~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Gil-Alafia, Luis A.

Working Paper
Unit and fractional roots in the presence of abrupt
changes with an application to the Brazilian inflation rate

SFB 373 Discussion Paper, No. 2001,67

Provided in Cooperation with:

Collaborative Research Center 373: Quantification and Simulation of Economic Processes,
Humboldt University Berlin

Suggested Citation: Gil-Alafia, Luis A. (2001) : Unit and fractional roots in the presence of abrupt
changes with an application to the Brazilian inflation rate, SFB 373 Discussion Paper, No. 2001,67,
Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation
of Economic Processes, Berlin,

https://nbn-resolving.de/urn:nbn:de:kobv:11-10050366

This Version is available at:
https://hdl.handle.net/10419/62697

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:kobv:11-10050366%0A
https://hdl.handle.net/10419/62697
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

UNIT AND FRACTIONAL ROQOTS IN THE PRESENCE OF ABRUPT CHANGES
WITH AN APPLICATION TO THE BRAZILIAN INFLATION RATE

Luis A. Gil-Alana’
Humboldt Universitit zu Berlin, Institut fiir Statistik und Okonometrie, Berlin, Germany
University of Navarre, Department of Economics, Pamplona, Spain

ABSTRACT

We analyse in this article the monthly structure of the Brazilian inflation rate by means of
fractionally integrated techniques. This series is characterized by strong government
interventions to bring inflation to a low level. We use a testing procedure due to Robinson
(1994) which allow us to model the underlying dynamic of the series in terms of I(d)
statistical models, while the government interventions are specified in terms of dummy
variables. The results show that the series can be described in terms of an 1(0.75) process with
some of the interventions having little impact on the series.
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1. Introduction
Modelling the nonstationarity in macroeconomic data is a matter that still remains
controversial. Deterministic models based on linear (or quadratic) functions of time were
shown to be inappropriate in many cases and, stochastic models based on first (or second)
differences of the data were then proposed, especially after the seminal paper by Nelson and
Plosser (1982). In that paper, using tests of Fuller (1976) and Dickey and Fuller (1979), they
showed that many US macroeconomic series may be well described in terms of unit root
processes. Following this work, a battery of test statistics were developed for testing unit roots
(eg, Said and Dickey, 1984; Phillips and Perron, 1988; Kwiatkowski et. al., 1992; etc.).
Robinson (1994) also proposed tests of unit roots but, unlike the previous ones which are
embedded in autoregressive (AR) alternatives, they are nested in a fractional model of form
1 - L)Yx =u

t = 1L2,..,

where u; is I(0) (properly defined in Section 2) and where the unit root null corresponds to d =
1.

On the other hand, Perron (1989, 1993) found that the 1929 crash shock and the 1973
oil price shock were a cause of nonrejection of the unit-root hypothesis, and that when these
were taken into account, deterministic models were preferable. This question has been
pursued by authors such as Christiano (1992), Demery and Duck (1992), Krol (1992), Serletis
(1992), Ben-David and Papell (1994) and Mills (1994), the first author arguing that the date of
the break should be treated as unknown. Similarly, Zivot and Andrews (1992) also allowed
the structural break to be unknown.

This article try to connect both issues, testing unit and fractional roots in the presence
of abrupt changes in the data. Fractional integration and structural breaks is a topic that has
been scarcely investigated. Diebold and Inoue (1999) provide both theoretical and Monte
Carlo evidence that structural breaks-based models and long memory processes are easily
confused. Similarly, Granger and Hyung (1999) also developed a theory relating both types of
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models and, in a recent article, Gil-Alana (2001a) shows that the order of integration of some
series is reduced by the inclusion of dummy variables for structural breaks in the regression
model.

The analysis in this article is directly motivated by the time series properties of the
Brazilian inflation rate. This series is characterized by a period of hyperinflation, starting by
the end of the 1980s and followed by government interventions to bring inflation to a low
level for a short period of time. We use the same dataset as in Cati et al. (1999), i.e., the
Brazilian monthly inflation rate (1974:1 — 1993:6). In that article, they show that the presence
of outliers leads to a bias in the standard unit root tests in favour of stationarity where in fact
the series is integrated of order one. In this article, we show, however, that the series is
nonstationary but mean-reverting, with an order of integration smaller than one. The outline
of this paper is as follows: Section 2 briefly describes the tests of Robinson (1994) for testing
I(d) statistical models which allows us to include dummy variables to incorporate the
government interventions. Section 3 applies different versions of Robinson’s (1994) tests to

the Brazilian inflation rate while Section 4 contains some concluding comments.

