~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Fujiwara, Takeshi; Nakano, Junji; Yamamoto, Yoshikazu; Kobayashi, Ikunori

Working Paper
An implementation of a statistical language based on JAVA

SFB 373 Discussion Paper, No. 2001,72

Provided in Cooperation with:

Collaborative Research Center 373: Quantification and Simulation of Economic Processes,
Humboldt University Berlin

Suggested Citation: Fujiwara, Takeshi; Nakano, Junji; Yamamoto, Yoshikazu; Kobayashi, Ikunori
(2001) : An implementation of a statistical language based on JAVA, SFB 373 Discussion Paper, No.
2001,72, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and
Simulation of Economic Processes, Berlin,
https://nbn-resolving.de/urn:nbn:de:kobv:11-10050444

This Version is available at:
https://hdl.handle.net/10419/62691

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:kobv:11-10050444%0A
https://hdl.handle.net/10419/62691
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

AN IMPLEMENTATION OF A STATISTICAL LANGUAGE
BASED ON JAVA

Takeshi Fujiwara * Junji Nakano * Yoshikazu Yamamoto *
Tkunori Kobayashi 3

ABSTRACT

As computing technologies have been developed rapidly and continuously, statisti-
cal languages should be frequently improved by adopting them for realizing comfortable
statistical environments. Although that work was a difficult task before, we can imple-
ment such languages relatively easily by modern software techniques such as the Java
language, which unifies recent computer technologies widely and neatly.

In this paper, we describe the idea of a new Jasp (JAva based Statistical Processor)
language, which is a function based and object oriented language, is suitable for inter-
active operation, and has flexibilities and diverse extendibilities. Considering required
characteristics for a statistical language, we decide to implement the Jasp language by
Java technologies through the Pnuts language, which is a script language written in
Java, and a preprocessing approach. This implementation brings several advantages
such as reduction of development costs, effective uses of existing resources, and enough
reliabilities.

1. Introduction

One of the essential parts in a statistical system is its language, by which users describe
their statistical works. Nowadays, we have many statistical systems which have rich set
of statistical procedures, user friendly interfaces and high reliabilities. However, some of
their languages can not use recent computing environments fully, partly because they are
designed many years ago. For the past few decades, computing environment has progressed
continuously and rapidly. For adopting new technologies efficiently, a statistical language
needs to be newly designed.

In recent statistical systems, function based languages, for example, the S language
(Chambers, 1998), are admitted to be flexible and intuitive to express formulae, functions
and tentative programs. At the same time, object oriented languages such as the Java

*The Graduate University for Advanced Studies, 4-6-7 Minami-azabu, Minato-ku, Tokyo 106-8569, Japan
(fuji@ism.ac.jp)

TThe Institute of Statistical Mathematics, 4-6-7 Minami-azabu, Minato-ku, Tokyo 106-8569, Japan
(nakanoj@ism.ac.jp)

fFaculty of Engineering, Tokushima Bunri University, 1314-1 Shido, Okawa, Kagawa 769-2193, Japan
(yamamoto@is.bunri-u.ac.jp)

§Faculty of Engineering, Tokushima Bunri University, 1314-1 Shido, Okawa, Kagawa 769-2193, Japan
(ikunori@es.bunri-u.ac.jp)

Key words: Function based language; GUI; Java; Object oriented language; Preprocessing; Statistical
System.



language are accepted to be good at arranging and reusing programs and well-organized
knowledge as the form of encapsulated objects. An object oriented approach may also
arrange relevant statistical methods and techniques as a hierarchy of classes, which is a
kind of models to collect similar data structures and procedures. It is desirable that a new
statistical language has both function based and object oriented characteristics.

Considering these requirements for a statistical language, we design and implement a
new statistical language (The Jasp language) for the statistical system Jasp (Nakano et al.,
2000), which has various features. The Jasp language is designed and implemented using the
Java language mainly based on the Pnuts language (Tomatsu, 2000). Java is a well-designed
object oriented language which uses various recently developed abilities systematically, and
Pnuts is a simple function based script language which is written in Java and can use Java
classes directly. We extend Pnuts for having object oriented abilities and functions required
for statistical works using a preprocessing approach. This paper describes basic ideas of
language design and implementation techniques which can keep our programming works as
little as possible.

