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Abstract

Assume that we observe a stationary Gaussian process X(t), t € [—r,T],
which satisfies the affine stochastic delay differential equation

X (1) = / X(t+u) ag(du) dt +dW (), >0,
[—T,O]

where ay is a finite signed measure, the parameter ¥ belongs to an open set © C
R¥, is unknown and has to be estimated based on the observation. Conditions are
derived under which this model satisfies the local asymptotic normality property
for every ¢ € © as T — oo and the maximum likelihood and Bayesian estimators
of ¥ are asymptotically normal and efficient.

Keywords: affine stochastic delay differential equation, stationary Gaussian
process, local asymptotic normality, maximum likelihood estimator, Bayesian
estimator, Hellinger distance
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1 Introduction

Let J be a fixed finite interval [—r,0], 7 > 0. Denote by M the set of all finite signed
measures on J. For a € M consider the equation

X(t):X(O)+//X(s+u)a(du)ds+W(t), £>0, )

X(t) :X()(t), te Ja

where W = (W (t), t > 0) is a standard Wiener process and Xy = (Xo(t), ¢t € J) is a
continuous initial process independent of W. If W, X, and a are given, then there is
a unique continuous process X = (X (¢t), t > —r) satisfying (1.1) for all w, and the law
of X is uniquely determined by a and the law of X, see the details in Section 3.
Given a € M, one can ask whether a stationary solution to (1.1) exists under an
appropriate choice of the law of X,. A necessary and sufficient condition in terms of
a for the existence of a stationary solution is given in Gushchin and Kiichler (2000),
see also Section 3. The stationary solution is a Gaussian process with zero mean and a
strictly positive spectral density uniquely determined by a. We denote by M; the class
of all @ € M for which a stationary solution to (1.1) exists.

Now assume that we observe continuously a single realization (X(¢), —r < t < 7))
satisfying (1.1) with an unknown a which is assumed to belong to a parametric family
A= {ay € M:9 € ©}, where O is an open subset of R¥. The problem under consider-
ation is to estimate 1 based on the observation and to study asymptotic properties of
the estimators as 7" — oo. It is implicitly assumed in the subsequent discussion that
the statistical information about ¢ in the initial data is negligible for the considered
asymptotics.

This statistical problem has been considered only for concrete models and in few papers
up to now. We mention the papers by Dietz (1992) (though the model considered there
slightly differs from (1.1)), Gushchin and Kiichler (1999, 2001), Kiichler and Kutoyants
(2000), Putschke (2000).

In Gushchin and Kiichler (1999, 2001) we considered the model

d = (191,192) € e = R2, ay = 1915{0} + 1925{_1}

(042} stands for the Dirac measure at x). An important feature of this model is that the
mapping ¥ ~» ay from © to M is affine. Then the log-likelihood function is quadratic
in 9, which allowed us to perform a direct analysis of the asymptotic behaviour of the
likelihood ratios and the maximum likelihood estimator. It seems to us that a similar
analysis can be performed for any model such that the mapping 9 ~~ ay is affine (and
one-to-one), see e.g. Putschke (2000) for the case ¥ = (d,...,9y) € © = RNt
Gy = Zf\;o Dilg—r;}-

In this paper we study the general problem under two basic assumptions: (1) the
model is ergodic (i.e. ay € Mj) for every ¥ € ©; (2) at every ¥ € © the family A
is differentiable in the following (weak) sense: there is a linear one-to-one operator A
from R¥ to M such that

ay — ayg = A(n —0) +[[n = Ilry,
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where the sequence of the measures r,, (considered as functionals on the space of
continuous functions) x-weakly converges to 0 every time as 7, tends to 9. Under
these two assumptions our parametric model will satisfy the local asymptotic normality
property with scaling 7-'/2 at every ¥ € ©. Thus, the second assumption is similar
to the differentiability in quadratic mean condition in the case of independent and
identically distributed observations.

In fact, the assumptions under which our main results are proved are slightly more
restrictive than stated above. The reason is that, under mild additional conditions,
it turns out to be possible to prove asymptotic normality and efficiency of maxi-
mum likelihood and Bayesian estimators using the method suggested by Ibragimov
and Has’minskii (1981).

In Kiichler and Kutoyants (2000) the following model was considered:

0= (71'/2[), 0), Ay = b5{,9},

where b < 0 is a (known) constant. Here we have ay € M; for every ¢ € O but the
second basic assumption is not satisfied in the above form (note that the mapping
¥ ~» ay is differentiable in the sense of generalized functions but the derivatives cannot
be represented as finite signed measures). In this model the local asymptotic normality
property does not hold, the rate of convergence of estimators is 7 (not TI/Q), the
maximum likelihood and Bayesian estimators have different limit distributions.

We do not discuss here what may happen if ay € M \ M. Let us only mention that,
in general, one cannot expect to prove the local asymptotic normality property or to
check Ibragimov-Has 'minskii conditions.

Nonparametric estimation of the delay measure a € M, based on observations of a
stationary solution to (1.1) was considered in Reiss (2000).

The paper is organized as follows. In Section 2 the necessary notation and the main
results are given. In Section 3 we recall some basic facts concerning affine delay dif-
ferential equations and prove preliminary results for stationary solutions. In Section 4
we deal with pairs of arbitrary Gaussian measures (with zero means); the aim is to
estimate from above the Hellinger-type distances between them and to specify this
estimate in terms of spectral densities in the case of stationary Gaussian processes.
In Section 5 we study an upper bound for the Hellinger integral for distributions of
solutions to the equation (1.1). Finally, in Section 6 the main results are proved.

2 Notation and the main results

To formulate our assumptions and the main results let us introduce some notation.
Unless otherwise specified, || - || and (-, -) stand for the Euclidean distance and scalar
product respectively. We also use the symbol || || for the operator norm of an operator,
while || - ||(2) denotes the Hilbert—Schmidt norm of a Hilbert—Schmidt operator. || - ||,
stands for the total variation norm of a finite signed measure.

Let P and P be probability measures on a measurable space (2, F). If @) is a measure
dominating P and ﬁ, put z = dP/dQ and z = dﬁ/dQ. Recall that the Hellinger



distance pp, (P, ﬁ) of order m, m > 1, is defined by

pr(P, P) = / 2™ — 2 dQ,
Q

and the quantity
~ _ 1 ~
H(P,P) := /\/zde =1- §p§(P,P)
Q

is the Hellinger integral. Define also

(P P) = { (fl{zlog(z/z’) +2'log(2'/2)}dQ, if P~ P,

+00, otherwise.

All these definitions do not depend on the choice of Q).
C(I) is the space of all continuous real-valued functions on an interval I C R, and we
write Cr instead of C([—r,T]) and C instead of C(/J).
Let M* = M x ---x M and denote by M the set of all k-tuples (a1, ...,a;) € M*

k times
such that ay, ..., aj are linearly independent in M. The elements of M* are considered

as column-vectors, and integrals with respect to them are understood coordinatewise.
We shall state the conditions on the family A = {ay € M:9 € © C R¥} under which
the properties of estimators will be investigated.

Condition 1. © is a nonempty open bounded subset of R¥.

Condition 2. There is a constant C' < oo such that ||ag — ay||, < C||9 — n|| for all
9,m € O.

According to Condition 2, for any ¥ € © \ ©, where O is the closure of ©, the limit
lim, 9 pco ay in (M, || - ||,) exists. We denote it by ay, ¥ € © \ ©, again.

Condition 3. ay € M, for any 9 € O.