2. Testing of I(d) models with the tests of Robinson (1994)
For the purpose of the present article, we define an I(0) process {u, t =0, *1,...} as a
covariance stationary process with spectral density function that is positive and finite at the
zero frequency. In this context, we say that x; is I(d) if

- L)yYx =u t = L2, .., (1)
x, = 0, t < 0, (2)
where the polynomial in (1) can be expanded in terms of its Binomial expansion such that for

all real d,

R e e
G0 = 2y - T

2
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where [(x) means the gamma function. Clearly, if d = 0 in (1), X = u;, and a ‘weakly
autocorrelated’ x; is allowed for. However, if d > 0, x; is said to be long memory, so-called
because of the strong association between observations widely separated in time. This type of
models was introduced by Granger (1980, 1981) and Hosking (1981), (though earlier work by
Adenstedt, 1974 and Taqqu, 1975 shows an awareness of its representation) and were
theoretically justified in terms of aggregation by Robinson (1978), Granger (1980) and more
recently, in terms of the duration of shocks by Parke (1999).
Robinson (1994) proposed a Lagrange Multiplier (LM) test of the null hypothesis:
H, : d=d, 3)

for any real value d,, in a model given by

y, = B'z, + x, t = 1,2,... 4)
and (1), where y; is the time series we observe; [ is a (kx1) vector of unknown parameters;
and z is a (kx1) vector of deterministic regressors that may include, for example, an intercept

(z¢ = 1); a linear time trend (z: = (1, t)') or dummy variables). Specifically, the test statistic is

given by:

T 1/2 n
]”" = (—AJ a2 5 (5)

where T is the sample size and

a= “ZLY 41 g: D 1),

i = %{zw@)z —Zw(aj)éu,)'x[Zé(A,)é(%—)‘] XZfM,)w(M}

A 0 . 2mj
L) = logg(ity: A, = S0

A
2s8in ——
2 ! T

Y(A,) = log

I(Aj) is the periodogram of ,, where



-1
n . T T
uAt = (1 - L)do Ye = ﬁ' W, w, :(1 _L)du z,; ﬁ = (wa Wt'] zwt (1 _L)du ¥,
t=1 =1

The function g above is a known function coming from the spectral density function of uy,
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f(AoT) = ;——ng(/\;f), -mT< A<,

evaluated at ¥ = arg min 0°(T). Note that the functional form of the test statistic will be

affected by the specification we adopt for the 1(0) disturbances u; in (1). Thus, for example, if

u, is white noise, the test statistic greatly simplifies since g =1 and A below (5) becomes

2 T-1 5
; ;w(ﬂl/) :

which can be asymptotically approximated by TC/6. However, the I(0) disturbances can also

be weakly autocorrelated. If u; is an AR(p) process of form: @,(L)u; = &, with white noise &,

. -2
g =@ E™)

3

and €(A) is now a (px1) vector with 1™ element given by:
D

Z{COSM - ZT, cos(l—r)/\}g(/\;r).
r=l

In this article, we will also make use of other less conventional forms of 1(0) processes. In
particular, we will also employ the Bloomfield (1973) exponential spectral model. This is a
non-parametric approach of modelling the disturbances, where u; is exclusively specified in

terms of its spectral density function, which is given by:

f(A T = gz exp {Zm: T, cosA r}. (6)

_7T r=1
The intuition behind this model is the following. Let’s suppose that u; is an ARMA(p, q)

process of form @, (L) u, = 6,(L) &,. Clearly, the spectral density function of this process is

then
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gq (ei/l )
@,(e™)|’

fhn =2

Com

(7)

where T corresponds to all AR and MA coefficients and o is the variance of €. Bloomfield
(1973) showed that the logarithm of an estimated spectral density function is often found to be
a fairly well-behaved function and can thus be approximated by a truncated Fourier series. He
showed that (6) approximates (7) well when p and q are small values, which usually happens
in economics. Like the stationary AR(p) case, this model has exponentially decaying
autocorrelations and thus, using this specification, we do not need to rely on so many
parameters as in the ARMA processes, which always results tedious in terms of estimation,
testing and model specification.
Based on (3), Robinson (1994) established under regularity conditions that
7 -, N(@O,1) as T — oo, (8)

