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ABSTRACT 

We analyse in this article the monthly structure of the Brazilian inflation rate by means of 

fractionally integrated techniques. This series is characterized by strong government 

interventions to bring inflation to a low level. We use a testing procedure due to Robinson 

(1994) which allow us to model the underlying dynamic of the series in terms of I(d) 

statistical models, while the government interventions are specified in terms of dummy 

variables. The results show that the series can be described in terms of an I(0.75) process with 

some of the interventions having little impact on the series. 
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1. Introduction 

Modelling the nonstationarity in macroeconomic data is a matter that still remains 

controversial. Deterministic models based on linear (or quadratic) functions of time were 

shown to be inappropriate in many cases and, stochastic models based on first (or second) 

differences of the data were then proposed, especially after the seminal paper by Nelson and 

Plosser (1982). In that paper, using tests of Fuller (1976) and Dickey and Fuller (1979), they 

showed that many US macroeconomic series may be well described in terms of unit root 

processes. Following this work, a battery of test statistics were developed for testing unit roots 

(eg, Said and Dickey, 1984; Phillips and Perron, 1988; Kwiatkowski et. al., 1992; etc.). 

Robinson (1994) also proposed tests of unit roots but, unlike the previous ones which are 

embedded in autoregressive (AR) alternatives, they are nested in a fractional model of form 

...,,2,1,)1( ==− tuxL tt
d  

where ut is I(0) (properly defined in Section 2) and where the unit root null corresponds to d = 

1.  

 On the other hand, Perron (1989, 1993) found that the 1929 crash shock and the 1973 

oil price shock were a cause of nonrejection of the unit-root hypothesis, and that when these 

were taken into account, deterministic models were preferable. This question has been 

pursued by authors such as Christiano (1992), Demery and Duck (1992), Krol (1992), Serletis 

(1992), Ben-David and Papell (1994) and Mills (1994), the first author arguing that the date of 

the break should be treated as unknown. Similarly, Zivot and Andrews (1992) also allowed 

the structural break to be unknown. 

 This article try to connect both issues, testing unit and fractional roots in the presence 

of abrupt changes in the data. Fractional integration and structural breaks is a topic that has 

been scarcely investigated. Diebold and Inoue (1999) provide both theoretical and Monte 

Carlo evidence that structural breaks-based models and long memory processes are easily 

confused. Similarly, Granger and Hyung (1999) also developed a theory relating both types of 
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models and, in a recent article, Gil-Alana (2001a) shows that the order of integration of some 

series is reduced by the inclusion of dummy variables for structural breaks in the regression 

model. 

 The analysis in this article is directly motivated by the time series properties of the 

Brazilian inflation rate. This series is characterized by a period of hyperinflation, starting by 

the end of the 1980s and followed by government interventions to bring inflation to a low 

level for a short period of time. We  use the same dataset as in Cati et al. (1999), i.e., the 

Brazilian monthly inflation rate (1974:1 � 1993:6). In that article, they show that the presence 

of outliers leads to a bias in the standard unit root tests in favour of stationarity where in fact 

the series is integrated of order one. In this article, we show, however, that the series is 

nonstationary but mean-reverting, with an order of integration smaller than one. The outline 

of this paper is as follows: Section 2 briefly describes the tests of Robinson (1994) for testing 

I(d) statistical models which allows us to include dummy variables to incorporate the 

government interventions. Section 3 applies different versions of Robinson�s (1994) tests to 

the Brazilian inflation rate while Section 4 contains some concluding comments. 

 

2. Testing of I(d) models with the tests of Robinson (1994) 

For the purpose of the present article, we define an I(0) process {ut, t = 0, ±1,�} as a 

covariance stationary process with spectral density function that is positive and finite at the 

zero frequency. In this context, we say that xt is I(d) if 

...,,2,1,)1( ==− tuxL tt
d    (1) 

          ,0,0 ≤= txt     (2) 

where the polynomial in (1) can be expanded in terms of its Binomial expansion such that for 

all real d, 
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where Γ(x) means the gamma function. Clearly, if d = 0 in (1), xt = ut, and a �weakly 

autocorrelated� xt is allowed for. However, if d > 0, xt is said to be long memory, so-called 

because of the strong association between observations widely separated in time. This type of 

models was introduced by Granger (1980, 1981) and Hosking (1981), (though earlier work by 

Adenstedt, 1974 and Taqqu, 1975 shows an awareness of its representation) and were 

theoretically justified in terms of aggregation by Robinson (1978), Granger (1980) and more 

recently, in terms of the duration of shocks by Parke (1999). 