Condition 4. For any g € C, the function

9 [ g(u) aa(au)

is continuously differentiable in © with the gradient

[ sty ot

J

where ay € M, 9 € O.
Condition 5. ay # a, for all ¥ € © and n € ©, 9 £ n.
Remark 2.1: Comparing Conditions 2 and 4, one can see that they are not indepen-

dent. Indeed, it follows from Condition 4 and the uniform boundedness principle that
for any compact K C © there is a constant C' = C(K) such that ||ag—a,l|, < C||[9—n||



for all ¥,n € K. On the other hand, given Condition 2, it is enough to assume in Con-
dition 4 that g belongs to a total subset of C. However, we prefer to formulate Condi-
tion 4 as above because in this form it allows us to prove the uniform local asymptotic
normality property. Condition 2 is more technical.

Example: Let © = (e,7), 0 < € < r, and ag(du) = blj_gg(u)du, where b €
(—72/(2r%),0) is a (known) constant. Then Conditions 1-5 are satisfied. Note that
the family (ay) is not differentiable in ¥ with respect to the total variation norm.

Let now P2 be the distribution on (Cy, B(Cr)) of a stationary solution X = (X (¢), t €
[—7,T]) to (1.1) with @ = ay. Let also Ky(t) = E%X(s)X(s + t) be the covariance
function of this solution. Define a k x k-matrix X(0) = (2;;(9))ij=1,..k by

5, (9) = / Ko — )i (du)itg s (dv). (2.1)

Remark 2.2: It will be shown in Lemma 3.4 below that Y (¢) is nondegenerate for
any ¥ € © and is continuous in ¥ on ©.

Put
op(0) == T71287172 ().

Define wy(t) := x(t ff s+ v) ag(dv) ds, ¥ € ©. The process (wy(t), t €

[0,7T]) is a Wiener process Wlth respect to PY. Therefore, one may define

T
Aqy = or(V // (t + s) ag(ds) dwy(t).
0

Put Ury := @ (9)(© —9), Ury := @ (9)(© — 9).
Theorem 2.1 Let Conditions 1-5 be satisfied. Then
(1) P2 ~ P} for any T € Ry and 9,n € ©;

) oo . dpSteT v
(2) the normalized likelihood functions Zpg(u) == —Tomy—
T

uous modifications in u for any T > 0 and ¥ € ©;

, u € Upyg, have contin-
(3) for any compact set K C © and arbitrary sequences T,, — oo, 9, € K, u, €
Ur, 9, Un — U,

B i

converges in Pﬁ:—probability to zero and
L(Ar, 9, | Prr) = N(0,1})

as n — oQ;



(4) for any Ty > 0, any compact set K C © and any m > 2 there is a constant
B = B(Ty,K,m) such that

sup sup pln(Py T PITOTOR) < Bllu— o™ forany T > To; (2.2)
Y€K u,velr,9

(5) for any compact set K C O there is a constant C = C(K) such that for any
T>0,9€eK, uecUry,

H(PE, PYHT ) < oxp(—C|lul?). (2.3)

Theorem 2.1 (together with Remark 2.2) states that all the conditions of Theorems 5.1

and 5.2 in Chapter I, Theorems 1.1, 2.1 and Corollary 1.1 in Chapter III of Ibragimov

and Has’minskii (1981) are satisfied. As a corollary, we obtain the next result. Define

the maximum likelihood estimator 1/9\T(:c), z € Cr, as any measurable solution of the
equation

dPIT®) dp]

T (r)=sup—=L

dP? D dpy

(),

where 9 € O is some fixed value, and a continuous modification of the likelihood ratio
random field is considered.

Theorem 2.2 Let Conditions 1-5 be satisfied and let K be an arbitrary compact in
©. Then uniformly in ¥ € K

(1)
L(Tl/z(’l?T — ﬁ) | quz) — N(O, 2_1(79))’ T — oo;
(2) all the moments of T1/2(1§T —19) under PY converge as T — oo to the correspond-
ing moments of the normal distribution with parameters (0, 271(d9));

(3) there are positive constants by and By such that for T large enough

sup P2{T'?||9p — || > R} < Byexp (—boR), R > 0;
€K

(4) the mazimum likelihood estimator 57“ s asymptotically efficient in K.

The efficiency in (4) is to be understood in the sense of Corollary 1.1, p. 177, in
Chapter III of Ibragimov and Has’minskii (1981).

The same statement is true for the Bayesian estimators E‘T corresponding to a con-
tinuous and positive prior density and to loss functions of the form ly(u) = ((T"/%x),
where [ satisfies the assumptions of Theorem 2.1, p. 179, in Chapter III of Ibragimov
and Has’minskii (1981) (in particular, one can take I(u) = ||u|”, p > 0).



3 Affine delay differential equations

3.1 Deterministic equations

Since the equation (1.1) involves no stochastic integrals and can be treated pathwise,
we will formulate a number of results for solutions of the deterministic equation

X(t)=X(0)+//X(S+U) a(du)ds + F(t), >0, (3.1)

X(t):X()(t), tEJ:

F € CR,), F(0) = 0, Xy € C, for which we refer to Myschkis (1972), Hale and
Verduyn Lunel (1993), Diekmann et al. (1995), and also to Mohammed and Scheutzow
(1990) and Gushchin and Kiichler (2000).

The equation (3.1) has a unique solution X in the class C([—r, 00)).

If F=0 and
1, t=0,
Xo(t)_{ 0, —r<t<0,

then (3.1) can also be solved uniquely, and the solution of (3.1) is called the fundamental
solution (corresponding to a) and denoted by zy. In other words, a function zy(?),
t > —r, is the fundamental solution if it is absolutely continuous on Ry, zo(t) = 0 for
t€[-r0), 20(0) =1, and

Bo(t) = / wo(t + u) a(du) (3.2)

J

for Lebesgue almost all ¢ > 0. To facilitate some notation in the sequel it is convenient
to put xo(t) = 0 for t < —r.
The solution of (3.1) can be represented via the fundamental solution zy by the formula

xo(t) Xo(0) + // Xo(s)zo(t +u — s)dsa(du) —|—/ F(t —s)dxg(s), t>0,
X0, . tel,
(3.3)

X(t) =

where the domain of integration in the last integral in (3.3) includes zero:

/F(t—s) dzo(s) = F(t) + /F(t—s) o s).

[0,2] 10,7]

The asymptotic behaviour of solutions of the equation (3.1) for ¢ — oo is connected
with the set of complex solutions of the so-called characteristic equation

h(A) ==X — /e’\“a(du) = 0. (3.4)

J



Note that a complex number \ solves (3.4) if and only if (e, ¢t > —r) solves (3.1) for
F=0and Xo(t) =€, t e J.
The set A := {\ € C:h()\) = 0} is not empty; moreover, it is infinite except the case
where a is concentrated at 0. The set {\ € A:Re A > ¢} is finite for every ¢ € R. In
particular, it holds

vo:=max{ReX: A € A} < 0. (3.5)

For any v > vy there is a constant L such that
|zo(t)| < Le™, tE€Ry, (3.6)

and the Laplace transform of z; is given by

/e_)‘txo(t) dt = ROy’ Re A > wy. (3.7)

R

3.2 Stationary solutions

In this subsection we assume that X is a stationary solution of the equation (1.1),
in particular, a € M,. According to Theorem 3.1 in Gushchin and Kiichler (2000),
a € M; if and only if

vy < 0, (3.8)

and then X is a Gaussian process with zero mean and covariance

K(t) = EX()X (t + u) = / 2o(s)70(s + ) ds, tER, (3.9)

(recall that z¢(s) = 0 if s < 0 and zy(s) is exponentially small as s — +o00 due to (3.6)
and (3.8)). Obviously, K(—t) = K(t), t € R.

