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Predating Predators
— An Experimental Study —

Judith Avrahamiu, Werner GiithE! Yaakov Kareev'

Abstract

Predating predators requires at least three specimen to which we refer as players 1, 2, and 3.
Player 1 has simply to guess nature when trying to find food. Player 2 is hunting player 1 in
the hope that 1 is well-fed but must also avoid being hunted by player 3. One major
motivation is to test three benchmark solutions (uniformly perfect, impulse balance and
payoff balance equilibrium) in such a complex strategic setting. In the experiment three
participants play repeatedly the game (partner design) which allows to test whether certain
types of behavior are just initial inclinations or stable patterns which survive learning and
experience.

1 Introduction

Evolutionary stability usually implies that behavior is well adapted to one's environment but
not necessarily to specific circumstances which are either rare or non-existent.” As a
consequence certain types of behavior may appear as rather unreasonable in special situations.
Probability matching, for instance, could be a quite reasonable attitude in our usual
environment although it is clearly suboptimal in the experiments confirming it as a stylized
fact.

Consider a situation where one can bet on two locations H and 7 whose probabilities of
providing food are either known or more or less certainly learned over time. It is assumed that
food is available only at one location and that nature's repeated choice of providing food at H
or T satisfies the iid-property (the successive chance moves are independent and governed by
an identic (probability) distribution). Probability matching then refers to choosing locations
proportionally to their probabilities of providing food although optimality dictates the
constant choice of the more likely location.

One could try to justify probability matching by questioning the iid-assumption. For a habitat
to be sustainable locations with a rich food supply today will have to recover and therefore
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offer little or no food next time. Probability matching then may imply that the various
locations offer the same chances of finding food and that the habitat with its multiplicity of
feeding locations is sustainable. In our view, a study of probability matching in such a
dynamic decision environment is very much needed and should receive a lot of attention.

Here we, however, focus on a different aspect which is also neglected by usual probability
matching experiments. If optimality dictates always the same choice, optimal behavior
becomes highly predictable. In a strategic settings where one does not only want to guess
nature but also to avoid being outguessed by one's predator or competitors such predictable
behavior can be disastrous. To capture such possibilities we consider a 3person-game with

e player 1 who tries to guess nature as in usual probability matching experiments but also
has to avoid being hunted by

e player 2 who is 1's potential predator but also the potential prey of
e player 3 who has to outguess player 2 as his only prey.

Thus the phenomenon of “Predating Predators” can be studied by theoretically and
experimentally analyzing player 2's decision behavior. It will be shown that (commonly
known) rational behavior predicts probability matching by player 2 which is, however, only
poorly confirmed by the overall experimental results. We will therefore also test other
equilibrium concepts.

Section 2 introduces the basic game whose benchmark solutions are derived in section 3 and
4. The experimental procedure is described in section 5 and the results are analyzed in section
6 before concluding and summarizing the findings in section 7.

2 The game model
Imagine a habitat populated by three specimen,

e player 1 who has to guess whether nature provides food at location H (with probability w)
or T (with probability 1-w),

e player 2 whose potential prey is a well fed player 1 but who also may fall prey to
e player 3 who is only interested in hunting a well fed player 2.

Situations like these are paradigmatic food ladders since 1 feeds on the habitat, 2 on 1 and 3
on 2 and since thus all three specimen are more or less indirectly relying on the supply of their
common habitat.

Since H and T are the locations where player 1 can search for food, they are also the possible
hunting grounds for players 2 and 3. Thus the notation of choice alternatives in the extensive
form (Figure I1.1) or 2x2x 2 -trimatrix (Table I1.2) representation of the game is essential as
usual in evolutionary game theory. Payoffs (at the endpoints, i.e. the last nodes in Figure I1.1,
the cells in Table I1.2) are given in the natural order. What these payoffs capture is that for i =
1, 2, 3 hunting success of player i presupposes hunting success of player i —1 (where we rely
on the usual convention of denoting nature as chance player 0 who starts the game at the
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origin o of Figure II.1). Furthermore, hunting success leads only to a win (of 1) if one is not
hunted in turn.