 Robinson (1994) proposed a Lagrange Multiplier (LM) test of the null hypothesis: 

oo ddH =:     (3) 

for any real value do, in a model given by 

....,2,1,' =+= txzy ttt β   (4) 

and (1), where yt is the time series we observe; β is a (kx1) vector of unknown parameters; 

and zt is a (kx1) vector of deterministic regressors that may include, for example, an intercept 

(zt ≡ 1); a linear time trend (zt = (1, t)′) or dummy variables). Specifically, the test statistic is 

given by: 
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where T is the sample size and 
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The function g above is a known function coming from the spectral density function of ut,
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evaluated at τ�  = arg min σ2(τ). Note that the functional form of the test statistic will be 

affected by the specification we adopt for the I(0) disturbances ut in (1). Thus, for example, if 

ut is white noise, the test statistic greatly simplifies since g ≡ 1 and A�  below (5) becomes 
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which can be asymptotically approximated by π2/6. However, the I(0) disturbances can also 

be weakly autocorrelated. If ut is an AR(p) process of form: φp(L)ut = εt, with white noise εt, 
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In this article, we will also make use of other less conventional forms of I(0) processes. In 

particular, we will also employ the Bloomfield (1973) exponential spectral model. This is a 

non-parametric approach of modelling the disturbances, where ut is exclusively specified in 

terms of its spectral density function, which is given by: 

.cosexp
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The intuition behind this model is the following. Let�s suppose that ut is an ARMA(p, q) 

process of form .)()( tqtp LuL εθφ =  Clearly, the spectral density function of this process is 

then 
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where τ corresponds to all AR and MA coefficients and σ2 is the variance of εt. Bloomfield 

(1973) showed that the logarithm of an estimated spectral density function is often found to be 

a fairly well-behaved function and can thus be approximated by a truncated Fourier series. He 

showed that (6) approximates (7) well when p and q are small values, which usually happens 

in economics. Like the stationary AR(p) case, this model has exponentially decaying 

autocorrelations and thus, using this specification, we do not need to rely on so many 

parameters as in the ARMA processes, which always results tedious in terms of estimation, 

testing and model specification. 

Based on (3), Robinson (1994) established under regularity conditions that 

    .)1,0(� ∞→→ TasNr d    (8) 

The conditions on ut in (8) are far more general than Gaussianity, with a moment condition 

only of order 2 required. Thus, an approximate one-sided 100α%-level test of (3) against 

alternatives H1: d > do is given by the rule: �Reject Ho (3) if r�  > zα�, where the probability 

that a standard normal variate exceeds zα is α. Conversely, an approximate one-sided 100α% 

level test of (3) against alternatives: H1: d < do is given by the rule: �Reject Ho (3) if r�  < -zα�. 

As these rules indicate, we are in a classical large sample testing situation for reasons 

described by Robinson (1994), who also showed that the above tests are efficient in the 

Pitman sense that against local alternatives H1: d = do + δT-1/2 for δ ≠ 0,  the test has an 

asymptotic normal distribution with variance 1 and mean which cannot (when ut is Gaussian) 

be exceeded in absolute value by that of any rival regular statistic. This version of the tests of 

Robinson (1994) was used in empirical applications in Gil-Alana and Robinson (1997) and 

Gil-Alana (2000) and, other versions of his tests, based on seasonal (quarterly and monthly) 

and cyclical models can be found respectively in Gil-Alana and Robinson (2001) and Gil-



 6

Alana (1999, 2001b). In the following section, the tests are applied to the Brazilian inflation 

rate. 