Since the Fourier transforms of x¢(-) and z((t + -) are known, see (3.7), we can apply
Parseval’s identity to (3.9) to obtain

K(t) = / EMFO) A, tER, (3.10)

R

where
1

f()\):W,

is the spectral density of X. The function f is strictly positive and continuous. By the
definition of h

AER, (3.11)

Al = llally < [R(iN)] < Al + [lall,, A €R. (3.12)
Hence there are positive constants B, and B* (depending on a) such that

B, B*

<IN < 7

oz < AeR (3.13)




Lemma 3.1 The covariance function K of the stationary solution of (1.1) has the
following properties:

(i) K is differentiable on (—o0,0) U (0,00) and has one-sided derivatives at 0 :

K(t) = / K(t+u)a(du), >0, (3.14)

K(+0) = F1/2,
K(t) = —K(-t), t<0;

(ii) Put K(0) = —1/2. Then the function K is absolutely continuous on Ry and

K(t) = /K(t +u)a(du) a.e. for Lebesque measure on (0, 00). (3.15)
T

Proof: Since K(t) = K(—t), it is sufficient to prove the first statement of the lemma
for t € R,. Let v € (vg,0). It follows from (3.6) and (3.2) that there is a constant
c such that |zg(s)| < ce” and |zo(t + s+ h) — xo(t + 5)| < ce?|h| for s > 0, t > 0,
t+ h > 0. Thus by the Lebesgue dominated convergence theorem we can differentiate
under the integral sign in (3.9). This yields that K is differentiable in the required
sense and
K(t) = / To(s)io(s +1)ds, teER,
R

(where the right-hand side derivative is taken if ¢ = 0). Inserting (3.2) into the last
equality, changing the order of integration and using (3.9) we get (3.14). In particular,

K(0+) = / 2o(s)ito(s) ds = —2a2(0) = ——.

It follows from the first part of the lemma and from (3.14) that K is continuously
differentiable on (—oo, 0) U (0, 00). Therefore, it is absolutely continuous on R and we
obtain, for ¢t > 0,

K(t) = / K(t+u) aldu) = K(0+) + / (K(t +u) — K(u)} a(du)

= K(0+)+//tk(s+u) dsa(du):K(0+)+/t/K(s+u) a(du) ds.

The claim follows.

Now let @ be another measure from M,. Denote by X the corresponding stationary
solution to (1.1). Let K and f be the covariance function and the spectral density of
X respectively. Put R(t) = K(t) — K(t).



By Lemma 3.1 the function R is differentiable on R and its derivative R is absolutely
continuous on R. Moreover, it follows from (3.15) and (3.14) that R is bounded a.e. for
Lebesgue measure. It is known, see e.g. Theorem 13 in (Ibragimov and Rozanov, 1978,
Chapter III, p. 99), that these properties together with the inequality (3.13) imply the
following statement. Denote by P& and P2 the distributions of the processes X (¢) and

)?(t), t € [—r,T], respectively in the space Cr.
Corollary 3.2 The measures P{ and P& are equivalent for every T € R,.

Following the idea of the proof of the above mentioned theorem one can obtain even an
estimate for closedness of P and Pj. The proof is based on the results in Section 4.

Theorem 3.3 For every m > 2 there is a constant Cy, (depending only on m) such
that

pm(Pf, Pp) < Cou B, B (1+ 7+ T)™?(1+ ||ally? + |[all}")l|@ — ally,

where the constants B, and B* are such that

B, B ~ B*
A) <

AeR

Proof: It follows from (3.11) and (3.4) that

FO) = F] = 2a|[A@NP = [RENP[F )T
< drB”[la— allu (Al + llallo + llall,) (1 + A%~

Now the claim follows from Corollaries 4.4 and 4.6.

3.3 First properties of the parametric model

Assume that A = {ay}yco is a parametric family satisfying Conditions 1 5. Let
x3(t) be the fundamental solution correspondmg to ag, hg(A) = A — [ Je “ag(d
vo(9) = max {Re A1 hy(A) = 0}, Ky(t) = [ 23(s)zd(s + t) ds, fg( )= W The
matrix X(?J) is defined in (2.1).

We shall need also the dual Lipschitz norm || - ||p on the space M. Let Lip, be the
class of all real-valued functions g on J satisfying |g(z)| < 1 and |g(z) —g(y)| < |z —y|
for all z,y € J. Now, for a € M, define

lallp = sup /g(u) a(du). (3.16)

g€Lip,
7
In the case a(J) = 0 this norm coincides with the Kantorovich—-Rubinstein norm of a,

see Kantorovich and Akilov (1982). Note that the normed linear space (M, || - ||p) is
not complete if r > 0.
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Lemma 3.4 Let Conditions 1-5 be satisfied. There are constants 0 < B, < B* < oo,
0 >0, L <o, such that

B, B

< < €] :
1+)\2_f,9()\)_1+/\2 forany Y €O, AeR, (3.17)
vo(¥9) < —6 forany 9 €O, (3.18)
22(t)| < Le™®  forany 9 €O, teR,. (3.19)

For every compact K C © there is a constant d = d(K) > 0 such that
lag — ayl|p > d||9 —n|| forany Y€K, neo. (3.20)
Moreover, ¥.(9) is nondegenerate for every ¥ € © and is continuous in ¥ on ©.

Proof: The existence of a constant B, > 0 satisfying (3.17) follows easily from the
right-hand inequality in (3.12) and from the inequality

sup [lasll, < oo, (3.21)
9€O

see Condition 2. To prove the existence of a finite constant B* satisfying (3.17), we use
the left-hand inequality in (3.12), but in that case we have to show additionally that

;Ie%ilellfﬁ |ha(iX)| > 0.
Assume the converse. Then there are sequences {9, }, 9, € ©, and {\,}, A\, € R, such
that ¥, — 9 € © and hy(i),) — 0. In view of (3.12) and (3.21), the sequence {\,} is
bounded. Extracting a convergent subsequence, we may assume that A\, — A. But it
is easy to see that 0 = lim,, hy_ (i\,) = hy(i)), which contradicts Condition 3.
The existence of a 6 > 0 satisfying (3.18) is proved similarly.
Now let us show (3.19). The uniform boundedness of zJ(¢) on any finite interval, say
t € [0,1], follows from the Gronwall lemma applied to Z%(t) = supyc,«; |75(s)| and
from (3.21). Next, we use the formula (3.7) for the Laplace transform of zJ (¢). Using
the inversion formula and integrating by parts we get

—d+iw —0+iw

1 .. eht 1. Ry () et
V(1) — 1 =— 1 / N du.
() =55 Jim, / ) T il [ T

—0—iw —d—iw

Hence, if t > 1,

—5t
9 e (1 + r|lay||») / d\
<
()] < 27 |hg(—6 4+ M) %’

where the last integral is bounded uniformly in ¥ € © due to the estimate

1+ 22
sup sup

< o0,
9c6 Aer |ho(—0 +1i))[?

11



which is proved similarly to the right-hand inequality in (3.17).
If (3.20) does not hold, then there exist two sequences {9, }, ¥, € K, and {n,}, n, € ©,
Un # M, such that ¥, -9 € K, n, = n € 0, and

||aQ9n B a"ﬂn“D
10 — 7|

Since ||-||p < ||+ ||, the distance ||ay — ay||p is a continuous function of ¥ and 7 in view
of Condition 2. Since ||ag — a,||p > 0 if ¥ # 1 due to Condition 5, we obtain ¥ = 7.