The conditions on u; in (8) are far more general than Gaussianity, with a moment condition
only of order 2 required. Thus, an approximate one-sided 1000%-level test of (3) against
alternatives H;: d > d, is given by the rule: “Reject H, (3) if 7 > z4”, where the probability
that a standard normal variate exceeds zq is a. Conversely, an approximate one-sided 1000%
level test of (3) against alternatives: H;: d < d, is given by the rule: “Reject H, (3) if 7 <-z4”.
As these rules indicate, we are in a classical large sample testing situation for reasons
described by Robinson (1994), who also showed that the above tests are efficient in the
Pitman sense that against local alternatives H: d = d, + 8T for 8 # 0, the test has an
asymptotic normal distribution with variance 1 and mean which cannot (when u; is Gaussian)
be exceeded in absolute value by that of any rival regular statistic. This version of the tests of
Robinson (1994) was used in empirical applications in Gil-Alana and Robinson (1997) and
Gil-Alana (2000) and, other versions of his tests, based on seasonal (quarterly and monthly)

and cyclical models can be found respectively in Gil-Alana and Robinson (2001) and Gil-



Alana (1999, 2001b). In the following section, the tests are applied to the Brazilian inflation

rate.

3. The Brazilian inflation rate
The series used in this paper is the monthly Brazilian inflation rate for the time period 1974:1
to 1993:6, and we use the same dataset as in Cati et al. (1999). Figures 1 and 2 show plots of
the original series and its first differences respectively. Looking at the original data, we
observe that the series is characterized in the 80’s by several sudden drops that are important
in magnitude. These are the outcome of the various shock plans instituted by the government
in an attempt to stop the process of high and increasing inflation. They correspond to the time
periods 86:3, 87:7, 89:2, 90:3 and 91:2. As in Cati et al. (1999), we stop the sample in 93:6 in
order to avoid incorporating the Real Plan which is still in effect. The plot of the first
differences clearly shows the importance of the outliers corresponding to these shock plans.
(Figures 1 and 2 about here)

Denoting the inflation series y;, we initially employ throughout the model (1), (2) and (4) with
z=(1,t),t=1, z.= (0, 0) otherwise, so

y, = a + ft + x, t=12.., )

(1-1L)Yx = u t =12, .., (10)
t

'
treating separately the cases o = 3 = 0 a priori, a unknown and 3 = 0 a priori and (a, B)
unknown, i.e., we consider the cases of no regressors, an intercept, and an intercept and a
linear time trend. We will model the I(0) u; to be both white noise and to have weak
parametric autocorrelation, in the latter case assuming AR(1), MA(1) and Bloomfield(1)
disturbances.

The test statistic reported in Table 1 (and also in Tables 2 and 3) is the one-sided one

given by (5), so that significantly positive values of this are consistent with alternatives with



higher orders of integration, whereas significantly negative ones are consistent with smaller
values of d. We apply the tests for the time periods: 74:1 — 86:3, 86:4 — 93:6, and for the
whole sample 74:1 — 93:6. Starting with the first subsample, we observe that practically all the
non-rejection values of d oscillate between 0.25 and 0.75. We also observe a non-rejection
value if d = 1 for the case of no regressors and white noise disturbances. In general, the results
seem quite robust to the different specifications of z, however, they substantially vary
depending on how we specify the 1(0) disturbances. Thus, if u; is white noise, the non-rejected
values are 0.75 and 1. If u; is AR(1), we observe several other non-rejections. However, in
this case, we also observe a lack of monotonic decrease in the value of the test statistic with
respect to d, for small values of d. Such monotonicity is a characteristic of any reasonable
statistic, given correct specification and adequate sample size, because, for example, we
would whish that if d = 1 is rejected against d > 1, an even more significant result in this
direction should be expected when d = 0.75 or d = 0.50 are tested. However, in the event of
misspecification, monotonicity is not necessarily to be expected: frequently misspecification
inflates both numerator and denominator of 7, to varying degrees, and thus affects 7 in a
complicated way. Modelling u; in terms of a MA(1) process or with the Bloomfield(1)
exponential model, monotonicity is always obtained and the non-rejection values of d are 0.50
(in case of MA disturbances) and 0.50 and 0.25 with the Bloomfield model.
(Table 1 about here)

The results for the second subsample are a bit more ambiguous, given the higher
proportion of non-rejection values, which could be largely due to the smaller sample size.
These values range now widely between 0 and 1.25, again observing higher values of d if u; is
white noise rather than autocorrelated. We observe that the non-fractional cases (d =0 and d =
1) cannot be rejected in some cases. Thus, for example, the unit root null cannot be rejected if
u; is white noise or AR(1). On the contrary, d = 0 results non-rejected if u; is also AR(1) or if

follows the Bloomfield (1) exponential model.