EO A

Figure I1.1: The extensive form game (play starts at the origin with nature/player 0's choice
and proceeds to a final/lowest node where payoffs for players 1, 2, 3
are given in the natural order)

S S
sy =H H T s3=T H T
s, H 0,0,w w, 0,0 s, H 0,w, 0 w, 0,0
T 1 ,0,0 | 0,1—-w,0 T 1-w,0,0 | 0,0, 1—w

Table I1.2: The 2x2x 2 -trimatrix game (a strategy vector s = (s,,s,,s,) with s, € {H,T}
for i =1,2,3 corresponds to a cell, payoffs expectations of player 1, 2, 3 are given in the
natural order for each cell)

Thus at most one player can gain which, furthermore, requires that player 1 has chosen the
right location by guessing nature. If player 1 misses nature, no player can gain. This illustrates
that the game is partly very competitive (if a player wins at all, he will be the only one) and
partly strictly non zero-sum (all players want player 1 to guess nature as often as possible, i.e.
they all want 1 to choose the more likely location, e.g. location H if w=>1/2). Furthermore,
there are three candidates who could probability match by letting their choice behavior
depend more or less specifically on the probability parameter w which is restricted without
loss of generalityto 1/2<w<1.



3 Equilibrium solution

The usual solution concept to solve games like the one described in the previous section, is
that of an equilibrium point (Cournot, 1838; Nash, 1951), i.e. a strategy vector from which no
single player can profitably deviate. Let us denote by

x = Probability {s, = H} with 0<x <1,
y = Probability {s, = H} with 0< y <1,
z = Probability {s, = H} with 0< z<1.

Proposition 1: The game has three types of equilibria, namely

S , v, ) with y e [0, w],
5=(T, y,T)or(x V,Z ) (O y,0)with y e [w,]
w)

andq’ =(x".y" z)=[ s \

) 91_ .
(—wf+w "

Proof: xe (0,1) requires that player 1 is indifferent between choosing s, = H or 5, =T, i.e.
w(l—y)z+w(l-y)1-z)=(1-w)yz+(1-w)y(l-z)ory=w. Due to 1/2<w<1 this
requires player 2°s indifference between s, =H and s,=T or wx(l—z)=(1-w)l-x)z.
Since z=0 would imply x=0 and z=1 also x=1 contrary to our initial assumption
xe (0,1), one must have

- (1= w)1=x)+wx

which is well defined in the sense of ze (0,1) due to 1/2<w<1 and xe (0,1). Indifference of

player 3 between s, =H and s, =T requires w’x=(1—-w)’ (I1—x) due to y=w and thus

x= (1(‘ o € (0,1). Inserting this into the equation for z yields z=1—w. Thus ¢° is the only

equilibrium satisfying x e (0,1).

If x=0 would go along with z >0, this would imply y =0 which, in turn, induces z=0.
Both, x=0 and z =0, however, allow for any ye [0,1]. Any y <w would, however, induce
player 1 to deviate from x=0. Thus § requires ye [w,1]. Similarly, x=1 and z <1 would
imply y =1 which, in turn, induces z=1. Together x=1 and z=1 allow for any ye [0,1].
Since, however, any y > w induces player 1 to deviate from x =1, any § requires ye€ [O, w].

The intuitive interpretation of these two classes § and 5 of equilibria is obvious: Since
players 1 and 3 go to the same location, it does not matter for player 2 whether or not he
catches player 1 since, if he does, he is caught by player 3. Player 2 should only not seduce
player 1 to deviate.

g.e.d.

The infinite number of equilibria may be viewed as troublesome although the equilibrium
predictions are quite specific: Either player 1 and 3 go with certainty to the same location (so

that for player 2 his choice of y does not matter) or all three players mix in the unambiguous
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way of ¢". The latter, furthermore requires (counter) probability matching on behalf of player

2(3). We nevertheless want to explore whether the usual refinement of the equilibrium
concept (Selten, 1975) will reduce the multiplicity of equilibria.

Proposition 2: All equilibria § with 0<p<w and 5 with 1>7>w as well as ¢" are
perfect.