Extracting a subsequence if necessary, we may assume that |Z” "“H — (, say. Since the
segment containing ¥,, and 7, lies in © for n large enough, 1t follows from Condition 4

that (
a'ﬂn a”r]n /
ou — | g(u) (a9, ) (du)
J/ e

for any g € C. Since ay € M%, the measure (a9, () does not equal to zero identically.
Hence there is a function gy € Lip, such that [, go(u)({dy,¢)(du) > 0, which implies

—0, n— oo (3.22)

lim infM = liminf sup /g(u) (a9, = ay,)(du) > /go(u) (G, C)(du) > 0,

n—00 ”ﬁn - 77n|| n—=00 geLip, J ”ﬂn - 77n||

which contradicts (3.22).
If the matrix («J) is degenerate then there is a non-zero vector ¢ € RF such that
(¢, 2(9)¢) = 0. Then, denoting by = ((, ay), we have

0—//K,9u—vb,9dub,9dv /‘/ ’)‘“b,gdu

JxJ

(A) dA

in view of (2.1) and (3.10). Since fy(A) is strictly positive, we obtain that the Fourier
transform of by is equal to zero identically, hence by = 0, which contradicts the condition
ay € M;I;é

Similarly, we obtain from (2.1) and (3.10) that

S50) = [ ([ e anstdu) ([ e as(d)) o) dx

R J J

The integrals over J in the last expression and the function fy(A) are continuous in ¥
for a fixed A\ due to Condition 4, (3.11) and the definition of hy(A). Moreover, we can
use the dominated convergence theorem taking into account (3.17) and the fact that
the norms ||ag ||, ¢ =1, ..., k, ¥ € O, are uniformly bounded by Conditions 2 and 4.
This proves the continuity of X(9).

4 Some inequalities for Gaussian measures

Let P and P be probability measures on a measurable space (€, F). Assume X =
(X(t), t € I), where I is an arbitrary index set, is a Gaussian process on (2, F) with
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respect to both P and P and EX(t) = EX(t) =0, t € I (E and E are expectations
relative to P and P respectively). Suppose also that F = o{X(t), t € I}.

These assumptions will be satisfied throughout this section.

It is well known that P and P are either equivalent or singular. The aim of this section
is to provide upper bounds for the Hellinger distances p,, (P, P) in terms of covariances
of X with respect to P and P. These bounds fit well if P and P are close to each other.
The main result is Theorem 4.3 in subsection 4.4. In subsection 4.5 we specify these
bounds in a special case of stationary Gaussian processes. To estimate ps(P, P) we
use arguments that are very similar to those used to prove conditions for equivalence
of Gaussian measures, see e.g. Shepp (1966), Rozanov (1971), Ibragimov and Rozanov
(1978), Gihman and Skorohod (1980), Kuo (1975).

In the next two subsections N (0,14 (), 8 > —1, stands for the normal distribution on
R with mean zero and variance 1 + (. Its density is denoted by ¢s(z); ¢(z) := @o(z)
is the standard normal density.

4.1 One-dimensional Gaussian distributions

We start with a preliminary case of one-dimensional distributions.

Lemma 4.1 Let P = N(0,1) and P = N(0,1+ f), 8> —1. Then

_ BQ -1/4 _ ﬁZ
HPP)=(1+—— J(P,P) = ——. 4.1
PP = (14 15) - PP (4.1)
For every m > 1 there is a constant Cy,, (depending only on m) such that
p(P,P) < CB|™. (4.2)

Proof: It is easy to check (4}) by computation.
Let f(B;x) be the density of P(dx) with respect to P(dx), i.e

Bz2
f(B;z) = pp(x)/p(z) = (14 )~/ em+m .
Differentiating f(8;x) with respect to 5, one obtains

of (B;x)
B

By Newton-Leibniz formula,

= e, where o350 =5 (- 1)

fgaym =142 / F(8t;2)" /™ g (5t ) d
0

13



Hence

1
BB = [ 1B —1mp(e)de < P / / £(BE:2)g(842) ™) dt da
0

B —

1

- W // (1 + Bt)2 1+ﬁt‘ por(z) da dt

0

[y

m

- )m//1+5t 1+Bt‘ olz) du dt

0

1

= )mR/|x 1|™p dx/(l—i—ﬁt)m'

0

Fix a number 5, € (—1,0). Since the integral fo (1+5t decreases in /3 and pI'(P, P) <
2, we obtain (4.2) with

1

d
Cp = max{(?m)_m/ 2% — 1™ () d:c/m,ﬂﬁol‘m}-
R 0

4.2 Independent Gaussian variables

In this subsection we consider the case where P and P are the distributions of sequences
of independent Gaussian variables. Namely, we assume that {2 = R> with the product
o-algebra, P = puqy X g X +++, P = i1 X g X - -+, where

tn = N(0,1) and tn =N(O0,145,), Bn>-—1.
Lemma 4.2 Let P and P be as described above.

Assume that 3°°°, B2 < co. Then P ~ P, J(P,P) < oo, and
-1

D et B > i B
—=n="_ < 2J(P,P —=n=Th_ 4.3
1+ sup B, ( )_1+ 1nf ﬁn ( )
n: fn#0 n: fn#
() 1
1.~ - 1. ~\—4
exp(—gj(P, P) <HPP) < (1+ SI(P. P) " (4.4)
(c) For every m > 2 there is a constant Cy, (depending only on m) such that
p(P, P) < Crp'(P, P). (4.5)

14



Proof: Let F, be the sub-o-algebra of F generated by the first n coordinates and P,
and P the restrictions of P and P respectively to F,. Then

n

H(Pmﬁn) :HH(Mk,ﬂk)a Pn,P ZJ [k Fik) (4.6)
k=1
and B _ _ _
H(P,P) = lim H(P,, P,),  J(P,P) = lim J(P,, P,) (4.7)
see e.g. Liese and Vajda (1987). By (4.1) and (4.6),
n 82 —1/4 N 1 2

Now it is clear that the convergence of > >7, 32 implies J(P, 15) < 00, hence P ~ ?,
and (4.3) follows.
To show (4.4), we use (4.8) and the inequality

which yields
1 ~ ~ 1 ~
L+ (P Pa) < HHA(Pu, P) < exp(50(Pu, P)).
Passing to the limit as n — oo with the help of (4.7), we obtain (4.4).

Let us prove (c). In the rest of the proof the letter C,, will denote positive constants
depending only on m; they need not be the same in different expressions.

Since p™(P, P) < 2, , inequality (4.5) holds with Gy, = 2 if p5(P, P) > 1. Thus, we will
assume that p2(P, P) < 1 or, equivalently, H(P, P) > 1/2. Under this assumption,
(4.4) implies

J(P,P) <2 (H"‘(P, P) - 1) < 60(1 — H(P, P)) = 30p%(P, P). (4.9)

The key point of the proof of this part is the inequality proved by Dzhaparidze and
Valkeila (1990, Corollary 3.1). In our context it states that

(P, P) < Cppy {( sz in; fin) )m/2+§:p2(umﬁn)}- (4.10)

Let us estimate the sums in (4.10). Slnce %pz(,un,ﬁn) = 1 — H(pn, fin), we get from
(4.1), (4.9) and the inequality 1 — (1 + ) ¥/* < x/4 that

oo N B ,62 —-1/4 1 oo ,6721
;pé(umun) = 22{1—<1+ i +ﬂn)) <3214%

_ ZJ(P,P) 125,0 (P, P). (4.11)
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Since H (pn, fin) > H(P,P) > 1/2, we get from (4.1) that 8, < B := 30 + 8/15 for
every n > 1. Using (4.2) and (4.9), we obtain

m w2 (N~ _Bn \™?
me i, fin) < Cr Z|5| < Cnm (Zﬂ2> m(1+B) ﬁ(Zm)
= Cm2m/2(1 + ﬁ)m/QJmﬂ(P, P) < Cr60™2(1 + B)™2pp (P, P). (4.12)

Combining (4.10)— (4.12), we arrive at (4.5).

