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ABSTRACT 
 
The annual structure of the real GDP in the UK, France, Germany and Italy is examined in this 

article by means of fractionally integrated techniques. Using a version of a testing procedure 

due to Robinson (1994), we show that the series can be specified in terms of I(d) statistical 

models with d higher than 1. Thus, the series are nonstationary and non-mean-reverting. The 

forecasting properties of the selected models for each country are also examined at the end of 

the article. 
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1. Introduction 

In this article we model the real GDP series in France, Italy, Germany and the U.K. by means 

of fractionally integrated techniques. For this purpose, we make use of a version of the tests of 

Robinson (1994) that permits us to incorporate deterministic trends and to specify the model in 

a fully parametric way. The tests have standard null and local limit distributions and are easy to 

implement in raw time series. The forecasting properties of the selected models for each 

country are also examined, the results showing that all series are nonstationary and non-mean-

reverting, i.e., with the effect of the shocks persisting forever. Furthermore, the fact that the 

series appear to be I(d) with d > 1 implies that the standard approach of taking first differences 

to get I(0) stationarity may result in series still with a component of long memory behaviour. 

The outline of the paper is as follows: Section 2 briefly describes the concept of fractional 

integration and presents the version of the tests of Robinson (1994) used in the paper. In 

Section 3, the tests are applied to the annual structure of the GDP in the four countries. Section 

4 examines different potential models for each country and also investigates the forecasting 

properties of the selected models based on 10 out-of-sample observations. Section 5 concludes. 

 

2. Testing of fractional integration 

Following the parameterization of unit roots proposed by Bhargava (1986), Schmidt and 

Phillips (1992) and others, we can consider the model, 

,...,2,1,' =+= txzy ttt β     (1) 

where β is a (kx1) vector of unknown parameters; zt is a (kx1) vector of deterministic 

regressors, and the regression errors xt are such that: 

    ...,,2,1,)1( ==− tuxL tt
d    (2) 

where ut is an I(0) process defined as a covariance stationary process with spectral density 

function that is positive and finite at the zero frequency. Clearly, if d = 0 in (2), xt = ut, and a 
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‘weakly autocorrelated’ xt is allowed for; however, if d > 0, xt is said to be a long memory 

process, also called ‘strong dependent’, or ‘strongly autocorrelated’,  so-named because of the 

strong association between observations widely separated in time. Note that the polynomial in 

(2) can be expressed in terms of its Binomial expansion such that for all real d, 

...
!3

)2()1(

!2

)1(
1)1( 32 +−−−−+−=− L

ddd
L

dd
LdL d . 

This type of processes were introduced by Granger and Joyeux (1980), Granger (1980, 1981) 

and Hosking (1980), (though earlier work by Adenstedt, 1974, and Taqqu, 1975, showed an 

awareness of its representation), and were theoretically justified in terms of aggregation of 

ARMA processes by Robinson (1978), Granger (1980), and more recently, in terms of the 

duration of shocks by Parke (1999). The parameter d plays a crucial role from both statistical 

and economic viewpoints. Thus, if d ∈ (0, 0.5), xt will be covariance stationary and mean-

reverting, with the effect of the shocks dying away in the long run; if d ∈ [0.5, 1), xt will be 

nonstationary in the sense that the partial sums are non-summable, though still will be mean-

reverting; finally, if d ≥ 1, xt will be nonstationary and non-mean-reverting, with the effect of 

the shocks persisting forever. Complete surveys of long memory processes can be found in 

Beran (1994) and Baillie (1996), and empirical applications based on fractional models like (2) 

are Diebold and Rudebusch (1989), Baillie and Bollerslev (1994) and more recently, Gil-Alana 

and Robinson (1997). 

 Robinson (1994) proposed a Lagrange Multiplier (LM) test of the null hypothesis: 

,: oo ddH =      (3) 

in (1) and (2) for any real value do. Specifically, the test statistic is given by: 

     ,
ˆ
ˆ
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�=      (4) 

where T is the sample size and 
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and g above is a known function coming from the spectral density function of tû : 

),;(
2

);(
2

τλ
π

στλ gf =  withτ̂  obtained by minimising σ2(τ). Note that if ut is white noise, g ≡ 

1 and, if ut is an AR process of form: φ(L)ut =εt, g = |φ(eiλ)|-2, so that the AR coefficients are 

function of τ. 