 

3. The Brazilian inflation rate 

The series used in this paper is the monthly Brazilian inflation rate for the time period 1974:1 

to 1993:6, and we use the same dataset as in Cati et al. (1999). Figures 1 and 2 show plots of 

the original series and its first differences respectively. Looking at the original data, we 

observe that the series is characterized in the 80�s by several sudden drops that are important 

in magnitude. These are the outcome of the various shock plans instituted by the government 

in an attempt to stop the process of high and increasing inflation. They correspond to the time 

periods 86:3, 87:7, 89:2, 90:3 and 91:2. As in Cati et al. (1999), we stop the sample in 93:6 in 

order to avoid incorporating the Real Plan which is still in effect. The plot of the first 

differences clearly shows the importance of the outliers corresponding to these shock plans. 

(Figures 1 and 2 about here) 

Denoting the inflation series yt, we initially employ throughout the model (1), (2) and (4) with 

zt = (1, t)′, t ≥ 1, zt = (0, 0)′ otherwise, so 

,...,2,1, =++= txty tt βα    (9) 

      ,...,2,1,)1( ==− tuxL tt
d    (10) 

treating separately the cases α = β = 0 a priori, α unknown and β = 0 a priori and (α, β) 

unknown, i.e., we consider the cases of no regressors, an intercept, and an intercept and a 

linear time trend. We will model the I(0) ut to be both white noise and to have weak 

parametric autocorrelation, in the latter case assuming AR(1), MA(1) and Bloomfield(1) 

disturbances. 

 The test statistic reported in Table 1 (and also in Tables 2 and 3) is the one-sided one 

given by (5), so that significantly positive values of this are consistent with alternatives with 
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higher orders of integration, whereas significantly negative ones are consistent with smaller 

values of d. We apply the tests for the time periods: 74:1 � 86:3,  86:4 � 93:6, and for the 

whole sample 74:1 � 93:6. Starting with the first subsample, we observe that practically all the 

non-rejection values of d oscillate between 0.25 and 0.75. We also observe a non-rejection 

value if d = 1 for the case of no regressors and white noise disturbances. In general, the results 

seem quite robust to the different specifications of zt, however, they substantially vary 

depending on how we specify the I(0) disturbances. Thus, if ut is white noise, the non-rejected 

values are 0.75 and 1. If ut is AR(1), we observe several other non-rejections. However, in 

this case, we also observe a lack of monotonic decrease in the value of the test statistic with 

respect to d, for small values of d. Such monotonicity is a characteristic of any reasonable 

statistic, given correct specification and adequate sample size, because, for example, we 

would whish that if d = 1 is rejected against d > 1, an even more significant result in this 

direction should be expected when d = 0.75 or d = 0.50 are tested. However, in the event of 

misspecification, monotonicity is not necessarily to be expected: frequently misspecification 

inflates both numerator and denominator of r� , to varying degrees, and thus affects r�  in a 

complicated way. Modelling ut in terms of a MA(1) process or with the Bloomfield(1) 

exponential model, monotonicity is always obtained and the non-rejection values of d are 0.50 

(in case of MA disturbances) and 0.50 and 0.25 with the Bloomfield model. 

(Table 1 about here) 

 The results for the second subsample are a bit more ambiguous, given the higher 

proportion of non-rejection values, which could be largely due to the smaller sample size. 

These values range now widely between 0 and 1.25, again observing higher values of d if ut is 

white noise rather than autocorrelated. We observe that the non-fractional cases (d = 0 and d = 

1) cannot be rejected in some cases. Thus, for example, the unit root null cannot be rejected if 

ut is white noise or AR(1). On the contrary, d = 0 results non-rejected if ut is also AR(1) or if 

follows the Bloomfield (1) exponential model. 
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 Finally, we also present the results for the whole sample period. Definitely, they are 

less ambiguous than in the previous cases. Thus, if ut is white noise, d = 1 appears as the only 

non-rejection value for the three specifications in zt. This may contradict the results in Cati et 

al. (1999), where they found strong evidence against unit roots using tests of Dickey and 

Fuller (1979), Phillips and Perron (1988) and Stock (1990). However, as mentioned in Section 

1, these tests are based on AR models and do not consider fractionally integrated alternatives. 

Furthermore, we also observe in this table that imposing weakly autocorrelated disturbances, 

the unit root null hypothesis results rejected in favour of less nonstationary (or even 

stationary) alternatives, and the non-rejection values of d are now 0.25 and 0.50. 