Proof: Since ¢° is completely mixed (0<x*, v,z < 1), it exist as an equilibrium also in
perturbed games (with small but positive minimum choice probabilities for s, = H and s, =T
and for i =1,2,3). The equilibrium ¢" can thus be approximated by itself as an equilibrium

of perturbed games whose minimum choice probabilities vanish. Thus ¢" is perfect.

For equilibria of the type § in Proposition 1, one has y e [0, w] in a perturbed game. Denote
by ¢ for i=1,3 player i's positive but small minimum choice probability for s, =7. We
want to explore when using s, =7 with probability €, for i =1,3 constitutes an equilibrium
of the perturbed game. For players j=1,2,3 the condition that s, = H is at least as good as

s, = T is as follows:

e j=1: w(l—y)Z(l—w)yoery
o j=2:wl-¢gg=2(1-wl(l-g)
o j=3:mll-g)2[1-wli-y)e

Clearly one needs y >0 to satisfy the condition for j=3. If trembles vanish, for i =1,3 the
probabilities &, or their relations e, =&, /(1-&,) have to converge to 0. By w/(1-w)=e¢, /e
all equilibria § with 0 < y <w can be approximated by equilibria of such perturbed gamesizl
when £, and &, converge to 0.

For equilibria of type s let now for i =1,3 the actual and minimum choice probability be
denoted by ¢, for s, = H and assume ye [0,1]. For j=1,2,3 the best reply requirement for

s, = T is then:

e j=1:wl-y)<(l-w)yorw<y
o j=2: we(l—-g)<(-w)l-g)e,
o j=3:wey<(-wli-g)i-y)

? Perfectness considerations are based on strategy trembles (Selten, 1975): A player i, wanting
to use strategy s, , cannot avoid using other strategies s, # s, with small but positive (mistake)
probabilities. An equilibrium s is perfect if it can be approximated by equilibria of (by

trembles) perturbed games whose (mistake) probabilities vanish. Thus perfectness alludes to a
world where irrationality (in the form of strategy trembles) is present and studies the limiting
behavior when irrationality becomes very unlikely.

* Since y with 0 < y<w<1 has to be approximated for player 2 both choices, s, = H and

s, =T must yield the same payoff expectation which is guaranteed by w/ (1 — w) =e /e;.

5



For ¢ =¢,/(1-£)— 0 the condition for j=3 holds sooner or later for y<1. To justify
w< y <1 one must have we, = (1—w)e, . For trembles w/(1—w)=e, /e, all equilibria § with
w< Yy <1 can be approximated and are therefore perfect.

g.e.d.

According to Proposition 2 perfectness hardly restricts the multiplicity of equilibria by
narrowing down the scope of mixing by player 2 ( J, respectively y). It cannot avoid the

large multiplicity of potential solution candidates. We therefore apply an even more refined
equilibrium concept, which rules out arbitrariness when specifying trembles. For a uniformly
perfect equilibrium™ all minimum choice probabilities are the same, namely £ where ¢ is a
small but positive number. According to this more refined equilibrium concept we can
usually, namely for w#1/2, derive a unique solution.

Proposition 3: Except for the special case w=1/2 only the equilibrium ¢* is uniformly
perfect.

Proof: We rely on the notation and the conditions in the proof of Proposition 2. Uniform
trembles imply €, =¢; forall i,j=1,2,3 and thus ¢ =e,. Remember, furthermore, that w is
assumed to satisfy 1/2<w<1. For w>1/2 the condition for j=2 in view of § (see the
proof of Proposition 2) is thus satisfied as a strict inequality implying that only y =1 can be
approximated which, however, is excluded by the condition for j=1. Thus for 1/2<w<1
no equilibrium of the type § can be uniformly perfect.

For § the assumption 1/2 <w<1 implies again y =1 due to e, =¢,. For y =1 the condition
for j=3 can, however, not be true in the range e, > 0. Thus also no equilibrium of type §
can be uniformly perfect for 1/2 <w<1.

For w=1/2 the condition for j=2 is always satisfied in form of an equality. But then
uniform perfectness of § requires only 0 < y <w, i.e. all equilibria of type § with 0< p<w
and, similarly, of type 5 with w<y <1 are uniformly perfect for w=1/2.