Finally, we also present the results for the whole sample period. Definitely, they are
less ambiguous than in the previous cases. Thus, if u; is white noise, d = 1 appears as the only
non-rejection value for the three specifications in z. This may contradict the results in Cati et
al. (1999), where they found strong evidence against unit roots using tests of Dickey and
Fuller (1979), Phillips and Perron (1988) and Stock (1990). However, as mentioned in Section
1, these tests are based on AR models and do not consider fractionally integrated alternatives.
Furthermore, we also observe in this table that imposing weakly autocorrelated disturbances,
the unit root null hypothesis results rejected in favour of less nonstationary (or even
stationary) alternatives, and the non-rejection values of d are now 0.25 and 0.50.

The results presented in Table 1 may be affected by the presence of outliers due to the
government interventions during the 80’s and early 90’s. Thus, in Table 2, we recalculate the
tests of Robinson (1994), but this time including in z, five dummy variables (Djy) to

incorporate these outliers. Thus, instead of (9), we have

5
y,=a + Bt + YyD, + x, t =12 .., (11)

i=1
where Dj = 1 I(t = Tj), and T; corresponding to the time periods of each of the government
interventions. Other types of dummy (step and slope) variables were also considered but the
coefficients were insignificant in practically all cases. Furthermore, the inclusion of impulse
dummies also permit us to incorporate lag effects throughout the autocorrelated disturbances.
Again, we perform 7 given by (5), testing H, (3) in model (10) and (11), for values d, = 0,
(0.25), 2, and white noise and autocorrelated disturbances. The results are given in Table 2
and the non-rejection values of d correspond now to d = 1 and 1.25 in case of white noise u; d
= 0.50 and 0.75 for AR(1) and MA(1) disturbances; and d = 0.25 and 0.50 when using the
Bloomfield exponential spectral model. Higher orders for the AR, MA and Bloomfield
models were also considered and the results were very similar to those reported across the

tables, implying that higher autocorrelated orders were unnecessary to describe the short run



dynamics of the series. We also observe in this table that the significance of the coefficients in
the regression model (11) also substantially vary depending on the degree of integration.
Thus, D, appears significant if d =2 0.75; D, if d 2 0.50; D3 if d = 0.25 and D4 if d =0, 1.75
and 2. Ds always results insignificant across the different values of d. In view of this, we
report in Table 3, the results for the same statistic as in Table 2, but taking into account only
those regressors that were significant in Table 2.

(Tables 2 and 3 about here)

We see that the non-rejection values practically coincide with those obtained in Table
2. The only exception corresponds to the case of Bloomfield disturbances and d = 0.50. This
model cannot be rejected in Table 2 but is rejected in Table 3 when including only the
significant coefficients.

Table 4 summarises the selected models according to the results in Table 3. That is,
we write the estimated models based on (10) and (11), in which the null hypothesis H, (3) was
not rejected and all the coefficients were significantly different from zero. We see that all
except model 7 are nonstationary (d = 0.5), and the significant dummies appear to be D;, D,
and Dj in models 1, 2, 3, and 4; the time trend and D, and D3 in models 5 and 6; while the
time trend and Dj are the only significant regressors in model 7.

(Table 4 about here)

A more difficult task is to determine which is the correct model specification across he
different models presented in that table. We display in the last column of Table 4 several
diagnostic tests carried out on the residuals. We observe that if d = 1.25 or 1 (Models 1 and
2), the models fail in relation to the homocedasticity property. Models 4, 5 and 6
(corresponding to d = 0.75 and 0.50) fail in relation to the functional form, while Model 7 (d
= 0.25 and Bloomfield disturbances) cannot be evaluated because of its non-parametric
autocorrelated structure. Thus, we see that Model 3 is the only one which passes all the
diagnostics on the residuals, and it corresponds to

9



Yo =nb, + y,D, *+ y;D; + x t =12, .., (12)

to

1-L0""x =u;

= u, = Qu,_, + € (=12, .., (13)

'
giving the estimates: y; = -7.469; y» =-9.040; y; = -16.457 and @= -0.472. Thus, the impact of
the government interventions appears especially relevant for the data in the cases of the first
three plans, (i.e., 86:3, 87:7 and 89:2), while the fourth and fifth interventions, even being
large in magnitude (in particular the fourth) have little impact on the series.