The results presented in Table 1 may be affected by the presence of  outliers due to the 

government interventions during the 80�s and early 90�s. Thus, in Table 2, we recalculate the 

tests of Robinson (1994), but this time including in zt, five dummy variables (Dit) to 

incorporate these outliers. Thus, instead of (9), we have 

,...,2,1,
5

1

=+++= �
=

txDty t
i

itit γβα   (11) 

where Dit = 1 I(t = Ti), and Ti corresponding to the time periods of each of the government 

interventions. Other types of dummy (step and slope) variables were also considered but the 

coefficients were insignificant in practically all cases. Furthermore, the inclusion of impulse 

dummies also permit us to incorporate lag effects throughout the autocorrelated disturbances. 

Again, we perform r�  given by (5), testing Ho (3) in model (10) and (11), for values do = 0, 

(0.25), 2, and white noise and autocorrelated disturbances. The results are given in Table 2 

and the non-rejection values of d correspond now to d = 1 and 1.25 in case of white noise ut; d 

= 0.50 and 0.75 for AR(1) and MA(1) disturbances; and d = 0.25 and 0.50 when using the 

Bloomfield exponential spectral model. Higher orders for the AR, MA and Bloomfield 

models were also considered and the results were very similar to those reported across the 

tables, implying that higher autocorrelated orders were unnecessary to describe the short run 
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dynamics of the series. We also observe in this table that the significance of the coefficients in 

the regression model (11) also substantially vary depending on the degree of integration. 

Thus, D1 appears significant if d ≥ 0.75; D2 if d ≥ 0.50; D3 if d ≥ 0.25 and D4 if d = 0, 1.75 

and 2. D5 always results insignificant across the different values of d. In view of this, we 

report in Table 3, the results for the same statistic as in Table 2, but taking into account only 

those regressors that were significant in Table 2. 

(Tables 2 and 3 about here) 

 We see that the non-rejection values practically coincide with those obtained in Table 

2. The only exception corresponds to the case of Bloomfield disturbances and d = 0.50. This 

model cannot be rejected in Table 2 but is rejected in Table 3 when including only the 

significant coefficients. 

 Table 4 summarises the selected models according to the results in Table 3. That is, 

we write the estimated models based on (10) and (11), in which the null hypothesis Ho (3) was 

not rejected and all the coefficients were significantly different from zero. We see that all 

except model 7 are nonstationary (d ≥ 0.5), and the significant dummies appear to be D1, D2 

and D3 in models 1, 2, 3, and 4; the time trend and D2 and D3 in models 5 and 6; while the 

time trend and D3 are the only significant regressors in model 7. 

(Table 4 about here) 

 A more difficult task is to determine which is the correct model specification across he 

different models presented in that table. We display in the last column of Table 4 several 

diagnostic tests carried out on the residuals. We observe that if d = 1.25 or 1 (Models 1 and 

2), the models fail in relation to the homocedasticity property. Models 4, 5 and 6 

(corresponding to d = 0.75 and 0.50) fail in relation to the functional form, while Model 7 (d 

= 0.25 and Bloomfield disturbances) cannot be evaluated because of its non-parametric 

autocorrelated structure. Thus, we see that Model 3 is the only one which passes all the 

diagnostics on the residuals, and it corresponds to 
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...,,2,1,332211 =+++= txDDDy ttttt γγγ  (12) 

....,,2,1,;)1( 1
75.0 =+==− − tuuuxL ttttt εφ  (13) 

giving the estimates: γ1 = -7.469; γ2 = -9.040; γ3 = -16.457 and φ = -0.472. Thus, the impact of 

the government interventions appears especially relevant for the data in the cases of the first 

three plans, (i.e., 86:3, 87:7 and 89:2), while the fourth and fifth interventions, even being 

large in magnitude (in particular the fourth) have little impact on the series. 