Robinson (1994) established that under certain regularity conditions: 

.)1,0(ˆ ∞→→ TasNr d    (5) 

Thus, an approximated one-sided test of Ho (3) against the alternative: Ha: d > do, will reject Ho 

if r̂  > zα, where the probability that a standard normal variate exceeds zα is α, and conversely, 

a one-sided test of Ho (3) against Ha: d < do, will reject Ho if r̂  < -zα. As these rules indicate, 

we are in a classical large-sample testing situation by reasons described by Robinson (1994), 

who also showed that the above tests are efficient in the Pitman sense against local departures 

from the null. This version of the tests of Robinson (1994) was used in empirical applications 

in Gil-Alana and Robinson (1997) and Gil-Alana (2000) and, other versions of his tests based 

on seasonal (quarterly and monthly) and cyclical models can be found respectively in Gil-

Alana and Robinson (2001) and Gil-Alana (1999, 2001). 
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3. Testing the order of integration in the real output 

The time series data analysed in this section correspond to the annual data of the real GPD in 

France, Germany, Italy and the U.K. for the time period 1870-2000, the last ten observations 

being discarded for forecasting purposes. 

Denoting any of the series yt, we employ throughout model (1) and (2), with zt = (1,t)’, t 

≥ 1, 0 otherwise, i.e., 

...,2,1, =++= txty tt βα    (6) 

       ...,2,1,)1( ==− tuxL tt
d ,   (7) 

testing Ho (3) for values of do equal to 0, (0.10), 2, i.e., we test for a unit root (d = 1); for I(2) 

processes (d = 2);  as well as other fractionally integrated possibilities. We study separately  the 

cases of α = β = 0 a priori, (i.e., including no regressors in the undifferenced regression); α 

unknown and β = 0 a priori, (i.e., including an intercept), and finally, α and β unknown.  

Initially, in Table 1, we assume that ut is white noise, though later we also allow for weakly 

parametrically autocorrelated disturbances. 

(Table 1 about here) 

The test statistic reported across Table 1 is the one-sided one given by r̂  in (4). Thus, 

significantly positive values of this are consistent with orders of integration higher than do, 

whereas significantly negative ones implies values of d smaller than that hypothesized under 

the null. A notable feature observed across Table 1 is the fact that r̂  monotonically decreases 

with do. This is something to be expected since it is a one-sided test statistic. Thus, for 

example, if Ho (3) is rejected when d = 1 against alternatives of form: d > 1, an event more 

significant result in this direction should be expected when d = 0.75 or 0.50 are tested. We see 

in this table that the unit root null hypothesis is rejected in all cases in favour of more 

nonstationary hypotheses, and the non-rejection values of d are very similar for the different 

cases of no regressors, an intercept and an intercept and a linear time trend. These values are 
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1.30, 1.40 and 1.50 in case of France and Germany; 1.30 and 1.40 for Italy, and these two 

values along with 1.20 and 1.60 for the U.K. However, the significance of the above results 

may be in large part due to the un-accounted for I(0) autocorrelation in ut. Thus, in Tables 2 

and 3 we allow weakly autocorrelated disturbances. In particular, we impose AR(1) and AR(2) 

disturbances. Higher order autoregressions were also tried and the results were very similar to 

those reported across the tables. 

(Tables 2 and 3 about here) 

Table 2 starts with AR(1) ut. We see that for France, Italy and Germany, the orders of 

integration are higher than 1, oscillating between 1.20 and 1.50 in case of France; being 1.30 

and 1.40 for Italy; and 1.10 and 1.20 for Germany; while for the U.K., the unit root null 

hypothesis (d = 1) cannot be rejected along with d = 1.10 and 1.20. Imposing AR(2) 

disturbances, (in Table 3), there is a larger proportion of non-rejection values compared with 

Table 2, probably due to the larger number of parameters required in the estimation, however, 

the same conclusions as in the previous table hold, with France as the most nonstationary 

series, followed by Italy and Germany, while U.K. appears as the less nonstationary one, 

observing non-rejection values even for the unit root case. 

