]}

ET [ln L(ψ)] =− 1
2

ln |Σ| − 1
2
tr

{

Σ−1(P0|T + (a0|T − µ)(a0|T − µ)T )
}

− T
2

ln σ2
ν̃ −

1
2σ2

ν̃

T
∑

t=1

eT
1 Ste1 −

1
2

ln σ2
ε

T
∑

t=1

Nt

− 1
2σ2

ε

T
∑

t=1

tr{Mt}

(21)

where

St ≡ ET [εs
tε

sT
t ] = Pt|T −Pt,t−1|TTT

t −TtPt,t−1|T + TtPt−1|TTT
t

+ (at|T −Ttat−1|T )(at|T −Ttat−1|T )T

and

Mt ≡ ET [εm
t εmT

t ] = ZtPt|TZT
t + (yt − Ztat|T )(yt − Ztat|T )T .

Due to the fact that the number of houses sold per period varies through time

the filter procedure has to handle missing values. Generally, the Kalman
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filter is well suited for handling missing observations (e.g. Harvey 1989, p.

144). One can either replace the missing observations with zeros and adjust

the covariance matrix accordingly (see Shumway and Stoffer 2000, 4.4) or

one can cancel out the missing observations from all matrices (Koopman,

Shephard, and Doornik 1999). It is possible to show that both methods

deliver equivalent results. We use the second method in our algorithms.

The unknown parameters—collected in ψ—are µ, vechΣ, φ, σ2
ε and σ2

ν̃ψ
.

We have to choose these parameters in such a manner that the value of the

expected log-likelihood is maximized. It is easy to see that µ̂ = a0|T and that

there is no way to derive an optimal choice vechΣ̂. So we use the covariance

matrix derived for the OLS estimates. For the other unknown coefficients we

obtain with the help of the first order conditions

σ̂2
ν̃ψ

=
1
T

T
∑

t=1

eT
1 Ste1 (22a)

σ̂2
ε =

1
∑T

t=1 Nt

T
∑

t=1

tr{Mt} (22b)

φ̂ =

∑T
t=1 eT

1 (Pt,t−1|T + at|TaT
t|T −Tt,−φ(Pt−1|T + at−1|TaT

t−1|T ))e1
∑T

t=1 eT
1 (Pt−1|T + at−1|TaT

t−1|T )e1
, (22c)

where Tt,−φ is Tt, but φ is replaced by a zero. The derivation of the last

expression is given in Appendix A.3. The EM algorithm consists of the follow-

ing iterative procedure: start with some reasonable values for the unknown

coefficients (see Subsection 3.2), evaluate the matrices in the expected log-

likelihood function with the Kalman smoother, and estimate the unknown

coefficients. Use these estimates for a new evaluation of the expected log-

likelihood and so on. Our algorithm stops if the relative change of the log-

likelihood is below some prescribed convergence level. As Harvey (1989,

p. 126) shows, it is possible to rewrite the log-likelihood (19) function in the

prediction error decomposition form

ln L(ψ) = −1
2

T
∑

t=1

ln |Ft| −
1
2

T
∑

t=1

vT
t F−1

t vt (23)
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with vt ≡ yt − Ztat|t−1. The matrix Ft is a by-product of the Kalman filter.

In the above log-likelihood function we have omitted the expression for t = 0

and a constant term that depends solely on the number of observations.

The EM algorithm guarantees that the value of the likelihood increases for

every iteration. However, it is a drawback of the algorithm that it does not

deliver an estimate of the information matrix. This matrix is necessary to

calculate standard errors for the estimated coefficients. Thus, we complete

the estimation procedure with a final scoring step for (23) evaluated at the

estimates of the EM algorithm. As Engle and Watson (1981) have shown,

the elements of the information matrices are given by (with i, j = 1, . . . 3)

I ij =
T

∑

t=1

(

1
2
tr

{

F−1
t

∂Ft

∂ψi
F−1

t
∂Ft

∂ψj

}

+
(

∂vt

∂ψi

)T

F−1
t

∂vt

∂ψj

)

. (24)

The derivatives are evaluated numerically with forward differences in the

following way (see Fletcher 1987, p.23): run the filter with the estimated

coefficients of the EM algorithm. Then rerun the filter three times, where

in every pass one of the coefficients is perturbed slightly. We label such a

pass for coefficient i with the superscript (i). For example, assume that the

change of every coefficient is given by δ% (that is, ψ(i)
i = (1 + δ)ψi). Then

one obtains
∂Ft

∂ψi
≈ (δψi)−1

(

F(i)
t − Ft

)

and
∂vt

∂ψi
≈ (δψi)−1

(

v(i)
t − vt

)

. (25)

3.2 Model Selection and Initial Values

Economic theory does not suggest a particular functional form for the depen-

dency of the rent on the explanatory characteristics of the respective house.