(Figures 3 and 4 about here) 

 To evaluate the responses of inflation to the plan shocks, we need to derive the 

impulse response functions. We do this next. Let (1 + 0.472L)(1 � L)0.75 = a(L), and calling 

d1(L) = -7.469a(L); d2(L) = -9.040a(L); d3(L) = -16.457a(L), the model in (12) and (13) 

becomes 

....,,2,1,)()()()( 332211 =+++= tDLdDLdDLdyLa ttttt ε  

and using a power expansion of a(L), d1(L), d2(L) and d3(L) in terms of its lags, with D1j = D2j 

= D3j = 0 for j ≤ 0, we obtain 
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where aj are the coefficients of the impulse response functions, and d1j, d2j and d3j are the 

impacts of the shock plans on the inflation. Figure 3 summarizes these values for the impulse 

responses and Figure 4 for the impacts of the plans. We observe through the aj�s that the effect 

of a shock on inflation tends to die away in the long run though it takes a very long period to 

disappear completely. In fact, we see that even 50 periods after the initial shock, 20% of its 

effect still remains on the series. The impact of the shocks is higher for the third plan (89:2) 

than for the others (86:3 and 87:7) and also they take a long time to disappear completely. 
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4. Conclusions 

The monthly structure of the Brazilian inflation rate (74:1 � 93:6) has been investigated in this 

article by means of fractionally integrated techniques. This series is characterized by a period 

of hyperinflation, starting by the end of the 80�s and followed by government interventions to 

bring inflation to a low level for a short period of time. We have made use of a testing 

procedure due to Robinson (1994) that allows us to consider I(d) statistical models and at the 

same time to incorporate dummy variables for the government interventions, with no effect on 

the limit distribution of the tests. When the dummy variables are not included in the 

regression model, the results of Robinson�s (1994) tests indicate that the series may be I(1) if 

the underlying disturbances are white noise. However, if they are autocorrelated, the order of 

integration seems to be smaller, oscillating between 0.25 and 0.50. This contradicts the results 

in Cati et al. (1994) which found that the series is I(1) but, in that paper, they do not consider 

fractionally integrated alternatives. Incorporating the dummies, the results also substantially 

vary depending on how we specify the disturbances. Thus, if they are white noise, the orders 

of integration are 1 and 1.25. If ut is AR(1) or MA(1), d appears to be 0.50 and 0.75, while 

using the Bloomfield (1973) exponential model, the series seems to be stationary with d = 

0.25. In order to choose which might be the best model specification across the potential 

models selected with the tests of Robinson (1994), we look at several diagnostic tests carried 

out on the residuals of these selected models, the results indicating that the series may be 

described in terms of an I(0.75) process with three dummy variables for the first three 

interventions (86:3, 87:7 and 89:2). Thus, the fourth and fifth interventions (even being large 

in magnitude) have little impact in the underlying structure of the series. 

It would be worthwhile proceeding to get point estimates of d, perhaps especially in 

the Bloomfield case, where the results indicate that the series may be stationary as opposed to 

the nonstationary results obtained for the remaining cases. However, not only would this be 
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computationally more expensive, but it is then in any case confidence intervals rather than 

point estimates which should be stressed. 

 The approach used in this article generates simply computed diagnostics for departures 

from any real d. It is thus not at all surprising that, when fractional hypotheses are entertained, 

some evidence supporting them appears, because this might happen even when the unit-root 

model is highly suitable. However, even though our practise of computing test statistics for a 

wide range of null hypotheses lead to ambiguous conclusions, often the bulk of these 

hypotheses are rejected, suggesting that the optimal local power properties of the tests may be 

supported by reasonable performance against non-local alternatives. Furthermore, the 

diagnostic tests carried out on the residuals of the selected models give further support for 

fractional models when describing the Brazilian inflation rate. 

 Several other lines of research are under way which should prove relevant to the 

analysis of these and other macroeconomic data. Extensions of the tests of Robinson (1994) to 

include structural breaks at unknown periods of time are being developed. Also, the 

estimation of fractional models in the context of Bloomfield (1973) exponential spectral 

disturbances is being examined. Work is also proceeding on multivariate extensions of 

Robinson�s (1994) tests, and this would lead to an alternative approach to the study of 

cointegration. How these approaches may affect to the conclusions obtained in this article still 

remains to be investigated. 

 

 

 

 

 

 

 



 13

References 

Adenstedt, R.K., 1974, On large-sample estimation for the mean of a stationary random 

sequence, Annals of Statistics 2, 1095-1107. 

Ben-David, D. and D.H. Papell, 1994, The great wars, the great crash, and the unit root 

hypothesis: Some new evidence about an old stylised fact, National Bureau of Economic 

Reseach, Working Paper No. 4752. 

Bloomfield, P.J., 1973, An exponential model for the spectrum of a scalar time series, 

Biometrika 60, 217-226. 