In view of these results, we can conclude the analysis of these tables by saying that the 

real GDP series are nonstationary for the four countries, with the orders of integration being 

equal to or higher than 1 in case of the U.K. and being strictly higher than 1 for France, Italy 

and Germany. These results are obtained independently of the inclusion or not of deterministic 

trends and of the different ways of modelling the I(0) disturbances. 

 

4. Potential model specifications and prediction 

In this section we are concerned with which might be the best model specification for each 

series according to two different criteria. First, we choose for each country the models which 

best fit the data in a way such that the residuals are the closest to white noise. Then, we look at 
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the models in terms of forecasting, trying to predict the last ten obsrvations and looking at the 

mean square errors. 

(Table 4 about here) 

 Table 4 reports for each series nine different models, each corresponding to the different 

cases for zt, (i.e., with no regressors, with an intercept, and with an intercpet and a linear time 

trend), and to the different types of I(0) disturbances, (i.e., white noise, AR(1) and AR(2)), 

taking the value of d for each model which produces the lowest | r̂ | across do. The intuition 

behind this is that the model with the lowest | r̂ | will give us the closest residuals to white noise. 

We see in this table that for France the values of d range between 1.34 (in case of white noise ut 

and no regressors) and 1.55 (AR(2) ut and zt = 0); for Italy, the values are between 1.30 and 

1.47; for Germany, between 1.14 and 1.34, and finally for the U.K., they oscillate between 1.08 

(with AR(1) ut with an intercept) and 1.38 (with white noise ut and a linear time trend). Thus, in 

all cases we observe orders of integration higher than 1, implying that the series are 

nonstationary and non-mean reverting, with the effects of the schocks persisting forever. 

Furthermore, the fact that d is higher than 1 also implies that the standard approach of taking 

first differences may still lead to series with a component of long memory behaviour (i.e., I(d) 

with d > 0). 

(Table 5 about here) 

 In Table 5, we have calculated the mean square errors of the nine selected models for 

each country based on the last ten observations. The first thing that we observe here is that the 

inclusion of an intercept and a linear trend produces larger mean square errors for all countries 

compared with the cases of no regressors or of an intercept, implying that a linear time trend 

may not be required when modelling these series. We see that according to the mean square 

errors, the best models change in case of the first three or four predictions, however, if we 

predict for more than four periods ahead, for each country we observe a model that performs 

the best. Thus, for France, it appears to be an I(1.37) with an intercept; for Italy, it is a pure 
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I(1.30); for Germany, an I(1.33) with AR(2) ut; while for the UK, it is an I(1.09) with an 

intercept and AR(2) disturbances. 

 

5. Conclusions 

The annual structure of the real GDP in France, Italy, Germany and the U.K. has been 

examined in this article by means of fractionally integrated techniques. Using a version of the 

tests of Robinson (1994) for testing I(d) statistical models, we show that all series may be 

specifed in terms of I(d) models with d > 1. This result is obtained independently of the 

inclusion or not of deterministic trends and of the different ways of modelling the I(0) 

disturbances. In order to be more specific about the degree of integration of each series we 

choose the value of d which produces the lowest statistic in absolute value across d. The results 

indicate that the real GDP in France is the most nonstationary series with d fluctuating between 

1.34 and 1.55. This value is between 1.30 and 1.47 in case of Italy, and between 1.14 and 1.34 

for Germany. Finally, the results for the UK suggest that d oscillates between 1.08 and 1.38. 

We also analysed the forecasting properties of the selected models and, according to the mean 

square errors based on the last ten observations, the preferred models appear to be with orders 

of integration of 1.37 for France, 1.33 for Germany, 1.30 for Italy, and 1.09 for the UK. Thus, 

we conclude by saying that even taking first differences, the series have a component of long 