Most variables in (5) are dummies representing various qualitative charac-

teristics of the houses such as their location or the presence of a swimming

pool. These discrete explanatory variables naturally enter the model in a

linear way. For the continuous variables the following Box-Cox type trans-

formations are considered

Tλ(x) =







λ−1
{

(

s−1(xλ + aλ)
)λ − 1

}

for λ ∈ Λ,

ln{s−1(x + a0)} for λ = 0
(26)
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with Λ = {−2,−1,−0.5, 0.5, 1, 2}. Here x denotes any of the continuous ex-

planatory variables, aλ is a constant depending on λ, s is the sample standard

deviation of variable x and λ is the parameter that determines the transfor-

mation. A particular value of λ implies a value of the constant aλ. These

constants are computed according to the suggestions made in Bunke, Droge,

and Polzehl (1999) and aim to make, for any given λ, the transformation as

nonlinear as possible.

If we rewrite the price equation (16a) with It+1 ≡ κ− re
ψ,t+1 we obtain

∆0pn,t = It+1 + xT
itβ + εit . (27)

We choose λj for each of the J variables simultaneously by the following

cross-validation criterion

λ∗ = arg min
�

T
∑

t=1

Nt
∑

n=1

(

∆0pn,t − ∆̂0p−n,t(λ)
)2

, (28)

where λ is the vector comprised of the λj for the different variables. Here,

∆̂0p−n,t(λ) denotes the predicted value of ∆0pn,t from an OLS fit of regres-

sion (27) using the transformations of the continuous explanatory variables

according to the value of λ under consideration but omitting the observa-

tion indexed (n, t) from the regression fit. By omitting an observation from

the regression used for predicting that very observation the cross validated

choice of λ∗ is optimal in the sense of minimizing an estimate of the ex-

pected squared prediction error (see Bunke, Sommerfeld, and Stehle 1997,

Bunke 1998). Given the best transformations, we can estimate the series for

It, β, σ2
ε with OLS and use them and their covariances for the initializa-

tion of our estimation algorithm. Furthermore, we can regress Ît+1 on own

lagged realizations and other financial indicators to derive start values of the

unknown coefficients of the discount rate equation.

4 Data and Estimation

The data sets are provided by the Gutachterausschuß für Grundstückswerte

in Berlin. This commission collects information on all real estate transac-

tions in Berlin. The main data set contains about 22000 observations of
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all transactions of single-family houses in Berlin between January 1980 and

December 1999. Besides the price, we observe about 100 characteristics of

each house such as the size of the lot, floor space, age of the house, location,

availability and numerous qualitative variables indicating specific conditions

of the house, the neighborhood or the transaction (e.g. transaction between

relatives). We also have data for 5065 sales of apartment houses for the years

1980 to 2000. For every sold object we know the price and the yearly rent of

the object. We use these data to calculate a proxy for the discount factor ρ

that is used in the approximation (2) of the present value.

Before we characterize the sample we use for estimation, we want to give

a brief description about Berlin’s market for real estate. According to the fig-

ures of Berlin’s bureau of statistics (Statistisches Landesamt Berlin, StaLa),

Berlin had 1.82 million dwellings in 1998. Here, dwellings comprise apart-

ments, single family houses—detached, semi-detached, and row houses—,

and condominiums. 11.04% of all non-vacant dwellings were privately owned.

The ratio between the floor space of the privately owned dwellings and rented

dwellings was 1.55, where the average floor space for a rented apartment was

66.6 square meters in 1998. About 71% of all privately owned dwellings were

condominiums (Statistisches Landesamt Berlin 1999).

For the estimation of our model, we take the observations of the four

South-West districts Zehlendorf, Wilmersdorf, Steglitz, and Charlottenburg.

These districts cover 19% of Berlin’s area. In 1998 they accounted for 17%

of Berlin’s total population of about 3.4 million. The ratio of inhabitants

to area lies a little bit above the average for all districts, but is much lower

than the ratio for the inner city districts. 20% of all Berlin dwellings lay

in the four South-West districts. 15% of the dwellings there—that is an

absolute number of 48 600 dwellings—were privately owned. The average

floor space in 1998 was about 81 square meters and was thus 15% higher

than the average for the whole city. The unemployment rate in these districts

is lower than the average for the whole city. All four districts are of high-

quality and relatively homogeneous. Especially Wilmersdorf (Grunewald)

and Zehlendorf (Wannsee) have very nice sections with forests and lakes. It

is quite reasonable that houses in these districts share the same market risk,
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so that yields of house ownership will be discounted by the same rate.

We measure the rent of the reference house, d0
t , by the monthly rent sub-

aggregate of the consumer price index for Berlin, provided by the StaLa.