2. Considerations on a modern Statistical Language

2.1. Indispensable Features for Statistical Languages

A statistical language is used to express and execute the process of statistical analyses
which a user wants to perform. It is also the main means of the communication between a
user and the system. For helping users effectively in these works, a statistical language of
today needs to have several features.

First, a statistical language must be easy and intuitive to use. Most users of a statistical
system are not professional programmers. They do not want to use much time for studying
another command language. This is the reason that a function based language is preferred
as a statistical language, because functions are easy and suitable to express statistical pro-
cedures. Writing short functions for a particular small part of the statistical analysis is
rather simple and we can perform whole statistical works by using these small functions. In
addition, a language without type declaration is preferred. Type declaration is important
for a rigid compiler language, but is too formal for tentative statistical works.

Although a function based language is easy to use, it is not good at arranging many
functions, because it does not have the mechanism to encapsulate related functions. This
can be essentially realized by an object oriented programming approach. Well arranged
objects reflect statistical notions naturally, and are intuitive. However, designing objects
at the beginning of the statistical analysis is a difficult task. In this stage, we have to
try to perform many statistical techniques in order to grasp the clear image of data and
appropriate statistical procedures. After executing such trial and error, we come to the
stage of designing objects. Thus, a statistical language requires both features of a function
based language and an object oriented language.

Second, a statistical language needs to be suitable for interactive operations. In general,
a statistical analysis is a process of operating various statistical procedures one by one with
checking results of each operation. Even when we use one particular statistical procedure,
it may be performed repeatedly for checking the results and trying to variously transformed
data. Results of each calculation will be used as information for deciding the next possible
statistical procedures, or may be used as inputs of other procedures. If a language is not fit
for interactive use, these operations are so complicated and cumbersome. It is clear that an

—2—



interpreter language is better for interactive operations than a compiler language, because
the former responds more quickly than the latter.

Third, a statistical language needs to be extendible. Developers of a system can not
realize all the vast requirements of users. In addition, computing technologies and environ-
ments have proceeded rapidly, and it is necessary to follow them continuously. Therefore, a
statistical language needs to be extended easily by not only developers but also users.

2.2, Implementation of Statistical Languages

For implementing statistical languages, two approaches have been mainly used; one
approach is to implement a new language from scratch, and the other is to use an existing
language as a base of statistical language.

Many statistical languages, for example, S and XploRe (Hardle et al., 1999), adopt
the first approach. It has the advantage that the language can be designed unconstraintly
for statistical purposes. However, the cost for developing and maintaining the system are
expensive. Enhancing and changing the language specification which was once implemented
requires professional skill for programming and is difficult.

On the other hand, for example, XlispStat (Tierney, 1990) adopts the second approach.
It uses the Lisp language as a base, and functions for statistical works are added on it. This
approach can reduce the programming cost remarkably by using the functions of the base
language, but, at the same time, language features are greatly affected by the base language.
Although Lisp is a flexible and powerful language, the Lisp style programming of XlispStat
is not easy and intuitive to use for many data analysts.

3. The Jasp Language

3.1. Design principles of the language

Although we have many statistical languages, we are not satisfied by them because of
lack of some features that we consider in the previous section. We decide to design and
implement new Jasp language for realizing such features.

First, we design Jasp language as a function based language basically for easiness and
intuitiveness. All the abilities can be executed as function calls. At the same time, an
object oriented mechanism is implemented to bundle related functions without changing
original function programs. Constructor methods of objects are used as almost same as
function calls. It is recommended that beginners of statistics and programming or users
who perform basic analyses write programs by functions, and users who consider future
reuse of programs write programs by classes. It also possible that at the initial stage of the
analysis, users mainly use functions, and that at the next stage, they collect and package
related functions as a class form. This feature of the Jasp language has advantage to other
statistical languages.