4.3 The Hilbert—Schmidt operator

In this subsection we consider the general setting described at the beginning of the
section. We assume here that

P~ P, (4.13)

Let K be the linear space of random variables £ on (€2, F) that can be represented
as finite linear combinations & = >, cx X (tk), cx € R, & € I. As usual, we deal
with equivalence classes of random variables that are equal P-a.s. and/or P-as. but
continue to speak of these classes as of random variables. It is known that under (4.13)
there are constants 0 < d; < dy < oo such that

diE€? < BE? < dyEE? (4.14)

for any & € K, see e.g. Rozanov (1971, Chapter II) or Ibragimov and Rozanov (1978,
Chapter I1I). Let H (resp. H) be the closure of K in L2(P) (resp. in L2(P)). Then,
due to (4.14) and (4.13), H and H consist of the same elements and are equipped with
different scalar products (-, -) and (-, -)™:

(&,m=E&n,  ({,n)" = Eén.

Of course, if £ € H (or ﬁ) then ¢ is a Gaussian random variable with respect to P and
P with E¢ = E¢ =0, and (4.14) is still valid.

Define a linear bounded operator B from H to H by B¢ = &. Denote by B* the adjoint
operator of B and put A = F — B*B, where F is the identity operator in /. The
operator A is uniquely determined by the relation

(A&m) = (&n) —(B"BE ) = (&) — (BE Bn)~
= (&m) —(&m”=En—Eén, &nedH. (4.15)

B*B is a positive self-adjoint operator, hence A is a self-adjoint operator, whose eigen-
values lie in the interval [1 — dy, 1 — d;] because of (4.15) and (4.14).

A fundamental fact is that A is a Hilbert-Schmidt operator under (4.13), see Rozanov
(1971, Chapter II, Theorem 5); cf. also Ibragimov and Rozanov (1978, Chapter III,
Theorem 4, p. 80). In particular, the subspace (ker A)* orthogonal to the kernel of
A in H is separable, and there is a complete (in this subspace) orthonormal sequence
consisting of eigenvectors of A.
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4.4 General case

In this subsection we extend Lemma 4.2 to the general case of Gaussian measures with
zero means. We are in the setting introduced at the beginning of this section. The
operator A has been introduced in the previous subsection (under assumption P ~ P).
Let s4 be the set of all non-zero eigenvalues of A. According to previous subsection,
—00 < inf s4 < sup s4 < 1 (if s4 = 0, we put inf s4 = sup sx = 0). Recall that
||A|(2) is the Hilbert-Schmidt norm of A.

Theorem 4.3 (a) Assume that P ~ P. Then

1AN%, ~ 1A%
— < 2J(P,P) < ———.
1—inf s4 — (7, )_1—supsA

(b)

_1
4

1.~ - 1.~

exp(~2J(P.P)) < H(P,P) < (14 3J(P.P))

(c) for every m > 2 there is a constant C, (depending only on m) such that
P(P, P) < Crnp(P, P).

Corollary 4.4 Let P ~ P. For every m > 2 there is a constant Cy, (depending only
on m) such that N
P (P, ) < Cll Al

Proof of Corollary 4.4: Since sup o < ||A]| < ||A]|(2), it follows from parts (a) and
(b) of Theorem 4.3 that if || A||() < 4v/5—8 < 1 then we have (with C; = [8(9—4+/5)] ")

B(P.P) = 201~ H(P.P) <2(1- exp(—éJ(P, p)))

1 ~ ||A||%2)
< ZJ(PP)< ——t—
4 8(1 = [|4]|2)

But if |4l > 4v/5 — 8 the inequality p3(P,P) < Col|A|l7y is still true since its
right-hand side is greater than 2. The statement for m > 2 follows from part (c) of
Theorem 4.3.

Proof of Theorem 4.3: If PP, then J(P, 16) = o0, H(P, 15) =0, pi(P, 15) =2, 50
the statements (b) and (c) are trivial in that case. Thus, let us assume that P ~ P.
Let I, be a countable subset of I such that a version Z of the density dﬁ/dP is
measurable relative to the o-algebra G := 0{X (¢), t € I,}.

Let Hg :={€ € H:{ = E(£ | G) P-a.s.}. Then Hg is a closed separable subspace of .
By the theorem on normal correlation, the projection of any £ € H on Hg is E(£ | G);

< ol Allfy).
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moreover, if £ is orthogonal to Hg then ¢ is independent of G. Therefore, A = 0 if £
is orthogonal to Hg. Indeed, using (4.15), for any n € H we get

(A&,m) = Eé&n— Eén=E{(1- Z)¢n}
EE{(1-2)¢E( | G)+ (1 —2)¢n—Em|9))| G}
= E{(1-2)E(|9)EMm|G)}+EQ1-2Z)E{¢(n—E(n]G))}=0.
Due to the spectral decomposition theorem, there is an orthonormal system {&,},=12 ,

&, € Hg, which consists of eigenvectors of the self-adjoint Hilbert—-Schmidt operator A
and is complete in Hg. If we denote the corresponding eigenvalues by —f,, then

A== Bul &), EEH, (4.16)
n=1
IAIG) =D 8. (4.17)
n=1

As it was explained in the previous subsection, 3, > —1. It follows from (4.16) and
(4.15) that {€,} is an orthogonal system in A with (£,,&,)~ = 1+ f,.
In other words, {&,} is a sequence of independent Gaussian variables with respect to
both P and P, E¢, = E¢, =0, E€2 =1, E€2 =1+ 3,. Define a mapping T: Q — R®
by the formula

T(w) = (& (w), .-, &(w),...).
It is clear that the images PT and PT of P and P under T satisfy the assumptions
of Lemma 4.2. On the other hand, if 0{7} is the sub-o-algebra of F generated by T,
o{T} and G coincide up to P-null or P-null sets since {&,} is complete in Hg, i.e.

dP|, ~
= ﬂ P- and P-as..
dP|oim
In view of the general formula
dP|yery dPT

Pl w) = W(T(w)) P- and P-as.,

we obtain
pm(P, P) = pmu(PT,PT),  H(P,P)=H(P",P"),  J(PP)=JP", P").

The claim follows from Lemma 4.2 and (4.17).

4.5 Stationary case

Corollary 4.4 gives an estimate from above for p,, (P, ]3) in terms of the Hilbert—Schmidt
norm ||A||() of the operator A. In this subsection we shall find an estimate from above
for ||Al|(2) in a special case of stationary Gaussian processes.
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In addition to the assumptions of Theorem 4.3, we shall assume that I is a closed
interval, say, [0,7], 7 > 0, of R, X(¢) is a stationary Gaussian process with respect to
both P and P with the covariances K (t—s) = EX (£)X(s) and K (t—s) = EX (t)X(s),
s,t € [0, 7], respectively. Put R(t) = K(t) — K(t), t € [-7,7].

Theorem 4.5 Assume that X = (X(t),t € [0,7]), is a stationary Gaussian process

with respect to both P and P, X has a spectral density f(\) with respect to P satisfying
the inequality

fN > AER (4.18)

with some B > 0. Suppose also that R(t) is differentiable on the interval (—,T),
the derivative R(t) is absolutely continuous on (—7,7), and the second derivative R(t)
satisfies

/ R%(s —t)ds dt < oc. (4.19)

[0,7]%[0,7]

Then P ~ P and
2 C 2 2 2 2
||A||(2) < {R ) + R¥( /[R +R (s)] ds

// (R2(s — 1) + 202(s t)+R2(s—t)]dsdt}, (4.20)

[0,7]x[0,7]

where C 1s an absolute constant.