However, the construction principle of this index changed slightly in the year

1995. All values of this index before 1995 are calculated for four person house-

holds with middle income living in the Western part of Berlin. Thereafter,

the values are calculated for all households. We assume, that this change

does not influences the rent index as a measure of the opportunity cost.

Furthermore, in our model some information is not specific to the house

but rather describe the opportunities of the investor. We have collected

information about tax rates and government housing programs during the

relevant time period. As financial indicators we have different monthly mort-

gages rates (with varying degrees of interest rate fixedness), the range of these

rates offered by different banks, the monthly consumer price index for Berlin

West, monthly interest rates given by returns on bonds, the return of the

DAX stock index (a performance index) and the return of the CDAX stock

index (a price index). The different mortgage rates and the ranges are avail-

able only since June 1982. Before that date, the Deutsche Bundesbank has

calculated merely an average mortgage rate. Because we want to include the

subdivided rates and also some lags, we let our sample begin in August 1982.

After that, our sample contains 4410 observations for the four South-West

districts and covers 209 months. There are at least 6 observations per month,

at most 43 observations, and on average 21 observations. The median price

for the whole period is 600000.- Deutsche Mark and the average price is about

757163.- Deutsche Mark.

4.1 The Fundamental Value

To calculate the time series of the fundamental value that is defined in (8), we

need an estimation of the right-hand-side of (11). To estimate this expression,

we take the following steps: First, take the logarithm of the rent index and

calculate the first differences in the transformed variables. The new variable

∆d0
t approximates the growth rate of the rent index. After that, we fit the
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following regression

∆d0
t = δ0 + δ1∆d0

t−1 + δ2∆d0
t−12 + ut (29)

to the data. The results are given in Table 1. The Q-test shows that the

Table 1: Regression results for the process of the rent index

Coefficient t-Statistic Prob.

δ0 0.0012 3.0857 0.0023

δ1 0.1448 2.5993 0.0099

δ2 0.5056 8.9812 0.0000

Regression Diagnostics

R2 0.3005 mean of ∆d0 0.0038

R
2

0.2946 F-statistic 50.6940

DW 2.0231 Prob(F-statistic) 0.0000

Note: data are 251 monthly observations for the growth rate of the rent index from
1979:2 to 1999:12. Due to the lags, the estimated series starts at 1980:2. DW is the
Durbin Watson statistic.

simple and the squared residuals are uncorrelated. We can rewrite (29) as

vt = c + Avt−1 + ut (30)

where the (13 × 1) vector vt contains the observations of ∆d0
t from t to

t− 12. For c we have c1 = δ0 and all other elements are zero. Furthermore,

a1,1 = δ1, a1,13 = δ2, aj,j−1 = 1 for j = {2, .., 13} and all other elements

are zero. Finally, the first element in ut is the noise term ut and all other

elements are zero. The matrix A has 13 distinct eigenvalues which all have

modulus less than 1.

To calculate ρ, we use our data set on apartment houses. We have in-

formation on the rent receipts for the different houses. However, we have

to adjust these receipts in several ways to get the net rent payments that

accrues to the owner of the house. We calculate that about 35% of the gross

rents are maintenance costs. Furthermore, we check the sensitivity of ρ with

respect to different figures of administration costs. We calculate the monthly

18



Figure 1: Fundamental value. Plot of the fundamental value of the reference
house, p̂0

t , from 1982:7 to 1999:12. The series is calculated according to the
fundamental value relationship given in equation (8). Confidence intervals
are calculated with the delta method (see for example Greene 2000, p.357).
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inverse capitalization rate θ with different relative administration costs that

range from 0% up to 12.5%. According to these figures, the inverse capital-

ization rate lies between 0.39% and 0.44%. If we round up to the third digit

we obtain for any of these values

ρ̂ = 0.996 . (31)

With this result at hand, we can calculate the fundamental value p0
t with

d0
t and the relationship given in equation (11). The series from 1982:7 to

1999:12 is plotted in Figure 1. We see immediately that the value soars in

the first years of the Eighties and in the first half of the Nineties. It reaches

its peak in 1995. After then, the value remains on at a relatively constant

level. Starting in 1985 the value resembles roughly the shape of the yearly

single-family house price index of the Ring Deutscher Makler (RDM). The
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RDM is an association of German realtors and valuers that conducts every

year an inquiry of its members about the situation of the real estate market.

The index can be used as an rough market indicator. For the first years of the

Eighties, this index shows a behavior that is different from the fundamental

value. Whereas this index remains on a plateau, the fundamental value

tightens during that period. However, this behavior of the fundamental value

is in accordance with the RDM rent index, which was increasing during that

period.

4.2 Model Selection for the Data

The size of the lot, the size of the floor space and the age of the building

are the continuous variables in our model selection procedure. λ∗ chosen

for our data consists of λ1 = 1 (size of the lot), λ2 = −2 (size of the floor

space), and λ3 = −0.5 (age of the building). The value of the cross-validation

criterion in (28) for these transformations is 0.7583. Furthermore, we obtain

for our regression—where we have included an overall constant— a degree of

determination of R2 = 0.7852 and an adjusted degree of R̄2 = 0.7736.