Cati, R.C., M.G.P. Garcia and P. Perron, 1999, Unit roots in the presence of abrupt 

governmental interventions with an application to Brazilian data, Journal of Applied 

Econometrics 14, 27-56. 

Christiano, I.J., 1992, Searching for a break in GNP, Journal of Business and Economic 

Statistics 10, 237-250. 

Demery, D. and N.W. Duck, 1992, Are economic fluctuations really persistent? A 

reinterpretation of some international evidence, The Economic Journal 102, 1094-1101. 

Dickey, D.A. and W.A. Fuller, 1979, Distribution of the estimators for autoregressive time 

series with a unit root, Journal of the American Statistical Association 74, 427-431. 

Diebold, F.X. and A. Inoue, 1999, Long memory and structural change, Preprint. 

Fuller, W.A., 1976, Introduction to statistical time series, Willey, New York. 

Gil-Alana, L.A., 1999, Fractional integration with monthly data, Economic Modelling 16, 

613-629. 

Gil-Alana, L.A., 2000, Mean reversion in the real exchange rates, Economics Letters 69, 285-

288. 

Gil-Alana, L.A., 2001a, A fractionally integrated model with a mean shift for the US and the 

UK real oil prices, forthcoming in Economic Modelling. 



 14

Gil-Alana, L.A., 2001b, Testing stochastic cycles in macroeconomic time series, forthcoming 

in Journal of Time Series Analysis. 

Gil-Alana, L.A. and P.M. Robinson, 1997, Testing of unit roots and other nonstationary 

hypotheses in macroeconomic time series, Journal of Econometrics 80, 241-268. 

Gil-Alana, L.A. and P.M. Robinson, 2001, Testing of seasonal fractional integration in the 

UK and Japanese consumption and income, forthcoming in Journal of Applied Econometrics. 

Granger, C.W.J., 1980, Long memory relationships and the aggregation of dynamic models, 

Journal of Econometrics 14, 227-238. 

Granger, C.W.J., 1981, Some properties of time series models and their use in econometric 

model specification, Journal of Econometrics 16, 121-130. 

Granger, C.W.J. and Hyung, 1999, Occasional structural breaks and long memory, Discussion 

Paper 99-14, University of California, San Diego. 

Hosking, J.R.M., 1981, Modelling persistence in hydrological time series using fractional 

differencing, Water Resources Research 20, 1898-1908. 

Krol, R., 1992, Trends, random walks and persistence: an empirical study of disaggregated 

US industrial production, The Review of Economics and Statistics 74, 154-166. 

Kwiatkowski, D., P.C.B. Phillips, P. Schmidt and Y. Shin, 1992, Testing the null hypothesis 

of stationarity against the alternative of a unit root, Journal of Econometrics 54, 159-178. 

Mills, T.C., 1994, Infrequent permanent shocks and the unit root in quarterly UK output, 

Bulletin of Economic Research 46, 91-94 

Nelson, C.R. and C.I. Plosser, 1982, Trends and random walks in macroeconomic time series, 

Journal of Monetary Economics 10, 139-162. 

Parke, W.R., 1999, What is fractional integration?, The Review of Economics and Statistics 

81, 632-638. 

Perron, P., 1989, The great crash, the oil price shock and the unit root hypothesis, 

Econometrica 57, 1361-1401. 



 15

Perron, P., 1993, Trends, unit roots and structural change in macroeconomic time seires, 

Unpublished manuscript, University of Montreal, Montreal. 

Phillips, P.C.B. and P. Perron, 1988, Testing for a unit root in time series regression, 

Biometrika 75, 335-346. 

Robinson, P.M., 1978, Statistical inference for a random coefficient autoregressive model, 

Scandinavian Journal of Statistics 5, 163-168. 

Robinson, P.M., 1994, Efficient tests of nonstationary hypotheses, Journal of the American 

Statistical Association 89, 1420-1437. 

Said, S.E. and D.A. Dickey, 1984, Testing for unit roots in autoregressive moving average 

models of unknown order, Biometrika 71, 599-607. 

Serletis, A., 1992, The random walk in the Canadian output, Canadian Journal of Economics 

2, 392-406. 