(Figures 3 and 4 about here)

To evaluate the responses of inflation to the plan shocks, we need to derive the
impulse response functions. We do this next. Let (1 + 0.472L)(1 — L)O'75 = a(L), and calling
di(L) = -7.469a(L); d»(L) = -9.040a(L); d3(L) = -16.457a(L), the model in (12) and (13)
becomes

a(L)yt = dl(L)Dlt + dZ(L)DZL‘ + d}(L)D3t + £ r = 1’ 25 AR

and using a power expansion of a(L), d;(L), d>(L) and d3(L) in terms of its lags, with Dy; = Dy;

= D3; =0 for j < 0, we obtain

-1 -1 -1 t-1
yo=2a,y., t 2d Dy, +Yd, Dy +>d Dy +eE, t=12 .. (14
j=1 j=1 i=1 j=1

~

where a; are the coefficients of the impulse response functions, and dyj, dy; and ds; are the
impacts of the shock plans on the inflation. Figure 3 summarizes these values for the impulse
responses and Figure 4 for the impacts of the plans. We observe through the a;’s that the effect
of a shock on inflation tends to die away in the long run though it takes a very long period to
disappear completely. In fact, we see that even 50 periods after the initial shock, 20% of its
effect still remains on the series. The impact of the shocks is higher for the third plan (89:2)

than for the others (86:3 and 87:7) and also they take a long time to disappear completely.
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4. Conclusions
The monthly structure of the Brazilian inflation rate (74:1 — 93:6) has been investigated in this
article by means of fractionally integrated techniques. This series is characterized by a period
of hyperinflation, starting by the end of the 80’s and followed by government interventions to
bring inflation to a low level for a short period of time. We have made use of a testing
procedure due to Robinson (1994) that allows us to consider I(d) statistical models and at the
same time to incorporate dummy variables for the government interventions, with no effect on
the limit distribution of the tests. When the dummy variables are not included in the
regression model, the results of Robinson’s (1994) tests indicate that the series may be I(1) if
the underlying disturbances are white noise. However, if they are autocorrelated, the order of
integration seems to be smaller, oscillating between 0.25 and 0.50. This contradicts the results
in Cati et al. (1994) which found that the series is I(1) but, in that paper, they do not consider
fractionally integrated alternatives. Incorporating the dummies, the results also substantially
vary depending on how we specify the disturbances. Thus, if they are white noise, the orders
of integration are 1 and 1.25. If u; is AR(1) or MA(1), d appears to be 0.50 and 0.75, while
using the Bloomfield (1973) exponential model, the series seems to be stationary with d =
0.25. In order to choose which might be the best model specification across the potential
models selected with the tests of Robinson (1994), we look at several diagnostic tests carried
out on the residuals of these selected models, the results indicating that the series may be
described in terms of an 1(0.75) process with three dummy variables for the first three
interventions (86:3, 87:7 and 89:2). Thus, the fourth and fifth interventions (even being large
in magnitude) have little impact in the underlying structure of the series.

It would be worthwhile proceeding to get point estimates of d, perhaps especially in
the Bloomfield case, where the results indicate that the series may be stationary as opposed to

the nonstationary results obtained for the remaining cases. However, not only would this be
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computationally more expensive, but it is then in any case confidence intervals rather than
point estimates which should be stressed.

The approach used in this article generates simply computed diagnostics for departures
from any real d. It is thus not at all surprising that, when fractional hypotheses are entertained,
some evidence supporting them appears, because this might happen even when the unit-root
model is highly suitable. However, even though our practise of computing test statistics for a
wide range of null hypotheses lead to ambiguous conclusions, often the bulk of these
hypotheses are rejected, suggesting that the optimal local power properties of the tests may be
supported by reasonable performance against non-local alternatives. Furthermore, the
diagnostic tests carried out on the residuals of the selected models give further support for
fractional models when describing the Brazilian inflation rate.

Several other lines of research are under way which should prove relevant to the
analysis of these and other macroeconomic data. Extensions of the tests of Robinson (1994) to
include structural breaks at unknown periods of time are being developed. Also, the
estimation of fractional models in the context of Bloomfield (1973) exponential spectral
disturbances is being examined. Work is also proceeding on multivariate extensions of
Robinson’s (1994) tests, and this would lead to an alternative approach to the study of
cointegration. How these approaches may affect to the conclusions obtained in this article still

remains to be investigated.

12



References

Adenstedt, R.K., 1974, On large-sample estimation for the mean of a stationary random
sequence, Annals of Statistics 2, 1095-1107.

Ben-David, D. and D.H. Papell, 1994, The great wars, the great crash, and the unit root
hypothesis: Some new evidence about an old stylised fact, National Bureau of Economic
Reseach, Working Paper No. 4752.

Bloomfield, P.J., 1973, An exponential model for the spectrum of a scalar time series,
Biometrika 60, 217-226.

Cati, R.C., M.G.P. Garcia and P. Perron, 1999, Unit roots in the presence of abrupt
governmental interventions with an application to Brazilian data, Journal of Applied
Econometrics 14, 27-56.

Christiano, 1.J., 1992, Searching for a break in GNP, Journal of Business and Economic
Statistics 10, 237-250.