Proof: It is known that P ~ P under the assumptions of Theorem 4.5, see Ibragimov
and Rozanov (1978, Chapter III, Theorem 13, p. 99). The subsequent proof is inspired
by the proof of the just mentioned theorem.
Let b(s,t) := R(s — t), (s,t) € V := [0,7] x [0,7]. Our first step is to extend the
function b(s,t) to the whole plane so that it has a finite support and satisfies some
additional properties, see inequality (4.21) below.
First, define b(s,t) = 0 if (s,t) ¢ U, where, say, U = (—1,7+ 1) X (=1,7 4+ 1). Then
define b(s,t) for (s,t) € U\ V, t € [0,7], in such a way that, for any fixed ¢ € [0, 7],
the function b(s,t) is linear in s on the intervals [—1,0] and [7,7 + 1]. Finally, define
b(s,t) for (s,t) e U\V, t ¢ [0, 7], in such a way that, for any fixed s € (—1,7+ 1), the
function b(s,t) is linear in ¢ on the intervals [—1,0] and [, 7 + 1].
With this definition of b(s,t), one can directly check that
e the partial derivatives byg(s,t) := % and by (s,1) == % are defined every-
where except the lines s = -1, s=0,s=7,s=7+1landt=-1,t=0,t =7,
t = 7 + 1 respectively;

Ob(s,t) t

e the mixed derivative by (s,t) := is defined almost everywhere for Lebesgue
measure on R? and belongs to Ll(]RQ) N L?(R?) due to (4.19);
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o big(s,t) = f611su)du1fs¢{—1,0,7,7’+1};

o boi(s,t) = [ bu(u,t)duift ¢ {-1,0,7,7+1};

e boo(s,t) :=b(s,t) = _fs bio(u,t) du = _ft bo1 (s, u) du = I b11(u, v) du dv,

(—OO,S] X(—oo,t]

(s,t) € R%;

1 T

Z//bkl (s,t)dsdt < %(R%O)+R2(T))+§/[R2(s)+1%2(s)] ds

ki1=0"R xR 0

+ / [R%(s —t) + 2R*(s — t) + R?(s — t)] ds dt. (4.21)

[0,7]x[0,7]
Let now ¥y (A, ), k,1 = 0,1, be the Fourier transform of by(s, t):

d)kl )\ ,U // s —pt) bkl s, t ds dt.

RxR

Integrating by parts, we obtain

Yro(A ) =

/e As=ut)p, (s, 1) ds)d

R

/(/ ide!As—t) boo (s, t) ds) dt = —i\boo (A, 1)
R R

4—7r2
1
 4n?

and, similarly,

Yo1 (A, ) = iptboo (A, 1), P11 (A, 1) = Apgboo (A, p).-
Using (4.23), (4.24), and Parseval’s equality, we obtain

[ [ 1w P+ 20+ ) drdu = //Zml (1) drdy

RxR RxR k:1=0

(4.22)

(4.23)

(4.24)

= 2//Zbklst )dsdt < co. (4.25)
7r

RxR F1=0

Let L%, be the complex Hilbert space of complex-valued functions ¢(\, p), (A, 1) €

R?, such that [ =@\, 1)[*f(A)f(r) dAdp < co with the scalar product

(o1, 02)mcr = / / 1\ 1) 2O 1) F N (1) d dp,

RxR
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where a bar means the complex conjugate. Define (A, ) = ;f’(‘m( 4 Then e L
and ||9||% r does not exceed the right-hand side of (4.20). Indeed, use (4.18) to obtain

[[wonriovaas = [f %dw

RxR

IN

g2 [ [ 1O P+ X0+ 1) d d

RxR

and then apply (4.25) and (4.21).

The concluding part of the proof is to show that ||All) < [[¢||lpxr. We use some
notation from subsections 4.3 and 4.4. In particular, let JC be the space of linear com-
binations ), ¢, X (tx), cx € R, t; € [0,7]. As it follows from the proof of Theorem 4.3,
there is an orthonormal system {&,},=12,. such that &, € K for all n and the clo-
sure of the linear span generated by {£,} contains all eigenvectors of A with non-zero
eigenvalues. By the well-known property of Hilbert-Schmidt operators we have

IAI[G) = Z (A&, Em)]?
n,m=1

Let L% be the complex Hilbert space of complex-valued functions ¢(A), A € R, such
that fR le(A)[2f(N) dX < oo with the scalar product

(p1,02)F = /<p1()\)g02(/\)f()\) d.

R

It is easy to check that the mapping ®: K — L% defined by ®(&)(\) = >, cxe™', where
& = > . ckX(tx), is well defined and preserves the scalar product. Thus, {¢,}n=1.2,..
with ¢, = ®(&,) is an orthonormal system in L%. Put ©um (A, 1) = @0 (A)@m(1). Then,

evidently, {¥nm }nm=1,2,.. is an orthonormal system in L%, .
If ¢ = X(s) and n = X (¢), s,t € [0, 7], then by (4.15)

(A&,m) = EX ()X (1) — EX(s)X (t) = R(s — 1) = boo(s, 1).

Inverting the Fourier transform in (4.22) and using the definition of 1, we get

(A€,n) = / / €m0 (A, ) dAdjs = / / e 1) F(N) £ (1) dA ds

— [ [ S0 e 17 () 1)

The expressions on the left and on the right in the last equality are bilinear in £ and
7, hence the equality holds for all £, € K. Therefore,

(A, Em) = / / o O 1) FOf (1) AN it = (6, ) e

RxR
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and

1Ay = D (A&, &)l = D 10, eamdrxrl” < 161

n.m=1 n.m=1

Corollary 4.6 If in Theorem 4.5 X has a spectral density f(/\) with respect to P then

41 < 55 (+/oo|f(/\) ~Fovia) e [asson- Fo2an}, a20)

where C s an absolute constant.

Proof: If the second integral on the right in (4.26) equals oo, then the statement is
trivial. Thus, let us assume that

/ (14+ XY (F () = FO)2dA < oc. (4.27)
By the definition of R(t),
R(t) = / EMFO) = FO) Ay, ¢ € [—r, 7] (4.28)

Extend the definition of R(t) to R according to (4.28). It follows from (4.27) that
fj;o IAl[f(A) = f(A)] dX < oo, hence we may differentiate under the integral sign in
(4.28) to obtain that R(t) is differentiable on R and

R(t) =i / AM(FO) = FO) dN, teR (4.29)
Then .
n[R(t+1/n) — R(t)] =i / AeMn(e™™ — D](F(A) — F(N)) dA.

The sequence of functions iA[n(e™™ — 1)](f(A) = f(N)) converges in L%(—oc, +00) as
n — 0o to —X*(f(A) — f())) due to (4.27) by the dominated convergence theorem. By
Plancherel’s theorem n[R(t+ 1/n) — R(t)] converges in L?(—o0, +00) to, say, Q(t) and

+0o0o

Q) = — / M (F(A) = f(A) dA  ae., (4.30)

—00

where the integral on the right can be understood in the sense of the principal value.
But it is assumed in Theorem 4.5 that n[R(t + 1/n) — R(t)] converges a.e. in (—7,7)
to R(t), hence R(t) = Q(t) a.e. in (=7, 7).
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Using Parseval’s equality, we get from (4.28)—(4.30) that

w(0)+ 1) <2 [ 1) - Folan) (4.31)
/ (R2(s) + R2(s)] ds < / (R2(s) + B2(s)] ds = 2 / (14+22)(F(N) — FOO)2dA, (4.32)

/ (R2(s — 1) + 202(s — £) + 2(s — 1)) ds dt
[0,7]%[0,7]
_9 / (r — 8)[R2(s) + 202(s) + 2(s)|ds < 2r / (R2(s) + 202(s) + Q(s)] ds

0
—+00

— drr / (14 X2)2(F(N) — F(N)2dA. (4.33)

Now (4.26) follows from (4.20) and (4.31)—(4.33).