Stock, J.H., 1990, A class of tests for integration and cointegration, mimeo, Kennedy School 

of Government, Harvard University. 

Taqqu, M.S., 1975, Weak convergence to fractional Brownian motion and the Rosenblatt 

process, Z. Wahrscheinlichkeitstheorie verw. Geb. 31, 287-302. 

Zivot, E. and D.W.K. Andrews, 1992, Further evidence of the great crash, the oil price shock 

and the unit root hypothesis, Journal of Business and Economics Statistics 10, 251-270. 

 

 

 

 

 

 

 

 



 16

 
 
 

FIGURE 1 

     

0

90

Brazilian inflation rate, 1974:1 to 1993:6

86:3
87:7

89:2

90:3

91:2

 
 
 
 
 
 

FIGURE 2 

      

-50

0

First differences of the Brazilian inflation rate

 
 
 

 

 

 

 

 

 



 17

 
 
 

FIGURE 3 

Impulse response function of the Brazilian inflation rate 
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FIGURE 4 

Impacts of government interventions on the Brazilian inflation rate 
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TABLE 1 

Testing the order of integration in the Brazilian inflation rate with the tests of Robinson (1994) 

Sample ut zt / do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

--- 24.75 15.27 5.26 0.78� -1.49� -2.82 -3.62 -4.14 -4.51 

1 24.75 16.80 5.94 0.42� -1.70 -2.86 -3.58 -4.08 -4.45 

 
White noise 

(1, t)� 14.80 8.63 3.59 0.23� -1.70 -2.85 -3.56 -4.03 -4.40 

--- -1.26� -0.28� 0.02� -1.45� -2.51 -3.26 -3.73 -4.01 -4.20 

1 -1.26� -1.21� -0.08� -1.57� -2.61 -3.28 -3.71 -3.99 -4.18 

 
AR (1) 

(1, t)�  -0.62�  0.32� -0.57� -1.70 -2.61 -3.26 -3.67 -3.89 -4.06 

--- 18.95 7.52 -0.49� -2.73 -3.51 -5.01 -6.39 -7.29 -7.93 

1 18.95 9.28 -0.009� -3.12 -3.89 -5.07 -6.32 -7.18 -7.82 

 
MA (1) 

(1, t)� 8.58 2.22 -1.57� -3.25 -3.88 -5.05 -6.29 -7.09 -7.73 

--- 10.22 3.65 -0.54� -2.45 -3.35 -4.03 -4.42 -4.65 -4.79 

1 10.22 4.98 -0.19� -2.77 -3.74 -4.24 -4.57 -4.74 -4.86 

 

 

 

 

74.1 � 86.3 

 
Bloomfield (1) 

(1, t)�  2.75 0.34� -1.61� -2.89 -3.73 -4.21 -4.50 -4.63 -4.70 

Sample ut zt / do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

--- 9.55 5.90 3.60 1.67 0.10� -1.09� -2.00 -2.69 -3.21 

1 9.55 6.24 3.56 1.64� 0.10� -1.09� -2.00 -2.69 -3.21 

 
White noise 

(1, t)� 9.53 6.44 3.83 1.72 0.10� -1.10� -2.00 -2.69 -3.21 

--- 0.90� 0.29� -0.47� -1.07� -1.53� -1.90 -2.21 -2.47 -2.71 

1 0.90� -0.01� -0.61� -1.09� -1.53� -1.90 -2.21 -2.47 -2.71 

 
AR (1) 

(1, t)� 1.37� 0.38� -0.41� -1.05� -1.53� -1.90 -2.21 -2.47 -2.71 

--- 5.88 2.36 0.30� -1.12� -2.19 -2.88 -3.71 -4.94 -5.88 

1 5.88 2.56 0.29� -1.14� -2.20 -2.88 -3.71 -4.94 -5.89 

 
MA (1) 

(1, t)� 5.87 2.79 0.47� -1.09� -2.19 -2.89 -3.71 -4.94 -5.88 

--- 1.33� 0.63� -1.54� -2.17 -2.65 -3.01 -3.30 -3.56 -3.74 

1 1.33� -0.33� -1.53� -2.20 -2.65 -3.01 -3.30 -3.56 -3.74 

 

 

 

 

86.4 � 93.6 

 
Bloomfield (1) 