memory behaviour. 
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TABLE 1 

Testing the order of integration with white noise disturbances 

Country zt  /  do 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 

--- 21.06 16.59 11.42 6.71 3.14 0.70’ -0.90’ -1.99 -2.75 -3.31 -3.74 

1 20.49 16.88 12.18 7.52 3.80 1.21’ -0.49’ -1.62’ -2.41 -2.99 -3.43 

 
France 

(1, t)’ 20.55 16.69 12.30 8.01 4.37 1.63’ -0.27’ -1.54’ -2.39 -2.99 -3.44 

--- 22.26 17.83 12.19 6.78 2.71 0.07’ -1.53’ -2.53 -3.18 -3.64 -3.99 

1 21.68 17.82 12.49 7.11 2.91 0.16’ -1.51’ -2.53 -3.20 -3.66 -4.00 

 
Italy 

(1, t)’ 21.56 17.47 12.56 7.67 3.59 0.65’ -1.26’ -2.44 -3.17 -3.66 -4.01 

--- 17.48 13.04 8.50 4.74 2.07 0.31’ -0.84’ -1.64’ -2.22 -2.67 -3.04 

1 16.88 12.78 8.39 4.70 2.06 0.33’ -0.80’ -1.59’ -2.16 -2.61 -2.97 

 
Germany 

(1, t)’ 16.45 12.42 8.47 5.08 2.48 0.62’ -0.65’ -1.52’ -2.14 -2.60 -2.97 

--- 16.91 11.93 7.34 3.84 1.44’ -0.14’ -1.22’ -1.99 -2.57 -3.02 -3.40 

1 16.78 12.88 8.59 4.99 2.43 0.74’ -0.37’ -1.17’ -1.78 -2.28 -2.71 

 
U. K. 

(1, t)’ 16.47 12.54 8.72 5.46 2.93 1.10’ -0.17’ -1.08’ -1.75 -2.22 -2.71 
‘ and in bold: Non-rejection values at the 95% significance level. 
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TABLE 2 

Testing the order of integration with AR(1) disturbances 

Country zt  /  do 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 
--- 3.90 3.35 1.94 0.60’ -0.47’ -1.30’ -1.94 -2.46 -2.89 -3.26 -3.58 

1 2.66 2.51 1.32’ -0.03’ -1.12’ -1.92 -2.51 -2.97 -3.34 -3.66 -3.94 

 
France 

(1, t)’ 2.32 2.74 1.64’ 0.29’ -0.91’ -1.83 -2.49 -2.97 -3.35 -3.66 -3.94 

--- 5.84 4.73 2.53 0.54’ -0.91’ -1.90 -2.56 -3.04 -3.39 -3.69 -3.94 

1 4.39 4.32 2.34 0.34’ -1.15’ -2.15 -2.82 -3.28 -3.62 -3.90 -4.12 

 
Italy 

(1, t)’ 4.89 4.59 2.82 0.83’ -0.83’ -2.02 -2.78 -3.28 -3.63 -3.90 -4.13 

--- 2.62 0.94’ -0.62’ -1.76 -2.54 -3.05 -3.41 -3.68 -3.91 -4.10 -4.26 

1 1.72 0.51’ -0.88’ -1.96 -2.69 -3.18 -3.53 -3.79 -4.00 -4.18 -4.35 

 
Germany 

(1, t)’ 2.05 0.78’ -0.56’ -1.69 -2.53 -3.11 -3.50 -3.78 -4.00 -4.18 -4.35 

--- 1.10’ 0.14’ -0.73’ -1.38’ -1.84 -2.15 -2.40 -2.60 -2.79 -2.97 -3.14 

1 0.51’ -0.21’ -1.27’ -2.04 -2.51 -2.78 -2.95 -3.06 -3.16 -3.26 -3.36 

 
U. K. 

(1, t)’ 1.08’ 0.08’ -0.94’ -1.77 -2.34 -2.70 -2.92 -3.05 -3.16 -3.26 -3.37 
‘ and in bold: Non-rejection values at the 95% significance level. 
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TABLE 3 

Testing the order of integration with AR(2) disturbances 

Country zt  /  do 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 
--- 2.46 1.44’ 1.13’ 0.87’ 0.50’ 0.15’ -0.17’ -0.46’ -1.74 -2.02 -2.31 