Finally, ¢* is uniformly perfect since one can always find small enough uniform trembles

such that ¢* describes a possible strategy vector of the uniformly perturbed game.
g.e.d.

Note that efficiency in the sense of a larger payoff sum of all three players implies x =1 due
to w>1/2. Thus the inefficiency of the unique benchmark equilibrium ¢* increases with w.

The maximal payoff sum of w, implied by x =1, could be distributed continuously between
1 and 2 or 3 by choosing y accordingly (the larger y the less 1 would earn) and the share y of 2
and 3 between 2 and 3 by an appropriate choice of z (the larger z the less 2 would earn).

* According to uniform perfectness all mistake probabilities on which perfectness relies are
the same, namely € which is a small but positive number. The idea is that mistakes just occur
and do not depend on the specific choice problem. Thus uniform perfectness denies rationality
in making mistakes as it is, for instance, assumed by proper equilibria (Myerson, 1978).
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4 Balance equilibria

Equilibrium points rely on common and commonly known rationality. If they fail to account
for actual, e.g. experimentally observed deE(I‘ision behavior, one can either question the
adequacy of the game theoretic representation™ or the rationality assumption. The first attempt
would render the rational choice approach as tautologic.” Here we want to confront it,
however, with more behavioral ideas which have been inspired by stylized facts of actual
decision making.

Whereas the usual rationality assumption requires (often local) optimization the two more
behavioral concepts suggest that behavior is guided by comparing the overall effects of the
competing decision alternatives. For the case at hand this means that for players i =1,2,3 the

total impact of the choice s, = H should be balanced by what s, =7 yields. For an impulse

balance equilibrium (Selten, Abbink and Cox, 2001) what has to be balanced, i.e. be equal, is
the regret implied by s, = H, respectively 7, for a payoff balance equilibrium it is the

expected payoff for s, =H and s, =T.

Proposition 4: There is only one payoff balance equilibrium ¢* =(x+,y+,z+) given by
x"=1-w, y"=1/2, z" =1/2 and only one impulse balance equilibrium ¢~ = (x’,y’,z’)
with x" =w, y" =1/2, z- =w’ /(w2 +(l—w)2).

Proof: For player 1 the choice of s,=7 with probability 1—x means that he gains
(1-w)(1-x)y in expected payoff whereas for s, = H his (expected) payoff is given by
wx(l - y) . Balancing yields

(1- w)(l - x)y = wx(l —y).
The corresponding equations for players 2 and 3 are

(1= w)1=x)1=y)z = wxp(1-z)
and
(1=w)1=x)1-y)1-z)=wxyz.

The only solution of the system of three equations in the three unknowns x, y, and z is given
by (x*, v, z*). For an impulse balance equilibrium the regret of s, = H is xy(1—w) and for
s, =T itis (1-x)(1— y)w. Balancing means that these have to be equal. For players 2 and 3
the corresponding equations are (1= x)y(1=w)=(1-z)x(1-y)w and
z(l — x)(l — y)(l — w) = (1 — z)xyw, respectively. The unique solution of these three equations is
(x’ Y . Z )

g.e.d.

> Players may not only care for their own payoff as captured by Figure II.1 and Table 11.2 but
also for the well-being of others (for an analysis of such repairs, which do not allow to
question the rationality assumption, see Avrahami, Giith and Kareev, 2001).

® All that one learns from repairing the game theoretic representation is which structural
aspects can better account for actual behavior if all players would be perfectly aware of them
and take them rationally into consideration.



5 Experimental procedure

Unlike in our companion study (Avrahami et al., 2001) we do not rely on a rich experimental
design. We rather concentrate on one of the six treatments of the other study for which we can
compare the behavior of players 1 and 2 in the 2 person-(Parasite)game with that one in the 3
person-game analyzed above. This allows to explore how the existence of player 3, which
captures the phenomenon of “Predating Predators”, influences the behavior of players 1 and 2
and how player 3 behaves whose role is similar to the one of player 2 in the “Parasite” game
except that his potential prey is also a hunter.