The final model contains, in addition to the three continuous characteris-

tics, sixteen characteristics. The additional characteristics are: dummies for

detached house and row house (excluded category is semi-detached house),

dummies for Wilmersdorf, Zehlendorf, and Steglitz (Charlottenburg is ex-

cluded), dummies for houses in good condition or in bad condition (excluded

category is normal condition), a dummy for noise in the environs of the house

(e.g. the object lies in the air lane or near a railway track), a dummy for

a indoor pool, a dummy for houses with valuable inventory (e.g. built-in

kitchen, furniture, sauna), a dummy if the house is vacant and not occupied

by the seller, a dummy for houses still under construction at the date of the

sale, a dummy if the object is rented out (and thus, the buyer is an investor

who wants to accrue rent payments), a dummy if the house is purchased by

former tenant, a dummy if personal circumstances exist (e.g. sale between

relatives or a divorced couple), and eventually a dummy if the transaction

shows unusual—legal or financial—circumstances (e.g. payment by install-
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ments, right of residence for the former owner).

We want shortly explain the different tax and assistant dummies that we

have incorporated in the selection procedure. Before 1987, the notional rent

of owner-occupied housing was taxed—just like ownership of rented objects—

through the income tax. On the other hand, it was possible to deduct de-

preciation cost from the tax bill. In 1987, the taxation of the notional rent

for owner-occupied housing was repealed. However, the deduction possibili-

ties were modified only slightly. To catch up possible effects of this change

in taxation we have generated a dummy for all owner-occupied houses that

are sold before 1987. But the estimated coefficient is not significant at the

5% level. A plausible explanation is that the value of the notional rent was

a (low) flat sum and that the owner had many possibilities to decrease his

tax bill. So, in most cases the net effect was zero or even positive and the

repealing of the tax in 1987—combined with the slight modification in the

deduction possibilities—had no positive effect at all on the present value of

a owner-occupied house.

In 1993, the maximal amount of purchase cost that is deductible from

the income tax was halved for objects that were older than 3 years. We have

captured this effect with a dummy for all objects that were sold after 1992

and were older than three years at the date of the purchase. The coefficient

for this dummy is also insignificant. One possible explanation is that the

overall effect is only marginal or is not identifiable because most sellers had

not the right to claim for the deduction (because their income was too high

or because they have already claimed the deduction in former years).

In 1996, the whole system to promote owner-occupied housing was changed.

Instead of assisting through deduction possibilities, the law Eigenheimzula-

gengesetz introduced direct allowance for owner-occupied houses. However,

it was the intention of that law to continue the pre-existing rules. We have

generated a dummy for all owner-occupied houses that were sold after 1995.

The coefficient for the dummy is insignificant. That shows that the new law

really continues the old arrangements.

Eventually, the rate of the sales tax—Grunderwerbssteuer—was increased

in 1997 from 2% to 3.5%. Due to the fact that sales between direct relatives
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and couples are exempted from this tax, we have generated a dummy for

this change in taxation. But even for this dummy, the respective coefficient

is insignificant. A possible explanation is that we have used the variable

personal circumstances as indicator for sales between relatives and couples.

This variable contains also sales between companies and employees and we

are unable to distangle such sales.

Furthermore, there are some other taxes that influence the net rent of

a house. An example is the Grundsteuer—real estate tax—that is collected

by the Federal State. However, there were no large changes of this tax and

there are only few exemptions from this tax, so that we neglect it.

Perhaps, there is also a generalized explanation for the failure to identify

effects of taxes and subsidies. The amount of assistance depends on the

specific characteristics of the household (for example the number of kids)

and not on the house per se. It is impossible to identify any effect without

detailed information on sellers and buyers.

To select the financial indicators, we run a regression of the estimated

coefficients of the time dummies from (27). Let Ît denote the estimated

coefficient multiplied with minus one (recall that It ≡ κ− re
ψ,t). Then we fit

Ît+1 = c + φÎt + sT
t γ + νt (32)

and select the significant financial indicators. The vector of the financial

indicators contains lagged values of the inflation rate for Berlin, the return

of the DAX, the range of mortgage rates from different banks, and spreads

between mortgage and interest rates with different interest rate fixedness

and—respectively—maturities (for a study, which explores the behavior of

the spreads in detail, see Nautz and Wolters 1996). For the selected model

the p-value of the F -test is 0.000 and R2 = 0.7835. The estimated value

of φ is 0.788 and that of σ2
ν is 0.0048. The only indicators with significant

coefficients at the 5% level are the spread with a fixedness of two years and

the range with interest rate fixedness of five years. We have tested both series

for a unit root with the augmented Dickey-Fuller test. For the test, we have

included a constant and the one period lag. We can reject the hypothesis of

a unit root for the spread at the 10% level. The test statistic is -2.81 and
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thus very close to critical value for the 5% level, -2.87. For the range, we can

reject the unit root hypothesis at the 5% level.