1 2.61 -1.75 1.09’ 0.56’ 0.10’ -0.31’ -0.65’ -1.04’ -1.64’ -1.93 -2.67 

 
France 

(1, t)’ 2.11 1.93 1.92 0.68’ 0.21’ -0.26’ -0.65’ -1.55’ -1.90 -2.43 -2.66 

--- 2.71 1.93 1.92 1.29’ 0.51’ -0.15’ -0.65’ -1.02’ -1.31’ -1.65 -1.78 

1 2.14 1.96 1.67 1.06’ 0.23’ -0.47’ -0.99’ -1.37’ -1.65 -1.88 -2.09 

 
Italy 

(1, t)’ 2.31 1.90 1.74 1.30’ 0.47’ -0.34’ -0.96’ -1.37’ -1.66 -1.89 -2.09 

--- 1.67 1.46’ 0.87’ 0.18’ -0.39’ -0.82’ -1.13’ -1.66 -1.75 -1.82 -1.87 

1 1.97 1.22’ 0.69’ 0.04’ -0.51’ -0.92’ -1.23’ -1.46’ -1.65 -1.81 -1.96 

 
Germany 

(1, t)’ 2.33 1.31’ 0.88’ 0.26’ -0.35’ -0.84’ -1.20’ -1.65 -1.95 -2.01 -2.06 

--- 0.40’ 0.14’ -0.28’ -0.69’ -0.99’ -1.19 1-32’ -1.67 -1.77 -1.83 -2.06 

1 0.18’ -0.03’ -0.62’ -1.20’ -1.62’ -1.89 -2.07 -2.18 -2.25 -2.30 -2.35 

 
U. K. 

(1, t)’ 0.39’ 0.09’ -0.43’ -1.00’ -1.48’ -1.82 -2.04 -2.17 -2.25 -2.31 -2.36 
‘ and in bold: Non-rejection values at the 95% significance level. 
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TABLE 4 

Selected model for each country according to the lowest statistic across do 

Country ut zt do α β α1 α2 

--- 1.34 --- --- --- --- 

1 1.37 438.58 --- --- --- 

 
White noise

(1, t)’ 1.38 415.67 45.55 --- --- 

--- 1.35 --- --- -0.02 --- 

1 1.30 437.87 --- 0.11 --- 

 
AR(1) 

(1, t)’ 1.35 412.61 49.82 0.11 --- 

--- 1.55 --- --- -0.23 -0.20 

1 1.42 439.04 --- -0.003 -0.14 

 
 
 
 

France 

 
AR(2) 

(1, t)’ 1.44 419.07 40.12 -0.01 -0.14 

--- 1.30 --- --- --- --- 

1 1.31 52846.45 --- --- --- 

 
White noise

(1, t)’ 1.33 48156.29 9261.37 --- --- 

--- 1.33 --- --- -0.05 --- 

1 1.32 52862.38 --- -0.02 --- 

 
AR(1) 

(1, t)’ 1.35 48361.98 8952.81 -0.04 --- 

--- 1.47 --- --- -0.21 -0.20 

1 1.43 52990.76 --- -0.14 -0.17 

 
 
 
 

Italy 

 
AR(2) 

(1, t)’ 1.46 49581.73 6837.85 -0.16 -0.17 

--- 1.32 --- --- --- --- 

1 1.33 89.26 --- --- --- 

 
White noise

(1, t)’ 1.34 78.74 20.77 --- --- 

--- 1.16 --- --- 0.28 --- 

1 1.14 88.51 --- 0.31 --- 

 
AR(1) 

(1, t)’ 1.16 74.63 23.93 0.30 --- 

--- 1.33 --- --- 0.15 -0.25 

1 1.31 89.17 --- 0.19 -0.25 

 
 
 
 

Germany 

 
AR(2) 

(1, t)’ 1.34 78.74 20.77 0.17 -0.25 

--- 1.29 --- --- --- --- 

1 1.36 51.13 --- --- --- 

 
White noise

(1, t)’ 1.38 49.08 4.03 --- --- 

--- 1.12 --- --- 0.28 --- 

1 1.08 51.51 --- 0.43 --- 

 
AR(1) 

(1, t)’ 1.11 48.39 4.66 0.40 --- 

--- 1.14 --- --- 0.26 -0.02 

1 1.09 51.47 --- 0.42 -0.02 

 
 
 
 

U. K. 

 
AR(2) 

(1, t)’ 1.12 48.44 4.66 0.40 -0.02 
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TABLE 5 

Mean square erros of the selected models for the last 10 out-of-sample observations 

   Out of sample observations 

Country ut zt 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 

--- 0.006 0.216 0.045 0.350 0.907 1.697 2.436 2.916 3.557 4.036 

1 0.125 0.822 0.047 0.036 0.339 0.934 1.584 2.071 2.724 3.260 
White  

noise  
(1, t)’ 36.701 30.791 39.525 45.524 51.777 58.302 63.740 67579 72.049 75.683 