5 An upper estimate for the Hellinger integral

In this section, if @ € M and p is a Borel measure on C, we denote by Pp* the
distribution of the solution X = (X(¢), —r < t < T) of (1.1) in Cr, where the
distribution of the initial process Xy = (Xo(t),¢t € J) in C is p. If a € M and p
is such that X is a stationary process, we shall write P% instead of Pp*. The aim of
this section is to provide a formula for the likelihood ratio dP/dP for P = P“" and
P = P%" and to estimate from above the Hellinger integral H(P, P) in the case where

a € M and P = Py, i.e. the initial condition p corresponds to the stationary solution
of (1.1).

5.1 Formula for the likelihood ratio

In this subsection we assume that a and a belong to M and p and j are probability
measures on C. Given T € R, , define non-anticipating functionals (A4;(z), t € [0,T])
and (A4(z), t € [0,T]) on the space Cr by

At(:v)z/x(t—i—u)a(du), Zt(a;):/a;(tw)a(du), te[0.T], z€Cr
7 7
Since fOT[Af(ac) + A2(z)]dt < oo for any z € Cr, the next result is, of course, not
surprising. But we supply it with a short proof since we have not found a direct

reference.
If x € Cp, we denote by & the restriction of x to the interval J.

23



Proposition 5.1 If i < p (resp. Ji ~ ) then PoF < P&* (resp. P&" ~ P®") and
Prt-a.s.

ZZTZ@) _ 4 exp{ / A,(2) — Au(2)] da(t) /T (2)] dt}

- Z—g(i‘)exp{/[flt(x) (z)] dw(t) %/T ]Zdt} (5.1)

0

where w = (w(t), t € [0,T]) is a Wiener process on (Cr, B(Cy), Pi") defined by w(t) =
2(t) — z(0) — [7 Ay(z) ds.

Proof: Assume first that @ = 0. If g < p, our statement follows from Theorem II1.5.34
in Jacod and Shiryaev (1987) (note that the measure Py* satisfies the local unicity
property as it is required in that theorem). Since the exponent in (5.1) is strictly
positive, we obtain that Pp® ~ Pg* if fi ~ .

In the general case we have now that P2% ~ P2F <« P&*. We also know expressions for

-~ - - ~~\ —1 - -~
the densities dP2F /dPYF = (dP%“ /qu‘f’“) and dPY" /dP%". Since dPAF /dPY* =
(de:ﬁ / dPg’ﬁ> (dPYQ’ﬁ / dP;:“) Prt-as., the claim easily follows.

5.2 An upper estimate
Recall that the dual Lipschitz norm || - || p is defined in subsection 3.3.

Theorem 5.2 Assume that P = Pg, P= Pg’ﬂ, where a € My, a € M, 1 is a probability
measure on C, andT € Ry. Let L > 0 and v < 0 be numbers such that the fundamental
solution xo(t) corresponding to a satisfies (3.6), and B, a number such that the spectral
density f(\) of the stationary solution to (1.1) corresponding to a satisfies the left-hand
inequality in (3.13). Then

- C,B, i — al5T
H(P,P) < — _ , 5.2
(7 )—e"p{ 1+ Cylla— a2 (5-2)

where C, > 0 depends only on r and C., =y ?L*e™".

Proof: Put b := a—a and define a stochastic process Y (t), 0 < ¢t < T, on (Cp, B(Cr), P)
by

Y(t) = /x(t—i—u) b(du).

Let p be the initial distribution on C of a stationary solution to (1.1) corresponding to
a. If 1 < p, one can use (5.1) and a standard trick with Hélder’s inequality to obtain

H(P,P) < {Eexp (—%/TYQ(t) dt) }1/4, (5.3)
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where F is expectation with respect to P. In fact, this inequality is true even if 1 is not
absolutely continuous with respect to y. For instance, one can apply Corollary V.4.19
and Theorem IV.3.39 in Jacod and Shiryaev (1987).

Since (x(t), t € [—r,T]) is a stationary Gaussian process with zero mean (relative to P),
(Y(t), t € [0,T]) is also a stationary Gaussian process with zero mean and covariance

R(t—s) == R(s,4) = BE(Y(s)Y (1)) = // K(t—s+u—v)b(du) b(dv), st €0,T],
IxJ
(5.4)
where K(t) := FEz(s)z(t + s). Let Ry be the covariance operator in L?[0,T] corre-
sponding to R, i.e. the integral operator with the kernel R(s,t). By Lemma 3.1 in
Kallianpur and Selukar (1991),

E exp (—;O/TW(]:) dt) < exp (—%) : (5.5)

where ||Rr|| is the operator norm of Ry and

T

tr (Rp) = / R(t,1) dt = TR(0) (5.6)

0

is the trace of Ry.
We shall show that

R(0) > C:B,[bll;  and  [[Rrl| < Cyilibll;- (5.7)

Then the statement of the theorem (with a different C,) follows from (5.3) and (5.5)—
(5.7).
Let us first check the second inequality in (5.7). It follows from (5.4), (3.9) and (3.6)
that

[R(@t)| < @) L% e Molls,  te [-T,T.

Hence

T
/| (t—s)|ds < C,|Pbl2  forany ¢ e [0,T].
0

Now, for any g € L?[0, T}, cf. the proof of Lemma 3.2 in Kallianpur and Selukar (1991),

T 9 T
(Rro)(t (/ (t - 5)g sds) < Culbl [ IR =s)a*()ds, € l0.T)
0 0

and
T

T
/ Reg)(t)dt < C, 1 |BI12 / / R(t — 5)|g(s) ds dt < C2 |b]]* / () ds.
0

0
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The second inequality in (5.7) follows.

The proof of the first inequality in (5.7) is direct if r = 0, so we shall assume that
r > 0. The key idea is to replace the covariance K in (5.4) by the function K of a
special form. To realize it, put K (¢) := (r — |t|)*. Then K(t) = Jx ei)‘tf(/\) d\, t € R,

where f()\) = 1_;(’7)?9’\) There is a positive constant C,, depending on 7, such that

~

(1+X?)7' > C.f()\), A € R. Then, using (5.4), (3.10) and (3.13), we get

R(0) = / ‘ / e b(du) : F\) dA> C, B, / ‘ / e b(du) zf()\) d
_ ¢.B. / / R (u - v) b(du) b(dv). (5.8)
Note that
/ / R (u— v) b(du) b(dv) = / / (r = |u— v]) b(du) b(dv)

= ///O(l{qugt}+1{u/\v>t})dtb(du) b(dv)

JxJ —r

= /{b2([—7‘, t]) + b%((¢,0]) } dt

> %/{Ib([—r,t])|+|b((t,0])|}2dt- (5.9)

To complete the proof, we shall estimate the right-hand side of (5.9) in terms of ||b||p.
We extend the arguments used by Vallander (1973). Let b = bt — b~ be the Hahn-
Jordan decomposition of the measure b. Put F(t) := bt ([—r,t]), G(t) := b ([-r,1]),
t € J, and F1(s) := inf{t:: F(t) > s}, s € [0,F(0)), G !(s) := inf{t: G(¢t) > s},
s € [0,G(0)). Then, for any g € Lip,,

F(0) G(0)
[otwman = [awFay- [swcan= [ oFs)ds— [ o) ds
’ JF(O)/\G(O) ’ ' F(0) ’
= [ e -aG edst [ o e)ds
0 F(0)AG(0)
G(0) F(0)AG(0)
- [ sGionas< [P -6 )ds
F(0)AG(0) 0
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+|F(0) - G(0)] S/\F(t)—G(t)ldt+\F(0)—G(0)|

J

_ / b([=r, 8| dt + [b(J)].