4.3 Results from the Estimation Procedure

We use the selected transformed variables, the two financial indicators and

the estimated coefficients to initialize the EM algorithm. After each iteration,

the value of the log-likelihood function in the prediction error decomposition

form (23) is calculated. The results are given in Table 2. If we compare these

Table 2: Estimation output for the coefficients in the system matrices

Coefficient t-Statistic Prob.

φ 0.9408 35.526 0.0000

σ2
ν̃ 0.0002 0.61131 0.3309

σ2
ε 0.0560 45.985 0.0000

Note: convergence of the EM algorithm is reached after 5 iterations. Results are
calculated with a final scoring step. The value of the log-likelihood is 1.5% higher
compared with the value evaluated at the OLS estimates.

result with the OLS estimates we see immediately that the AR-coefficient

of the return equation has increased substantially. On the other hand, the

variance of the expected return deviations is not different from zero. It seems

as if the AR-coefficient has soared much of the variance. The estimated

variance of the price equation is almost unchanged. This is also true for the

other coefficients of the price equation that are reported in Table 3.

Table 3: Hedonic coefficients of the price equation

Coefficient t-Statistic Prob.

T1(lot size) 0.1770 51.0822 0.0000

T−2(floor space) 26.1231 403.6657 0.0000

T−0.5(age) -0.0423 -17.2832 0.0000

row house -0.0333 -4.5329 0.0000

detached house 0.0772 10.5098 0.0000

Wilmersdorf 0.2563 17.0500 0.0000

—continued—
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Table 3: Hedonic coefficients, continued

Coefficient t-Statistic Prob.

Zehlendorf 0.0883 7.3835 0.0000

Steglitz -0.0969 -8.0506 0.0000

good condition 0.1159 19.8721 0.0000

bad condition -0.2264 -9.4732 0.0000

noise -0.2582 -4.5287 0.0000

indoor pool 0.1040 5.1511 0.0000

inventory 0.0831 5.9382 0.0000

vacant 0.0955 7.6472 0.0000

under construction -0.2163 -6.6520 0.0000

rented out -0.1466 -6.3490 0.0000

purchased by former tenant -0.0995 -5.8745 0.0000

personal circumstances -0.1609 -12.8832 0.0000

unusual circumstances -0.1595 -7.7570 0.0000

κ -3.5348 -157.6076 0.0000

Note: estimated coefficients of the price equation (16a). The variables are explained
in Subsection 4.2.

Eventually, Table 4 reports the estimated coefficients from the return

equation. Compared with the results for the OLS regression of the return

equation, the signs of the coefficients stay the same, but they decrease in

magnitude. We will give economic interpretation for all coefficients in the

next section.

Table 4: Estimated coefficients of the return equation

Coefficient t-Statistic Prob.

spread2 2.0376 7.0883 0.0000

range5 -0.0238 -3.1840 0.0015

Note: estimated coefficients of the return equation (16b). spread2 is the difference
between the mortgage rate with rate fixedness of two years and the interest rate with
same maturity; range5 is the range of mortgage rates with interest rate fixedness of
five years offered by different banks.
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5 Interpretation of the Results

Starting with the hedonic coefficients β̂, given in Table 3, we find that the

rent for a house increases both with the size of the lot and the size of the

living area and decreases with the age of the dwelling. If we calculate the

elasticities—evaluated at the sample mean of the respective variable—, we

obtain values of about 0.29% for lot size (mean is 600 square meters), 0.6%

for floor space (mean is 170 square meters), and -0.03% for age (mean is 42

years).

Since the dependent variable is the log ratio of price and fundamental

value, the coefficients of a dummy variable is approximately the percentage

premium for the respective characteristic. The rent of a house with otherwise

the same characteristics decreases by 3.3% if it is a row house and increases

by 7.7% if it is a detached house. Here, the excluded category is a semi-

detached house. As such, people are willing to pay a premium for “privacy”.

They will also pay a premium if the house lies in the districts Wilmersdorf

or Zehlendorf. As we have already mentioned, there are very nice parts

in these districts. Especially Grunewald in Wilmersdorf is very attractive.

The hedonic coefficient reveals that the premium is about 25%. On the

other hand—compared with the reference district Charlottenburg—Steglitz

charges a rebate of 9.7%.

If the house is in good condition, the rent increases by 11.6% compared

with a house in normal condition. If the house is in bad condition, the rent

decreases by 22.6%. The rent decreases by 25.8% if the house is located in a

noisy environment in the vicinity of rail tracks, highways, or airports.