--- 0.006 0.216 0.046 0.366 0.956 1.794 2.589 3.124 3.829 4.371 

1 0.260 0.006 0.293 0.924 1.622 2.482 3.188 3.557 4.077 4.403 

 
AR(1) 

(1, t)’ 43.113 36.919 46.128 51.835 57.561 63.410 68.016 70.912 74.418 77.045 

--- 0.010 0.246 0.016 0.326 1.110 2.412 3.903 5.275 7.048 8.764 

1 0.268 0.012 0.416 1.175 2.310 3.809 5.258 6.371 7.761 8.949 

 
 
 
 

France 

 
AR(2) 

(1, t)’ 29.112 23.652 31.311 37.000 43.208 49.865 55.607 60.074 65.152 69.497 

--- 0.075 2.265 8.772 31.243 55.171 97.258 135.63 174.52 211.84 236.52 

1 3.828 0.030 22.164 55.131 87.521 141.12 189..08 237.12 283.04 314.18 
White  

noise  
(1, t)’ 1409.1 1299.5 1670.8 1925.9 2126.0 2393.7 2610.7 2812.2 2997.4 3129.6 

--- 0.094 2.205 10.045 36.680 66.668 118.07 166.65 216.78 265.99 301.56 

1 3.872 0.032 22.820 57.446 92.180 149.19 200.84 252.91 303.06 338.09 

 
AR(1) 

(1, t)’ 1324.7 1216.4 1593.4 1870-2 2098.4 2397.6 2648.0 2885.9 3108.9 3276.0 

--- 0.179 2.083 12.653 52.499 106.61 197.73 294.55 401.55 514.38 614.07 

1 4.234 0.045 27.089 76.368 135.53 222.55 321.99 421.04 532.34 610.02 

 
 
 
 

Italy 

 
AR(2) 

(1, t)’ 804.24 713.45 1019.6 1281.4 1524.3 1844.5 2134.5 2422.9 2704.5 2944.2 

--- 0.064 0.144 0.009 0.002 0.046 0.125 0.198 0.257 0.347 0.407 

1 0.116 0.217 0.031 0.005 0.120 0.182 0.147 0.203 0.289 0.349 
White  

noise  
(1, t)’ 5.580 5.097 6.608 7.571 8.667 9.699 10.485 11.094 11.850 12.407 

--- 0.063 0.140 0.033 0.017 0.044 0.133 0.209 0.206 0.303 0.401 

1 6.668 0.092 0.011 0.005 0.004 0.003 0.002 0.009 0.001 0.001 

 
AR(1) 

(1, t)’ 30.142 7.001 8.206 8.635 9.167 9.616 9.820 9.865 10.068 10.084 

--- 0.061 0.154 0.013 0.001 0.042 0.120 0.105 0.157 0.251 0.315 

1 0.025 0.091 0.001 0.012 0.071 0.156 0.231 0.287 0.374 0.428 

 
 
 
 

Germany 

 
AR(2) 

(1, t)’ 5.604 5.040 6.492 7.441 8.525 9.535 10.300 10.892 11.640 12.176 

--- 0.310 1,613 0.140 0.005 0.389 1.360 1.845 2.834 4.716 5.607 

1 1.100 8.830 4.117 2.020 0.507 0.001 0.149 0.794 2.422 3.706 
White  

noise  
(1, t)’ 312.14 251.93 287.03 311.86 342.75 375.01 394.71 420.25 453.37 474.75 

--- 0.297 1.466 0.726 1.056 1.139 1.159 1.950 2.401 2.278 3.011 

1 4.176 0.176 0.325 0.044 0.023 0.015 0.316 0.673 0.767 1.413 

 
AR(1) 

(1, t)’ 397.45 339.64 356.53 353.68 356.22 360.14 352.47 351.23 357.23 353.54 

--- 0.205 1.487 0.590 0.733 0.672 0.580 1.044 1.255 1.062 1.465 

1 4.173 0.197 0.375 0.090 0.020 0.001 0.140 0.368 0.407 0.866 

 
 
 
 

U. K. 

 
AR(2) 

(1, t)’ 397.53 333.91 346.96 340.34 338.81 338.43 326.72 321.19 322.61 314.51 
In bold, the lowest mean square error across the different models for each period. 
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