More specifically, we focus on w=3/4 and on the case where this probability is initially not
known but must be learned by experience (see Appendix for the instructions). Three
participants just learn that nature will locate food for player 1 either at H or 7 and how player
2 (3) can gain by successively hunting a well-fed player 1 (2). Since the same team of three
participants plays together about 100 successive rounds, they sooner or later learn how likely
the locations H and T are.

Since we view the experiment as an explorative attempt to compare behavior in a simpler
habitat (the “Parasite” game) with a richer and more adequate one, we do not introduce
specific hypotheses in addition to the “benchmark solutions”, derived above. Our main
motivation is to compare actual behavior with the three benchmark solutions, derived above.
For an easy comparison Table V.2 lists the strategies, the payoffs, the efficiency in the sense
of the total payoff (u, +u, +u,) and also the relations of the solution payoffs (i, /u, /u,) for
general probability w as well as for the experimentally used parameter w=3/4 for all three
benchmarks, the equilibrium solution ¢*, the impulse balance equilibrium ¢~ and the payoff

balance equilibrium ¢*.



Benchmarks

*

+

q q q
general w w=3/4 general w w=3/4| general w | w=3/4
(l—w)2 1/10 w 3/4 l—w 1/4
5 (1 - w)2 +u?
Strategies s, w 3/4 172 12 12 172
l—w 1/4 w2 9/10 12 1/2
53 w?+ (1 - w)2
(l—w)w 3/16 w2 +(1—w)2 5/16 w(l—w) 3/16
u, 2
Payoffs 9/160 2 ( _ w)z 9/160 (1=ww/2 3/32
u, (l—w)zw2 /[(l—w)2+w2J 2 (1—w)2
9/160 417160 | (1-w)w/2 3/32
U, (l—w)2 w? /l(l —w)2 +w2J lw4 +(1 —w)4 J/lsz +2(1—w)2J
Total Payoff 3/10 (1 _ W)Z I 5/8 2w(1 - W) 3/8
A (l—w)w/l(l—w)2 +w2J
Payoff Relations i n
uy/uy luy Footnote 10/3/3 Footnote 50/9/41 2/1/1 2/1/1

Table V.1: Strategies, payoffs, payoff sum and relations of the three benchmark solutions for

6 Results

general w and w = %

To ignore beginning and end effects the first and last few rounds are excluded from analysis
and only rounds 6 to 95 are reported. Since the probability w=3/4 has not been known
initially and could only be learned from experience, these are divided into three periods:
Period 1 (rounds 6-35), Period 2 (rounds 36-65), and Period 3 (rounds 66-95). Distinguishing
Periods 1, 2 and 3 should allow to check whether learning takes place and if so, how it
changes the decision making of players 1, 2, and 3 vis-a-vis the different benchmarks. Table
VI.1 presents the average strategies for the three players in each of the three periods.
Although we are more interested in the predictive power of the three benchmark equilibria,
derived above, it seems interesting to note that efficiency as measured by the sum u, +u, +u,

of individual payoffs is monotonically declining (the same applies to u, + 2u, + 2u, which

takes into account that for players 2 and 3 the gains are twice the number of their tokens won).

So, whatever players learn, it does not enhance overall efficiency.

7 [(1 - w)2 +w? J/(l - w)w/(l - w)w

' lw4 +207 (1-w)? +(1—W)4J/2W2(1—W)2 /lW4 +(1_W)4J




Period 1 Period 2 Period 3 Mean

Strategies s, .58 .59 .62 .60

S, 53 54 46 Sl

s, .58 72 72 .68
Payoffs u, .30 25 .26 27

u, A1 (x2) A1 (x2) A1 (x2) A1 (x2)

u, 19 (x2) 21(x2) A7 (x2) 19 (x2)
Total Payoffs .60 57 .54 .57
u, +u, +u,
Payoff Relations 30/11/19 | 25/11/21 | 26/11/17 | 27/11/19
u,/u, u,

Table VI.1: Average behavior, payoffs, payoff sum, and relations, separately for each period.
The payoffs are given as proportions of the number of tokens each player won; the actual
gains for Players 2 and 3 were twice the number of their tokens.