Second, we design Jasp language as a script interpreter language largely based on Pnuts,
because it is suitable for executing functions interactively. We can also perform commands
in a file at a stretch, that is, batch processing. The Jasp CUI (Character User Interface)
embeds the Jasp interpreter and helps users to execute these operations from environments
such as a program editor and a command line editor.

Third, the user can extend Jasp system using another languages. For developers or
advanced users, efficient implementations of new functions are required to be written in the
system construction language, that is, Java for Jasp. This task is easy in Jasp, because



the Pnuts language can call Java classes directly. This is one of the main reason we choose
Pnuts as the base of the Jasp language. At present, many programmers have developed
various Java applications as classes. They are all available from Jasp with little efforts.
Some advanced users require complicated statistical calculations, and need to write Java
programs by themselves, which can also be used from Jasp.

In the statistical community, we have many programs which have enough reliability and
speed and were written in traditional languages such as Fortran or C. We sometimes want
to use them from Jasp. The JNI (Java Native Interface), which is an interface between Java
and other languages, makes this possible. As an example, TIMSAC (TIMe Series Analysis
and Control) package (Akaike and Nakagawa, 1989), which is a set of Fortran programs for
executing various time series analysis techniques, are embedded in Jasp by this mechanism.

3.2. Implementation of the Language

For implementing the Jasp language, we adopt the second approach in the section 2.2;
Jasp is built on Pnuts. As we want to extend Pnuts for statistical purposes as we hope, just
adding functions are not enough. For extending the Pnuts language, two approaches may
be available: to change the source code of the Pnuts language, or to write the preprocessing
program for translating the Jasp language into the Pnuts language. The first approach needs
almost as same development and maintenance cost as that for implementing a language from
scratch, because it requires complete understanding of the base language implementation.
The second one has a weak point, i.e. the execution speed is slow because the process of
execution needs two steps. This approach, on the other hand, has some advantages. The
cost of development and maintenance can be greatly reduced, because the real execution
works are performed by the base language. Usually, the base language is used widely, tested
well, and maintained continuously, so the resulted language is more reliable than the newly
implemented language by changing the source code of the base language. We implement the
Jasp language by adopting the preprocessing approach to use the features of the Java and
the Pnuts languages.

3.2.1. Java and Pnuts for Jasp

In recent computing environment, the Java language attracts considerable attention.
Java adopts recent new computing technologies in a unified way. It has various advanced
features such as platform independency, object oriented programming and substantial li-
braries. Java programs can be executed on various operating systems such as Windows,
Linux and Solaris without any modifications. Because of the object oriented design of the
Java language, we can reuse resources efficiently by using features such as the encapsula-
tion and inheritance mechanism. In the Java language specification, many libraries for GUI
(Graphical User Interface) and Network usages are prepared as standard libraries.

It is, however, not easy to learn and use the Java language. Object oriented program-
ming is not suitable for tentative works in statistical analyses, because it is a difficult task
to encapsulate statistical data and methods as a class at the beginning of the analysis. As
Java programs need to be compiled, interactive operations are difficult. As results, although
Java has many good abilities, it is not suitable for statistical analyses as it is.

To overcome these demerits of the Java language, we use Pnuts, a script language for
the Java environment. Pnuts is easier to use than Java because it is a typeless interpreter
function based language. As Pnuts is based on the Java language, it has high affinity with
Java. For example, we can use all Java libraries directly from Pnuts.

As Pnuts is a general purpose language, it is possible to perform statistical analyses

—4—



in it. However, it is extremely cumbersome, because basic statistical functions are not
included in Pnuts. As a statistical language, basic statistical libraries must be equipped at
least for matrix computations, graphics, statistical distributions. We can implement them
by using and modifying existing Java libraries, because the Pnuts language can use Java
classes directly and dynamically. Even if we add these functions to Pnuts, the resulting
system is still not easy to use because of the lack of operations which are required for
statistical works. The built-in extendible abilities of Pnuts are useful to simplify the syntax
for statistical computations. Some complicated functions, however, are difficult to realize by
them, for example, the connectivity with a GUI. We employ an approach to translate small
part of the Jasp program to the Pnuts program before processing by the Pnuts interpreter.
This means that the core part of the Jasp language is as same as the Pnuts language, and
has additional functions for statistical works (Figure 1).