Demery, D. and N.W. Duck, 1992, Are economic fluctuations really persistent? A
reinterpretation of some international evidence, The Economic Journal 102, 1094-1101.
Dickey, D.A. and W.A. Fuller, 1979, Distribution of the estimators for autoregressive time
series with a unit root, Journal of the American Statistical Association 74, 427-431.

Diebold, F.X. and A. Inoue, 1999, Long memory and structural change, Preprint.

Fuller, W.A., 1976, Introduction to statistical time series, Willey, New York.

Gil-Alana, L.A., 1999, Fractional integration with monthly data, Economic Modelling 16,
613-629.

Gil-Alana, L.A., 2000, Mean reversion in the real exchange rates, Economics Letters 69, 285-
288.

Gil-Alana, L.A., 2001a, A fractionally integrated model with a mean shift for the US and the

UK real oil prices, forthcoming in Economic Modelling.

13



Gil-Alana, L.A., 2001b, Testing stochastic cycles in macroeconomic time series, forthcoming
in Journal of Time Series Analysis.

Gil-Alana, L.A. and P.M. Robinson, 1997, Testing of unit roots and other nonstationary
hypotheses in macroeconomic time series, Journal of Econometrics 80, 241-268.

Gil-Alana, L.A. and P.M. Robinson, 2001, Testing of seasonal fractional integration in the
UK and Japanese consumption and income, forthcoming in Journal of Applied Econometrics.
Granger, C.W.J., 1980, Long memory relationships and the aggregation of dynamic models,
Journal of Econometrics 14, 227-238.

Granger, C.W.J., 1981, Some properties of time series models and their use in econometric
model specification, Journal of Econometrics 16, 121-130.

Granger, C.W.J. and Hyung, 1999, Occasional structural breaks and long memory, Discussion
Paper 99-14, University of California, San Diego.

Hosking, J.R.M., 1981, Modelling persistence in hydrological time series using fractional
differencing, Water Resources Research 20, 1898-1908.

Krol, R., 1992, Trends, random walks and persistence: an empirical study of disaggregated
US industrial production, The Review of Economics and Statistics 74, 154-166.
Kwiatkowski, D., P.C.B. Phillips, P. Schmidt and Y. Shin, 1992, Testing the null hypothesis
of stationarity against the alternative of a unit root, Journal of Econometrics 54, 159-178.
Mills, T.C., 1994, Infrequent permanent shocks and the unit root in quarterly UK output,
Bulletin of Economic Research 46, 91-94

Nelson, C.R. and C.I. Plosser, 1982, Trends and random walks in macroeconomic time series,
Journal of Monetary Economics 10, 139-162.

Parke, W.R., 1999, What is fractional integration?, The Review of Economics and Statistics
81, 632-638.

Perron, P., 1989, The great crash, the oil price shock and the unit root hypothesis,

Econometrica 57, 1361-1401.

14



Perron, P., 1993, Trends, unit roots and structural change in macroeconomic time seires,
Unpublished manuscript, University of Montreal, Montreal.

Phillips, P.C.B. and P. Perron, 1988, Testing for a unit root in time series regression,
Biometrika 75, 335-346.

Robinson, P.M., 1978, Statistical inference for a random coefficient autoregressive model,
Scandinavian Journal of Statistics 5, 163-168.

Robinson, P.M., 1994, Efficient tests of nonstationary hypotheses, Journal of the American
Statistical Association 89, 1420-1437.

Said, S.E. and D.A. Dickey, 1984, Testing for unit roots in autoregressive moving average
models of unknown order, Biometrika 71, 599-607.

Serletis, A., 1992, The random walk in the Canadian output, Canadian Journal of Economics
2, 392-406.

Stock, J.H., 1990, A class of tests for integration and cointegration, mimeo, Kennedy School
of Government, Harvard University.

Taqqu, M.S., 1975, Weak convergence to fractional Brownian motion and the Rosenblatt
process, Z. Wahrscheinlichkeitstheorie verw. Geb. 31, 287-302.

Zivot, E. and D.W.K. Andrews, 1992, Further evidence of the great crash, the oil price shock

and the unit root hypothesis, Journal of Business and Economics Statistics 10, 251-270.