The typical behavior in Period 1 is close to 1/2 for all three players. This was to be expected
in view of the fact that w had not been announced in advance and could only be learned over
time. Actually, by an unbiased guess one should have a priorily expected w=1/2 instead of
w=3/4. Furthermore, for w=1/2 all three benchmark solutions suggest unbiased mixing
(x=y=2z=1/2) for all players. The average strategy of Player 3 rises markedly in Period 2
and remains high in Period 3, that of Player 1 rises moderately in each period while that of
Player 2 remains close to 1/2 and even goes somewhat down in Period 3. The payoffs of the
three players (less so for player 1) remain more or less constant over the three periods in spite
of the changes in strategies.

One could argue, of course, that the averages, and in particular that close to 1/2 do not
necessarily reflect a strategy of s =1/2 but a combination of, e.g., two groups employing two
opposed extreme strategies or any other combination. We therefore divided the range of 0-1
into five categories such that:

s =min, if s is closer to 0 thanto 1—w;

s=1-—w,if s is closer to 1—w than to either O or 1/2;
s=1/2, if s is closer to 1/2 than to either 1—w or w;

s =w, if s 1s closer to w than to either 1/2 or 1;

s = max, if s is closer to 1 than to w.

We could thus count the number of players in each role whose strategy falls into each of these
categories. In other words, we can assess the frequency of the following (in the sense of H-
shares):

X,V,Z€E [0,8],x,y,ze [l/4i8],x,y,ze [1/218],x,y,ze [3/4i8],x,y,ze [1—8,1],

with € = 1/8. Note that, since the range of the min and max categories is half that of the other
categories (1/8 versus 1/4) and, since two of the benchmarks predict that one player would use

one of these extreme categories (s, is min and s; is max) one should multiply the number of
cases found in these extreme categories by two for a better comparison. Table VI.2 presents
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the number of cases found in each category for players in each role, separately for each of the
three periods.

Period 1 Period 2 Period 3
Player min | I-w | 172 | w max |min | 1-w | 1/2 | w| max |min | l-w | 1/2 w max
1 2 8 6 2 8 6 1 6 9
2 3 10 | 2 1X2 3 9 3| 1X2 4 10 2
3 2 8 4 | 2X2 5 7| 4X2 4 9 3X2

Table VI.2: The number of cases in every strategy-category for each player in each period.
Note that since the range of the min and max categories is half that of the other categories, the
number of cases should be doubled for a better comparison.

As can be seen in Table VI.2, the prominent strategy in Period 1 is close to 1/2 for all three
players, although for Player 1 and 3 there are more cases above than there are below 1/2. In
Period 2 the strategy of Player 3 becomes more extreme (in the sense of H-plays) with 11 (or
15 after correction for range) choosing a strategy higher than 1/2. In Period 3 the number of
Players 3 who play higher than 1/2 is 12 (or 15 after correction for range) but here also Player
1’s strategy changes such that the prominent strategy of Player 1 is now w rather than 1/2. It is
easy to see that of the three benchmarks, the Impulse Balance best describes the players’
behavior in Period 3 and the Unique Equilibrium — worst.

To better evaluate the degree by which the different benchmarks predict participants’
behavior in the game we calculated, for every player in a triad, the absolute difference
between the strategy the player adopted in a period and the strategy predicted by the
benchmarks. Table VI.3 presents the mean absolute distance between the actual strategy
adopted by participants and that predicted by each of the benchmarks — separately for every
player in each period.

Benchmark Player Period 1 Period 2 Period 3 All
UE 1 477 490 522 496
2 241 237 288 255