The rent increases by 10.4% if the object has an indoor pool. There is

some information in the text files of our data set about the cost for construct-

ing an indoor pool. The cost can go up to 100000.- Deutsche Mark. The

average price for houses with indoor pool is 1.1 million Deutsche Mark, so

that the hedonic coefficient is quite reasonable. If the house has inventory—

in most cases in-built kitchen and some in-built furniture—the rent increases

by 8.3%. This is reasonable because such equipment is a necessary part of a

house. Calculated with the average price of about 778000.- Deutsche Mark
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for houses with inventory, the average value of the inventory is about 65000.-

Deutsche Mark.

If the house is vacant, the rent increases by 9.5%. This is really a high

number. Even the lower bound of the 0.95 confidence band is 7.1%. That is

still a large premium for the instant availability of a house.

Next we turn to the dummies that can not be interpreted as part of the

rent Dn,t. They describe special circumstances of the deal or the use of the

house that are only relevant for house buyers—and not for tenants. The first

of these is the fact that the house is still under construction when the deal

is struck. The “risk premia” for buying an unfinished house is about 22% of

the price for an otherwise identical object.

If the house is rented, the price decreases. In that case, the buyer is an

investor who wants to accrue the rent payments. It is common practice of

valuers to assume that the additional relative cost are about 2% for rent

default risk, and 5% for administration cost. Furthermore, it is quite rea-

sonable to assume that maintenance cost are higher for houses that are not

owner-occupied. So, the figure of 14.7% is reasonable.

The purchase of the house by the former tenant decreases the price by

about 10%. The seller has not to search for a buyer of the house and he is

well-informed about the soundness of the buyer. This explains the rebate.

On the other hand, the former tenant might have a special interest in buying

the house because he had modelled it according to his own taste. This

“inflexibility” might increase the price. Nevertheless, it is possible that the

house is in poor condition or the taste of the tenant is a little bit idiosyncratic.

Whereas others would command a large rebate for the condition of the house,

the tenant does not care much about it and is as such the preferred buyer

from the view of the owner.

If personal circumstances exist, the price decreases by 16%. This cate-

gory comprises sales between relatives—especially between parents and their

kids—, where bequest motifs might explain the rebate. In addition, it con-

tains sales between divorced couples and partition of an estate, where there

might not be enough time and patience for getting a good deal. However, it

contains also sales between neighbors. Here, the buyer has a special interest
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that might increase the price. However, as already mentioned by discussing

the rebate for the purchase of a former tenant, in such a case the seller has

no search and information cost.

Finally, unusual circumstances with respect to the business dealing com-

mand a rebate of about 16%. This is reasonable for sales where the former

owner has obtained the right of residence in some part of the house. It is not

so obvious for deals where the payments are by installments. However, in

most cases of payment by installment the buyer who has to repay with pay-

ments in kind—e.g. conceding the right of residence, sometimes combined

with nursing care for the former owner.

The estimated series of the expected return deviations is plotted in Fig-

ure 2. The confidence intervals are calculated with the first element of the

smoothed covariance matrix and suggest that the return deviation was zero

Figure 2: Smoothed deviations of the expected return. Plot of the estimated
series re

ψ,t+1 from 1982:7 to 1999:12. Confidence intervals are calculated with
the first element of the smoothed covariance matrix.
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for the first years of our sample period. Beginning in the year 1985, the dis-

count rate was increasing and the price—for the reference house—was lower

than the corresponding fundamental value. This down-weighting process

reached its peak in 1987. Thereafter, the prices—compared with the fun-

damental value—increased steadily. Starting in 1990, investor’s confidence

reached very high levels and prices increased substantially. There are at

least three—complementary—explanations for this surge in confidence: the

economic, currency and social union in July 1990, the German reunification

in October 1990, and the decision of the German parliament in June 1991

for Berlin as the Capital of the unified country. If we compare this with

the behavior of the fundamental value in Figure 1, we see that the rents

reacted obviously slower to the new situation. In 1996, the average return

was reached once again.

The plotted series gives the cumulated effect of a return deviation on the

price of the object—see Equation (16b). To evaluate the one period return

deviation, we calculate ψ = 16 and assume that r∗ is about 0.8%. To moti-

vate the last number, recall that in the Gordon growth model ln (1 + R) =

ln (1 + G) + ln (1 + θ). For our sample period, the average monthly growth

rate of the rent index is 0.38% (see Table 1). If we use the average monthly

capitalization rate of 0.415%, we obtain r∗ ≈ 0.8%. To guarantee plausible

return deviations, we should have re
t + r∗ > 0 and thus re

ψ,t > −0.128. How-

ever, even if we use the upper limit of the the confidence bands, the return

deviations are below that critical value from April 1991 to August 1993. The

minimum upper bound is -0.226 and thus the long run discount rate should

be at least 0.14%—or 17% on a yearly basis—to guarantee that the discount

rate is always positive. In this case, the inverse capitalization rate θ will be

about 1%. We see that the confidence effect during the reunion “boom” was

very high and our procedure has some problems to capture this fact.