(1, t)� 1.21� -0.39� -1.36� -2.13 -2.65 -3.02 -3.31 -3.56 -3.73 

Sample ut zt / do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

--- 27.75 13.49 6.12 2.49 0.04� -1.76 -3.12 -4.14 -4.92 

1 27.75 14.85 6.35 2.48 0.03� -1.76 -3.12 -4.14 -4.91 

 
White noise 

(1, t)� 16.13 10.15 5.20 2.44 0.03� -1.76 -3.12 -4.14 -4.91 

--- 1.66 1.44� -0.69� -2.01 -2.78 -3.34 -3.81 -4.22 -4.58 

1 1.66 1.18� -0.69� -2.03 -2.78 -3.34 -3.81 -4.22 -4.58 

 
AR (1) 

(1, t)� 3.01 0.96� -0.86� -2.04 -2.78 -3.34 -3.81 -4.22 -4.58 

--- 20.51 7.04 0.96� -1.69 -3.23 -4.19 -5.41 -7.14 -8.45 

1 20.51 8.11 1.13� -1.69 -3.24 -4.20 -5.41 -7.14 -8.45 

 
MA (1) 

(1, t)� 10.54 4.56 0.64� -1.72 -3.24 -4.19 -5.41 -7.14 -8.45 

--- 9.97 1.75 -1.64� -2.92 -3.68 -4.21 -4.63 -5.00 -5.25 

1 9.97 2.41 -1.49� -2.93 -3.69 -4.22 -4.63 -5.00 -5.25 

 

 

 

 

74.1 � 93.6 

 
Bloomfield (1) 

(1, t)� 2.53 -0.15� -1.79� -2.96 -3.69 -4.21 -4.63 -4.99 -5.24 
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TABLE 2 

Testing the order of integration with the tests of Robinson (1994) including dummy variables 

d Significant regressors White noise AR(1) MA(1) Bloomfield (1) 

0.00 1;   t;   D4 15.59 2.30 9.76 2.83 

0.25  T;   D3 10.53 1.86 5.44 -0.75� 
0.50 T;   D2;   D3 6.00 -0.93� 1.19� -1.44� 

0.75 D1;   D2;  D3;   3.43 -1.29� -1.10� -3.92 

1.00 D1;   D2;  D3;   1.19� -2.41 -2.92 -4.51 

1.25 D1;   D2;  D3;   -0.51� -3.22 -4.25 -4.98 

1.50 D1;   D2;  D3;   -1.82 -3.84 -5.17 -5.29 

1.75 D1;   D2;  D3;   D4 -2.83 -4.33 -5.81 -5.56 

2.00 D1;   D2;  D3;   D4 -3.63 -4.73 -6.25 -5.76 
� and in bold: Non-rejection values of the null hypothesis Ho (3) in (10) and (11) at the 95% significant level. 
 
 
 
 
 
 
 
 

TABLE 3 

Testing the order of integration with the tests of Robinson (1994) including only significant regressors 

d Regressors White noise AR(1) MA(1) Bloomfield (1) 

0.00 1;   t;   D4 15.33 2.66 9.18 3.24 

0.25  T;   D3 10.74 1.86 5.54 -0.63� 
0.50 T;   D2;   D3 6.40 0.07� 1.56� -2.65 

0.75 D1;   D2;  D3;   3.42 -1.35� -1.15� -3.72 

1.00 D1;   D2;  D3;   1.07� -2.49 -3.03 -4.37 

1.25 D1;   D2;  D3;   -0.67� -3.28 -4.27 -4.81 

1.50 D1;   D2;  D3;   -2.01 -3.87 -5.12 -5.16 

1.75 D1;   D2;  D3;   D4 -2.89 -4.34 -5.76 -5.52 

2.00 D1;   D2;  D3;   D4 -3.66 -4.67 -6.31 -5.65 
� and in bold: Non-rejection values of the null hypothesis Ho (3) at the 95% significant level. 
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TABLE 4 

Selected models for the Brazilian inflation rate according to Table 3 

Model  Diagnostics 

1 
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---  ---  ---  ---- 

*: Non-rejections at the 99% significant level of A): No serial correlation; B): Functional 
form; C): Normality, and D): Homocedasticity. Standard errors in parenthesis. 
 

 
 
 