Jasp
Pnuts

Java

Fig. 1. Pnuts and Jasp

3.2.2. Using existing Java Libraries

We import the Jampack (Stewart, 2000) library for matrix computations, the Ptplot
(Lee and Hylands, 2000) library for drawing 2D graphs and the Colt (Hoschek, 2000) li-
brary for calculating statistical distributions and the random number generation as built-in
functions of the Jasp language. Because the Java language is an object oriented language
and each library is implemented as classes, they are well encapsulated and can be reused
effectively from other Java programs.

Pnuts, the base of Jasp, is a Java application and designed to use Java classes as simple
as possible; it needs only two steps. First we import a library, then use its classes in the
almost same way in the Java language, except following two small differences.

In the Java language, we use new command to generate an instance. For example, when
we create an instance of a normal distribution with zero mean and unit standard deviation,
we have to use the sentence

Normal normal = new Normal(0.0, 1.0, new Drand(new Date()));

where Normal is the normal distribution class which is imported from the Colt library. In
Jasp, the same work is performed by the simpler sentence

normal = Normal(0.0, 1.0, Drand(Date()))

without using type declarations.

Another difference is the invocation of static methods. For example, the staticNextDouble
method for returning a random number from the normal distribution with the given mean
and standard deviation are used by the sentence

—5—



x = Normal.staticNextDouble(0.0, 1.0);
in Java, and by the sentence
x = Normal::staticNextDouble(0.0, 1.0)
in Pnuts. Java libraries written by users can be used from Jasp in the same way.

3.2.3. Wrapping existing Java Libraries

Just using existing Java libraries as it is sometimes inconvenient for a statistician. One
example is matrix computations using the Jampack library. If we add a and b by Jampack,
where a and b are appropriate instance objects of Zmat class of Jampack, we have to use
the sentence

¢ = Plus::o(a,b)

by using the static method o of Plus class. This syntax, however, are not simple and
intuitive at all. Natural syntax ¢ = a + b using the add operator + should be used in
this situation. We can use built-in extendible abilities of Pnuts for realizing it. We use
the translation function of arithmetical operations: an object (Java class) which can be an
operand of an operation such as + and -, and implements pnus.util.Numeric interface,
invokes the corresponding method automatically. For instance, if you use the expression
a + b, Pnuts automatically execute a.add(b) method. In Jasp, as matrix calculations are
performed by using the JaspMatrix class, which inherits the Jampack library and implements
pnus.util.Numeric interface, we can also use same simple syntax for matrix computations.

3.2.4. Preprocessing Approach

We have shown the ways to implement the Jasp language by using Java libraries and
an extendible ability of Pnuts. Some required complicated syntax, however, can not be
simplified by these techniques. We may have two possibilities to resolve them: to analyze and
modify the internal implementation of Pnuts for our purposes, or to preprocess and translate
original programs into Pnuts programs. In the first approach, we have to understand the
inside of the Pnuts implementation more throughly and need more programming works
than in the second approach. This will cause the difficulty to follow a version up of Pnuts
itself. Therefore, we decide to use the second way to implement the Jasp language. As
the Pnuts language is a simple function based language and the large part of the syntax
is also appropriate for statistical programming, we add and modify only small parts of it
for realizing the Jasp language. Jasp programs are firstly preprocessed and translated into
regular Pnuts programs, then they are executed by the Pnuts interpreter, as is shown in
Figure 2. For implementing the translator, we use Java CC (Java Compiler Compiler) (Sun
Microsystems, 2000), which is as same as the Yacc and Lex (Kernighan and Pike, 1984) for
the C language.

About matrix operations, for instance, if we want to substitute the submatrix which
consists of rows from the second one to the third one of 3x3 matrix x to a variable y, we
can write

y = x[2:3,]
in the Jasp Language. This sentence is translated into the Pnuts sentence

y = X.get([2,3] B [1,2,3])



Jasp Program

X

Translator

Pre-Processing

Pnuts Program
Pnuts Interpreter

Fig. 2. Preprocessing Approach

by the preprocessor.