Eventually, the return deviations are influenced by the spread of mortgage

and interest rates with a interest rate fixedness of two years. This effect is

positive and could be interpreted as a “risk premium”. Here, we assume

that banks “finance” the mortgages by deposits with the same maturity. In

periods where the real estate market is riskier, the banks claim a higher
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interest premium. The discount rate reacts very sensible to a change in this

implicit premium. One reason could be that banks have always the possibility

to diversify their real estate risk—a chance, that the ordinary house owner

has not. The range of the mortgage rates with interest rate fixedness of five

years has a small negative effect on the discount rate. The range might be

a measure for the consensus of the different banks about the current risk

on the real estate market. If the range is high, the banks assess the risk

differently, and if the range is small, they assess the risk similarly. Given this

interpretation, the discount rate is corrected for the degree of consent.

6 Conclusion

We have used the present value relation to derive a model that explains the

formation and movement of real estate prices with movements of the rent

level, the characteristics of a house and some financial indicators. Our es-

timates reveal the implicit hedonic prices for the different characteristics.

The values of the coefficients are plausible and in accordance with the as-

sessment of professional valuers. Furthermore, we have seen that investors

were overconfident after the German reunification and after the decision to

make Berlin the capital of the reunified Germany. However, our model with

a constant long run discount rate has problems to capture this speculative

period. Perhaps we have to find some indicators that allow for catching up

this effect.

In addition to that, there is another direction on which we could con-

centrate in the future: given the well-known pricing kernel for assets, where

the discount factor is governed also by consumption or wealth, we should

incorporate some income measures in our return equation. However, it is not

easy to find such a measure on a monthly basis. Furthermore, we should try

to find more—or better—financial indicators that influence the deviations of

the discount rate. Future work will concentrate on such topics.
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A Appendix

A.1 Constant Term

The constant in (11) is given as

eT
1





∞
∑

j=0

ρj
j

∑

i=0

Ai



 c . (33)

We obtain for the double sum in the brackets

I(1 + ρ + ρ2 + . . .) + ρA(1 + ρ + ρ2 + . . .) + (ρA)2(1 + ρ + ρ2 + . . .) + . . . (34)

So, the constant is

1
1− ρ

eT
1





∞
∑

j=0

(ρA)j



 c (35)

and thus equal to the constant term in (11).

A.2 Kalman Filter Recursions

Here we reproduce the calculation procedure of the Kalman filter and the Kalman

smoother. For a derivation of the recursions see Harvey (1989).

A.2.1 Calculation Procedure for the Kalman Filter

Start at t = 1: using an initial guess for µ and Σ to calculate

a1|0 = T1µ , P1|0 = T1ΣTT
1 + R1 , F1 = Z1P1|0Z

T
1 + H1 (36a)

a1 = a1|0 + P1|0Z
T
1 F−1

1 (y1 − Z1a1|0) (36b)

P1 = P1|0 −P1|0Z
T
1 F−1

1 Z1P1|0 (36c)

Step at t 6 T : calculate with at−1 and Pt−1

at|t−1 = Ttat−1 (37a)

Pt|t−1 = TtPt−1TT
t + Rt , Ft = ZtPt|t−1Z

T
t + Ht (37b)
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at = at|t−1 + Pt|t−1Z
T
t F−1

t (yt − Ztat|t−1) (37c)

Pt = Pt|t−1 −Pt|t−1Z
T
t F−1

t ZtPt|t−1 (37d)

A.2.2 Calculation Procedure for the Kalman Smoother

To run the Kalman smoother, one needs at, Pt and Pt|t−1 for t = 1 . . . T from the

previous procedure.

Start at t = T : aT |T = aT and PT |T = PT

Step at t 6 T − 1: calculate with at+1|T and Pt+1|T

P∗
t = PtTT

t+1P
−1
t+1|t (38a)

at|T = at + P∗
t (at+1|T −Tt+1at) (38b)

Pt|T = Pt + P∗
t (Pt+1|T −Pt+1|t)P

∗T
t (38c)

Some of the state variables in our model are constant by definition. We show

in Appendix A.4 that the Kalman smoother delivers constant estimates for these

variables for all t.

We need furthermore a smoothed series for Pt,t−1|T . The recursions are (see

Shumway and Stoffer 2000, Shumway and Stoffer 1982)

Start at t = T :

PT,T−1|T = (I−PT |T−1Z
T
T (ZTPT |T−1Z

T
T + HT )−1ZT )TTPT−1 (39)

Step at t < T − 1: calculate

Pt,t−1|T = (Pt + P∗
t (Pt+1,t|T −Tt+1Pt))P∗T

t−1 (40)
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A.3 Matrix Differentiation

In this appendix, we differentiate eT
1 Ste1 with respect to φ. We use some results

of vector and matrix differentiation (cf. Lütkepohl 1996, p.208).