3 341 473 468 427

all 353 400 426 393

IB 1 204 198 151 184
2 .108 131 .100 113

3 330 206 203 .246

all 214 178 151 181

PB 1 327 .340 372 346
2 .108 131 .100 113

3 175 235 231 214

all 203 235 234 224

Table V1.3

As is clear from the table, the Impulse Balance best predicts participants’ behavior. What is
more, participants’ strategies (although less clearly for player 2) move closer to the strategy
predicted by Impulse Balance as the game proceeds and as participants’ knowledge of w
improves. Indeed, an analysis of variance of the absolute distances, with Benchmark and
Period as within-participants variables and Player’s role as a between-participants variable
reveals a significant effect of Benchmark, with means of .393, .181, and .224 for the Unique
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Equilibrium, Impulse Balance, and Payoff Balance, respectively (F (2,30) = 27.42, p < .001).
The interaction between Benchmark and Player is also statistically significant as Impulse
Balance better predicts Player 1 than Player 3 while the opposite is true for the Unique
Equilibrium and Payoff Balance (F (4,60) = 3.94, p = .007). More important is the interaction
between Benchmark and Period (F (4,60) = 5.73, p = .001). Not only does Impulse Balance
best predict participants’ behavior overall, it improves over time while both Unique
Equilibrium and Payoff Balance deteriorate. The triple interaction of Benchmark, Player and
Period is also statistically significant with Impulse Balance’s predictions improving over time
for each Player while the other two deteriorate for each Player (F (8,120) = 3.04, p = .004).

7 Conclusions

Already our companion study (Avrahami et al., 2001) of the Parasite Game with just one
predator player did support the impulse balance equilibrium. Compared to this the
confirmation found here is even stronger. Of the three benchmark solutions the impulse
balance equilibrium is the only one improving with experience (as measured by Period)
whereas the two others deteriorate. Of the two others the payoff balance equilibrium fairs
significantly and consistentl)mmuch better than the unique uniformly perfect equilibrium. Bad
news for game theory indeed™. In our view, it is remarkable that a static equilibrium concept is
so successful in explaining strategic behavior in an experimental environment where learning
about nature and about others is crucial.

From an ecological point of view the pure prey species (player 1) and the pure predator
species (player 3) appear as moving somewhat parallel to better exploitation of their habitat
although for player 1 the increase of H-choices is rather weak. The hybrid prey as well as
predator-species (player 2) cannot take advantage of player 1's shift towards H since player 3
would very likely catch him when choosing H. This illustrates how predation of predators
may help to understand decision behavior better in a stable but highly stochastic habitat.
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Appendix: Instructions

We shall play a game of three participants, Player 4, Player B, and Player C, who will be
determined by a lottery that we shall conduct now. (Out of three pieces of paper in a box each
participant drew one with either “Player 4, “Player B” or “Player C”).

I will explain the procedure of the game and ask you not to talk to one another from now on.
Any talk or communication between you will cause an interruption of the game.

The procedure of the game:

In this bag there are tokens of two colors: red and green, and each of you has an apparatus by
which you can signal red or green, like that. On every round, each of you will choose red or
green and signal it in the apparatus, so that the color that you chose will be revealed. You
have to do that while hiding the apparatus under the table and show it only when I say so. At
the same time, I will draw one token out of the bag, without looking, and show it to you. After
I show you the token I will return it to the bag.

If the color chosen by Player 4 will be the color of the token I drew and the color that Player
B chose is different — irrespective of the color chosen by Player C — Player 4 will get a token
worth 1 NIS.

If the color that Player 4 chose is the color of the token I drew and the color that Player B
chose is also the same and the color that Player C chose is different — Player B will get a token
worth 2 NIS.

If the color that Player 4 chose is the color of the token I drew and the color that Player B
chose is the same but the color that Player C chose is also the same — Player C will get a token

worth 2 NIS.

If the color that Player 4 chose is different from the color of the token I drew out of the box —
none of the players gains anything.

We shall perform this a large number of times — more than a hundred — and it is, of course,
worth your while to earn as many tokens as you can. In the end of the game we shall count the
tokens and each of you will get paid accordingly.

I will repeat the scheme of payoffs.

Imagine that I drew green and that Player 4 chose red — no one gets anything.

Imagine that I drew green, Player 4 chose green and Player B chose red — 4 gets a token.

* The game was advertised as “The Color Game” to prevent any preliminary expectations on
the parts of participants concerning predating behavior.
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Imagine that I drew green, Player 4 chose green, Player B chose green and Player C chose red
— B gets a token.

Imagine that I drew green, Player 4 chose green, Player B chose green and also Player C
chose green — C gets a token.

Obviously, the same payoffs hold for a match in red.

In the end of the game we shall trade every token of Player 4 for 1 NIS and every token of
Players B and C for 2 NIS.
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