15



FIGURE 1

90
90:3

91:2

0 T T T T T T T T T T T T T T T T T T T T T T T T T T T

Brazilian inflation rate, 1974:1 to 1993:6

FIGURE 2

PASAAAARNA A A ANNA A _on AL AJA MAI\AAMA

0 "mmmﬂm’r“wmmm"rrmn'rrmmmwrmvmmnwmmvuwmrmnvuwvnHVﬂr ITTTTTTTTTTNT \HHH\V\HHMV\HHVHIH\

First differences of the Brazilian inflation rate

16




FIGURE 3

Impulse response function of the Brazilian inflation rate
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TABLE 1

Testing the order of integration in the Brazilian inflation rate with the tests of Robinson (1994)

Sample u, z/dy| 000 | 025 | 050 | 075 | 1.00 | 125 | 1.50 | 1.75 | 2.00
— | 2475 | 1527 | 526 | 078 | -149° | -2.82 | -3.62 | 4.14 | 451

Whitenoise | 1 | 24.75 | 1680 | 594 | 042’ | -1.70 | -2.86 | -3.58 | -4.08 | -4.45

(1,9 | 14.80 | 863 | 3.59 | 0.23 | -1.70 | -2.85 | -3.56 | -4.03 | -4.40

— | -1.26" | 028 | 0.02° | -145 | -2.51 | -3.26 | -3.73 | -4.01 | -4.20

AR (1) 1 [-126" [ -121° | -0.08 | -1.57° | -2.61 | -328 | -3.71 | -3.99 | -4.18

741 —86.3 (L] -0.62" | 032 | 057 | -1.70 | -2.61 | -3.26 | -3.67 | -3.89 | -4.06
— | 1895 | 752 | -049 | -2.73 | -351 | -501 | -639 | -7.29 | -7.93

MA (1) 1 | 1895 | 9.28 |-0.009°| -3.12 | -3.89 | -5.07 | -6.32 | -7.18 | -7.82

(1, | 858 | 222 | -1.57 | -325 | -3.88 | -5.05 | -6.29 | -7.09 | -7.73

— | 1022 | 3.65 | -0.54 | -245 | -3.35 | -4.03 | -442 | -4.65 | -4.79

Bloomfield (1) | 1 | 1022 | 498 | -0.19° | -2.77 | -3.74 | -424 | -457 | 474 | -4.86

(1L,9° ] 275 | 034 | -1.61° | 289 | 373 | 421 | 450 | 463 | -4.70

Sample u, z/dy| 000 | 025 | 050 | 075 | 1.00 | 125 | 1.50 | 1.75 | 2.00
-~ | 955 | 590 | 360 | 1.67 | 010° | -1.09° | -2.00 | -2.69 | -3.21

Whitenoise | 1 | 955 | 624 | 356 | 1.64° | 0.10° | -1.09° | -2.00 | -2.69 | -3.21

(1.O| 953 | 644 | 383 | 172 | 0.10° | -1.10° | -2.00 | -2.69 | -3.21

~ | 090" | 029 | -047 | -1.07° | -1.53 | -1.90 | -221 | -247 | -2.71

AR (1) 1| 090 | 0.0 | -0.61° | -1.09° | -1.53° | -1.90 | -2.21 | -247 | -2.71

86.4— 93.6 (LY | 137 | 038 | -041 | -1.05° | -1.53° | -1.90 | -2.21 | -247 | -2.71
~— | 588 | 236 | 030" | -1.12° | -2.19 | -2.88 | -3.71 | 494 | -588

MA (1) 1 | 588 | 256 | 029 | -1.14> | -2.20 | -2.88 | -3.71 | -4.94 | -5.89

(1LO"| 587 | 279 | 047 | -1.09° | -2.19 | -2.89 | -3.71 | -4.94 | -5.88

— | 133 | 0.63 | -1.54 | 2.17 | -2.65 | -3.01 | -330 | -3.56 | -3.74

Bloomfield (1) | 1 | 1.33° | 033 | -1.53 | -2.20 | -2.65 | -3.01 | -3.30 | -3.56 | -3.74

(L9 | 1.21° | 039 | -1.36° | -2.13 | -2.65 | -3.02 | -3.31 | -3.56 | -3.73

Sample u, z/dy| 000 | 025 | 050 | 075 | 1.00 | 125 | 1.50 | 1.75 | 2.00
— | 2775 | 1349 | 612 | 249 | 0.04 | -1.76 | -3.12 | -4.14 | -492

Whitenoise | 1 | 27.75 | 14.85 | 635 | 248 | 0.03 | -1.76 | -3.12 | -4.14 | -4.91