St—see (21)—is equal to a sum of scalars. We obtain for the relevant scalars

with dTt/dφ = dTT
t /dφ = e1eT

1

deT
1 TtPt,t−1|Te1

dφ
= eT

1 Pt,t−1|Te1 , (41a)

deT
1 TtPt−1|TTT

t e1

dφ
= 2eT

1 TtPt−1|Te1 , (41b)

deT
1 Ttat−1|TaT

t|Te1

dφ
= eT

1 at|TaT
t−1|Te1 , (41c)

deT
1 Ttat−1|TaT

t−1|TTT
t e1

dφ
= 2eT

1 Ttat−1|TaT
t−1|Te1 . (41d)

Thus, we obtain eventually

deT
1 Ste1

dφ
= 2eT

1 (TtPt−1|T + Ttat−1|TaT
t−1|T −Pt,t−1|T − at|TaT

t−1|T )e1 . (42)

Finally, we can rewrite the half of the right-hand-side of (42) with

eT
1 Tt = eT

1 (φe1eT
1 + Tt,−φ)

= φeT
1 + eT

1 Tt,−φ

as

φeT
1 (Pt−1|T + at−1|TaT

t−1|T )e1 + eT
1 (Tt,−φ(Pt−1|T + at−1|TaT

t−1|T )

−Pt,t−1|T − at|TaT
t−1|T )e1

(43)

and use this for the derivation of the third equation in (22).

One can derive that the second-order cross partial derivatives of the expected

log likelihood function are zero at the stationary point (σ̂2
ν̃ψ

, σ̂2
ε , φ̂). One obtains

furthermore with

d2eT
1 Ste1

dφ2 = 2eT
1 (Pt−1|T + at−1|TaT

t−1|T )e1 > 0 (44)

so that the own partial derivatives are all negative. Thus, the values (22) fulfill

also the second order condition for a local maximum.
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A.4 Constant State Variables and the Smoother

We want to show that the Kalman smoother produces constant estimates through

time for all state variables that are constant by definition. Firstly, we make the

following partition of the transition matrix

Tt+1 =
[

T11,t+1 T12,t+1

0 I

]

. (45)

The matrix has the dimension S×S and the identity matrix has the dimsion K×K

with S > K. Furthermore, we define with the same partition

P̃t ≡ Tt+1PtTT
t+1 =

[

P̃11,t P̃12,t

P̃12,t P̃22,t

]

(46)

and ˜̃P11,t ≡ P̃11,t + R̃t+1, where R̃t+1 contains the variance of the state variables

that are stochastic. Finally, Pt+1|t is equal to the matrix P̃t with ˜̃P11,t instead of

P̃11,t (see (37b)).

Our goal is to show for (38a)

P∗
t =

[

M11,t M12,t

0 I

]

, (47)

where both Ms stand for some complicated matrices. With this result at hand,

we obtain immediately from (38b) for the K constant state variables

aK
t|T = aK

t+1|T = aK
T (48)

for all t (aK
t|T contains the last K elements of the smoothed predictor at|T ).

Now we derive (47): We assume that the inverse of Tt+1 and T11,t+1 exist.

Because a SSF of our model makes only sense if φ 6= 0, we should assume that this

condition is fulfilled. For the partitioned matrix (cf. Sydsæter, Strøm, and Berck

2000, 19.48) we derive

T−1
t+1 =

[

T−1
11,t+1 −T−1

11,t+1T12,t+1

0 I

]

. (49)

Now, it is easy to see that

P∗
t = T−1

t+1P̃tP−1
t+1|t . (50)
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We have (cf. Sydsæter, Strøm, and Berck 2000, 19.49)

P−1
t+1|t =





∆t −∆tP̃12,tP̃−1
22,t

−P̃−1
22,tP̃12,t∆t P̃−1

22,t + P̃−1
22,tP̃12,t∆tP̃12,tP̃−1

22,t



 (51)

with ∆t as a known function of the partial matrices. If we multiply this matrix

with the lower partition of P̃t we obtain immediately [0 I]. With this result and

(49) we derive (47).

Furthermore, it is possible to show with the same results that the lower right

partition of Pt|T is equal to the lower right partition of PT for all t. Just write

with (38a)

Pt|T = Pt(I−TT
t+1P

∗T
t ) + P∗

tPt+1|TP∗T
t . (52)

Then check with (45) and (47) that the lower-right partition of the first matrix on

the right hand side is a K ×K matrix of zeros. The lower-right partition of the

second matrix is given by the the lower-right partition of Pt+1|T .
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