In Jasp, CUI and GUI operations are unified, that is, all of CUI operations are recorded
as corresponding GUI operations. For example, if we create a variable by substituting a
value in the CUI, the corresponding icon of the variable will appear in the GUIL In order
to realize it, it is required to send information from the CUI to the GUI. We implement
such a connectivity in the Jasp language by the translator. A simple Jasp sentence x = 1
is replaced into the Pnuts sentences

x =1
srv.addNode ("x")

where the augmented command means to add a new icon which represents a variable x in
the object list area of the GUI window (see Figure 3). In addition, this icon has the layered
structure, and the user can refer to an analytical history by the structure. For instance,
when mean value m and variance value s2 are estimated from x, these icons are displayed
in the hierarchy under the icon of x. Moreover, when the user click the icon, the operation
list of variable will be displayed. The user can execute the operation easily with selecting
item of list. It is also possible that the user operates a part of analysis in the GUI, and then
operates another part of analysis in the CUI.

Usually in a statistical system, a language interpreter and a UI (User Interface) are
independently designed, mainly because a Ul is changed and improved more often than a
language. To embed Ul features in a language interpreter may make the language unstable.
This preprocessing approach, however, brings the simple implementation of the Ul features
in the Jasp language, and we can change them without much programming works.

4. Conclusion

The Jasp language is designed for executing statistical calculations conveniently, espe-
cially in order to realize easiness, interactive operation environments and extendibilities. As
the Jasp language is function based, a user can write tentative small functions easily. And
at the same time, they can be systematically arranged as objects by the object oriented
framework for later uses. As the Jasp language is simple and typeless interpreter language,
and the interpreter can communicate with users through both a CUI and a GUI, users can
operate Jasp interactively. Jasp can be extended by Jasp programs, Java programs and
foreign language programs such as Fortran or C without much efforts.

—T7—



ed Statistical

EIFIN
Editor area-
=1
X
History: : %
m- :
Input/Output area
Jasp = =1
X
e 1
Functions Jagp =
© Display
@ Plot
©- BoxPlot2
& Timsar
hasicFunetions
© hazicStatisticalF unctions
© basichalrixF unclions 7
randomiumbers 7
DAVIS

Fig. 3. The Jasp User Interface

For implementing these abilities, we use the Java language and the Pnuts language as
a base, and adopt the preprocessing approach. This approach is a powerful solution for
building a new statistical language, and is useful for reducing development and maintenance
costs, and keeping the reliability of the system.

REFERENCES

Akaike, H.and Nakagawa, T. (1989). Statistical Analysis and Control of Dynamic Systems. Dor-
drecht: Kluwer Academic Publishers.

Chambers, J. M. (1998). PROGRAMING WITH DATA - A Guide to the S Language. New York:
Springer.

Hardle, W., Klinke, S. and Miller, M. (1999). XploRe — Learning Guide. Berlin: Springer.
(http://www.xplore-stat.de/)

Hoschek, W. (2000) Colt.
(http://nicewww.cern.ch/ hoschek/colt/)

Kernighan, B. W. and Pike, R. (1984). The UNIX Programming Environment. New Jersey: Prentice-
Hall.

Lee, E. A. and Hylands, C. (2000). Ptplot.
(http://ptolemy.eecs.berkeley.edu/java/ptplot/)

Nakano, J., Fujiwara, T., Yamamoto, Y. and Kobayashi, I. (2000). A statistical package based
on Pnuts. In: COMPSTAT2000 Proceedings in Computational Statistics, 361-366. Heidelberg:
Physica-Verlag.

Stewart, P. (2000). Jampack.

(ftp://math.nist.gov/pub/Jampack/Jampack/About Jampack.html)

Sun Microsystems. (2000). Java CC.

(http://www.webgain. com/products/metamata/java_doc.html)

—8—



Tierney, L. (1990). LISP-STAT. New York: John Wiley & Sons,Inc.
(http://www.stat.umn.edu/~luke/x1s/x1sinfo/x1sinfo.html)

Tomatsu, T. (2000). Pnuts.
(http://javacenter.sun.co. jp/pnuts/)