(1,9 16.13 | 1015 | 520 | 2.44 | 0.0 | -1.76 | -3.12 | -4.14 | -4.91

— | 1.66 | 144’ | -0.69° | -2.01 | -2.78 | -3.34 | 381 | -4.22 | -4.58

AR (1) 1 | 166 | 118 | -0.69° | -2.03 | -2.78 | -3.34 | -3.81 | -422 | -4.58

41— 93.6 (1,9 | 3.01 | 096 | -0.86 | -2.04 | 2.78 | -3.34 | -3.81 | -4.22 | -4.58
— | 2051 | 7.04 | 096" | -1.69 | -323 | -4.19 | -541 | -7.14 | -845

MA (1) 1 [2051 | 811 | 113 | -1.69 | -3.24 | 420 | -541 | -7.14 | 845

(1,9 | 10.54 | 456 | 0.64> | -1.72 | -3.24 | 419 | 541 | -7.14 | -8.45

~ | 997 | 175 | -1.64 | -2.92 | -3.68 | -421 | -4.63 | -5.00 | -5.25

Bloomfield (1) | 1 | 9.97 | 241 |-149 | -2.93 | -3.69 | -422 | -4.63 | -500 | -5.25

(L] 253 | 015 | -1.79° | 2.96 | -3.69 | -4.21 | 463 | -4.99 | -5.24
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TABLE 2

Testing the order of integration with the tests of Robinson (1994) including dummy variables

d Significant regressors White noise AR(1) MA(1) Bloomfield (1)
0.00 I; t; Dy 15.59 2.30 9.76 2.83
0.25 T; D; 10.53 1.86 5.44 -0.75°
0.50 T; D,; Ds 6.00 -0.93 1.19° -1.44°
0.75 D,; Dy; Ds; 3.43 -1.29° -1.10° -3.92
1.00 Dy; D,; Ds; 1.19° -2.41 -2.92 -4.51
1.25 Dy; D»; Ds; -0.51° -3.22 -4.25 -4.98
1.50 D;; Dy; Dy -1.82 -3.84 -5.17 -5.29
1.75 D,; D,; Ds; Dy -2.83 -4.33 -5.81 -5.56
2.00 D,; D,; Ds; Dy -3.63 -4.73 -6.25 -5.76

¢ and in bold: Non-rejection values of the null hypothesis H, (3) in (10) and (11) at the 95% significant level.

TABLE 3

Testing the order of integration with the tests of Robinson (1994) including only significant regressors

d Regressors White noise AR(1) MA(1) Bloomfield (1)
0.00 1; t; Dy 15.33 2.66 9.18 3.24
0.25 T, D; 10.74 1.86 5.54 -0.63’
0.50 T, D,; Ds 6.40 0.07° 1.56’ -2.65
0.75 D;; D,; Ds; 3.42 -1.38° -1.18° -3.72
1.00 D;; Ds; Ds; 1.07° -2.49 -3.03 -4.37
1.25 Dy; D,; Ds; -0.67° -3.28 -4.27 -4.81
1.50 D,; D,; Ds; -2.01 -3.87 -5.12 -5.16
1.75 D,;; D,; D;; Dy -2.89 -4.34 -5.76 -5.52
2.00 D;; Dy; D;; Dy -3.66 -4.67 -6.31 -5.65

¢ and in bold: Non-rejection values of the null hypothesis H, (3) at the 95% significant level.
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TABLE 4

Selected models for the Brazilian inflation rate according to Table 3

Model Diagnostics
y, = —17.346D, - 8887D, - 16222D, + x,
1 (2.80) (2.80) (2.80) A; B C
a- 0D"%x = ¢.
y, = —17395D, - 9.040D, - 16.250D, + x,
2 (3.20) (3.20) (3.20) A; By C
a - Lyx = ¢.
y, = —71469D, - 9244D, - 16457D, + x,
3 (3.78) (3.78) (3.78)
A; B; C;, D
1 - 0)"x =u; u, = —0472u,_, + &,.
(0.057)
y, = —7469D, - 9.244D, - 16457D, + x,
4 (3.78) (3.78) (3.78)
A; C;, D
a - 0L)"x, =u; u, = ¢ + 0701¢._.
17.277)
y, = 0.110¢t - 9.533D,, — 16.900D,, + x,
5 (0.027) (4.62) (4.62)
A; C;, D
1 - 0L)"x =u; u, = 059u,, + ¢.
(0.052)
y, = 0.110¢t - 9.533D,, — 16.900D,, + x,
6 (0.027) (4.62) (4.62)
A; C, D
1 - L)"x =u; u, = & + 0727 ¢,,.
(19.872)
y, = 0.104¢r - 17.004D,, + x,
7 (0.009) s |
1 - L)x =u; u, Bloomfield (1).

*: Non-rejections at the 99% significant level of A): No serial correlation; B): Functional

form; C): Normality, and D): Homocedasticity. Standard errors in parenthesis.
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