J

Therefore,

61, < { [ =l ae+ I} < {er) [lo=raplae+ o [ o oplac}

J J

<2t [ {ord)| + b oY dr (510
J
Combining (5.8)—(5.10), we obtain the first inequality in (5.7).

6 Proof of Theorem 2.1

(1) The statement follows from Corollary 3.2.
(4) The statement follows from Theorem 3.3 applied to @ = @91, (9)u a0d T = Ayt pp @),
if we take into account (3.17), Condition 2, and the fact that

lor (@) (u =)l = T72ET2(9) (u = )| < C'T7H2]lu —v]],

where C' does not depend on 9, u, v, or T. Indeed, X(¥) is continuous and non-
degenerate on © by Lemma 3.4, hence its minimal eigenvalue is separated from 0
on K.

(2) The existence of a continuous modification of the random field Z7 4(u) follows from
(2.2) with m > k and from e.g. Theorem 19, Appendix I, p. 372 in Ibragimov and
Has’minskii (1981).

(5) In this part of the proof the letter B with subscripts will be used for positive
constants depending only on ©, r, the family A, and the compact K.

Let T > 0, ¥ € K, and u € Ury. By Condition 2 and the same argument as in the
proof of part (4),

89+ @0 — asllo < BIT™H2]Jul]. (6.1)

Next,
29+ pr = asllp > Bollor(9)ul = BTS2 (W)ul| > BsT~?lull,  (6.2)

where we used the inequality (3.20) and the fact that the maximal eigenvalue of X(¥)
is bounded on K by Lemma 3.4.
Applying Theorem 5.2 and using (3.17)—(3.19), (6.1), and (6.2), we get

9 pIter(P)u B4||U’||2
H(P?, P! ) < expd — 1+ Bs||u|>T-t |~



Since © is a bounded set, we have ||u|| < BgT"/2, therefore

B 2
1) <o)

The claim follows.
(3) To simplify the notation put P" = Pﬁ" Let us fix for a while a vector v € R* and
introduce a stochastic process Y;,(t), 0 < t< T,, on (Cr,,B(Cy,), P™) by

Y, (t) = /x(t + 5) by (ds), where b, = (v, ay,). (6.3)
J
Since the coordinate process x(t) is a stationary Gaussian process with respect to P",

it is easy to check that Y (t) is a stationary Gaussian process with the covariance
function (E™ is the expectation with respect to P™)

Ko(t) = E"Y, (s)Ya(t + ) = ‘/ Ky (t+ 1 — v)by (du)b, (do). (6.4)
JIx.J
Note that
sup ||by|» < 00. (6.5)

Indeed, otherwise we can find a subsequence {4, } such that ||b,, |, — oo and ¥,, —
¥ € K as k — oo. But it follows from Condition 4 that {b,, } *-weakly converges to
(7, ap) as k — 0o, hence the norms ||b,, ||, are bounded.

Evidently, we have

An easy calculation shows that

E%%7ﬁ@ﬁ—&@fz%7ﬁ&@ﬁﬁ@ﬁ

It is easy to check that the expression on the right tends to 0 as n — oo: use (6.4),
(6.5), (3.9) and the estimate (3.19). Therefore,

T

o / Y2(t) dt — (3, S(0)7) 25 0.

Since v € R* is arbitrary, we obtain from (6.3) by polarization that
Y

_/(/ (t+5s) aﬁnz(ds)) (J/x(t—i— s) aﬁn,j(ds))dt — (0,) =5 0.
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In other words, since the elements of the matrices £ ~/2(¢J,,) are uniformly bounded by
Lemma 3.4,

-
(m (9) / £t + 5) g, (ds)) (Wn (9,) / ot + 5) @,;n(ds)> L (66)
T J
By the central limit theorem for stochastic integrals, see e.g. Basawa and Prakasa Rao
(1980), Appendix 2, Theorem 2.1, p. 405,
L(Ar,9, | P") = N(0,I;), n— oo. (6.7)

Now put

~

?n(t) = /x(t + 8) /b\n(ds)’ Where bn = aﬁn‘i“an("?n)Un - a"ﬂn - <g0Tn (1971),“”’ dﬁn)'
J

Our next step is to show that

/ v2(t)dt 25 o. (6.8)

Indeed, the process ?n(t), 0 <t <T,,is astationary Gaussian process with respect to
P™ with the covariance function

Ko (t) = E"Y,(s)Y,(t + 5) / Ky, (t +u — v)by (du)by (dv)

JxJ

and the spectral density

2
.0 = ‘ / B (du)| fy. (V).
J
Hence,
T 00 9
B / P2t dt = TR (0) = [ |TV2 / B (du)| fo, (V). (6.9)
0 —00 J

Since ©712(9,,)uy, is a bounded sequence due to Lemma 3.4, we obtain from Condition 4
that

Té/z/g(s)/l')\n(ds) — 0, n—oo, forany g¢eC. (6.10)
J

Using the upper estimate in (3.17), we obtain that the integrand in the right-hand
side of (6.9) converges to zero as n — co. On the other hand, (6.10) also implies that
sup,, T,%/2||bn||v < oo. Using (3.17) again we obtain that the integral on the right in
(6.10) tends to zero by the dominated convergence theorem, and (6.8) follows.
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Let u, := Py (resp. pl, := P(}?“WTR('?“’“") be the initial distribution on (C, B(C))
of the stationary solution to (1.1) with a = ag, (resp. a = ay, 4o, (9,)u,)- Introduce
new probability measures Q" and Q" on (Cr,,B(Cr,)), which are the distributions of
solutions X = (X(t), t € [-r,T,]) of the equation (1.1): @™ corresponds to the initial
distribution p, and the delay measure ag, + (o7, (9n)Un, @, ), and Q™ corresponds to
the initial distribution j, and the delay measure ay, 1,5 (9,)un-

It has been already proved that P® ~ P™ .= P}gn"“L“’T“w")u". By Proposition 5.1
P~ Q" ~ @" Moreover, due to (5.1) we have

Q" L 2
log T = (AT, 9, Un) — 5/(<S0Tn (ﬁn)/x(t + s) agn(ds),un>> dt,
0 J
and it follows from (6.6) and (6.7) that
dQ" [ul>) Pr
1 — [ (A — . A1
8 —mn (( Ty U) 5 — 0, n—ooo (6.11)

Let h,(t), 0 < t < T,, be the Hellinger process of order 1/2 for Q™ and Qr (with
respect to the natural filtration). Using formula (5.1) for the density process of Q"
with respect to Q", we obtain

t
1

() = g/?g(s) ds, te€[0,Ty]

By (6.8), h,(T},) % 0. But, in view of (6.11), the sequences {P"} and {Q"} are

mutually contiguous, hence h,(7T},) 0. By Theorem V.4.32 in Jacod and Shiryaev
(1987)
Q" — Q"||, = 0, n — occ.

By Kraft’s inequality, see e.g. Jacod and Shiryaev (1987), Proposition V.4.4,

pg(@”, Q") —0, n—oco. (6.12)
Furthermore, since
ap™ dul, .
—(2) = 2(3)
aQr M
by Proposition 5.1, we have
p2(@", P™) = pajan, 1) = 0, n— 00, (6.13)

where the convergence statement follows from Theorem 3.3. Combining (6.12) and
(6.13), we get po(Q™, P™) — 0, which implies

dP'"™ gn
%1, n— .

aQ" ’
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Hence,

ar” 51, no oo
aQn ’ '
due to the mutual contiguity of { P"} and {Q"}. Now we get
dp™ aQr dP"™ pn
log P —logdgn = log a0 P—)O, n — 0o,

and the first statement in (3) follows from (6.11).
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